National Advisory Committee for Aeronautics (NACA) - Browse

ABOUT BROWSE FEED

Acceleration of high-pressure-ratio single-spool turbojet engine as determined from component performance characteristics I : effect of air bleed at compressor outlet

Description: An analytical investigation was made to determine from component performance characteristics the effect of air bleed at the compressor outlet on the acceleration characteristics of a typical high-pressure-ratio single-spool turbojet engine. Consideration of several operating lines on the compressor performance map with two turbine-inlet temperatures showed that for a minimum acceleration time the turbine-inlet temperature should be the maximum allowable, and the operating line on the compressor map should be as close to the surge region as possible throughout the speed range. Operation along such a line would require a continuously varying bleed area. A relatively simple two-step area bleed gives only a small increase in acceleration time over a corresponding variable-area bleed. For the modes of operation considered, over 84 percent of the total acceleration time was required to accelerate through the low-speed range ; therefore, better low-speed compressor performance (higher pressure ratios and efficiencies) would give a significant reduction in acceleration time.
Date: March 10, 1953
Creator: Rebeske, John J , Jr & Rohlik, Harold E
Partner: UNT Libraries Government Documents Department

An active particle diffusion theory of flame quenching for laminar flames / Dorothy M. Simon and Frank E. Belles

Description: An equation for quenching distance based on the destruction of chain carriers by the surface is derived. The equation expresses the quenching distance in terms of the diffusion coefficients and partial pressures of the chain carriers and gas phase molecules, the efficiency of the surface as a chain breaker, the total pressure of the mixture, and a constant which depends on the geometry of the quenching surface. Quenching distances measured by flashback for propane-air flames are shown to be consistent with the mechanism. The derived equation is used with the lean inflammability limit and a rate constant calculated from burning velocity data to estimate quenching distances for propane-air (hydrocarbon lean) flames satisfactorily.
Date: March 4, 1952
Creator: Simon, Dorothy M & Belles, Frank E
Partner: UNT Libraries Government Documents Department

Adaptation of a Cascade Impactor to Flight Measurement of Droplet Size in Clouds

Description: A cascade impactor, an instrument for obtaining: the size distribution of droplets borne in a low-velocity air stream, was adapted for flight cloud droplet-size studies. The air containing the droplets was slowed down from flight speed by a diffuser to the inlet-air velocity of the impactor. The droplets that enter the impactor impinge on four slides coated with magnesium oxide. Each slide catches a different size range. The relation between the size of droplet impressions and the droplet size was evaluated so that the droplet-size distributions may be found from these slides. The magnesium oxide coating provides a permanent record. of the droplet impression that is not affected by droplet evaporation after the. droplets have impinged.
Date: September 18, 1951
Creator: Levine, Joseph & Kleinknecht, Kenneth S.
Partner: UNT Libraries Government Documents Department

Adaptation of Combustion Principles to Aircraft Propulsion, Volume 2, Combustion in Air-Breathing Jet Engines

Description: This volume continues the NACA study of combustion principles for aircraft propulsion. The various aspects of combustion pertinent to jet engines are organized and interpreted with quite extensive information, particularly for basic or fundamental. subject matter. The report concerns only air-breathing engines and hydrocarbon fuels, and not rocket engines and high-energy fuels. Since the references have been selected to illustrate important points, the bibliographies, while thorough, are not complete. This volumes describes the observed performance and design problems of engine combustors of the principal types. These include combustor-inlet conditions; starting, acceleration, combustion limits, combustion efficiency, coke deposits, and smoke formation in turbojets; ram-jet performance; and afterburner performance and design.
Date: May 2, 1956
Partner: UNT Libraries Government Documents Department

Adaptation of Combustion Principles to Aircraft Propulsion, Volume I, Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

Description: The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.
Date: April 1, 1955
Creator: Barnett, Henry C. & Hibbard, Robert R.
Partner: UNT Libraries Government Documents Department

Additional comparisons between computed and measured transonic drag-rise coefficients at zero lift for wing-body-tail configurations

Description: From Introduction: "This report makes further comparisons of the theoretical computing method with available experimental results, showing effects of wing plan-form changes, and the effect of an airfoil-section change on a wing of given plan form."
Date: August 15, 1955
Creator: Holdaway, George H
Partner: UNT Libraries Government Documents Department

Additional Results on the Static Longitudinal and Lateral Stability Characteristics of a 0.05-Scale Model of the Convair F2Y-1 Airplane at High Subsonic Speeds

Description: Additional results on the static longitudinal and lateral stability characteristics of a 0.05-scale model of the Convair F2Y-1 water-based fighter airplane were obtained in the Langley high-speed 7- by 10-foot tunnel over a Mach number range of 0.50 to 0.92. The maximum angle-of-attack range (obtained at the lower Mach numbers) was from -2 degrees to 25 degrees. The sideslip-angle range investigated was from -4 degrees to 12 degrees. The investigation included effects of various arrangements of wing fences, leading-edge chord-extensions, and leading-edge notches. Various fuselage fences, spoilers, and a dive brake also were investigated. From overall considerations of lift, drag, and pitching moments, it appears that there were two modifications somewhat superior to any of the others investigated: One was a configuration that employed a full-chord fence and a partial-chord fence located at 0.63 semispan and 0.55 semispan, respectively. The second was a leading-edge chord-extension that extended from 0.68 semispan to 0.85 semispan in combination with a leading-edge notch located at 0.68 semispan. With plus or minus 10 degrees aileron, the estimated wing-tip helix angle was reduced from 0.125 at a Mach number of 0.50 to 0.088 at a Mach number of 0.92, with corresponding rates of roll of 4.0 and 5.2 radians per second. The upper aft fuselage dive brake, when deflected 30 degrees and 60 degrees, reduced the rudder effectiveness about 10 to 20 percent and about 35 to 50 percent, respectively.
Date: August 10, 1954
Creator: Spreeman, Kenneth P. & Few, Albert G.
Partner: UNT Libraries Government Documents Department

Adhesive and protective characteristics of ceramic coating A-417 and its effect on engine life of forged Refractaloy-26 (AMS 5760) and cast stellite 21 (AMS 5385) turbine blades

Description: The adhesive and protective characteristics of National Bureau of Standards Coating A-417 were investigated, as well as the effect of the coating on the life of forged Refractaloy 26 and cast Stellite 21 turbine blades. Coated and uncoated blades were run in a full-scale J33-9 engine and were subjected to simulated service operations consisting of consecutive 20-minute cycles (15 min at rated speed and approximately 5 min at idle). The ceramic coating adhered well to Refractaloy 26 and Stellite 21 turbine blades operated at 1500 degrees F. The coating also prevented corrosion of the Refractaloy 26, a corrosion-sensitive nickel-base alloy, and of the Stellite 21, a relatively corrosion-resistant cobalt-base alloy. Although the coating prevented corrosion of both alloys, it had no apparent effect on blade life.
Date: February 12, 1953
Creator: Garrett, Floyd B & Gyorgak, Charles A
Partner: UNT Libraries Government Documents Department