Technical Report Archive and Image Library (TRAIL) - 1,424 Matching Results

Search Results

Aerodynamic theory and test of strut forms. Part I
This report presents the first part of a two part study made under this title. In this part the symmetrical inviscid flow about an empirical strut of high service merit is found by both the Rankine and the Joukowsky methods. The results can be made to agree as closely as wished. Theoretical stream surfaces as well as surfaces of constant speed and pressure in the fluid about the strut are found. The surface pressure computed from the two theories agrees well with the measured pressure on the fore part of the model but not so well on the after part. From the theoretical flow speed the surface friction is computed by an empirical formula. The drag integrated from the friction and measured pressure closely equals the whole measured drag. As the pressure drag and the whole drag are accurately determined, the friction formula also appears trustworthy for such fair shapes. (author).
Aerodynamic theory and tests of strut forms. Part II
This report presents the second of two studies under the same title. In this part five theoretical struts are developed from distributed sources and sinks and constructed for pressure and resistance tests in a wind tunnel. The surface pressures for symmetrical inviscid flow are computed for each strut from theory and compared with those found by experiment. The theoretical and experimental pressures are found to agree quantitatively near the bow, only qualitatively over the suction range, the experimental suctions being uniformly a little low, and not at all near the stern. This study is the strut sequel to Fuhrmann's research on airship forms, the one being a study in two dimensions, the other in three. A comparison of results indicates that the agreement between theory and experiment is somewhat better for bodies of revolution than for cylinders when both are shaped for slight resistance. The consistent deficiency of the experimental suctions which is found in the case of struts was not found in the case of airships, for which the experimental suctions were sometimes above sometimes below their theoretical values.
Aerofoils and aerofoil structural combinations
Report presents results of wind tunnel tests of cambered aerofoils and body-wing combinations used for biplanes. Aerodynamic characteristics including drag, lift-drift ratio and stability derivatives are given.
Aeronautic instruments. Section I : general classification of instruments and problems including bibliography
This report is intended as a technical introduction to the series of reports on aeronautic instruments. It presents a discussion of those subjects which are common to all instruments. First, a general classification is given, embracing all types of instruments used in aeronautics. Finally, a classification is given of the various problems confronted by the instrument expert and investigator. In this way the following groups of problems are brought up for consideration: problems of mechanical design, human factor, manufacturing problems, supply and selection of instruments, problems concerning the technique of testing, problems of installation, problems concerning the use of instruments, problems of maintenance, and physical research problems. This enumeration of problems which are common to instruments in general serves to indicate the different points of view which should be kept in mind in approaching the study of any particular instrument.
Aeronautic instruments. Section II : altitude instruments
This report is Section two of a series of reports on aeronautic instruments (Technical Report nos. 125 to 132, inclusive). This section discusses briefly barometric altitude determinations, and describes in detail the principal types of altimeters and barographs used in aeronautics during the recent war. This is followed by a discussion of performance requirements for such instruments and an account of the methods of testing developed by the Bureau of Standards. The report concludes with a brief account of the results of recent investigations. For accurate measurements of altitude, reference must also be made to thermometer readings of atmospheric temperature, since the altitude is not fixed by atmospheric pressure alone. This matter is discussed in connection with barometric altitude determination.
Aeronautic instruments. Section III : aircraft speed instruments
Part 1 contains a discussion and description of the various types of air speed measuring instruments. The authors then give general specifications and performance requirements with the results of tests on air speed indicators at the Bureau of Standards. Part 2 reports methods and laboratory apparatus used at the Bureau of Standards to make static tests. Methods are also given of combining wind tunnel tests with static tests. Consideration is also given to free flight tests. Part 3 discusses the problem of finding suitable methods for the purpose of measuring the speed of aircraft relative to the ground.
Aeronautic instruments. Section IV : direction instruments
Part one points out the adequacy of a consideration of the steady state gyroscopic motion as a basis for the discussion of displacements of the gyroscope mounted on an airplane, and develops a simple theory on this basis. Principal types of gyroscopic inclinometers are described and requirements stated. Part two describes a new type of stabilizing gyro mounted on top of a spindle by means of a universal joint, the spindle being kept in a vertical position by supporting it as a pendulum of which the bob is the driving motor. Methods of tests and the difficulties in designing a satisfactory and reliable compass for aircraft use in considered in part three. Part four contains a brief general treatment of the important features of construction of aircraft compasses and description of the principal types used.
Aeronautic instruments. Section V : power plant instruments
Part 1 gives a general discussion of the uses, principles, construction, and operation of airplane tachometers. Detailed description of all available instruments, both foreign and domestic, are given. Part 2 describes methods of tests and effect of various conditions encountered in airplane flight such as change of temperature, vibration, tilting, and reduced air pressure. Part 3 describes the principal types of distance reading thermometers for aircraft engines, including an explanation of the physical principles involved in the functioning of the instruments and proper filling of the bulbs. Performance requirements and testing methods are given and a discussion of the source of error and results of tests. Part 4 gives methods of tests and calibration, also requirements of gauges of this type for the pressure measurement of the air pressure in gasoline tanks and the engine oil pressure on airplanes. Part 5 describes two types of gasoline gauges, the float type and the pressure type. Methods of testing and calibrating gasoline depth gauges are given. The Schroeder, R. A. E., and the Mark II flowmeters are described.
Aeronautic instruments. Section VI : aerial navigation and navigating instruments
This report outlines briefly the methods of aerial navigation which have been developed during the past few years, with a description of the different instruments used. Dead reckoning, the most universal method of aerial navigation, is first discussed. Then follows an outline of the principles of navigation by astronomical observation; a discussion of the practical use of natural horizons, such as sea, land, and cloud, in making extant observations; the use of artificial horizons, including the bubble, pendulum, and gyroscopic types. A description is given of the recent development of the radio direction finder and its application to navigation.
Aeronautic instruments. Section VI : oxygen instruments
This report contains statements as to amount of oxygen required at different altitudes and the methods of storing oxygen. The two types of control apparatus - the compressed oxygen type and the liquid oxygen type - are described. Ten different instruments of the compressed type are described, as well as the foreign instruments of the liquid types. The performance and specifications and the results of laboratory tests on all representative types conclude this report.
Aeronautic instruments. Section VIII : recent developments and outstanding problems
This report is section VIII of a series of reports on aeronautic instruments. The preceding reports in this series have discussed in detail the various types of aeronautic instruments which have reached a state of practical development such that they have already found extensive use. It is the purpose of this paper to discuss briefly some of the more recent developments in the field of aeronautic instrument design and to suggest some of the outstanding problems awaiting solution.
Aeronautic Power Plant Investigations
Report presents the design of radiators, spark plugs and test equipment used to test the performance of aeronautic engines at high altitudes.
Air conditions close to the ground and the effect on airplane landings
This report presents the results of an investigation undertaken to determine the feasibility of making glide landings in gusty air. Wind velocities were measured at several stations between the ground and a height of 51 feet, and flight tests were made to determine the actual influence of gusts on an airplane gliding close to the ground.
Air-consumption parameters for automatic mixture control of aircraft engines
From Introduction: "The purpose of this analysis was to investigate the use of a function of intake-manifold pressure, exhaust back pressure, intake manifold temperature, and engine speed in place of a venturi as a means of measuring engine air consumption and to determine if this function is suitable for automatic mixture control."
Air flow around finned cylinders
Report presents the results of a study made to determine the air-flow characteristics around finned cylinders. Air-flow distribution is given for a smooth cylinder, for a finned cylinder having several fin spacings and fin widths, and for a cylinder with several types of baffle with various entrance and exit shapes. The results of these tests show: that flow characteristics around a cylinder are not so critical to changes in fin width as they are to fin spacing; that the entrance of the baffle has a marked influence on its efficiency; that properly designed baffles increase the air flow over the rear of the cylinder; and that these tests check those of heat-transfer tests in the choice of the best baffle.
Air flow in a separating laminar boundary layer
Report discussing the speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.
Air flow in the boundary layer near a plate
From Summary: "The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions."
Air flow in the boundary layer of an elliptic cylinder
From Introduction: "The present investigation was carried out for the purpose of supplementing the earlier work with information on the boundary layer under such conditions of air speed and turbulence that transition occurs and the layer is partly laminar and partly turbulent. In the work reported in reference 1, the air speed was about 12 feet per second, and it was assumed that the boundary layer remained in the laminar condition until after separation because the separation point remained fixed and the pressure distribution about the cylinder was unaffected until an air speed of 15 feet per second was reached."
Air flow through poppet valves
Report discusses the comparative continuous flow characteristics of single and double poppet valves. The experimental data presented affords a direct comparison of valves, single and in pairs of different sizes, tested in a cylinder designed in accordance with current practice in aviation engines.
Air force and moment for N-20 wing with certain cut-outs
From Introduction: "The airplane designer often finds it necessary, in meeting the requirements of visibility, to remove area or to otherwise locally distort the plan or section of an airplane wing. This report, prepared for the Bureau of Aeronautics January 15, 1925, contains the experimental results of tests on six 5 by 30 inch N-20 wing models, cut out or distorted in different ways, which were conducted in the 8 by 8 foot wind tunnel of the Navy Aerodynamical Laboratory in Washington in 1924. The measured and derived results are given without correction for vl/v for wall effect and for standard air density, p=0.00237 slug per cubic foot."
Air force tests of sperry messenger model with six sets of wings
From Summary: "The purpose of this test was to compare six well-known airfoils, the R.A.F 15, U.S.A. 5, U.S.A. 27, U.S.A. 35-B, Clark Y, and Gottingen 387, fitted to the Sperry Messenger model, at full scale Reynolds number as obtained in the variable density wind tunnel of the National Advisory Committee for Aeronautics; and to determine the scale effect on the model equipped with all the details of the actual airplane. The results show a large decrease in minimum drag coefficient upon increasing the Reynolds number from about one-twentieth scale to full scale. A comparison is made between the results of these tests and those obtained from tests made in this tunnel on airfoils alone."
Air forces and moments on triangular and related wings with subsonic leading edges oscillating in supersonic potential flow
From Introduction: "This report is concerned with the derivation of expressions for the velocity potential and associated forces and moments for oscillating triangular wings in supersonic flow. The purpose of the present report is to make use of the expanded form of the velocity potential to obtain the forces and moments, based on the first terms of this potential, for a rigid triangular wing performing vertical and pitching sinusoidal oscillations in mixed supersonic flow."
Air forces, moments and damping on model of fleet airship Shenandoah
From Introduction: "To furnish data for the design of the fleet airship Shenandoah, a model was made and tested in the 8 by 8 foot wind tunnel for wind forces, moments, and damping, under conditions described in this report. The results are given for air of standard density. P=0.00237 slugs per cubic foot with vl/v correction, and with but a brief discussion of the aerodynamic design features of the airship."
The air forces on a model of the sperry messenger airplane without propeller
From Summary: "This is a report on a scale effect research which was made in the variable-density wind tunnel of the National Advisory Committee for Aeronautics at the request of the Army Air Service. While the present report is of a preliminary nature, the work has progressed far enough to show that the scale effect is almost entirely confined to the drag."
The air forces on a systematic series of biplane and triplane cellule models
Report discussing the air forces on a systematic series of biplane and triplane cellule models which are measured in the atmospheric density tunnel.
Air propellers in yaw
Report presents the results of tests conducted at Stanford University of a 3-foot model propeller at four pitch settings and at 0 degree, 10 degrees, 20 degrees, and 30 degrees yaw.
Aircraft accidents : method of analysis
The revised report includes the chart for the analysis of aircraft accidents, combining consideration of the immediate causes, underlying causes, and results of accidents, as prepared by the special committee, with a number of the definitions clarified. A brief statement of the organization and work of the special committee and of the Committee on Aircraft Accidents; and statistical tables giving a comparison of the types of accidents and causes of accidents in the military services on the one hand and in civil aviation on the other, together with explanations of some of the important differences noted in these tables.
Aircraft accidents : method of analysis
From Introduction Purpose and Organization: "This report on a method of analysis of aircraft accidents has been prepared by a special committee on the nomenclature, subdivision, and classification of aircraft accidents organized by the National Advisory Committee for Aeronautics in response to a request dated February 18, 1928, from the Air Coordination Committee consisting of the Assistant Secretaries for Aeronautics in the Departments of War, Navy, and Commerce."
Aircraft accidents.method of analysis
This report is a revision of NACA-TR-357. It was prepared by the Committee on Aircraft Accidents. The purpose of this report is to provide a basis for the classification and comparison of aircraft accidents, both civil and military.
Aircraft compass characteristics
From Summary: "A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Results of flight tests are presented."
Aircraft power-plant instruments
From Summary: "The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described."
Aircraft rate-of-climb indicators
From Summary: "The theory of the rate-of-climb indicator is developed in a form adapted for application to the instrument in its present-day form. Certain dynamic effects, including instrument lag, and the use of the rate-of-climb indicator as a statoscope are also considered. Modern instruments are described. A laboratory test procedure is outlined and test results are given."
Aircraft speed instruments
From Summary: "This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the Pitot-static air-speed meter which is the standard in the United States for airplanes. A bibliography on air-speed measurement concludes the report."
Aircraft woods: their properties, selection, and characteristics
From Summary: "This report presents, further, information on the properties of various other native species of wood compared with spruce, and discusses the characteristics of a considerable number of them from the standpoint of their possible application in aircraft manufacture to supplement the woods that are now most commonly used."
Airfoil pressure distribution investigation in the variable density wind tunnel
Report presents the results of wind tunnel tests of pressure distribution measurements over one section each of six airfoils. Pressure distribution diagrams, as well as the integrated characteristics of the airfoils, are given for both a high and a low dynamic scale or, Reynolds number VL/V, for comparison with flight and other wind-tunnel tests, respectively. It is concluded that the scale effect is very important only at angles of attack near the burble.
Airfoil profiles for minimum pressure drag at supersonic velocities -- general analysis with application to linearized supersonic flow
From Summary: "A theoretical investigation is made of the airfoil profile for minimum pressure drag at zero lift in supersonic flow. In the first part of the report a general method is developed for calculating the profile having the least pressure drag for a given auxiliary condition, such as a given structural requirement or a given thickness ratio. To illustrate the general method, the optimum airfoil, defined as the airfoil having minimum pressure drag for a given auxiliary condition, is calculated in a second part of the report using the equations of linearized supersonic flow."
Airfoil section characteristics as affected by protuberances
From Introduction: "The present report deals with another phase of the investigation; that is, the effects on airfoil section characteristics of protuberances extending along the entire span from the airfoil surface."
Airfoil section characteristics as affected by variations of the Reynolds number
Report presents the results of an investigation of a systematically chosen representative group of related airfoils conducted in the NACA variable-density wind tunnel over a wide range of Reynolds number extending well into the flight range. The tests were made to provide information from which the variations of airfoil section characteristics with changes in the Reynolds number could be inferred and methods of allowing for these variations in practice could be determined. This work is one phase of an extensive and general airfoil investigation being conducted in the variable-density tunnel and extends the previously published researches concerning airfoil characteristics as affected by variations in airfoil profile determined at a single value of the Reynolds number.
Airfoil section characteristics as applied to the prediction of air forces and their distribution on wings
From Introduction: "The system presented herein yields, within the limitations of our present knowledge of aerodynamics, a general solution of the resultant wing forces and moments and their distribution. For the sake of completeness and facility in use, the report contains a table of the important section parameters for many commonly used sections and all other necessary data required to solve the most practical design problems coming within the scope of the system."
Airfoil section data obtained in the NACA variable-density tunnel as affected by support interference and other corrections
From Introduction: "The purpose of this report is to present the corrections for application to published results from the variable-density tunnel to give more reliable values of section profile-drag coefficient for airfoils of various thickness."
Airplane dopes and doping
Cellulose acetate and cellulose nitrate are the important constituents of airplane dopes in use at the present time, but planes were treated with other materials in the experimental stages of flying. The above compounds belong to the class of colloids and are of value because they produce a shrinking action on the fabric when drying out of solution, rendering it drum tight. Other colloids possessing the same property have been proposed and tried. In the first stages of the development of dope, however, shrinkage was not considered. The fabric was treated merely to render it waterproof. The first airplanes constructed were covered with cotton fabric stretched as tightly as possible over the winds, fuselage, etc., and flying was possible only in fine weather. The necessity of an airplane which would fly under all weather conditions at once became apparent. Then followed experiments with rubberized fabrics, fabrics treated with glue rendered insoluble by formaldehyde or bichromate, fabrics treated with drying and nondrying oils, shellac, casein, etc. It was found that fabrics treated as above lost their tension in damp weather, and the oil from the motor penetrated the proofing material and weakened the fabric. For the most part the film of material lacked durability. Cellulose nitrate lacquers, however were found to be more satisfactory under varying weather conditions, added less weight to the planes, and were easily applied. On the other hand, they were highly inflammable, and oil from the motor penetrated the film of cellulose nitrate, causing the tension of the fabric to be relaxed.
Airplane Stress Analysis
Report presents stress analysis of individual components of an airplane. Normal and abnormal loads, sudden loads, simple stresses, indirect simple stresses, resultant unit stress, repetitive and equivalent stress, maximum steady load and stress are considered.
The airplane tensiometer
Certain parts of an airplane are subjected not only to the stresses imposed by the aerodynamic or flying load, but also to the initial stresses, caused by the tension in the stay and drift wires. Report describes a tensiometer that measures such stresses which is simple in construction, accurate, and easily and quickly operated even by inexperienced persons. Two sizes of the instrument are available. One is suitable for wires up to one-fourth inch in diameter and the other for wires from one-fourth to three-eights inch in diameter.
Airship model tests in the variable density wind tunnel
This report presents the results of wind tunnel tests conducted to determine the aerodynamic characteristics of airship models. Eight Goodyear-Zeppelin airship models were tested in the original closed-throat tunnel. After the tunnel was rebuilt with an open throat a new model was tested, and one of the Goodyear-Zeppelin models was retested. The results indicate that much may be done to determine the drag of airships from evaluations of the pressure and skin-frictional drags on models tested at large Reynolds number.
An airship slide rule
From Introduction: "This report prepared for the National Advisory Committee for Aeronautics, describes an airship slide rule developed by the Gas-Chemistry Section of the Bureau of Standards, at the request of the Bureau of Engineering of the Navy Department."
Alternating-current equipment for the measurement of fluctuations of air speed in turbulent flow
From Summary: "Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed."
The altitude effect on air speed indicators
The report present the results of a theoretical and experimental study of the effect, on the performance of air speed indicators, of the different atmospheric conditions experienced at various altitudes.
The altitude effect on air speed indicators II
In an investigation described in NACA Technical Report 110, it was shown that under certain conditions, particularly for the relatively low-speed flight of airships, the data obtained were not sufficiently accurate. This report describes an investigation in which the data obtained were sufficiently accurate and complete to enable the viscosity correction to be deduced quantitatively for a number of the air-speed pressure nozzles in common use. The report opens with a discussion of the theory of the performance of air-speed nozzles and of the calibration of the indicators, from which the theory of the altitude correction is developed. Then follows the determination of the performance characteristics of the nozzles and calibration constants used for the indicators. In the latter half of the report, the viscosity correction is computed for the Zahm Pitot-venturi nozzles.
The altitude laboratory for the test of aircraft engines
Report presents descriptions, schematics, and photographs of the altitude laboratory for the testing of aircraft engines constructed at the Bureau of Standards for the National Advisory Committee for Aeronautics.
Altitude-pressure tables based on the United States standard atmosphere
This report is a revision of the altitude pressure tables of the United States standard atmosphere given in Technical Report No. 246 and the altitude range has been extended from 50,000 to 80,000 feet.