National Advisory Committee for Aeronautics (NACA) - Browse

ABOUT BROWSE FEED

NACA: University Conference on Aerodynamics, A Compilation of the Papers Presented

Description: This document contains reproductions of the technical papers presented at the NACA - University Conference on Aerodynamics held at the Langley Aeronautical Laboratory on June 21, 22, and 23, 1948. The conference was held in recognition of the difficulties, imposed by security restrictions, in keeping abreast of the rapid advances in aerodynamics. The papers were prepared to review the status of a number of fields of interest, to summarize the more important wartime advances that are no longer classified, and to orient reference material for further study. The papers in this document are in the same form in which they were presented at the conference so that distribution of them might be prompt. The original presentation and this record are considered as complementary to, rather than as substitutes for, the Committee?s system of complete and formal reports.
Date: January 1, 1948
Partner: UNT Libraries Government Documents Department

Wind-tunnel investigation of the effect of tab balance on tab and control-surface characteristics

Description: An investigation was conducted to furnish data on the effect of tab balance on tab and control-surface characteristics. The airfoil tested had a modified NACA 65(1)-012 contour with a plain flap having a chord equal to 25 percent of the wing chord and with a tab having a chord equal to 25 percent of the flap chord and having several nose shapes and overhang lengths. The results of the investigation indicated that, in general, tab balance affected tab hinge-moment characteristics in much the same manner that flap balance affects flap hinge-moment characteristics. A moderate amount of tab balance did not seem to have any adverse effect on flap hinge-moment characteristics.
Date: August 1, 1947
Creator: Brewer, Jack D. & Queijo, M. J.
Partner: UNT Libraries Government Documents Department

Investigation at low speeds of the effect of aspect ratio and sweep on rolling stability derivatives of untapered wings

Description: A low scale wind tunnel investigation was conducted in rolling flow to determine the effects of aspect ratio and sweep (when varied independently) on the rolling stability derivatives for a series of untapered wings. Test results indicate that when the aspect ratio was held constant, an increase in the sweepback angle caused a significant reduction in the damping in roll at low lift coefficients for only the higher aspect ratios that were tested. This result was in agreement with available swept wing theory which indicated no effect of sweep for aspect ratios near zero. The result of the linear theory that the damping in roll is independent of lift coefficient and that the yawing moment and lateral force due to rolling are directly proportional to the lift coefficient was found to be valid for only a very limited lift coefficient range when the wings were highly swept. For such wings, the damping was found to increase in magnitude and the yawing moment due to rolling, to change from negative to positive at moderate lift coefficients. The effect of wing tip suction, not acounted for by present theory, was found to be very important with regard to the yawing moment due to rolling, particularly for low aspect ratio swept wings. An empirical means of correcting present theory for the effect of tip suction is suggested.
Date: March 1, 1949
Creator: Goodman, Alex & Fisher, Lewis R.
Partner: UNT Libraries Government Documents Department

Introduction to the problem of rocket-powered aircraft performance

Description: An introduction to the problem of determining the fundamental limitations on the performance possibilities of rocket-powered aircraft is presented. Previous material on the subject is reviewed and given in condensed form along with supplementary analyses. Some of the problems discussed are: 1) limiting velocity of a rocket projectile; 2) limiting velocity of a rocket jet; 3) jet efficiency; 4) nozzle characteristics; 5) maximum attainable altitudes; 6) ranges. Formulas are presented relating the performance of a rocket-powered aircraft to basic weight and nozzle dimensional parameters. The use of these formulas is illustrated by their application to the special case of a nonlifting rocket projectile.
Date: December 1, 1947
Creator: Ivey, H Reese; Bowen, Edward N JR & Oborny, Lester F
Partner: UNT Libraries Government Documents Department

Effects of sweepback on boundary layer and separation

Description: Following the law of stress adopted in the Navier-Stokes equations, the configuration of the viscous flow in planes at right angles to the axis of an infinite cylinder is found to be independent of the axial motion of the cylinder. In the limiting case of a yawed or swept wing of very high aspect ratio, certain boundary-layer and separation phenomena are thus determined independently by the crosswise component of velocity.
Date: July 1, 1947
Creator: Jones, Robert T
Partner: UNT Libraries Government Documents Department

Tank tests to determine the effect of varying design parameters of planing-tail hulls II : effect of varying depth of step, angle of after- body keel, length of afterbody chine, and gross load

Description: The second part of a series of tests made in Langley tank no. 2 to determine the effect of varying design parameters of planing-tail hulls is presented. Results are given to show the effects on resistance characteristics of varying angle of afterbody keel, depth of step, and length of afterbody chine. The effect of varying the gross load is shown for one configuration. The resistance characteristics of planing-tail hulls are compared with those of a conventional flying-boat hull. The forces on the forebody and afterbody of one configuration are compared with the forces on a conventional hull. Increasing the angle of afterbody keel had small effect on hump resistance and no effect on high-speed resistance but increased free-to-trim resistance at intermediate speeds. Increasing the depth of step increased hump resistance, had little effect on high-speed resistance, and increased free-to-trim resistance at intermediate speeds. Omitting the chines on the forward 25 percent of the afterbody had no appreciable effect on resistance. Omitting 70 percent of the chine length had almost no effect on maximum resistance but broadened the hump and increased spray around the afterbody. Load-resistance ratio at the hump decreased more rapidly with increasing load coefficient for the planing-tail hull than for the representative conventional hull, although the load-resistance ratio at the hump was greater for the planing-tail hull than for the conventional hull throughout the range of loads tested. At speeds higher than hump speed, load-resistance ratio for the planing-tail hull was a maximum at a particular gross load and was slightly less at heavier and lighter gross loads. The planing-tail hull was found to have lower resistance than the conventional hull at both the hump and at high speeds, but at intermediate speeds there was little difference. The lower hump resistance of the planing-tail hull was attributed to ...
Date: July 1, 1946
Creator: Dawson, John R; Mckann, Robert & Hay, Elizabeth S
Partner: UNT Libraries Government Documents Department

Tests of a gust-alleviating wing in the gust tunnel

Description: Tests were made in the NACA gust tunnel to determine the effectiveness of a torsionally flexible wing with the torsion axis ahead of the locus of the section aerodynamic centers in reducing airplane accelerations due to atmospheric gusts. For three gust shapes, a series of flights was made with the airplane model equipped with either a torsionally flexible or a rigid wing. The results indicated that the torsionally flexible wing reduced the maximum acceleration increment 5 percent for the sharp-edge gust and about 17 percent for gust shapes with gradient distances of 6.8 and 15 chord lengths. The analysis indicated that the effectiveness of this method of gust alleviation was independent of the gust velocity and that, for the same total load increment, the torsionally flexible wing would have 10 percent less bending-moment increment at the root section of the wing than a rigid wing in all but the sharpest gusts. The results also indicated that the torsionally flexible wing slightly increased the longitudinal stability of the airplane model in a gust.
Date: April 1, 1941
Creator: Shufflebarger, C C
Partner: UNT Libraries Government Documents Department