Technical Report Archive and Image Library (TRAIL) - 1,035 Matching Results

Search Results

Flight Comparison of Performance and Cooling Characteristics of Exhaust-Ejector Installation with Exhaust-Collector-Ring Installation

Description: Flight and ground investigations have been made to compare an exhaust-ejector installation with a standard exhaust-collector-ring installation on air-cooled aircraft engines in a twin-engine airplane. The ground investigation allowed that, whereas the standard engine would have overheated above 600 horsepower, the engine with exhaust ejectors cooled at take-off operating conditions at zero ram. The exhaust ejectors provided as much cooling with cowl flaps closed as the conventional cowl flaps induced when full open at low airspeeds. The propulsive thrust of the exhaust-ejector installation was calculated to be slightly less than the thrust of the collector-ring-installation.
Date: February 14, 1947
Creator: Acker, Loren W. & Kleinknecht, Kenneth S.
Partner: UNT Libraries Government Documents Department

Tests of a Horizontal-Tail Model through the Transonic Speed Range by the NACA Wing-Flow Method

Description: A 1/12-scale model of a horizontal tail of a fighter airplane was tested through the transonic speeds in the high-speed flow over an airplane wing, the surface of which served as a reflection plane for the model. Measurements of lift, elevator-hinge moment, angle of attack, and elevator angle were made in the Mach number range from 0.75 to 1.04 for elevator deflections ranging from 10 degrees to minus 10 degrees, and for angles of attack of minus 1.2 degrees, 0.4 degrees, and 3.4 degrees. The equipment used to measure the hinge moments of the model proved to be unsatisfactory, and for this reason the hinge-moment data are considered to be only qualitative.
Date: April 11, 1947
Creator: Adams, Richard E. & Silsby, Norman S.
Partner: UNT Libraries Government Documents Department

Flight Investigation to Determine the Aerodynamic Characteristics of Rocket-Powered Models Representative of a Fighter-Type Airplane Configuration Incorporating an Inverse-Taper Wing and a Vee Tail

Description: Two rocket-powered models representative of a fighter-type airplane were investigated in flight at Mach numbers up to 1.01 and 1.07 by the Langley Pilotless Aircraft Research Division at its testing station at Wallops Island, Va. These models incorporated an inverse-taper wing and a vee tail and were flown with controls undeflected and wing and stabilizer set at 0 deg incidence. Values of lateral acceleration, normal acceleration velocity, and drag were obtained by use of telemeters and a Doppler velocimeter radar unit. The results of this investigation indicated no unusual variation in the lateral acceleration characteristics. After the cessation of powered flight, the lateral oscillation quickly damped to zero. The data indicated that the airplane, at low lift coefficients, should not experience any abrupt trim changes until it attains a Mach number of 0.97. The change in normal-force coefficient associated with this trim change will amount to about 0.03 with the center of gravity located at 4.48% of the mean aerodynamic chord. At higher lift coefficients, on the basis of other data, the Mach number at which this trim change occurs would be expected to be decreased. The neutral point of the model at Mach numbers near 1.05 was estimated to fall at 45% of the mean aerodynamic chord, assuming a lift-curve slope of 0.05. A value of the static-directional-stability parameter dCn/d(psi) of approximately -0.002 was estimated for a Mach number of 0.93. The values of drag coefficient obtained from both model flights were in a good comparative agreement. The highest drag coefficient occurred at a Mach number of 1.01 and was equal to 0.044.
Date: November 2, 1948
Creator: Alexander, Sidney R.
Partner: UNT Libraries Government Documents Department

Results of Tests to Determine the Effect of a Conical Windshield on the Drag of a Bluff Body at Supersonic Speeds

Description: Tests to evaluate the effect of a conical windshield on the drag of a bluff body at supersonic speeds were performed for the following configurations: a sharp nose fuselage with stabilizing fins,a blunt nose fuselage with a hemispherical shape, and a blunt nose fuselage with a conical point. Results of the drag coeeficient are described at Mach 1.0 and the greatest Mach number of 1.37.
Date: January 14, 1947
Creator: Alexander, Sidney R.
Partner: UNT Libraries Government Documents Department

Flight Tests to Determine the Effect of Length of a Conical Windshield on the Drag of a Bluff Body at Supersonic Speeds

Description: Flight tests were conducted to determine the effect of length of a conical windshield on the drag of a bluff body moving at supersonic speeds. A comparison is made between results obtained and results of previous drag tests of body-windshield combinations.The effect of increasing the length of the windshield is discussed.
Date: January 29, 1947
Creator: Alexander, Sidney R. & Katz, Ellis
Partner: UNT Libraries Government Documents Department