UNT Theses and Dissertations - 13 Matching Results

Search Results

Note: All results matching your query require you to be a member of the UNT Community (you must be on campus or login with university credentials for access).

Analysis and Optimization of Graphene FET based Nanoelectronic Integrated Circuits

Description: Like cell to the human body, transistors are the basic building blocks of any electronics circuits. Silicon has been the industries obvious choice for making transistors. Transistors with large size occupy large chip area, consume lots of power and the number of functionalities will be limited due to area constraints. Thus to make the devices smaller, smarter and faster, the transistors are aggressively scaled down in each generation. Moore's law states that the transistors count in any electronic circuits doubles every 18 months. Following this Moore's law, the transistor has already been scaled down to 14 nm. However there are limitations to how much further these transistors can be scaled down. Particularly below 10 nm, these silicon based transistors hit the fundamental limits like loss of gate control, high leakage and various other short channel effects. Thus it is not possible to favor the silicon transistors for future electronics applications. As a result, the research has shifted to new device concepts and device materials alternative to silicon. Carbon is the next abundant element found in the Earth and one of such carbon based nanomaterial is graphene. Graphene when extracted from Graphite, the same material used as the lid in pencil, have a tremendous potential to take future electronics devices to new heights in terms of size, cost and efficiency. Thus after its first experimental discovery of graphene in 2004, graphene has been the leading research area for both academics as well as industries. This dissertation is focused on the analysis and optimization of graphene based circuits for future electronics. The first part of this dissertation considers graphene based transistors for analog/radio frequency (RF) circuits. In this section, a dual gate Graphene Field Effect Transistor (GFET) is considered to build the case study circuits like voltage controlled oscillator (VCO) and low ...
Date: May 2016
Creator: Joshi, Shital
Partner: UNT Libraries

Boosting for Learning From Imbalanced, Multiclass Data Sets

Description: In many real-world applications, it is common to have uneven number of examples among multiple classes. The data imbalance, however, usually complicates the learning process, especially for the minority classes, and results in deteriorated performance. Boosting methods were proposed to handle the imbalance problem. These methods need elongated training time and require diversity among the classifiers of the ensemble to achieve improved performance. Additionally, extending the boosting method to handle multi-class data sets is not straightforward. Examples of applications that suffer from imbalanced multi-class data can be found in face recognition, where tens of classes exist, and in capsule endoscopy, which suffers massive imbalance between the classes. This dissertation introduces RegBoost, a new boosting framework to address the imbalanced, multi-class problems. This method applies a weighted stratified sampling technique and incorporates a regularization term that accommodates multi-class data sets and automatically determines the error bound of each base classifier. The regularization parameter penalizes the classifier when it misclassifies instances that were correctly classified in the previous iteration. The parameter additionally reduces the bias towards majority classes. Experiments are conducted using 12 diverse data sets with moderate to high imbalance ratios. The results demonstrate superior performance of the proposed method compared to several state-of-the-art algorithms for imbalanced, multi-class classification problems. More importantly, the sensitivity improvement of the minority classes using RegBoost is accompanied with the improvement of the overall accuracy for all classes. With unpredictability regularization, a diverse group of classifiers are created and the maximum accuracy improvement reaches above 24%. Using stratified undersampling, RegBoost exhibits the best efficiency. The reduction in computational cost is significant reaching above 50%. As the volume of training data increase, the gain of efficiency with the proposed method becomes more significant.
Date: December 2013
Creator: Abouelenien, Mohamed
Partner: UNT Libraries

Brain Computer Interface (BCI) Applications: Privacy Threats and Countermeasures

Description: In recent years, brain computer interfaces (BCIs) have gained popularity in non-medical domains such as the gaming, entertainment, personal health, and marketing industries. A growing number of companies offer various inexpensive consumer grade BCIs and some of these companies have recently introduced the concept of BCI "App stores" in order to facilitate the expansion of BCI applications and provide software development kits (SDKs) for other developers to create new applications for their devices. The BCI applications access to users' unique brainwave signals, which consequently allows them to make inferences about users' thoughts and mental processes. Since there are no specific standards that govern the development of BCI applications, its users are at the risk of privacy breaches. In this work, we perform first comprehensive analysis of BCI App stores including software development kits (SDKs), application programming interfaces (APIs), and BCI applications w.r.t privacy issues. The goal is to understand the way brainwave signals are handled by BCI applications and what threats to the privacy of users exist. Our findings show that most applications have unrestricted access to users' brainwave signals and can easily extract private information about their users without them even noticing. We discuss potential privacy threats posed by current practices used in BCI App stores and then describe some countermeasures that could be used to mitigate the privacy threats. Also, develop a prototype which gives the BCI app users a choice to restrict their brain signal dynamically.
Date: May 2017
Creator: Bhalotiya, Anuj Arun
Partner: UNT Libraries

Data-Driven Decision-Making Framework for Large-Scale Dynamical Systems under Uncertainty

Description: Managing large-scale dynamical systems (e.g., transportation systems, complex information systems, and power networks, etc.) in real-time is very challenging considering their complicated system dynamics, intricate network interactions, large scale, and especially the existence of various uncertainties. To address this issue, intelligent techniques which can quickly design decision-making strategies that are robust to uncertainties are needed. This dissertation aims to conquer these challenges by exploring a data-driven decision-making framework, which leverages big-data techniques and scalable uncertainty evaluation approaches to quickly solve optimal control problems. In particular, following techniques have been developed along this direction: 1) system modeling approaches to simplify the system analysis and design procedures for multiple applications; 2) effective simulation and analytical based approaches to efficiently evaluate system performance and design control strategies under uncertainty; and 3) big-data techniques that allow some computations of control strategies to be completed offline. These techniques and tools for analysis, design and control contribute to a wide range of applications including air traffic flow management, complex information systems, and airborne networks.
Date: August 2016
Creator: Xie, Junfei
Partner: UNT Libraries

Effects of UE Speed on MIMO Channel Capacity in LTE

Description: With the introduction of 4G LTE, multiple new technologies were introduced. MIMO is one of the important technologies introduced with fourth generation. The main MIMO modes used in LTE are open loop and closed loop spatial multiplexing modes. This thesis develops an algorithm to calculate the threshold values of UE speed and SNR that is required to implement a switching algorithm which can switch between different MIMO modes for a UE based on the speed and channel conditions (CSI). Specifically, this thesis provides the values of UE speed and SNR at which we can get better results by switching between open loop and closed loop MIMO modes and then be scheduled in sub-channels accordingly. Thus, the results can be used effectively to get better channel capacity with less ISI. The main objectives of this thesis are: to determine the type of MIMO mode suitable for a UE with certain speed, to determine the effects of SNR on selection of MIMO modes, and to design and implement a scheduling algorithm to enhance channel capacity.
Date: August 2016
Creator: Shukla, Rahul
Partner: UNT Libraries

Exploration of Visual, Acoustic, and Physiological Modalities to Complement Linguistic Representations for Sentiment Analysis

Description: This research is concerned with the identification of sentiment in multimodal content. This is of particular interest given the increasing presence of subjective multimodal content on the web and other sources, which contains a rich and vast source of people's opinions, feelings, and experiences. Despite the need for tools that can identify opinions in the presence of diverse modalities, most of current methods for sentiment analysis are designed for textual data only, and few attempts have been made to address this problem. The dissertation investigates techniques for augmenting linguistic representations with acoustic, visual, and physiological features. The potential benefits of using these modalities include linguistic disambiguation, visual grounding, and the integration of information about people's internal states. The main goal of this work is to build computational resources and tools that allow sentiment analysis to be applied to multimodal data. This thesis makes three important contributions. First, it shows that modalities such as audio, video, and physiological data can be successfully used to improve existing linguistic representations for sentiment analysis. We present a method that integrates linguistic features with features extracted from these modalities. Features are derived from verbal statements, audiovisual recordings, thermal recordings, and physiological sensors signals. The resulting multimodal sentiment analysis system is shown to significantly outperform the use of language alone. Using this system, we were able to predict the sentiment expressed in video reviews and also the sentiment experienced by viewers while exposed to emotionally loaded content. Second, the thesis provides evidence of the portability of the developed strategies to other affect recognition problems. We provided support for this by studying the deception detection problem. Third, this thesis contributes several multimodal datasets that will enable further research in sentiment and deception detection.
Date: December 2014
Creator: Pérez-Rosas, Verónica
Partner: UNT Libraries

Learning from small data set for object recognition in mobile platforms.

Description: Did you stand at a door with a bunch of keys and tried to find the right one to unlock the door? Did you hold a flower and wonder the name of it? A need of object recognition could rise anytime and any where in our daily lives. With the development of mobile devices object recognition applications become possible to provide immediate assistance. However, performing complex tasks in even the most advanced mobile platforms still faces great challenges due to the limited computing resources and computing power. In this thesis, we present an object recognition system that resides and executes within a mobile device, which can efficiently extract image features and perform learning and classification. To account for the computing constraint, a novel feature extraction method that minimizes the data size and maintains data consistency is proposed. This system leverages principal component analysis method and is able to update the trained classifier when new examples become available . Our system relieves users from creating a lot of examples and makes it user friendly. The experimental results demonstrate that a learning method trained with a very small number of examples can achieve recognition accuracy above 90% in various acquisition conditions. In addition, the system is able to perform learning efficiently.
Date: May 2016
Creator: Liu, Siyuan
Partner: UNT Libraries

Network Security Tool for a Novice

Description: Network security is a complex field that is handled by security professionals who need certain expertise and experience to configure security systems. With the ever increasing size of the networks, managing them is going to be a daunting task. What kind of solution can be used to generate effective security configurations by both security professionals and nonprofessionals alike? In this thesis, a web tool is developed to simplify the process of configuring security systems by translating direct human language input into meaningful, working security rules. These human language inputs yield the security rules that the individual wants to implement in their network. The human language input can be as simple as, "Block Facebook to my son's PC". This tool will translate these inputs into specific security rules and install the translated rules into security equipment such as virtualized Cisco FWSM network firewall, Netfilter host-based firewall, and Snort Network Intrusion Detection. This tool is implemented and tested in both a traditional network and a cloud environment. One thousand input policies were collected from various users such as staff from UNT departments' and health science, including individuals with network security background as well as students with a non-computer science background to analyze the tool's performance. The tool is tested for its accuracy (91%) in generating a security rule. It is also tested for accuracy of the translated rule (86%) compared to a standard rule written by security professionals. Nevertheless, the network security tool built has shown promise to both experienced and inexperienced people in network security field by simplifying the provisioning process to result in accurate and effective network security rules.
Date: August 2016
Creator: Ganduri, Rajasekhar
Partner: UNT Libraries

New Frameworks for Secure Image Communication in the Internet of Things (IoT)

Description: The continuous expansion of technology, broadband connectivity and the wide range of new devices in the IoT cause serious concerns regarding privacy and security. In addition, in the IoT a key challenge is the storage and management of massive data streams. For example, there is always the demand for acceptable size with the highest quality possible for images to meet the rapidly increasing number of multimedia applications. The effort in this dissertation contributes to the resolution of concerns related to the security and compression functions in image communications in the Internet of Thing (IoT), due to the fast of evolution of IoT. This dissertation proposes frameworks for a secure digital camera in the IoT. The objectives of this dissertation are twofold. On the one hand, the proposed framework architecture offers a double-layer of protection: encryption and watermarking that will address all issues related to security, privacy, and digital rights management (DRM) by applying a hardware architecture of the state-of-the-art image compression technique Better Portable Graphics (BPG), which achieves high compression ratio with small size. On the other hand, the proposed framework of SBPG is integrated with the Digital Camera. Thus, the proposed framework of SBPG integrated with SDC is suitable for high performance imaging in the IoT, such as Intelligent Traffic Surveillance (ITS) and Telemedicine. Due to power consumption, which has become a major concern in any portable application, a low-power design of SBPG is proposed to achieve an energy- efficient SBPG design. As the visual quality of the watermarked and compressed images improves with larger values of PSNR, the results show that the proposed SBPG substantially increases the quality of the watermarked compressed images. Higher value of PSNR also shows how robust the algorithm is to different types of attack. From the results obtained for the energy- efficient SBPG ...
Date: August 2016
Creator: Albalawi, Umar Abdalah S
Partner: UNT Libraries

Privacy Preserving EEG-based Authentication Using Perceptual Hashing

Description: The use of electroencephalogram (EEG), an electrophysiological monitoring method for recording the brain activity, for authentication has attracted the interest of researchers for over a decade. In addition to exhibiting qualities of biometric-based authentication, they are revocable, impossible to mimic, and resistant to coercion attacks. However, EEG signals carry a wealth of information about an individual and can reveal private information about the user. This brings significant privacy issues to EEG-based authentication systems as they have access to raw EEG signals. This thesis proposes a privacy-preserving EEG-based authentication system that preserves the privacy of the user by not revealing the raw EEG signals while allowing the system to authenticate the user accurately. In that, perceptual hashing is utilized and instead of raw EEG signals, their perceptually hashed values are used in the authentication process. In addition to describing the authentication process, algorithms to compute the perceptual hash are developed based on two feature extraction techniques. Experimental results show that an authentication system using perceptual hashing can achieve performance comparable to a system that has access to raw EEG signals if enough EEG channels are used in the process. This thesis also presents a security analysis to show that perceptual hashing can prevent information leakage.
Date: December 2016
Creator: Koppikar, Samir Dilip
Partner: UNT Libraries

Sensing and Decoding Brain States for Predicting and Enhancing Human Behavior, Health, and Security

Description: The human brain acts as an intelligent sensor by helping in effective signal communication and execution of logical functions and instructions, thus, coordinating all functions of the human body. More importantly, it shows the potential to combine prior knowledge with adaptive learning, thus ensuring constant improvement. These qualities help the brain to interact efficiently with both, the body (brain-body) as well as the environment (brain-environment). This dissertation attempts to apply the brain-body-environment interactions (BBEI) to elevate human existence and enhance our day-to-day experiences. For instance, when one stepped out of the house in the past, one had to carry keys (for unlocking), money (for purchasing), and a phone (for communication). With the advent of smartphones, this scenario changed completely and today, it is often enough to carry just one's smartphone because all the above activities can be performed with a single device. In the future, with advanced research and progress in BBEI interactions, one will be able to perform many activities by dictating it in one's mind without any physical involvement. This dissertation aims to shift the paradigm of existing brain-computer-interfaces from just ‘control' to ‘monitor, control, enhance, and restore' in three main areas - healthcare, transportation safety, and cryptography. In healthcare, measures were developed for understanding brain-body interactions by correlating cerebral autoregulation with brain signals. The variation in estimated blood flow of brain (obtained through EEG) was detected with evoked change in blood pressure, thus, enabling EEG metrics to be used as a first hand screening tool to check impaired cerebral autoregulation. To enhance road safety, distracted drivers' behavior in various multitasking scenarios while driving was identified by significant changes in the time-frequency spectrum of the EEG signals. A distraction metric was calculated to rank the severity of a distraction task that can be used as an intuitive measure ...
Date: August 2016
Creator: Bajwa, Garima
Partner: UNT Libraries

Smartphone-based Household Travel Survey - a Literature Review, an App, and a Pilot Survey

Description: High precision data from household travel survey (HTS) is extremely important for the transportation research, traffic models and policy formulation. Traditional methods of data collection were imprecise because they relied on people’s memories of trip information, such as date and location, and the remainder data had to be obtained by certain supplemental tools. The traditional methods suffered from intensive labor, large time consumption, and unsatisfactory data precision. Recent research trends to employ smartphone apps to collect HTS data. In this study, there are two goals to be addressed. First, a smartphone app is developed to realize a smartphone-based method only for data collection. Second, the researcher evaluates whether this method can supply or replace the traditional tools of HTS. Based on this premise, the smartphone app, TravelSurvey, is specially developed and used for this study. TravelSurvey is currently compatible with iPhone 4 or higher and iPhone Operating System (iOS) 6 or higher, except iPhone 6 or iPhone 6 plus and iOS 8. To evaluate the feasibility, eight individuals are recruited to participate in a pilot HTS. Afterwards, seven of them are involved in a semi-structured interview. The interview is designed to collect interviewees’ feedback directly, so the interview mainly concerns the users’ experience of TravelSurvey. Generally, the feedback is positive. In this study, the pilot HTS data is successfully uploaded to the server by the participants, and the interviewees prefer this smartphone-based method. Therefore, as a new tool, the smartphone-based method feasibly supports a typical HTS for data collection.
Date: December 2014
Creator: Wang, Qian
Partner: UNT Libraries

Space and Spectrum Engineered High Frequency Components and Circuits

Description: With the increasing demand on wireless and portable devices, the radio frequency front end blocks are required to feature properties such as wideband, high frequency, multiple operating frequencies, low cost and compact size. However, the current radio frequency system blocks are designed by combining several individual frequency band blocks into one functional block, which increase the cost and size of devices. To address these issues, it is important to develop novel approaches to further advance the current design methodologies in both space and spectrum domains. In recent years, the concept of artificial materials has been proposed and studied intensively in RF/Microwave, Terahertz, and optical frequency range. It is a combination of conventional materials such as air, wood, metal and plastic. It can achieve the material properties that have not been found in nature. Therefore, the artificial material (i.e. meta-materials) provides design freedoms to control both the spectrum performance and geometrical structures of radio frequency front end blocks and other high frequency systems. In this dissertation, several artificial materials are proposed and designed by different methods, and their applications to different high frequency components and circuits are studied. First, quasi-conformal mapping (QCM) method is applied to design plasmonic wave-adapters and couplers working at the optical frequency range. Second, inverse QCM method is proposed to implement flattened Luneburg lens antennas and parabolic antennas in the microwave range. Third, a dual-band compact directional coupler is realized by applying artificial transmission lines. In addition, a fully symmetrical coupler with artificial lumped element structure is also implemented. Finally, a tunable on-chip inductor, compact CMOS transmission lines, and metamaterial-based interconnects are proposed using artificial metal structures. All the proposed designs are simulated in full-wave 3D electromagnetic solvers, and the measurement results agree well with the simulation results. These artificial material-based novel design methodologies pave the way ...
Date: May 2015
Creator: Arigong, Bayaner
Partner: UNT Libraries