National Advisory Committee for Aeronautics (NACA) - 737 Matching Results

Search Results

Considerations of the Total Drag of Supersonic Airfoil Sections

Description: The results of calculations of the viscous and pressure drags of some two-dimensional supersonic airfoils at zero lift are presented. The results indicate that inclusion of viscous drag alters many previous results regarding the desirability of certain airfoil shapes for securing low drags at supersonic speeds. At certain Reynolds and Mach numbers, for instance, a circular-arc airfoil may theoretically have less drag than the previously advocated symmetrical wedge-shape profile; although under different conditions, the circular-arc airfoil may have a higher drag.
Date: July 1947
Creator: Ivey, H. Reese & Klunker, E. Bernard
Partner: UNT Libraries Government Documents Department

The 1350 F stress-rupture properties of two wrought alloys and three cast alloys

Description: From Summary: "These properties compare favorably with those of the strongest similar alloys previously investigated. However, compared with a 60Cr-25Fe-15Mo alloy, the three cobalt-chronium-nickel cast alloys are inferior. A correlation of NACA and OSRD (Project NRC-8) data is presented, showing the variation of rupture strengths with temperature in the range of 1350^o to 2000^o for alloys."
Date: November 1947
Creator: Reynolds, E E; Freeman, J W & White, A E
Partner: UNT Libraries Government Documents Department

Wind Tunnel Development of Means to Alleviate Buffeting of the North American XP-82 Airplane at High Speeds

Description: This report presents the results of wind-tunnel tests of a 0.22-scale model of the North American XP-82 airplane with several modifications designed to reduce the buffeting of the airplane. The effects of various modifications on the air flow over the model are shown by means of photographs of tufts. The drag, lift, and pitching-moment coefficients of the model with several of the modifications are shown. The result indicate that, by reflexing the trailing edge of the center section of the wing and modifying the radiator air-scoop gutter and the inboard lower-surface wing fillets, the start of buffeting can be delayed from a Mach number of 0.70 to 0.775, and that the diving tendency of the airplane would be eliminated up to a Mach number of 0.80.
Date: January 9, 1947
Creator: Anderson, Joseph L.
Partner: UNT Libraries Government Documents Department

Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine, 3, Pressure and Temperature Distributions

Description: An altitude-wind-tunnel investigation of a TG-100A gas turbine-propeller engine was performed. Pressure and temperature data were obtained at altitudes from 5000 to 35000 feet, compressor inlet ram-pressure ratios from 1.00 to 1.17, and engine speeds from 800 to 13000 rpm. The effect of engine speed, shaft horsepower, and compressor-inlet ram-pressure ratio on pressure and temperature distribution at each measuring station are presented graphically.
Date: November 13, 1947
Creator: Geisenheyner, Robert M. & Berdysz, Joseph J.
Partner: UNT Libraries Government Documents Department

Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine, 4, Compressor and Turbine Performance Characteristics

Description: As part of an investigation of the performance and operational characteristics of the TG-100A gas turbine-propeller engine, conducted in the Cleveland altitude wind tunnel, the performance characteristics of the compressor and the turbine were obtained. The data presented were obtained at a compressor-inlet ram-pressure ratio of 1.00 for altitudes from 5000 to 35,000 feet, engine speeds from 8000 to 13,000 rpm, and turbine-inlet temperatures from 1400 to 2100R. The highest compressor pressure ratio was 6.15 at a corrected air flow of 23.7 pounds per second and a corrected turbine-inlet temperature of 2475R. Peak adiabatic compressor efficiencies of about 77 percent were obtained near the value of corrected air flow corresponding to a corrected engine speed of 13,000 rpm. This maximum efficiency may be somewhat low, however, because of dirt accumulations on the compressor blades. A maximum adiabatic turbine efficiency of 81.5 percent was obtained at rated engine speed for all altitudes and turbine-inlet temperatures investigated.
Date: November 13, 1947
Creator: Wallner, Lewis E. & Saari, Martin J.
Partner: UNT Libraries Government Documents Department

Preliminary Results of an Altitude-Wind-Tunnel Investigation of a TG-100A Gas Turbine-Propeller Engine II - Windmilling Characteristics

Description: An investigation was conducted to determine the operational and performance characteristics of the TG-100A gas turbine-propeller engine II. Windmilling characteristics were deterined for a range of altitudes from 5000 to 35,000 feet, true airspeeds from 100 to 273 miles per hour, and propeller blade angles from 4 degrees to 46 degrees.
Date: August 4, 1947
Creator: Conrad, E. W. & Durham, J. D.
Partner: UNT Libraries Government Documents Department

Performance of the 19XB 10-Stage Axial-Flow Compressor with Altered Blade Angles

Description: Previous performance data of the 19XB axial-flow compressor indicated that the outlet guide vanes and possibly the inlet guide vanes were stalling. Calculations were made to determine if these adverse conditions could be eliminated and if the manufacturer's design specifications could be more nearly approached by altering the blade angles of the first few compression stages as well as the outlet guide vanes. With the blade angles altered, experimental data were taken at compressor speeds of 8500 to 17,000 rpm with inlet-air conditions of 7.4 inches of mercury absolute and 59 0 F. The temperature-rise efficiency increased with speed from 0.70 at 8500 rpm to 0.74 at 13,600 rpm and dropped gradually to 0.70 at 17,000 rpm. At the design speed of 17,000 rpm, the pressure ratio at the peak efficiency point was 3.63. The maximum pressure ratio at design speed was 4.15 at an equivalent weight flow of 29.8 pounds per second. The altered compressor operated very .near the design specifications of pressure ratio and equivalent weight flow. At the high speeds, the peak adiabatic temperature-rise efficiency was increased 0.02 to 0,06 by altering the blade angles. The peak pressure ratio was increased 0.29 at design speed (17,000 rpm) and 0.05 and 0.13 at 11,900 and 13,600 rpm, respectively. The equivalent weight flow through the altered compressor was reduced 2 pounds per second at 15,300 and 17,000 rpm, as was expected from the design calculations. As extreme caution was taken not to surge the compressor violently, the point of minimum air flow may not have been reached in the present investigation and in a previous investigation. A true comparison of the pressure ratios obtained at the high speeds therefore cannot be made.
Date: January 21, 1947
Creator: Downing, Richard M.; Finger, Harold B. & Roepcke, Fay A.
Partner: UNT Libraries Government Documents Department

Investigation of 10-Stage Axial-Flow X24C-2 Compressor, 1, Performance at Inlet Pressure of 21 Inches Mercury Absolute and Inlet Temperature of 538 R

Description: The performance at inlet pressure of 21 inches mercury absolute and inlet temperature of 538 R for the 10-stage axial-flow X24C-2 compressor from the X24C-2 turbojet engine was investigated. the peak adiabatic temperature-rise efficiency for a given speed generally occurred at values of pressure coefficient fairly close to 0.35.For this compressor, the efficiency data at various speeds could be correlated on two converging curves by the use of a polytropic loss factor derived.
Date: July 15, 1947
Creator: Schum, Harold J. & Buckner, Howard A., Jr.
Partner: UNT Libraries Government Documents Department

Investigation of Rim Cracking in Turbine Wheels with Welded Blades

Description: Rim cracking in turbine wheels with welded blades was evaluated. The problem is explained on the basis of the occurrence of plastic flow in the rim during transient starting conditions when thermal compressive stresses resulting from high-temperature gradients exceed the proportional elastic limit of the material.
Date: February 12, 1947
Creator: Millenson, M. B. & Manson, S. S.
Partner: UNT Libraries Government Documents Department

Investigation of Sea-Level Performance of I-16 Turbojet Engine at Zero Ram with XFR-1 Intake Duct Shroud, and Tail Pipe

Description: The sea-level performance of I-16 turbojet engine at zero ram was investigated to determine the effects of an intake duct, shroud, and tail pipe intended for installation in an XFR-1 airplane. Engine speeds ranged from 8000 to 16,500 rpm for several variations of the intake duct and tail pipes.
Date: August 1, 1947
Creator: Dowman, Harry W. & Anderson, William G.
Partner: UNT Libraries Government Documents Department

Experimental Investigation of a Preloaded Spring-Tab Flutter Model

Description: An experimental investigation was made of a preloaded spring-tab flutter model to determine the effects on flutter speed of aspect ratio, tab frequency, and preloaded spring constant. The rudder was mass-balanced, and the flutter mode studied was essentially one of three degrees of freedom (fin bending coupled with rudder and tab oscillations). Inasmuch as the spring was preloaded, the tab-spring system was a nonlinear one. Frequency of the tab was the most significant parameter in this study, and an increase in flutter speed with increasing frequency is indicated. At a given frequency, the tab of high aspect ratio is shown to have a slightly lower flutter speed than the one of low aspect ratio. Because the frequency of the preloaded spring tab was found to vary radically with amplitude, the flutter speed decreased with increase in initial displacement of the tab.
Date: December 15, 1947
Creator: Smith, N H; Clevenson, S A & Barmby, J G
Partner: UNT Libraries Government Documents Department

Stick-Fixed Stability and Control Characteristics of the Consolidated Vultee Model 240 Airplane as Estimated from Tests of a 0.092-Scale Powered Model

Description: Estimates of the static stick-fixed stability and control characteristics of the Consolidated Vultee model 240 airplane are presented in this report. The estimates are based on tests of a 0.092-scale powered model in the 10-foot wind tunnel of the Guggenheim Aeronautical Laboratory of the California Institute of Technology. Results of the analysis are evaluated in terms of the Army specifications for stability and control characteristics which are more specific and, in general, equal to or more rigid than the Civil Aeronautics Administration requirements. The stick-fixed stability and control characteristics of the Consolidated Vultee model 240 were found to be satisfactory except for the following: 1) Marginal longitudinal stability in the landing approach (flaps 30 deg, 50% minimum continuous power) with aft center of gravity (31% M.A.C.); 2) Marginal rudder control to hold zero sideslip in a climb after take-off with asymmetric power (flaps 30 deg, left engine inoperative, right engine delivering take-off power) with maximum rudder throw limited to +/- 18 deg; 3) Marginal dihedral effect with flaps 40 deg and engines delivering maximum continuous power.
Date: June 27, 1947
Creator: McCullough, George B.; Weiberg, James A. & Gault, Donald E.
Partner: UNT Libraries Government Documents Department

Tests of Submerged Duct Installation on the Ryan FR-1 Airplane in the Ames 40- by 80-Foot Wind Tunnel

Description: An investigation of an NACA submerged intake installation on the Ryan FR-1 was conducted to determine the full-scale aerodynamic characteristics of this installation. In addition, tests were conducted on the submerged inlet with revised entrance lips and deflectors to determine the configuration which would result in the best dynamic pressure recovery measured at the inlet for this installation without a major rework of the entrance. Stalling of the air flow over the inner lip surface created excessive dynamic pressure losses with the original entrance. The revised entrance produced a 12-percent increase in dynamic pressure recovery at the design high-speed inlet-velocity ratio and resulted in an improvement of thte critical-speed characteristics of the entrance lip. A complete redesign of the entrance including a decrease in ramp angle and adjustment of lip camber is necessary to secure optimum results from this submerged duct installation.
Date: April 23, 1947
Creator: Martin, Norman J.
Partner: UNT Libraries Government Documents Department

Aerodynamic Characteristics at High Speeds of Full-Scale Propellers having Different Shank Designs

Description: Tests of two 10-foot-diameter two-blade propellers which differed only in shank design have been made in the Langley 16-foot high-speed tunnel. The propellers are designated by their blade design numbers, NACA 10-(5)(08)-03, which had aerodynamically efficient airfoil shank sections, and NACA l0-(5)(08)-03R which had thick cylindrical shank sections typical of conventiona1 blades, The propellers mere tested on a 2000-horsepower dynamometer through a range of blade-angles from 20deg to 55deg at various rotational speeds and at airspeeds up to 496 miles per hour. The resultant tip speeds obtained simulate actual flight conditions, and the variation of air-stream Mach number with advance ratio is within the range of full-scale constant-speed propeller operation. Both propellers were very efficient, the maximum envelope efficiency being approximately 0,95 for the NACA 10-(5)(08)-03 propeller and about 5 percent less for the NACA 10-(5)(08)-03R propeller. Based on constant power and rotational speed, the efficiency of the NACA 10-(05)(08)-03 propeller was from 2.8 to 12 percent higher than that of the NACA 10-(5)(08)-03R propeller over a range of airspeeds from 225 to 450 miles per hour. The loss in maximum efficiency at the design blade angle for the NACA 10-(5)(08)-03 and 10-(5)(08)-03R propellers vas about 22 and 25 percent, respectively, for an increase in helical tip Mach number from 0.70 to 1.14.
Date: February 13, 1947
Creator: Maynard, Julian D.
Partner: UNT Libraries Government Documents Department

An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part III - Longitudinal-Control Characteristics TED No. NACA DE308, Part 3, Longitudinal-Control Characteristics, TED No. NACA DE308

Description: Tests have been conducted in the Langley high speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0,08-scale model of the Chance Vought XF7U-1 airplane. The longitudinal-control characteristics of the complete model are presented in the present report with a limited analysis of the results.
Date: July 29, 1947
Creator: Kuhn, Richard E. & King, Thomas J., Jr.
Partner: UNT Libraries Government Documents Department

An Investigation of the Aerodynamic Characteristics of an 0.08-Scale Model of the Chance Vought XF7U-1 Airplane in the Langley High-Speed 7- by 10-Foot Tunnel. Part IV - Aileron Characteristics TED No. NACA DE308, Part 4, Aileron Characteristics, TED No. NACA DE308

Description: Tests have been conducted in the Langley high-speed 7- by 10-foot tunnel over a Mach number range from 0.40 to 0.91 to determine the stability and control characteristics of an 0.08-scale model of the Chance Vought XF7U-1 airplane. The aileron characteristics of the complete model are presented in the present report with a very limited analysis of the results.
Date: August 22, 1947
Creator: Goodson, Kenneth W. & Myers, Boyd C., II
Partner: UNT Libraries Government Documents Department