Technical Report Archive and Image Library (TRAIL) - Browse

ABOUT BROWSE FEED

Mineral Resources of the Sleeping Giant Wilderness Study Area, Lewis and Clark County, Montana

Description: From abstract: A mineral resource survey was conducted in 1987 by the U.S. Geological Survey and the U.S. Bureau of Mines to evaluate mineral resources (known) and mineral resource potential (undiscovered) of the Sleeping Giant Wilderness Study Area (MT-075-111) in Lewis and Clark County, Montana. The only economic resource in the study area is an inferred 1.35-million-ton reserve of decorative stone (slate); a small gold placer resource is subeconomic. A high resource potential for decorative slate exists directly adjacent to the area of identified slate resource and in the northeastern part of the study area. The rest of the study area has a low potential for decorative slate. The westernmost part of the study area has a moderate resource potential for copper and associated silver in strata-bound deposits in green beds and limestone; potential is low in the rest of the study area.
Date: 1991
Creator: Tysdal, Russell G.; Reynolds, Mitchell W.; Carlson, Robert R. & Peters, Thomas J.
Partner: UNT Libraries Government Documents Department

Mineral Resources of the Willow Creek and Skull Creek Wilderness Study Areas, Moffat County, Colorado

Description: Abstract: The Willow Creek Wilderness Study Area (CO-010-002) and the Skull Creek Wilderness Study Area (C-010-003), which contain 13,368 acres and 13,739 acres, respectively, are in northwest Colorado near the Utah border. There are no identified resources in either of the study areas. The study areas have low resource potential for undiscovered uranium, vanadium, copper, and all other metals; oil and gas; and coal.
Date: 1990
Creator: Van Loenen, Richard E.; Folger, Helen W. & Kulik, Dolores M.
Partner: UNT Libraries Government Documents Department

Mineral Resources of the Coal Canyon, Spruce Canyon, and Flume Canyon Wilderness Study Areas, Grand County, Utah

Description: From abstract: The Coal Canyon (UT-060-1000), Spruce Canyon (UT-060-100D), and Flume Canyon (UT-060-100B) Wilderness Study Areas are in the Book Cliffs in Grand County, eastern Utah. Demonstrated coal reserves totaling 22,060,800 short tons, and demonstrated subeconomic coal resources totaling 39,180,000 short tons are in the Coal Canyon Wilderness Study Area. Also, inferred subeconomic coal resources totaling 143,954,000 short tons are within the Coal Canyon Wilderness Study Area. No known deposits of industrial minerals are in any of the wilderness study areas. All three of the wilderness study areas have a high resource potential for undiscovered deposits of coal and for undiscovered oil and gas.
Date: 1990
Creator: Dickerson, Robert P.; Gaccetta, Jerry D.; Kulik, Dolores M. & Kreidler, Terry J.
Partner: UNT Libraries Government Documents Department

Mineral Resources of the Paria-Hackberry Wilderness Study Area, Kane County, Utah

Description: From abstract: The Paria-Hackberry Wilderness Study Area, in central Kane County, southern Utah, is a region of generally flat-lying, gently folded sedimentary rocks, bounded on the east by the east-dipping limb of the East Kaibab monocline and cut by sheer-walled, narrow canyons. The area selected for study by the U.S. Bureau of Land Management totaled 94,642 acres (148 square miles); because of uncertainty as to final boundaries, the U.S. Geological Survey studied an additional contiguous 41,180 acres (64 square miles).
Date: 1991
Creator: Bell, Henry, III; Bush, Alfred Lerner & Turner, Robert L.
Partner: UNT Libraries Government Documents Department

Mineral Resources of the Wabayuma Peak Wilderness Study Area, Mohave County, Arizona

Description: From abstract: The Wabayuma Peak Wilderness Study Area (AZ-020-037/043), for which a mineral survey was requested by the U.S. Bureau of Land Management, encompasses 40,118 acres in northwestern Arizona. Fieldwork was carried out in 1986-88 by the U.S. Bureau of Mines and the U.S. Geological Survey to appraise the identified (known) resources and assess the mineral resource potential (undiscovered) of the wilderness study area. Within the Wabayuma Peak Wilderness Study Area are 14 private parcels of land totaling 1,315 acres. The Wabayuma Peak Wilderness Study Area, including the 14 private parcels of land, is herein referred to as the "wilderness study area" or the "study area." The Boriana, Antler, and Copper World mines lie near the east boundary of the study area. The Boriana mine was a major tungsten-producing mine of the United States during World War II. The Antler and Copper World mines produced relatively small amounts of copper and zinc prior to 1970.
Date: 1990
Creator: Conway, Clay M.; Hassemer, Jerry R. & Knepper, Daniel H., Jr.
Partner: UNT Libraries Government Documents Department

Mineral Resources of the Warm Springs Wilderness Study Area, Mohave County, Arizona

Description: From abstract: At the request of the U.S. Bureau of Land Management, approximately 113,500 acres of the Warm Springs Wilderness Study Area (AZ-020-028/029) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to as the "wilderness study area" or "study area"; any reference to the Warm Springs Wilderness Study Area refers only to that part of the wilderness study area for which a mineral survey was requested. This study area is located in west-central Arizona. The U.S. Geological Survey and the U.S. Bureau of Mines conducted geological, geochemical, and geophysical surveys to appraise the identified mineral resources (known) and assess the mineral resource potential (undiscovered) of the study area. Fieldwork for this report was carried out largely in 1986-1989.
Date: 1990
Creator: Gray, Floyd; Jachens, Robert C.; Miller, Robert J. & Knepper, Daniel H., Jr.
Partner: UNT Libraries Government Documents Department

Mineral Resources of the Black Mountains North and Burns Spring Wilderness Study Areas, Mohave County, Arizona

Description: From abstract: At the request of the U.S. Bureau of Land Management, approximately 19,300 acres of the Black Mountains North Wilderness Study Area (AZ-020-009) and 23,310 acres of the Burns Spring Wilderness Study Area (AZ-020-010) were evaluated for mineral resources and mineral resource potential. In this report, the area studied is referred to, collectively or individually, as the 'wilderness study area' or simply 'the study area'; any reference to the Black Mountains North or Burns Spring Wilderness Study Areas refers only to that part of the wilderness study area for which a mineral survey was requested by the U.S. Bureau of Land Management. The study area is located in western Arizona, about 30 mi northwest of Kingman. There are no identified resources in the study area.
Date: 1990
Creator: Conrad, James E.; Hill, Randall H.; Jachens, Robert C. & Neubert, John T.
Partner: UNT Libraries Government Documents Department

Mineral Resources of the Desolation Canyon, Turtle Canyon, and Floy Canyon Wilderness Study Areas, Carbon, Emery, and Grand Counties, Utah

Description: From abstract: In 1985, 1986, and 1988, the U.S. Bureau of Mines and the U.S. Geological Survey studied the Desolation Canyon (UT-060-068A), Turtle Canyon (UT-060-067), and Floy Canyon (UT-060-068B) Wilderness Study Areas, which are contiguous and located in Carbon, Emery, and Grand Counties in eastern Utah. The study areas include 242,000 acres, 33,690 acres, and 23,140 acres respectively. Coal deposits underlie the Desolation Canyon, Turtle Canyon, and Floy Canyon study areas.
Date: 1990
Creator: Cashion, William B.; Kilburn, James E.; Barton, Harlan N. & Kulik, Dolores M
Partner: UNT Libraries Government Documents Department

Mineral Resources of the McCullough Peaks Wilderness Study Area, Park County, Wyoming

Description: From abstract: The McCullough Peaks Wilderness Study Area (WY-010-335) is located near the western edge of the Bighorn Basin, Park County, Wyoming. The area is about 10 miles northeast of Cody. Mineral and energy resource assessment of the McCullough Peaks Wilderness Study Area indicates a total of 52 million tons of measured and indicated subbituminous coal resources.
Date: 1990
Creator: Hadley, Donald G.; Ryder, Robert T.; Hill, Randall H. & Kulik, Dolores M.
Partner: UNT Libraries Government Documents Department

Mineral Resources of the Negro Bill Canyon Wilderness Study Area, Grand County, Utah

Description: Abstract: The Negro Bill Canyon (UT-060-138) Wilderness Study Area is in southeastern Utah in Grand County southeast of Arches National Monument and covers 7,620 acres. No mineral resources are identified in the study area. Lode mining claims cover the western part of the Negro Bill Canyon Wilderness Study Area; there are no patented claims in the study area. The mineral resource potential for gypsum, potash, halite, and bentonite on the surface and in the subsurface beneath the wilderness study area is high. The energy and mineral resource potential for oil, gas, carbon dioxide, uranium and vanadium on the surface and beneath the wilderness study area is moderate. The potential for helium gas, geothermal sources, and metals other than uranium and vanadium is low.
Date: 1990
Creator: Bartsch-Winkler, Susan; Case, James E. & Barton, Harlan N.
Partner: UNT Libraries Government Documents Department

Structural Analysis of a Mechanized LHD Trench Undercut Caving System

Description: Abstract: This U. S. Bureau of Mines (USBM) report presents results of stress analyses and field observations to investigate the effects of elevated trench drifts on the structural stability of rock mass zones surrounding a production draw drift in a mine utilizing a mechanized load-haul-dump (LHD) trench undercut panel caving system. A two-dimensional boundary-element mine stress model was developed to predict the locations and extent of damaged rock mass zones surrounding draw drifts where adjacent, parallel trench drifts are either elevated or not elevated above the LHD production draw drift level. A Mohr-Coulomb shear-failure criterion was obtained directly from in situ borehole shear test data. Hoek-Brown shear-failure parameter values were computed from borehole-shear and triaxial test data. A procedure is described to estimate these parameters when a rock mass rating (RMR) value and triaxial data on intact samples exist, and no borehole shear test data exist. Results indicate that trench drifts, elevated to the level equal to the height of the LHD production draw drift, would not minimize material damage nor significantly enhance the stability of rib and crown pillar zones surrounding production draw drifts in the mechanized LHD trench undercut caving panel investigated at this mine.
Date: 1995
Creator: Jude, Charles V.
Partner: UNT Libraries Government Documents Department

High-Temperature Cyanide Leaching of Platinum-Group Metals from Automobile Catalysts--Pilot Plant Study

Description: From abstract: The U.S. Bureau of Mines Reno Research Center investigated, developed, and patented a high temperature cyanide leaching process for recovering platinum-group metals (PGM) from automobile catalysts. A batch pilot plant was constructed at the center and operated to demonstrate this technology to industry.
Date: 1995
Creator: Kuczynski, R. J.; Atkinson, G. B. & Dolinar, W. J.
Partner: UNT Libraries Government Documents Department

Field Demonstration of Two Pneumatic Backfilling Technologies

Description: Abstract: This U.S. Bureau of Mines (USBM) report summarizes a field demonstration of pneumatic backfiling technologies conducted at the abandoned Hillside Coal and Iron Slope in Vandling, PA. Researchers demonstrated tro pneumatic backfilling technologies recently developed under the USBM's Abandoned Mine Reclamation Research Program, the Pneumatic Pipefeeder and the High-Efficiency Ejector. Both systems had previously been evaluated at the USBM's subsidence abatement investigation laboratory near Fairchance, PA. The objective of the demonstration was to fill 100% of the abandoned tunnel with backfill stone to prevent further subsidence. The Pneumatic Pipefeeder was used for 21 days, at a rate of 63 to 124 t/d (69 to 136 st/d), to fill 88% of the tunnel. The High-Efficiency Ejector was used for 2 days, at a rate of 125 to 132 t/d (138 to 146 st/d) to fill the remaining 12% of the tunnel. The backfill placed by both systems was tightly compacted. The major problem encountered was wear on the polyethylene pipeline from the abrasion of the high-velocity backfill. The use of heavier steel pipe minimized the problem. A cost analysis for the entire project is given.
Date: 1995
Creator: Dyni, Robert C.; Burnett, Mackenzie & Philbin, David
Partner: UNT Libraries Government Documents Department

Reactivity in the South Spoils and Hillside Dump at the Midnite Mine

Description: The Midnite Mine is an inactive open-pit uranium mine located on the Spokane Indian Reservation in Washington State. Drill samples from two large waste rock dumps on the site, known as South Spoils and Hillside Dump, were collected with a Becker hammer drill and evaluated to determine potential of the rock to generate acid mine drainage (AMD). Waste rock at this mine contains both pyrite and uranium, and AMD effects are more complicated on this site than most in that uranium is soluble in both acidic and neutral aqueous solutions. Although AMD protocols identified 26% of the South Spoils samples as potentially acid, under 7% of the spoil samples were actually producing acid. Considerable calcite exists in the South Spoils, and weathering feldspars further contribute to acid neutralization. The Hillside Dump has low concentrations of pyrite and calcite that acid-base accounting protocols would predict to be non-acidic. Accumulation of sulfate in rocks with concentrations of less than 0.3% S causes some of those normally non-acid producing rocks to produce acid in the Hillside Dump.
Date: 1996
Creator: Moore, Bruce W.; Price, Jesse W. & Gardner, Ted
Partner: UNT Libraries Government Documents Department

Data Dictionary and Discussion for the Midnite Mine GIS Database

Description: Abstract: A geographic information system (GIS) database has been developed by the U.S. Bureau of Mines (USBM) for the Midnite Mine and surroundings in northeastern Washington State (Stevens County) on the Spokane Indian Reservation. The mine is an open pit uranium mine which has been inactive since 1981. The GIS database was compiled to serve as a repository and source of historical and research information on the mine site. The database supported USBM hydrological and reclamation research on the mine site. The database also will be used by the Bureau of Land Management and the Bureau of Indian Affairs (as well as others) for environmental assessment and reclamation planning for future remediation and reclamation of the site. This report describes the data in the GIS database and their characteristics. The report also discusses known backgrounds on the data sets and any special considerations encountered by the USBM in developing the database. Most of the database also is planned to be available to the public as a two-CD-ROM set, although separately from this report.
Date: 1996
Creator: Peters, Douglas C.; Smith, M. Antoinette & Ferderer, David A.
Partner: UNT Libraries Government Documents Department

Real-Time Monitoring of Field Measurements for Mine Design: Greens Creek Mine, Admiralty Island, Alaska

Description: Abstract: Researchers at the U.S. Bureau of Mines conducted field investigations at the Greens Creek Mine in southeast Alaska for the purpose of validating computer design of mining methods and assessing real-time monitoring capabilities. The field study required the application of new technology because of the remoteness of the study site, the need for timely acquisition of data, and a limited budget for instruments and data acquisition. Various sensors were installed to monitor rock mass deformation and strain, temperature, SO gas emissions, and blasting. Data were collected through a distributed personal computer network and high-speed modems. These readings were used to develop visualization models of underground metal mining operations and drift-and-fill mining and real-time graphics displays of ground conditions. Results of the field tests showed that it is possible to gather, process, visualize, and verify mine designs on a real-time basis.
Date: 1996
Creator: Orr, T. J. & Beus, Michael J.
Partner: UNT Libraries Government Documents Department

1995 Midnite Mine Radiation Survey

Description: Abstract: During the week of September 4, 1995, personnel from the U.S. Bureau of Mines conducted a Ra-226 survey at the Midnite Mine. One hundred thirty measurements were made on a rectangular grid with 150-m spacings. Concurrently, Shepherd Miller, Inc., took gross gamma readings in gR/h at the same grid points. In addition, the USBM collected 17 soil samples to be analyzed for radium, thorium, and potassium. The results of this survey are summarized in this report.
Date: 1996
Creator: Stroud, William P. & Droullard, Robert F.
Partner: UNT Libraries Government Documents Department

Groundwater Flow Model (GWFM) Development, Midnite Mine, Wellpinit, Washington

Description: This Report of Investigations (RI) is one of several describing work that has been completed by the U.S. Bureau of Mines at the Midnite uranium mine, Wellpinit, WA. Dean (in preparation) describes the entire project history. Four diskettes containing three archives compressed using WINZIP (or PKZIP) accompany the current RI. The ultimate purpose of this research effort was to develop a groundwater flow model (GWFM) for the Midnite Mine that can be utilized by the contractor preparing the Environmental Impact Statement (EIS) and by other interested parties. The objectives of this study were to (1) develop a shell model of the geology at the site, (2) develop the basis for a GWFM that will meet criteria described elsewhere in this RI and that can be updated with new information generated during the EIS process, and (3) present the results of two steady-state simulations of groundwater flow within the bedrock units. The current GWFM generates nonunique solutions because flow data for the bedrock units currently do not exist. However, the model provides useful results with respect to direction of flow. More data are required to model the bedrock aquifer system accurately. Volmnetric flow rates of the bedrock units should be measured or estimated. Measurements obtained from one or two drains completed in the bedrock in the southern portion of the site should yield these values.
Date: 1996
Creator: Kirschner, Frederick E.
Partner: UNT Libraries Government Documents Department

U.S. Bureau of Mines Final Report : Midnite Mine Water Treatment Studies

Description: The U.S. Bureau of Mines reviewed and evaluated options for treatment of the approximately 500 million gallons of contaminated water in flooded pits at the Midnite Mine on the Spokane Indian Reservation. While current lime treatment produces discharge quality water, the resultant sludges are radioactive, presenting a disposal problem. Of the 24 commercial processes and seven emerging technologies evaluated, none demonstrated a significant advantage over ion exchange using a strong base anion exchange resin in either laboratory or field tests. Uranium was lowered from 22 ppm to 0.2 ppb in treated water. Radium was lowered from 44 pCi/L to <1 pCi/L using a modified precipitation with BaCl2 . The natural zeolite, clinoptilolite, lowered radium to 6-8 pCi/L when used as an ion exchanger.
Date: 1996
Creator: Schultze, L. E.; Nilsen, D. N.; Isaacson, A. E. & Lahoda, E. J.
Partner: UNT Libraries Government Documents Department

Hydraulic Characterization of Midnite Mine, Wellpinit, Washington: Summary of 1994 Field Season

Description: The Midnite Mine is an inactive uranium mine on the Spokane Indian Reservation in Washington State. Oxidation of sulfide-containing minerals, primarily pyrite, produces acidic water. Uranium and other radioactive constituents are chemically leached and dissolved in ground and surface waters. The U.S. Bureau of Mines (USBM) has worked closely with the Bureau of Indian Affairs, the Bureau of Land Management, and the Spokane Tribe of Indians to address data needs for remediation of the disturbed area. As part of this effort, USBM personnel initiated research to determine water quality and define groundwater flow characteristics. Preliminary results of hydraulic stress tests performed in the bedrock at the site are described. Slug tests and pumping tests were conducted using preexisting USBM monitoring wells. Slug test results were used to generate hydraulic conductivity estimates for fractured and unfractured intrusives. The pumping tests demonstrated varying degrees of spatial continuity. Hydraulically continuous fractured zones along north-south planes were demonstrated in two cases for distances of 90 and 116 m (300 and 380 ft). The short-term pumping tests provided no evidence of east-west hydraulic continuity in fractured zones.
Date: 1996
Creator: Williams, Barbara C. & Riley, John A.
Partner: UNT Libraries Government Documents Department

Midnite Mine Summary Report

Description: The Midni'e Mine is an inactive, hard-rock uranium mine in Stevens County, WA. Oxidation of sulfide-containing minerals in the ore body produces large quantities of acidic water. The U.S. Bureau of Mines was directed by Congress in Fiscal Year 1994 to perform technological research on the treatment of radioactive water and disposal of treatment residues at the Midnite Mine and en overall site reclamation. This Report of Investigations summarizes the studies that were completed on: 1) treatment alternatives for uranium contaminated acid mine drainage, and 2) overall site reclamation, including: ground water flowpaths in the bedrock, radiation, and waste rock reactivity. As an aid to site reclamation, a Geographic Information System database was also produced that contains available current and historic data and information on the Midnite Mine. This report explains the scope of the Bureau's study and summarizes the results of its investigations.
Date: 1996
Creator: Dean, N. E.; Boldt, C. M. K.; Schultze, L. E.; Nilsen, D. N.; Isaacson, A. E.; Williams, B. C. et al.
Partner: UNT Libraries Government Documents Department

Petrographic and Geochemical Analyses of Leach Samples from Artillery Peak, Mohave County, Arizona

Description: Abstract: The first step in determining whether Mn can be recovered by in situ leaching is to develop and test a selective lixiviant. Two column leach tests and one core leach test were conducted by the U.S. Bureau of Mines on Mn oxide ore using aqueous sulfur dioxide (SO2) as the lixiviant. The column tests showed that aqueous SO2 could selectively dissolve available Mn oxides from calcite-rich ore in a heap leach system. However, the core test showed that calcite gangue side reactions can have pronounced negative effects on the likelihood of successful in situ leaching of a calcite-rich ore with aqueous SO2. Petrographic and geochemical analyses showed that both Mn (IV, II) oxides and calcite were dissolved. The abundance of dissolved Ca caused precipitation of gypsum. Acid consumption by calcite dissolution caused a rise in pH that caused the S02/S species to shift to SO32- (sulfite), which hindered reductive dissolution of Mn oxide. Gypsum precipitation did not affect complete leaching of the rock fragments in the column tests; however, it plugged the natural permeability in the core. Manganese recoveries were high for the column tests and low for the core test.
Date: 1995
Creator: Brink, Susan; Blake, Rolland & Marozas, Dianne
Partner: UNT Libraries Government Documents Department

Timing and Duration of Subsidence Due to Longwall Mining

Description: Subsidence data gathered by the U.S. Bureau of Mines over a series of longwall panels in the Pittsburgh Coalbed were studied to obtain insight as to the role of time in the subsidence process. It was found that subsidence began essentially with undermining and was completed within 1 year. The progress of the subsidence was dependent upon location above the panel. Subsidence in the central area of the subsidence trough, where subsidence is the greatest, was about 90 pct complete by the time the face had progressed a distance equal to one overburden thickness beyond a particular surface point. For a point over the rib of the longwall panel, the subsidence was only about 60 pct complete at this time. Data from three other sites in the northern Appalachian Coal Basin were analyzed to determine if an anomaly or the true characteristics of the subsidence process had been observed. All sites behaved similarly in the central portion of the subsidence trough. However, the subsidence of points over and adjacent to the ribs of the longwall panels was site specific. The fact that movement across the width of the panel was not uniform should be taken into account in assessing damages or the potential for damages resulting from mining-induced subsidence.
Date: 1995
Creator: Jeran, Paul W. & Trevits, Michael A.
Partner: UNT Libraries Government Documents Department

Longwall Gate Road Stability in a Steeply Pitching Thick Coal Seam with a Weak Roof

Description: The U.S. Bureau of Mines (USBM) conducted ground pressure analysis of a wide abutment-type chain pillar in a two-entry gate road of a Western U.S. coal mine with an extremely weak immediate roof. About 15 m of fragile, low-strength mudstone lies between the seam and the lowest competent roof member. Three- and two-entry gate road designs with several pillar sizes and various secondary support systems have been employed to improve tailgate-entry stability, with varying results. This report discusses gate road layout and performance and secondary support effectiveness. The results of the pillar pressure study are compared to pillar loading predicted by a widely used pillar design method and to similar studies in other mines. A stability evaluation of the most recent longwall headgate, using the USBM Analysis of Longwall Pillar Stability (ALPS) method, indicates marginal stability in first-panel mining and instability in second-panel mining. The ALPS method and the USBM Coal Mine Roof Rating system are used to evaluate tailgate-mining stability of the previous gate roads and to determine pillar and entry width and top coal thickness criteria for tailgate stability in future panels.
Date: 1995
Creator: Barron, Lance R. & DeMarco, Matthew J.
Partner: UNT Libraries Government Documents Department