National Advisory Committee for Aeronautics (NACA) - 33 Matching Results

Search Results

Experimental pressure distributions over wing tips at Mach number 1.9 I : wing tip with subsonic leading edge

Description: An investigation was conducted at a Mach number of 1.91 to determine spanwise pressure distribution over a wing tip in a region influenced by a sharp subsonic leading edge swept back at 70 degrees. Except for pressure distribution on the top surface in the immediate vicinity of the subsonic leading edge, the maximum difference between linearized theory and experimental data was 2 1/2 percent (of free-stream dynamic pressure) for angles of attack up to 4 degrees and 7 percent for angles of attack up to 8 degrees. Pressures on the top surface nearest the subsonic edge indicated local expansions beyond values predicted by linearized theory.
Date: January 27, 1949
Creator: Jagger, James M & Mirels, Harold
Partner: UNT Libraries Government Documents Department

Stick-Fixed Stability and Control Characteristics of the Consolidated Vultee Model 240 Airplane as Estimated from Tests of a 0.092-Scale Powered Model

Description: Estimates of the static stick-fixed stability and control characteristics of the Consolidated Vultee model 240 airplane are presented in this report. The estimates are based on tests of a 0.092-scale powered model in the 10-foot wind tunnel of the Guggenheim Aeronautical Laboratory of the California Institute of Technology. Results of the analysis are evaluated in terms of the Army specifications for stability and control characteristics which are more specific and, in general, equal to or more rigid than the Civil Aeronautics Administration requirements. The stick-fixed stability and control characteristics of the Consolidated Vultee model 240 were found to be satisfactory except for the following: 1) Marginal longitudinal stability in the landing approach (flaps 30 deg, 50% minimum continuous power) with aft center of gravity (31% M.A.C.); 2) Marginal rudder control to hold zero sideslip in a climb after take-off with asymmetric power (flaps 30 deg, left engine inoperative, right engine delivering take-off power) with maximum rudder throw limited to +/- 18 deg; 3) Marginal dihedral effect with flaps 40 deg and engines delivering maximum continuous power.
Date: June 27, 1947
Creator: McCullough, George B.; Weiberg, James A. & Gault, Donald E.
Partner: UNT Libraries Government Documents Department

Wind-Tunnel Investigation of a 1/5-Scale Model of the Ryan XF2R Airplane

Description: Wind-tunnel tests on a 1/5-scale model of the Ryan XF2R airplane were conducted to determine the aerodynamic characteristics of the air intake for the front power plant, a General Electric TG-100 gas turbine, and to determine the stability and control characteristics of the airplane. The results indicated low-dynamic-pressure recover3- for the air intake to the TG-100 gas turbine ~rith the standard propeller in operation. Propeller cuffs were designed and tested for the purpose of imp~oving the dynamic-pressure recovery. Data obtained with the cuffs installed and the gap between the spinner an& the cuff sealed indicated a substantial gain in dynamic pressure recovery over that obtained with the standard propeller and with the cuffed propeller unsealed. Stability and control tests were conducted with the sealed cuffs installed on the propeller. The data from these tests indicated the following unsatisfactory characteristics for the airplane: 1. Marginal static longitudinal stability. 2. Inadequate directional stability and control. 3. Rudder-pedal-force reversal in the climb condition. 4. Negative dihedral effect in the power-on approach and wave-off conditions.
Date: June 27, 1947
Creator: Wong, Park Y.
Partner: UNT Libraries Government Documents Department

Aerodynamic Characteristics of Four Republic Airfoil Sections from Tests in Langley Two-Dimensional Low-Turbulence Tunnels

Description: Four airfoils sections, designed by the Republic Aviation Corporation for the root and tip sections of the XF-12 airplane, were tested in the Langley two-dimensional low-turbulence tunnels to obtain their aerodynamic characteristics. Lift characteristics were obtained at Reynolds numbers of 3,000,000, 6,000,000, 9,000,000, and 14,000,000, whereas drag characteristics were obtained at Reynolds numbers of 3,000,000, 6,000,000, and 9,000,000. Pressure distributions were obtained for one of the root sections for several angles of attack at a Reynolds number of 2,600,000. Comparison of the root section that appeared best from the tests with the corresponding NACA 65-series section shows the Republic section has a higher maximum lift and higher calculated critical speeds, but a higher minimum drag. In addition, with standard roughness applied to the leading edge, the maximum lift of the Republic airfoil is lower than that of the NACA airfoil. Comparison of the Republic tip section with the corresponding NACA 65-series section shows the Republic airfoil has a lower maximum lift and a higher minimum drag than the NACA airfoil. The calculated critical speeds of the Republic section are slightly higher than those of the NACA section.
Date: September 27, 1945
Creator: Klein, Milton M.
Partner: UNT Libraries Government Documents Department

Calculated Condenser Performance for a Mercury-Turbine Power Plant for Aircraft

Description: As part of an investigation af the application of nuclear energy to various types of power plants for aircraft, calculations have been made to determine the effect of several operating conditions on the performance of condensers for mercury-turbine power plants. The analysis covered 8 range of turbine-outlet pressures from 1 to 200 pounds per square inch absolute, turbine-inlet pressures from 300 to 700 pounds per square inch absolute,and a range of condenser cooling-air pressure drops, airplane flight speeds, and altitudes. The maximum load-carrying capacity (available for the nuclear reactor, working fluid, and cargo) of a mercury-turbine powered aircraft would be about half the gross weight of the airplane at a flight speed of 509 miles per hour and an altitude of 30,000 feet. This maximum is obtained with specific condenser frontal areas of 0.0063 square foot per net thrust horsepower with the condenser in a nacelle and 0.0060 square foot per net thrust horsepower with the condenser submerged in the wings (no external condenser drag) for a turbine-inlet pressure of 500 pounds per square inch absolute, a turbine-outlet pressure of 10 pounds per square inch absolute, and 8 turbine-inlet temperature of 1600 F.
Date: August 27, 1948
Creator: Doyle, Ronald B.
Partner: UNT Libraries Government Documents Department

Characteristics of a Hot Jet Discharged from a Jet-Propulsion Engine

Description: An investigation of a heated jet was conducted in conjunction with tests of an axial-flow jet-propulsion engine in the Cleveland altitude wind tunnel. Pressure and temperature surveys were made across the jet 10 and 15 feet behind the jet-nozzle outlet of the engine. Surveys were obtained at pressure altitudes of 10,000, 20,000, 30,000, and 40,000 feet with test-section velocities from 30 to 110 feet per second and test-section temperatures from 60 F to -50 F. From measurements taken throughout the operable range of engine speeds, tail-pipe outlet temperatures from 500 F to 1250 F and jet velocities from 400 to 2200 feet per second were obtained. The jet-survey data presented extend the work previously done with low-velocity and low-temperature jets to the region of high velocities and high temperatures. The results obtained agree with previously determined experimental data and with predicted theoretical expressions for the dimensionless transverse velocity and temperature profiles across a jet. The spread of both the temperature and the velocity profiles was very nearly linear. Dimensionless plots of temperature and velocity along the axis of a heated jet agree with experimental results of tests with a cold jet.
Date: December 27, 1946
Creator: Fleming, William A.
Partner: UNT Libraries Government Documents Department

Preliminary investigation of a new type of supersonic inlet

Description: A supersonic inlet with supersonic deceleration of the flow entirely outside of the inlet is considered. A particular arrangement with fixed geometry having a central body with a circular annular intake is analyzed, and it is shown theoretically that this arrangement gives high pressure recovery for a large range of Mach number and mass flow and therefore is practical for use on supersonic airplanes and missiles. For some Mach numbers the drag coefficient for this type of inlet is larger than the drag coefficient for the type of inlet with supersonic compression entirely inside, but the pressure recovery is larger for all flight conditions. The differences in drag can be eliminated for the design Mach number. Experimental results confirm the results of the theoretical analysis and show that pressure recoveries of 95 percent for Mach numbers of 1.33 and 1.52, 92 percent for a Mach number of 1.72, and 86 percent for a Mach number oof 2.10 are possible with the configurations considered. If the mass flow decreases, the total drag coefficient increases gradually and the pressure recovery does not change appreciably.
Date: November 27, 1946
Creator: Ferri, Antonio & Nucci, Louis M
Partner: UNT Libraries Government Documents Department

Take-off Stability Characteristics of a 1/13-scale Model of the Consolidated Vultee Skate 7 Seaplane (TED No. NACA DE 338)

Description: The take-off stability characteristics of a Consolidated Vultee Aircraft Corporation Skate 7 seaplane were determined in the Langley tank no. 2. Trim limits of stability, trim tracks, and elevator limits of stability are presented.
Date: April 27, 1949
Creator: McKann, Robert; Coffee, Claude W. & Abrabian, Donald D.
Partner: UNT Libraries Government Documents Department

Investigations of Tumbling Characteristics of a 1/20-Scale Model of the Northrop N-9M Airplane

Description: The tumbling characteristics of a 1/20-scale model of the Northrop N-9M airplane have been determined in the Langley 20-foot free-spinning tunnel for various configurations and loading conditions of the model. The investigation included tests to determine whether recovery from a tumble could be effected by the use of parachutes. An estimation of the forces due to acceleration acting on the pilot during a tumble was made. The tests were performed at an equivalent test altitude of 15,000 feet. The results of the model tests indicate that if the airplane is stalled with its nose up and near the vertical, or if an appreciable amount of pitching rotation is imparted to the airplane as through the action of a strong gust, the airplane will either tumble or oscillate in pitch through a range of angles of the order of +/-120 deg. The normal flying controls will probably be ineffective in preventing or in terminating the tumbling motion. The results of the model tests indicate that deflection of the landing flaps full down immediately upon the initiation of pitching rotation will tend to prevent the development of a state of tumbling equilibrium. The simultaneous opening of two-7-foot diameter parachutes having drag coefficients of 0.7, one parachute attached to the rear portion of each wing tip with a towline between 10 and 30 feet long, will provide recovery from a tumble. The accelerations acting on the pilot during a tumble will be dangerous.
Date: January 27, 1947
Creator: MacDougall, George F., Jr.
Partner: UNT Libraries Government Documents Department

Lateral Stability Characteristics of a 1/8.33-Scale Powered Model of the Republic XF-12 Airplane

Description: The XF-12 airplane is a high-performance photo-reconnaissance aircraft designed for the Army Air Forces by the Republic Aviation Corporation. An investigation of a 1/8.33 - scale powered model was made in the Langley l9-foot pressure tunnel to obtain information relative to the aerodynamic design of the airplane. The model was tested with and without the original vertical tail. and with two revised tails. For the revised tail no. 1, the span of the original vertical .tail was increased about 15 percent and the portion of the vertical tail between the stabilizer and fuselage behind the rudder hinge line was allowed to deflect simultaneously with the main rudder. Revision no. 2 incorporated the increased span, but the lower rudder was locked in the neutral position. For all the tail arrangements investigated it was indicated that the airplane will possess positive effective dihedral and will be directionally stable regardless of flap or power condition. The rudder effectiveness is greater for the revised tails than for the original tail, but this is offset by the increase in directional stability caused by the revised tail. All the rudder arrangements appear inadequate in trimming out the resultant yawing moments at zero yaw in a take - off condition with the left-hand outboard propeller windmilling and the remaining engines developing take-off power.
Date: February 27, 1947
Creator: Pepper, Edward & Foster, Gerald V.
Partner: UNT Libraries Government Documents Department

Theoretical Comparison of Several Methods of Thrust Augmentation for Turbojet Engines

Description: A theoretical investigation has been made of various methods of thrust augmentation for turbojet engines. The method investigated were tail-pipe burning, water injection at the compressor inlet, a combination of tail-pipe burning and water injection, bleedoff in conjunction with water injection at the compressor inlet, and rocket assist. The effect of ratio of augmented-to-normal total liquid consumption, flight conditions, and design compressor pressure ratio on the augmentation produced by each method were determined. A comparison was also made for a given time of operation of the weight of an augmented engine plus fuel and additional liquids to the weight of a standard engine plus fuel producing the same thrust.
Date: October 27, 1948
Creator: Hall, Eldon W. & Wilcox, E. Clinton
Partner: UNT Libraries Government Documents Department

An Investigation of the McDonnell XP-85 Airplane in the Ames 40- by 80-foot Wind Tunnel. Force and Moment Tests

Description: Wind-tunnel tests of the McDonnell XP-85 airplane were conducted to determine its longitudinal, lateral, and directional stability and the characteristics of the aileron, the ruddervator, the leading-edge droop nose flap, and the stall control vanes. The directional stability of the airplane with numerous skyhook modifications and with a ventral fin was also investigated. The results of the tests showed that the effectiveness of the droop nose flaps and the stall control vanes was negligible with regard to either the maximum lift or longitudinal stability of the airplane. Contrary to any previous small-scale results, extension of the skyhook caused a 75-percent reduction in the directional stability of the airplane for both low and high values of lift coefficient. The simplest solution to the problem short of a major redesign of the skyhook appears to be the adoption of a ventral fin.
Date: September 27, 1948
Creator: Hunton, Lynn W. & James Harry A.
Partner: UNT Libraries Government Documents Department