UNT Theses and Dissertations - 16 Matching Results

Search Results

The Analysis of PCDD and PCDF Emissions from the Cofiring of Densified Refuse Derived Fuel and Coal

Description: The United States leads the world in per capita production of Municipal Solid Waste (MSW), generating approximately 200 million tons per year. By 2000 A.D. the US EPA predicts a 20% rise in these numbers. Currently the major strategies of MSW disposal are (i) landfill and (ii) incineration. The amount of landfill space in the US is on a rapid decline. There are -10,000 landfill sites in the country, of which only 65-70% are still in use. The Office of Technology Assessment (OTA) predicts an 80% landfill closure rate in the next 20 years. The development of a viable energy resource from MSW, in the form of densified Refuse Derived Fuel (dRDF), provides solutions to the problems of MSW generation and fossil fuel depletions. Every 2 tons of MSW yields approximately 1 ton of dRDF. Each ton of dRDF has an energy equivalent of more than two barrels of oil. At current production rates the US is "throwing away" over 200,000,000 barrels of oil a year. In order to be considered a truly viable product dRDF must be extensively studied; in terms of it's cost of production, it's combustion properties, and it's potential for environmental pollution. In 1987 a research team from the University of North Texas, in conjunction with the US DOE and Argonne National Laboratory (ANL), cofired over 550 tons of dRDF and bdRDF with a high sulfur Kentucky coal in a boiler at ANL. This work examines the emission rates of polychlorinated dioxins (PCDDs) and furans (PCDFs) during the combustion of the dRDF, bdRDF, and coal. Even at levels of 50% by Btu content of dRDF in the fuel feedstock, emission rates of PCDDs and PCDFs were below detection limits. The dRDF is shown to be an environmentally acceptable product, which could help resolve one of the ...
Date: August 1990
Creator: Moore, Paul, 1962-
Partner: UNT Libraries

Characterization of Low Barrier Hydrogen Bonds in Enzyme Catalysis: an Ab Initio and DFT Investigation

Description: Hartree-Fock, Moller-Plesset, and density functional theory calculations have been carried out using 6-31+G(d), 6-31+G(d,p) and 6-31++G(d,p) basis sets to study the properties of low-barrier or short-strong hydrogen bonds (SSHB) and their potential role in enzyme-catalyzed reactions that involve proton abstraction from a weak carbon-acid by a weak base. Formic acid/formate anion, enol/enolate and other complexes have been chosen to simulate a SSHB system. These complexes have been calculated to form very short, very short hydrogen bonds with a very low barrier for proton transfer from the donor to the acceptor. Two important environmental factors including small amount of solvent molecules that could possibly exist at the active site of an enzyme and the polarity around the active site were simulated to study their energetic and geometrical influences to a SSHB. It was found that microsolvation that improves the matching of pK as of the hydrogen bond donor and acceptor involved in the SSHB will always increase the interaction of the hydrogen bond; microsolvation that disrupts the matching of pKas, on the other hand, will lead to a weaker SSHB. Polarity surrounding the SSHB, simulated by SCRF-SCIPCM model, can significantly reduce the strength and stability of a SSHB. The residual strength of a SSHB is about 10--11 kcal/mol that is still significantly stable compared with a traditional weak hydrogen bond that is only about 3--5 kcal/mol in any cases. These results indicate that SSHB can exist under polar environment. Possible reaction intermediates and transition states for the reaction catalyzed by ketosteroid isomerase were simulated to study the stabilizing effect of a SSHB on intermediates and transition states. It was found that at least one SSHB is formed in each of the simulated intermediate-catalyst complexes, strongly supporting the LBHB mechanism proposed by Cleland and Kreevoy. Computational results on the activation energy for ...
Date: August 1999
Creator: Pan, Yongping
Partner: UNT Libraries

Chemical Equilibria in Binary Solvents

Description: Dissertation research involves development of Mobile Order Theory thermodynamic models to mathematically describe and predict the solubility, spectral properties, protonation equilibrium constants and two-phase partitioning behavior of solutes dissolved in binary solvent mixtures of analytical importance. Information gained provide a better understanding of solute-solvent and solvent-solvent interactions at the molecular level, which will facilitate the development of better chemical separation methods based upon both gas-liquid and high-performance liquid chromatography, and better analysis methods based upon complexiometric and spectroscopic methods. Dissertation research emphasizes chemical equilibria in systems containing alcohol cosolvents with the understanding that knowledge gained will be transferable to more environmentally friendly aqueous-organic solvent mixtures.
Date: August 1997
Creator: McHale, Mary E. R.
Partner: UNT Libraries

Combined Electrochemistry and Spectroscopy of Complexes and Supramolecules containing Bipyridyl and Other Azabiphenyl Building Blocks

Description: A group of azabiphenyl complexes and supramolecules, and their reduced and oxidized forms when possible, were characterized by cyclic voltammetry and electronic absorption spectroscopy. The oxidized and reduced species, if sufficiently stable, were further generated electrochemically inside a specially designed quartz cell with optically transparent electrode, so that the spectra of the electrochemically generated species could be taken in situ. Assignments were proposed for both parent and product electronic spectra. Species investigated included a range of Ru(II) and Pt(II) complexes, as well as catenanes and their comparents. Using the localized electronic model, the electrochemical reduction can be in most cases assigned as azabiphenyl-based, and the oxidation as transition metal-based. This is consistent with the fact that the azabiphenyl compounds have a low lying π* orbital. The electronic absorption spectra of the compounds under study are mainly composed of π —> π* bands with, in some cases, charge transfer bands also.
Date: August 1995
Creator: Yang, Lei
Partner: UNT Libraries

Computer Simulations of Dilute Polymer Solutions: Chain Overlaps and Entanglements

Description: Chain conformations and the presence of chain overlaps and entanglements in dilute polymer solutions have been analyzed. The fundamental problem of existence of chain overlaps in dilute solutions is related to the drag reduction phenomenon (DR). Even though DR occurs in solutions with the concentration of only few parts per million (ppm), some theories suggest that entanglements may play an important role in DR mechanism. Brownian dynamics technique have been used to perform simulations of dilute polymer solutions at rest and under shear flow. A measure of interchain contacts and two different measures of entanglements have been devised to evaluate the structure of polymer chains in solution. Simulation results have shown that overlaps and entanglements do exist in static dilute solutions as well as in solutions under shear flow. The effect of solution concentration, shear rate and molecular mass have been examined. In agreement with the solvation theory of DR mechanism, simulation results have demonstrated the importance of polymer + polymer interactions in dilute solutions.
Date: August 1996
Creator: Drewniak, Marta
Partner: UNT Libraries

Explorations with Polycarbocyclic Cage Compounds

Description: A variety of novel cage-functionalized pyridyl containing crown ethers have been prepared for use in selective alkali metal complexation studies. A highly preorganized, cage-functionalized cryptand also has been designed and has been synthesized for use as a selective Li+ complexant. The alkali metal picrate extraction profiles of these cage-functionalized crown ethers also have been studied. Novel cage-functionalized diazacrown ethers have been prepared for selective alkali metal complexation studies. Alkali metal picrate extraction experiments have been performed by using this new class of synthetic ionophores to investigate the effects of cage-annulation and the influence of N-pivot lariat sidearms upon their resulting complexation properties. Novel pyridyl containing calix[4]arene receptors were prepared. Analysis of their respective 1H NMR and 13C NMR spectra suggests that calix[4]arene moieties in the ligand occupy the cone conformation. The complexation properties of these host molecules were estimated by performing a series of alkali metal picrate extraction experiments. An optically active cage-functionalized crown ether which contains a binaphthyl moiety as the chiral unit was prepared. The ability of the resulting optically active crown ether to distinguish between enantiomers of guest ammonium ions (i.e., phenylethylamonium and phenylglycinate salts) in transport experiments was investigated. Hexacyclo[11.2.1.02,12.05,10.05,15.010,14]hexadeca-6,8-diene-4,11-dione was prepared from hexacyclo[7.4.2.01,9.03,7.04,14.06,15] pentadeca-10,12-diene-2,8-dione. Unanticipated but remarkable acid and base promoted rearrangements of this new cage dione to novel polycyclic systems were observed and subsequently were investigated. The structures of the new systems thereby obtained were determined unequivocally by application of X-ray crystallographic methods. It is noteworthy that the reactions reported herein each provide the corresponding rearranged product in high yield in a single synthetic step. Pi-facial and regioselectivity in the thermal Diels-Alder cycloaddition between hexacyclo[11.2.1.02,12.05,10.05,15.010,14]hexadeca-6,8-diene- 4,11-dione and ethyl propiolate have been explored. This reaction proceeds via stereospecific approach of the dienophile toward the syn face of the diene p -system. However, [4+2]cycloaddition proceeds with ...
Date: August 1999
Creator: Chong, Hyun-Soon
Partner: UNT Libraries

Kinetic Studies of the Reactions of Alkyl and Silyl Hydrides

Description: The Kinetics of the reactions involving alkyl and silyl hydrides were studied by the flash photolysis / resonance fluorescence technique. The reactions of alkyl radicals (R = C₂H₅, i-C₃H₇, t-C₄H₉) with HBr have been studied at room temperature and the rate constants obtained (units are in cm³ s^-1 ) are: k₃.₃ = (7.01 ± 0.15) x 10^-12, k₃.₂ = (1.25 ± 0.06) x 10^-11, k₃.₁ = (2.67 ± 0.13) x 10^-11 These results, combined with previously determined reverse rate constants and other kinetic information, yield bond dissociation enthalpies (units in kJ mol^-1) at 298 K : primary C-H in C₂H₅-H (423.6 ± 2), secondary C-H in i-C₃H₇-H (409.9 ± 2), tertiary C-H in t-C₄H₉-H (405.1 ± 2). These rate constants and bond energies are in good agreement with previous results.
Date: August 1996
Creator: Yuan, Jessie (Jessie Win-Jae)
Partner: UNT Libraries

Ligand Substitution Studies in the Tetracobalt Cluster Co₄(CO)₁₀([mu]₄-PPh₂) and Synthesis and Reactivity Studies in the Fe₂Pt and FeCo₂ Mixed-metal Clusters

Description: The kinetics of ligand substitution for CO in Co4(CO)10(mu4-PPh2) , 1, have been investigated for the ligands P(OMe)3, P(OEt)3, PPh2H, P(0-i-Pr)3, P(n-Bu)3, PPh3, P(i-Pr)3, and PCy3 over a wide temperature range.
Date: August 1991
Creator: Don, Ming-jaw
Partner: UNT Libraries

Precipitation and Pattern Formation under Far-From-Equilibrium Conditions

Description: Precipitates of a series of alkaline earth metal (barium and strontium) carbonates, chromates, phosphates, and sulfates were formed at high supersaturation by diffusion through silica hydrogel, agarose hydrogel, and the freshly developed agarosesilica mixed gels. The reaction vessels could be a small test tube, a recently designed standard micro slide cassette and a enlarged supercassette. Homogeneous nucleation is thought to have taken place, and particle development led to the formation of an unusual category of materials, known as Induced Morphology Crystal Aggregates [IMCA], at high pH under far-from-equilibrium conditions. Standard procedures were developed in order to produce homogeneous gels. Particle development led to characteristic style of pattern formation, which I have called monster, spiral, and flake. Among these IMCA, barium carbonate, chromate, and sulfate were moderately easy to grow. Barium phosphate was very difficult to grow as IMCA due to formation of poorly crystalline spherulites. IMCA of strontium carbonate, chromate and sulfate could be developed at high basic pH in the presence of silicate. Strontium carbonate sheet morphology displays a unique property, double internal layer structure, which was identified by backscattering electron imaging (BEI). Selected electron diffraction (SAD) revealed a new crystal phase which was called "Dentonite". Precipitate particles were isolated using a non-destructive isolation technique. Optical microscopy was widely used to examine particles in situ and scanning electron microscopy and X-ray dispersive energy (EDX) spectroscopy were applied to particles ex situ, together with ESCA for surface analysis. Growth patterns were found to be strongly dependent on pH. Other related pattern formation processes were also investigated including normal and dendritic structures, spherulitic structures and periodic pattern formation. Some interpretations were proposed in terms of mechanism. Chemical additive effects were examined experimentally in the calcium phosphate system. The effect of external ionic strength was investigated, and it was found that a ...
Date: August 1995
Creator: Chen, Peng, 1960-
Partner: UNT Libraries

Selectivity Failure in the Chemical Vapor Deposition of Tungsten

Description: Tungsten metal is used as an electrical conductor in many modern microelectronic devices. One of the primary motivations for its use is that it can be deposited in thin films by chemical vapor deposition (CVD). CVD is a process whereby a thin film is deposited on a solid substrate by the reaction of a gas-phase molecular precursor. In the case of tungsten chemical vapor deposition (W-CVD) this precursor is commonly tungsten hexafluoride (WF6) which reacts with an appropriate reductant to yield metallic tungsten. A useful characteristic of the W-CVD chemical reactions is that while they proceed rapidly on silicon or metal substrates, they are inhibited on insulating substrates, such as silicon dioxide (Si02). This selectivity may be exploited in the manufacture of microelectronic devices, resulting in the formation of horizontal contacts and vertical vias by a self-aligning process. However, reaction parameters must be rigorously controlled, and even then tungsten nuclei may form on neighboring oxide surfaces after a short incubation time. Such nuclei can easily cause a short circuit or other defect and thereby render the device inoperable. If this loss of selectivity could be controlled in the practical applications of W-CVD, thereby allowing the incorporation of this technique into production, the cost of manufacturing microchips could be lowered. This research was designed to investigate the loss of selectivity for W-CVD in an attempt to understand the processes which lead to its occurrence. The effects of passivating the oxide surface with methanol against the formation of tungsten nuclei were studied. It was found that the methanol dissociates at oxide surface defect sites and blocks such sites from becoming tungsten nucleation sites. The effect of reactant partial pressure ratio on selectivity was also studied. It was found that as the reactant partial pressures are varied there are significant changes in the ...
Date: August 1994
Creator: Cheek, Roger W. (Roger Warren)
Partner: UNT Libraries

Stereoselective Solid-State NaBH₄ Reduction of 1-Methylpentacyclo[5.4.0.0²,⁶.0³,¹⁰,0⁵,⁹]undecane-8, 11-Dione, Synthesis and Chemistry of Strained Alkenes, and Chemical and Microbial Synthesis of Racemic and Optically Active (S)-4-Hydroxy-2-Cyclohexenone

Description: Part I. Reduction of the 1-methylpentacyclo [5.4.0.0²,⁶.0³,¹⁰,0⁵,⁹]undecane-8, 11-dione (9) with solid NaBH₄ resulted in highly stereoselective reduction of both C=O groups in the substrate, thereby affording the corresponding endo-8, endo-11-diol (11a). The configuration of 11a was established unequivocally by converting 11a into the corresponding cyclic thiocarbonate ester, 12. Part II. Z-1,2-Di(1'-adamantyl)ethene (14) was synthesized with a high degree of stereoselectively in four steps (Scheme 9 in Chapter 2). E-1,2-di(1'-adamantyl)ethene (15) was synthesized by iodine promoted isomerization of 14. Both structures were established unequivocally via single-crystal X-ray structural analysis. E-1-(exo-8'-Pentacyclo[5.4.0.0²,⁶.0³,¹⁰,0⁵,⁹]undecyl)-2-phenylethylene (16a) was synthesized, and its structure was established via analysis of its 1H, 13C, and 2D COSY NMR spectra. Part III. Reactions of electrophiles, i.e.,:CCl_2, PhSCl, and Br_2, to Z- and E-1,2-di(1'-adamantyl)ethenes (14 and 15, respectively) are described (Scheme 5, 8, 10, and 13 in Chapter 3). Structures of the corresponding products were established unequivocally via analysis of their respective one- and two-dimensional NMR spectra and/or single-crystal X-ray structural analysis. Part IV. An improved asymmetric synthesis of optically active (S)-4-hydroxy-2-cyclohexenone 1 (64%ee, determined via Mosher's method) has been developed (Scheme 5 in Chapter 4). The key step in this synthesis involves the baker's yeast reduction of 13. The absolute configuration of the major product, (S)-1, was established unequivocally via single-crystal X-ray structural analysis of a precursor. The optical purity of the major product 14a (80%de, 67%ee) was established via careful integration of relevant gated-decoupled 13C NMR spectra.
Date: August 1995
Creator: Xing, Dongxia
Partner: UNT Libraries

Studies of Solvent Displacement from Solvated Metal Carbonyl Complexes of Chromium, Molybdenum, and Tungsten

Description: Flash photolysis techniques were applied to studies of solvent displacement by Lewis bases (L) from solvated metal carbonyl complexes of Cr, Mo, and W. On the basis of extensive studies of the reaction rate laws, activation parameters , and linear-free-energy-relationships, it was concluded that the mechanisms of solvent displacement reactions depend on the electronic and steric properties of the solvents and L, as well as the identities of the metal atoms. The strengths of solvent-metal bonding interactions, varying from ca. 7 to 16 kcal/mol, and the bonding "modes" of solvents to metals are sensitive to the structures of the solvent molecules and the identities of the metal centers. The results indicate dissociative desolvation pathways for many arene solvents in (solvent)Cr(CO)_5 (solvent = benzene, fluorobenzene, toluene, etc.) complexes, and are consistent with competitive interchange and dissociative pathways for (n-heptane)M(CO)_5. Different types of (arene)-Cr(CO)_5 interactions were suggested for chlorobenzene (CB) vs. fluorobenzene and other non-halogenated arenes, i.e. via σ-halogen-Cr bond formation in the CB solvate vs. π-arene-Cr bond formation through "isolated" double bonds in solvates of the other arenes. The data also indicate the increasing importance of interchange pathways for solvent displacement from the solvates of Mo and W vs. that of Cr.
Date: August 1990
Creator: Zhang, Shulin
Partner: UNT Libraries

Sulfur-induced Corrosion at Metal and Oxide Surfaces and Interfaces

Description: Sulfur adsorbed on metallic and oxide surfaces, whether originating from gaseous environments or segregating as an impurity to metallic interfaces, is linked to the deterioration of alloy performance. This research dealt with investigations on the interactions between sulfur and iron or iron alloy metallic and oxide surfaces under ultrahigh vacuum conditions. Sulfur was either intentionally dosed from a H2S source on an atomically clean metal surface, or segregated out as an impurity from the bulk to the metal surface by annealing at elevated temperatures.
Date: August 1997
Creator: Cabibil, Hyacinth (Hyacinth Liesl)
Partner: UNT Libraries

Thermodynamic Properties of Nonelectrolyte Solutes in Ternary Solvent Mixtures

Description: The purpose of this dissertation is to investigate the thermodynamic properties of nonelectrolyte solutes dissolved in ternary solvent mixtures, and to develop mathematical expressions for predicting and describing that behavior in the solvent mixtures. Thirty-four ternary solvent systems were studied containing either alcohol (1-propanol, 2-propanol, 1-butanol, and 2-butanol), alkane (cyclohexane, heptane, and 2,2,4-trimethylpentane) or alkoxyalcohol (2-ethoxyethanol and 2-butoxyethanol) cosolvents. Approximately 2500 experimental measurements were performed. Expressions were derived from the Combined Nearly Ideal Multiple Solvent (NIMS)/Redlich-Kister, the Combined Nearly Ideal Multiple Solvent (NIMS)/Bertrand, Acree and Burchfield (BAB) and the Modified Wilson models for predicting solute solubility in ternary solvent (or even higher multicomponent) mixtures based upon the model constants calculated from solubility data in sub-binary solvents. Average percent deviation between predicted and observed values were less than 2%, documenting that these models provide a fairly accurate description of the thermodynamic properties of nonelectrolyte solutions. Moreover, the models can be used for solubility prediction in solvent mixtures in order to find the optimum solvent composition for solubilization or desolubilization of a solute. From a computational standpoint, the Combined Nearly Ideal Multiple Solvent/Redlich-Kister equation is preferred because the needed model constants can be calculated with a simple linear regressional analysis. Model constants for the Modified Wilson equation had to be calculated using a reiterative trial-and-error method. The C++ program for the Modified Wilson equation applied to ternary and heptanary solvent mixtures is attached.
Date: August 1999
Creator: Deng, Tʻai-ho
Partner: UNT Libraries