UNT Theses and Dissertations - 295 Matching Results

Search Results

Accelerator Mass Spectrometry Studies of Highly Charged Molecular Ions

Description: The existence of singly, doubly, and triply charged diatomic molecular ions was observed by using an Accelerator Mass Spectrometry (AMS) technique. The mean lifetimes of 3 MeV boron diatomic molecular ions were measured. No isotopic effects on the mean lifetimes of boron diatomic molecules were observed for charge state 3+. Also, the mean lifetime of SiF^3+ was measured.
Date: December 1994
Creator: Kim, Yong-Dal
Partner: UNT Libraries

Analysis of Biological Materials Using a Nuclear Microprobe

Description: The use of nuclear microprobe techniques including: Particle induced x-ray emission (PIXE) and Rutherford backscattering spectrometry (RBS) for elemental analysis and quantitative elemental imaging of biological samples is especially useful in biological and biomedical research because of its high sensitivity for physiologically important trace elements or toxic heavy metals. The nuclear microprobe of the Ion Beam Modification and Analysis Laboratory (IBMAL) has been used to study the enhancement in metal uptake of two different plants. The roots of corn (Zea mays) have been analyzed to study the enhancement of iron uptake by adding Fe (II) or Fe (III) of different concentrations to the germinating medium of the seeds. The Fe uptake enhancement effect produced by lacing the germinating medium with carbon nanotubes has also been investigated. The aim of this investigation is to ensure not only high crop yield but also Fe-rich food products especially from calcareous soil which covers 30% of world’s agricultural land. The result will help reduce iron deficiency anemia, which has been identified as the leading nutritional disorder especially in developing countries by the World Health Organization. For the second plant, Mexican marigold (Tagetes erecta), the effect of an arbuscular mycorrhizal fungi (Glomus intraradices) for the improvement of lead-phytoremediation of lead contaminated soil has been investigated. Phytoremediation provides an environmentally safe technique of removing toxic heavy metals (like lead), which can find their way into human food, from lands contaminated by human activities like mining or by natural disasters like earthquakes. The roots of Mexican marigold have been analyzed to study the role of arbuscular mycorrhizal fungi in enhancement of lead uptake from the contaminated rhizosphere.
Date: December 2014
Creator: Mulware, Stephen Juma
Partner: UNT Libraries

Anderson Localization in Two-Channel Wires with Correlated Disorder: DNA as an Application

Description: This research studied the Anderson localization of electrons in two-channel wires with correlated disorder and in DNA molecules. It involved an analytical calculation part where the formula for the inverse localization length for electron states in a two-channel wire is derived. It also involved a computational part where the localization length is calculated for some DNA molecules. Electron localization in two-channel wires with correlated disorder was studied using a single-electron tight-binding model. Calculations were within second-order Born-approximation to second-order in disorder parameters. An analytical expression for localization length as a functional of correlations in potentials was found. Anderson localization in DNA molecules were studied in single-channel wire and two-channel models for electron transport in DNA. In both of the models, some DNA sequences exhibited delocalized electron states in their energy spectrum. Studies with two-channel wire model for DNA yielded important link between electron localization properties and genetic information.
Date: December 2007
Creator: Bagci, V. M. Kemal
Partner: UNT Libraries

The Angular Distribution and Total Flux of Neutrons Obtained from the Deuterium-Tritium Reaction

Description: Mono-energetic neutrons have been produced with the low-voltage Cockroft-Walton accelerator at North Texas State College using two different reactions. It is the purpose of this paper to report the angular distribution and total flux of the neutrons obtained from the T(D,n) reaction.
Date: 1956
Creator: Duggan, Jerome L.
Partner: UNT Libraries

Anomalous Behavior in the Rotational Spectra of the v₈=2 and the v₈=3 Vibrations for the ¹³C and ¹⁵N Tagged Isotopes of the CH₃CN Molecule in the Frequency Range 17-95 GHz

Description: The rotational microwave spectra of the three isotopes (^13CH_3^12C^15N, ^12CH_3^13C^15N, and ^13CH_3^13C^15N) of the methyl cyanide molecule in the v_8=3, v_8=2, v_7=1 and v_4=1 vibrational energy levels for the rotational components 1£J£5 (for a range of frequency 17-95 GHz.) were experimentally and theoretically examined. Rotational components in each vibration were measured to determine the mutual interactions in each vibration between any of the vibrational levels investigated. The method of isotopic substitution was employed for internal tuning of each vibrational level by single and double substitution of ^13C in the two sites of the molecule. It was found that relative frequencies within each vibration with respect to another vibration were shifted in a systematic way. The results given in this work were interpreted on the basis of these energy shifts. Large departure between experimentally measured and theoretically predicted frequency for the quantum sets (J, K=±l, ϑ=±1), Kϑ-l in the v_8=3 vibrational states for the ^13c and ^15N tagged isotopes of CH_3CN showed anomalous behavior which was explained as being due to Fermi resonance. Accidently strong resonances (ASR) were introduced to account for some departures which were not explained by Fermi resonance.
Date: December 1990
Creator: Al-Share, Mohammad A. (Mohammad Abdel)
Partner: UNT Libraries

Application of Statistical Physics in Human Physiology: Heart-Brain Dynamics

Description: This dissertation is devoted to study of complex systems in human physiology particularly heartbeats and brain dynamics. We have studied the dynamics of heartbeats that has been a subject of investigation of two independent groups. The first group emphasized the multifractal nature of the heartbeat dynamics of healthy subjects, whereas the second group had established a close connection between healthy subjects and the occurrence of crucial events. We have analyzed the same set of data and established that in fact the heartbeats are characterized by the occurrence of crucial and Poisson events. An increase in the percentage of crucial events makes the multifractal spectrum broader, thereby bridging the results of the former group with the results of the latter group. The crucial events are characterized by a power index that signals the occurrence of 1/f noise for complex systems in the best physiological condition. These results led us to focus our analysis on the statistical properties of crucial events. We have adopted the same statistical analysis to study the statistical properties of the heartbeat dynamics of subjects practicing meditation. The heartbeats of people doing meditation are known to produce coherent fluctuations. In addition to this effect, we made the surprising discovery that meditation makes the heartbeat depart from the ideal condition of 1/f noise. We also discussed how to combine the wave-like nature of the dynamics of the brain with the existence of crucial events that are responsible for the 1/f noise. We showed that the anomalous scaling generated by the crucial events could be established by means of a direct analysis of raw data. The efficiency of the direct analysis procedure is made possible by the fact that periodicity and crucial events is the product of a spontaneous process of self-organization. We argue that the results of this study ...
Date: August 2018
Creator: Bohara, Gyanendra
Partner: UNT Libraries

Application of the Wigner Formalism to a Slightly Relativistic Quantum Plasma

Description: A slightly relativistic fermion gas is described by the dynamical theory obtained from the Wigner distribution function. The problem is approached in a self-consistent manner including the two-body Darwin Hamiltonian. The goal is to find the departures from equilibrium and dispersion relations for wave propagation in the gas.
Date: August 1967
Creator: Harper, John H.
Partner: UNT Libraries

Artificially Structured Boundary for Control and Confinement of Beams and Plasmas

Description: An artificially structured boundary (ASB) produces a short-range, static electromagnetic field that can reflect charged particles. In the work presented, an ASB is considered to consist of a spatially periodic arrangement of electrostatically plugged magnetic cusps. When used to create an enclosed volume, an ASB may confine a non-neutral plasma that is effectively free of applied electromagnetic fields, provided the spatial period of the ASB-applied field is much smaller than any one dimension of the confinement volume. As envisioned, a non-neutral positron plasma could be confined by an ASB along its edge, and the space-charge of the positron plasma would serve to confine an antiproton plasma. If the conditions of the two-species plasma are suitable, production of antihydrogen via three-body recombination for antimatter gravity studies may be possible. A classical trajectory Monte Carlo (CTMC) simulation suite has been developed in C++ to efficiently simulate charged particle interactions with user defined electromagnetic fields. The code has been used to explore several ASB configurations, and a concept for a cylindrically symmetric ASB trap that employs a picket-fence magnetic field has been developed. Particle-in-cell (PIC) modeling has been utilized to investigate the confinement of non-neutral and partially neutralized positron plasmas in the trap.
Date: May 2018
Creator: Hedlof, Ryan
Partner: UNT Libraries

Automatic Frequency Control of Microwave Radiation Sources

Description: Resonant cavity controlled klystron frequency stabilization circuits and quartz-crystal oscillator frequency stabilization circuits were investigated for reflex klystrons operating at frequencies in the X-band range. The crystal oscillator circuit employed achieved better than 2 parts in 10 in frequency stability. A test of the functional properties of the frequency standard was made using the Stark effect in molecules.
Date: August 1979
Creator: Payne, Bobby D.
Partner: UNT Libraries

A Calculation of the Kaon-Neutron Scattering Cross Section

Description: The purpose of this investigation was to study the scattering processes of K+ mesons with neutrons. In order to do such a study one must first make certain basic assumptions about the type of interaction involved and then proceed to calculate physically meaningful qualities which describe the processes. Thus, the problem is this: assuming the validity of Feynman's rules for these strongly interacting particles, calculate the differential and total scattering cross sections for the interaction of scalar K+ mesons and neutrons.
Date: June 1966
Creator: Hooper, Robert Gibson
Partner: UNT Libraries

Carbon K-Shell X-Ray and Auger-Electron Cross Sections and Fluorescence Yields for Selected Molecular Gases by 0.6 To 2 .0 MeV Proton Impact

Description: Absolute K-shell x-ray cross sections and Auger-electron cross sections are measured for carbon for 0.6 to 2.0 MeV proton incident on CH₄, n-C₄H₁₀ (n-Butane), i-C₄H₁₀ (isobutane), C₆H₆ (Benzene), C₂H₂ (Acetylene), CO and CO₂. Carbon K-shell fluorescence yields are calculated from the measurements of x-ray and Auger-electron cross sections. X-ray cross sections are measured using a variable geometry end window proportional counter. An alternate method is described for the measurement of the transmission of the proportional counter window. Auger electrons are detected by using a constant transmission energy Π/4 parallel pi ate electrostatic analyzer. Absolute carbon K-shell x-ray cross sections for CH₄ are compared to the known results of Khan et al. (1965). Auger-electron cross sections for proton impact on CH₄ are compared to the known experimental values of RΦdbro et al. (1979), and to the theoretical predictions of the first Born and ECPSSR. The data is in good agreement with both the first Born and ECPSSR, and within our experimental uncertainties with the measurements of RΦdbro et al. The x-ray cross sections, Auger-electron cross sections and fluorescence yields are plotted as a function of the Pauling charge, and show significant variations. These changes in the x-ray cross sections are compared to a model based on the number of electrons present in the 2s and 2p sub shells of these carbon based molecules. The changes in the Auger-electron cross sections are compared to the calculations of Matthews and Hopkins. The variation in the fluorescence yield is explained on the basis of the multiconfiguration Dirac-Fock model.
Date: August 1986
Creator: Bhalla, Raj P. (Raj Pal), 1948
Partner: UNT Libraries

Carbon Nanotube/Microwave Interactions and Applications to Hydrogen Fuel Cells.

Description: One of the leading problems that will be carried into the 21st century is that of alternative fuels to get our planet away from the consumption of fossil fuels. There has been a growing interest in the use of nanotechnology to somehow aid in this progression. There are several unanswered questions in how to do this. It is known that carbon nanotubes will store hydrogen but it is unclear how to increase that storage capacity and how to remove this hydrogen fuel once stored. This document offers some answers to these questions. It is possible to implant more hydrogen in a nanotube sample using a technique of ion implantation at energy levels ~50keV and below. This, accompanied with the rapid removal of that stored hydrogen through the application of a microwave field, proves to be one promising avenue to solve these two unanswered questions.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: May 2004
Creator: Imholt, Timothy James
Partner: UNT Libraries

Chaos and Momentum Diffusion of the Classical and Quantum Kicked Rotor

Description: The de Broglie-Bohm (BB) approach to quantum mechanics gives trajectories similar to classical trajectories except that they are also determined by a quantum potential. The quantum potential is a "fictitious potential" in the sense that it is part of the quantum kinetic energy. We use quantum trajectories to treat quantum chaos in a manner similar to classical chaos. For the kicked rotor, which is a bounded system, we use the Benettin et al. method to calculate both classical and quantum Lyapunov exponents as a function of control parameter K and find chaos in both cases. Within the chaotic sea we find in both cases nonchaotic stability regions for K equal to multiples of π. For even multiples of π the stability regions are associated with classical accelerator mode islands and for odd multiples of π they are associated with new oscillator modes. We examine the structure of these regions. Momentum diffusion of the quantum kicked rotor is studied with both BB and standard quantum mechanics (SQM). A general analytical expression is given for the momentum diffusion at quantum resonance of both BB and SQM. We obtain agreement between the two approaches in numerical experiments. For the case of nonresonance the quantum potential is not zero and must be included as part of the quantum kinetic energy for agreement. The numerical data for momentum diffusion of classical kicked rotor is well fit by a power law DNβ in the number of kicks N. In the anomalous momentum diffusion regions due to accelerator modes the exponent β(K) is slightly less than quadratic, except for a slight dip, in agreement with an upper bound (K2/2)N2. The corresponding coefficient D(K) in these regions has three distinct sections, most likely due to accelerator modes with period greater than one. We also show that the local ...
Date: August 2005
Creator: Zheng, Yindong
Partner: UNT Libraries

Characterization, Properties and Applications of Novel Nanostructured Hydrogels.

Description: The characterization, properties and applications of the novel nanostructured microgel (nanoparticle network and microgel crystal) composed of poly-N-isopropylacrylanmide-co-allylamine (PNIPAM-co-allylamine) and PNIPAM-co-acrylic acid(AA) have been investigated. For the novel nanostructured hydrogels with the two levels of structure: the primary network inside each individual particle and the secondary network of the crosslinked nanoparticles, the new shear modulus, drug release law from hydrogel with heterogeneous structure have been studied. The successful method for calculating the volume fraction related the phase transition of colloid have been obtained. The kinetics of crystallization in an aqueous dispersion of PNIPAM particles has been explored using UV-visible transmission spectroscopy. This dissertation also includes the initial research on the melting behavior of colloidal crystals composed of PNIPAM microgels. Many new findings in this study area have never been reported before. The theoretical model for the columnar crystal growth from the top to bottom of PNIPAM microgel has been built, which explains the growth mechanism of the novel columnar hydrogel colloidal crystals. Since the unique structure of the novel nanostructured hydrogels, their properties are different with the conventional hydrogels and the hard-sphere-like system. The studies and results in this dissertation have the important significant for theoretical study and valuable application of these novel nanostructured hydrogels.
Access: This item is restricted to the UNT Community Members at a UNT Libraries Location.
Date: December 2006
Creator: Tang, Shijun
Partner: UNT Libraries