UNT Theses and Dissertations - 10 Matching Results

Search Results

Changes in Gene Expression Levels of the Ecf Sigma Factor Bov1605 Under Ph Shift and Oxidative Stress in the Sheep Pathogen Brucella Ovis

Description: Brucella ovis is a sexually transmitted, facultatively anaerobic, intracellular bacterial pathogen of sheep (Ovis aries) and red deer (Cervus elaphus). Brucella spp. infect primarily by penetrating the mucosa and are phagocytized by host macrophages, where survival and replication occurs. At least in some species, it has been shown that entry into stationary phase is necessary for successful infection. Brucella, like other alphaproteobacteria, lack the canonical stationary phase sigma factor ?s. Research on diverse members of this large phylogenetic group indicate the widespread presence of a conserved four-gene set including an alternative ECF sigma factor, an anti-sigma factor, a response regulator (RR), and a histidine kinase (HK). The first description of the system was made in Methylobacterium extorquens where the RR, named PhyR, was found to regulate the sigma factor activity by sequestering the anti-sigma factor in a process termed "sigma factor mimicry." These systems have been associated with various types of extracellular stress responses in a number of environmental bacteria. I hypothesized that homologous genetic sequences (Bov_1604-1607), which are similarly found among all Brucella species, may regulate survival functions during pathogenesis. To further explore the involvement of this system to conditions analogous to those occurring during infection, pure cultures of B. ovis cells were subjected to environments of pH (5 and 7) for 15, 30, and 45 minutes and oxidative (50mM H2O2) stress, or Spermine NONOate for 60 minutes. RNA was extracted and converted to cDNA andchanges in transcript levels of the sigma factor Bov1605 were measured using qPCR. Preliminary results indicate that under the exposure to Spermine NONOate there was little change in expression, but under oxidative stress expression of the sigma factor Bov1605 was 4.68-fold higher than that expressed under normal conditions. These results suggest that the sigma factor Bov1605 may be involved in oxidative stress defense during ...
Date: December 2012
Creator: Kiehler, Brittany Elaine
Partner: UNT Libraries

Detection of Mercury Among Avian Trophic Levels at Caddo Lake and Lake Lewisville, TX

Description: Mercury (Hg) is a globally distributed toxicant that has been shown to have negative effects on birds. in the United States, avian taxa have been shown to possess high Hg concentrations in the northeast, Great Lakes and Everglades ecosystems; however, few studies have measured avian Hg concentrations in other geographic regions. Previous studies have documented high Hg concentrations in multiple organisms in east Texas, but birds were not included in these studies. the main objective of the present study was to quantify Hg concentrations in birds in differing trophic levels at Caddo Lake and Lake Lewisville, TX. Results suggest that Hg concentrations may be high enough to negatively impact some bird taxa, particularly those at high trophic levels, residing at both Caddo Lake and Lake Lewisville.
Date: May 2012
Creator: Schulwitz, Sarah Elizabeth
Partner: UNT Libraries

Examining the Shade/flood Tolerance Tradeoff Hypothesis in Bottomland Herbs Through Field Study and Experimentation

Description: While there is growing evidence that shade/flood tolerance tradeoffs may be important in distributions of bottomland hardwood trees and indications that they should apply to herbs, no studies have definitively explored this possibility. Four years of field data following historic flooding were supplemented with a greenhouse experiment designed to identify interactions congruent with tradeoffs. Fifteen bottomland species were grown in two levels of water availability and three levels of shade over 10 weeks. Results indicate responses of Fimbristylis vahlii and Ammannia robusta are consistent with tradeoffs. Modification of classical allometric responses to shade by substrate saturation indicates a potential mechanism for the tradeoff in A. robusta. Responses indicating potential for increased susceptibility to physical flooding disturbance are also discussed.
Date: May 2012
Creator: Sloop, Jordan
Partner: UNT Libraries

Forward Genetic Characterization of Medicago truncatula Tnt1 Insertion Mutants Defective in Nodule Development and Symbiotic Nitrogen Fixation

Description: Legumes are unique plants because they form special structures “nodules”, via symbiotic relationships with rhizobial bacteria present in the soil. Once rhizobia mature inside nodules, they fix atmospheric nitrogen providing a source of bioavailable nitrogen to the plant. To discover novel genetic components involved in the legume-rhizobia symbiosis by using forward genetic screening, we have isolated Medicago truncatula Tnt1 insertion mutants in the R108 ecotype, which are defective in nodule development and symbiotic nitrogen fixation in response to Sinorhizobium meliloti. Out of three mutants NF11044, NF11217 and NF8324, one of the mutants showed brown nodules and Fix- phenotype that is defective in symbiotic nitrogen fixation. The other two mutants showed white nodules and Fix- phenotype, also indicator of defects in symbiotic nitrogen fixation. To identify the underlying mutation causing the phenotype, we have developed molecular genetic markers by obtaining genomic sequences flanking the Tnt1 insertions by TAIL-PCR and Illumina sequencing. To carry out co-segregation analysis, back-crossed BC1F2 segregating populations were obtained. These are being phenotyped, genotyped and analyzed for co-segregation of the phenotype with the Tnt1 genetic markers. Back-crossing also has the effect of reducing the Tnt1 insertions, which are not linked to the nodulation defective phenotypes. Out of the three mutants, NF8324 harbors exactly the same insertion as in the rsd-1 Tnt1 mutant NF11265. The defect in NF11217 is caused by a Tnt1 insertion in the previously described PLC gene; the site of this insertion is close to that found in a different mutant, NF0217. For mutant NF11044, we developed linkage markers that place the defective locus on chromosome 7. To further characterize co-segregation in NF11044, a mapping population has been created by crossing the mutant with other ecotypes: A17 and A20. We tested mutants and wild type plants with linkage marker A20 X NF11044 BC1F2 that segregates 3:1(wild ...
Access: This item is restricted to UNT Community Members. Login required if off-campus.
Date: May 2015
Creator: Kadel, Khem L.
Partner: UNT Libraries

Genetic Analysis of Medicago truncatula Plants with a Defective MtIRE Gene

Description: Leguminous plants are able to fix nitrogen by establishing a symbiotic relationship with soil dwelling bacteria, called rhizobia. The model plant Medicago truncatula forms a partnership with Sinorhizobium meliloti whereby the plant gains bioavailable nitrogen and in exchange the bacteria gains carbohydrates. This process occurs within nodules, which are structures produced on the roots of the plants within which nitrogen is fixed. M. truncatula incomplete root elongation (MtIRE) was localized to the infection zone, which is zone II of indeterminate nodules. It was shown to encode a signaling kinase so it was anticipated to play a role in nodulation. Mutants of MtIRE in the R108 background, mutagenized with the Tnt1 retrotransposon, were obtained from reverse screen, and were assessed to determine if a disrupted MtIRE gene was the cause of nitrogen fixation defective nodules. Mutant line NF1320, having a mutant phenotype, showed typical Mendelian segregation of 3:1 when backcrossed to R108. Experimental results show that MtIRE gene is not the cause of the mutant phenotype, but was linked to the causative locus. MtIRE co-segregated with the mutant phenotype 83%. Southern blot and the first version of the M. truncatula genome (version 3.5) reported a single MtIRE gene and this was shown to be on chromosome 5 but the latest version of the M. truncatula genome (version 4.0) showed a second copy of the gene on chromosome 4. The genome sequence is based on the A17 reference genome. Both genes are 99% identical. Genetic markers that originate from flanking sequence tags (FSTs) on both chromosome 4 and 5 were tested in an attempt to find an FST that co-segregated with the mutant phenotype 100%. An FST derived from a Tnt1 insertion in Medtr4g060930 (24F) co-segregated with the mutant phenotype closely, with 76% co-segregation. Medtr4g060930 (24F) is on chromosome 4, making it ...
Date: August 2015
Creator: Alexis, Naudin
Partner: UNT Libraries

Impact of a Genetically Engineered Probiotic Therapy and IGF-1 Genomics in the PAHenu2 Mouse Model of PKU

Description: Absence of functional phenylalanine hydroxylase results in phenylketonuria (PKU). Viable treatments remain few, expensive and secondary conditions such as osteopenia occur in most PKU patients. Objective 1: Given the recently described roles of gut microbes to aid host digestion, an orally administered genetically engineered probiotic as the delivery vehicle for enzyme replacement therapy was created. The engineered probiotic, pHENOMMenal, produced phenylalanine ammonia lyase with significant production of trans-cinnamate (phenylalanine cleavage product) in vitro and resulted in a reduction of 515 μM in blood phenylalanine when fed to PKU animals for 14 days (from 2307µM ± 264µM to 1792µM ± 261µM, n = 6, P < 0.05). The control probiotic produced no change in blood phenylalanine. Thus, pHENOMMenal treatment in PKU mice demonstrated engineered microbes could compensate for a metabolic deficiency of the host. Objective 2: Evaluate the PAHenu2 mouse model of PKU for a genetic discrepancy causing ocular enlargement and delayed development observed only after the PAHenu2 mutation was crossed to the C57BL/6J mouse. When compared to healthy littermates, ELISA indicated a consistent but insignificant decrease in plasma IGF-1 and an increase in ocular IGF-1 in PKU animals. SNP screening demonstrated a differential inheritance of IGF-1 alleles in healthy and PKU animals based on PAH allele inheritance. Ocular and developmental phenotypes in the PAHenu2 colony match those described in previous IGF-1 studies. Understanding the IGF-1 inheritance discrepancy will enable better osteopenia research using PAHenu2 mice and allow breeding of a healthier mouse colony for continued research. Collectively the results from this work describe a new therapeutic approach for treatment of PKU as well as a better understanding of the PAHenu2 mouse model to study this disease.
Date: December 2015
Creator: Durrer, Katherine Elaine
Partner: UNT Libraries

The Impact of Developmental Stress on Cardiovascular Physiology of Two Archosaur Species: American Alligator (Alligator mississippiensis) and Domestic Chicken (Gallus gallus)

Description: Crocodilians and birds comprise sister taxa of archosaurs, the development of these vertebrates occurs within an egg case that leaves developing embryos susceptible to fluctuations in the nesting environment. Studies suggest that sub-optimal conditions alter morphological growth and cardiovascular physiology. Regulation of the cardiovascular system is immature in the subjects studied, and embryos may rely on humoral rather than neural control of the cardiovascular system. The primary focus of this dissertation was to assess regulatory mechanisms responsible for maintenance of arterial pressure and heart rate. Dehydration stress had marked effects on embryo growth, and altered baseline cardiovascular parameters, while leaving the response to humoral regulator, angiotensin II (Ang II), unaffected. However, dehydrated alligator embryos developed cholinergic tone on heart rate. Hypoxic incubated chicken embryos were reduced in embryo mass, and altered response to humoral regulatory components Ang I and adenosine in addition identifying a novel regulatory component of the cardiovascular response to acute hypoxia. Collectively, these studies add to the existing knowledge of cardiovascular physiology in embryonic archosaurs and suggest that some components of cardiovascular regulation are plastic following developmental stress.
Date: December 2014
Creator: Tate, Kevin B.
Partner: UNT Libraries

Investigating the Ability of Pseudomonas aeruginosa pyrE Mutants to Grow and Produce Virulence Factors

Description: Pseudomonas aeruginosa are medically important bacteria that are notorious for causing nosocomial infections. To gain more knowledge into understanding how this organism operates, it was decided to explore the pyrimidine biosynthetic pathway. Pyrimidine synthesis, being one half of the DNA structure, makes it a very important pathway to the organism’s survivability. With previous studies being done on various genes in the pathway, pyrE has not been studied to the fullest extent. To study the function of pyrE, a site directed mutagenesis was done to completely knock out pyrE, which encodes the protein orotate phosphoribosyl transferase that is responsible for converting orotate into orotate monophosphate (OMP). A mutation in this step leads to accumulation and secretion of orotate into the medium. Analyzing virulence factors produced by the mutant and comparing to the wild type, some intriguing features of the mutant were discovered. One of the findings was the over expression of virulence factors pyoverdin and pyocyanin. Pyocyanin over expression, based on the results of this study, is due to the accumulation of orotate while over production of pyoverdin is due to the accumulation of dihydroorotate. The other virulence factors studied were motility assays, exoproducts, and growth analysis. All virulence factor production was reduced significantly in the mutant compared to the wild type. The casein protease assay showed absolutely no production of proteases in the mutant. The conclusion is that orotate accumulation leads to a significant reduction in virulence factor production in Pseudomonas aeruginosa. In addition to that, it was found that excess orotate in the wild type led to a decrease in quorum sensing regulated products.
Date: December 2014
Creator: Niazy, Abdurahman
Partner: UNT Libraries

Phototoxic Effects of Titanium Dioxide Nanoparticles on Daphnia Magna

Description: Titanium dioxide nanoparticles (TiO2-NP) are one of the most abundantly utilized nanomaterials in the world. Studies have demonstrated the mechanism of acute toxicity in TiO2-NP to be the production of reactive oxygen species (ROS) leading to oxidative stress and mortality in exposed organisms. It has also been demonstrated that the anatase crystalline conformation is capable of catalyzing the cleavage of water molecules to further increase the concentration of ROS in the presence of ultraviolet radiation. This photoenhanced toxicity significantly lowers the toxicity threshold of TiO2-NP to environmentally relevant concentrations (ppb). The goal of this study was to determine whether dietary uptake and accumulation of TiO2-NP in the aquatic filter feeder Daphnia magna resulted in photoenhanced toxicity. D. magna and S. caprincornatum were exposed to aqueous solutions of 20ppm and 200ppm TiO2-NP for 24hrs and then transferred to clean moderately hard water. Samples were taken at various time points, dried, and TiO2 quantified using ICP-MS. Toxicity assays were run on D. magna using three TiO2-NP (20ppm, 200ppm) exposure protocols and two ultraviolet radiation treatments. The first exposure group was exposed to aqueous solutions of TiO2-NP for the duration of the test. The second exposure group was exposed to TiO2-NP for an hour and then transferred to clean water. The third exposure group was fed S. capricornatum that had been allowed to adsorb TiO2-NP. All samples were then placed in an outdoor UV exposure system and exposed to either full spectrum sunlight (with UV) or filtered sunlight (no UV). Here we show that TiO2 uptake peaked at one hour of exposure likely due to sedimentation of the particles out of suspension, thus decreasing bioavailability for the duration of the test. Interetsingly, when D. magna were moved to clean water, aqueous concentrations of TiO2 increase as a result of depuration from the gut ...
Date: December 2013
Creator: Mansfield, Charles M.
Partner: UNT Libraries

Spatially Explicit Modeling of West Nile Virus Risk Using Environmental Data

Description: West Nile virus (WNV) is an emerging infectious disease that has widespread implications for public health practitioners across the world. Within a few years of its arrival in the United States the virus had spread across the North American continent. This research focuses on the development of a spatially explicit GIS-based predictive epidemiological model based on suitable environmental factors. We examined eleven commonly mapped environmental factors using both ordinary least squares regression (OLS) and geographically weighted regression (GWR). The GWR model was utilized to ascertain the impact of environmental factors on WNV risk patterns without the confounding effects of spatial non-stationarity that exist between place and health. It identifies the important underlying environmental factors related to suitable mosquito habitat conditions to make meaningful and spatially explicit predictions. Our model represents a multi-criteria decision analysis approach to create disease risk maps under data sparse situations. The best fitting model with an adjusted R2 of 0.71 revealed a strong association between WNV infection risk and a subset of environmental risk factors including road density, stream density, and land surface temperature. This research also postulates that understanding the underlying place characteristics and population composition for the occurrence of WNV infection is important for mitigating future outbreaks. While many spatial and aspatial models have attempted to predict the risk of WNV transmission, efforts to link these factors within a GIS framework are limited. One of the major challenges for such integration is the high dimensionality and large volumes typically associated with such models and data. This research uses a spatially explicit, multivariate geovisualization framework to integrate an environmental model of mosquito habitat with human risk factors derived from socio-economic and demographic variables. Our results show that such an integrated approach facilitates the exploratory analysis of complex data and supports reasoning about the underlying spatial ...
Date: December 2015
Creator: Kala, Abhishek K.
Partner: UNT Libraries