National Advisory Committee for Aeronautics (NACA) - Browse

ABOUT BROWSE FEED

Analysis, Verification, and Application of Equations and Procedures for Design of Exhaust-Pipe Shrouds

Description: Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.
Date: December 1947
Creator: Ellerbrock, Herman H.; Wcislo, Chester R. & Dexter, Howard E.
Partner: UNT Libraries Government Documents Department

The Calculation of the Heat Required for Wing Thermal Ice Prevention in Specified Icing Conditions

Description: Flight tests were made in natural icing conditions with two 8-ft-chord heated airfoils of different sections. Measurements of meteorological variables conducive to ice formation were made simultaneously with the procurement of airfoil thermal data. The extent of knowledge on the meteorology of icing, the impingement of water drops on airfoil surfaces, and the processes of heat transfer and evaporation from a wetted airfoil surface have been increased to a point where the design of heated wings on a fundamental, wet-air basis now can be undertaken with reasonable certainty.
Date: December 1, 1947
Creator: Bergrun, Norman R.; Jukoff, David; Schlaff, Bernard A. & Neel, Carr B., Jr.
Partner: UNT Libraries Government Documents Department

Calculation of Wing Bending Moments and Tail Loads Resulting from the Jettison of Wing Tips During a Symmetrical Pull-Up

Description: A preliminary analytical investigation was made to determine the feasibility of the basic idea of controlled failure points as safety valves for the primary airplane structure. The present analysis considers the possibilities of the breakable wing tip which, in failing as a weak link, would relieve the bending moments on the wing structure. The analysis was carried out by computing the time histories of the wing and stabilizer angle of attack in a 10g pull-up for an XF8F airplane with tips fixed and comparing the results with those for the same maneuver, that is, elevator motion but with tips jettisoned at 8g. The calculations indicate that the increased stability accompanying the loss of the wing tips reduces the bending moment an additional amount above that which would be expected from the initial loss in lift and the inboard shift in load. The vortex shed when the tips are lost may induce a transient load requiring that the tail be made stronger than otherwise.
Date: December 11, 1947
Creator: Boshar, John
Partner: UNT Libraries Government Documents Department

Data Obtained in the Flight Measurements to Determine the Stability and Control Characteristics of a C-54D Airplane (AAF No. 42-72713) and a Summary of the Test Program

Description: The flight investigation of the C-54D airplane was initiated to determine the necessity of changes or additions to existing handling-qualities requirements to cove the case of instrument approaches with large airplanes. This paper gives a brief synopsis of the results and presents the measured data of tests to determine the stability and control characteristics. It was found that no new requirements were necessary to cover the problems of instrument approaches. The C-54D airplane tested met the Amy and Navy stability and control requirements except for the following items. The control-system friction with autopilot installed vas double that allowed by the requirements. The amount of friction was found to impair the controllability of the airplane in precision flying. The lateral and directional characteristics were good except that the maximum pb/2V was slightly below the minimum required, and the elevator-control forces to obtain the maximum pb/2V at low speeds were above the Army and Navy requirements. The longitudinal stability and control characteristics were good except that the elevator-control forces exceeded the limits of the Army and Navy requirements in turns and in landings. The stalling characteristics were considered good in all conditions with the stall warning in the form of tail buffeting occurring at speeds approximately 5 miles per hour above the stall.
Date: December 29, 1947
Creator: Talmage, Donald B. & Reeder, John P.
Partner: UNT Libraries Government Documents Department

Effect of Air-Flow Distribution and Total-Pressure Loss on Performance of One-Sixth Segment of Turbojet Combuster

Description: An investigation has been conducted on a one-sixth segment of an annular turbojet combustor to determine the effects of modification in air-flow distribution and total-pressure loss on the performance of the segment. The performance features investigated during this series of determinations were the altitude operational limits and the temperature-rise efficiency. Altitude operational limits of the combustor segment, for the 19XB engine using the original combustor-basket design were approximately 38,000 feet at 17,000 rpm and 26,000 feet at 10,000 rpm. The altitude operational limits were approximately 50,000 feet at 17,000 rpm and 38,000 feet at 10,000 rpm for a combustor-basket design in which the air-passage area in the basket was redistributed so as to admit gradually no more than 20 percent of the air along the first half of the basket. In this case the total pressure loss through the combustor segment was not appreciably changed from the total-pressure loss for the original combustor basket design. Altitude operational limits of the combustor segment for the 19XB engine were above 52,000 feet at 17,000 rpm and were approximately 23,000 feet at 10,000 rpm for a combustor-basket design in which the distribution of the air-passage area in the basket was that of the original design but where the total-pressure loss was increased to 19 times the inlet reference kinetic pressure at an inlet-to-outlet density ratio of 2.4. The total-pressure loss for the original design was 14 times the inlet kinetic reference pressure at an inlet-to-outlet density ratio of 2.4.
Date: December 10, 1947
Creator: Hill, Francis U. & Mark, Herman
Partner: UNT Libraries Government Documents Department

The Elasto-Plastic Stability of Plates

Description: This article explains results developed from the following research: 'The Stability of Plates and Shells beyond the Elastic Limit.' A significant improvement is found in the derivation of the relations between the stress factors and the strains resulting from the instability of plates and shells. In a strict analysis, the problem reduces to the solution of two simultaneous nonlinear partial differential equations of the fourth order in the deflection and stress function, and in the approximate analysis to a single linear equation of the Bryan type. Solutions are given for the special cases of a rectangular plate buckling into a cylindrical form, and of an arbitrarily shaped plate under uniform compression. These solutions indicate that the accuracy obtained by the approximate method is satisfactory.
Date: December 1, 1947
Creator: Ilyushin, A. A.
Partner: UNT Libraries Government Documents Department

Evaluation of Gust and Draft Velocities from Flights of P-61C Airplanes within Thunderstorms July 12, 1947 to July 18, 1947 at Clinton County Army Air Field, Ohio

Description: The gust and draft velocities from records of NACA instruments installed in P-61c airplanes participating in thunderstorm flights at Clinton County Army Air Field, Ohio, from July 12, to July 18, 1947 are presented.
Date: December 8, 1947
Creator: Funk, Jack
Partner: UNT Libraries Government Documents Department

Experimental Investigation of a Preloaded Spring-Tab Flutter Model

Description: An experimental investigation was made of a preloaded spring-tab flutter model to determine the effects on flutter speed of aspect ratio, tab frequency, and preloaded spring constant. The rudder was mass-balanced, and the flutter mode studied was essentially one of three degrees of freedom (fin bending coupled with rudder and tab oscillations). Inasmuch as the spring was preloaded, the tab-spring system was a nonlinear one. Frequency of the tab was the most significant parameter in this study, and an increase in flutter speed with increasing frequency is indicated. At a given frequency, the tab of high aspect ratio is shown to have a slightly lower flutter speed than the one of low aspect ratio. Because the frequency of the preloaded spring tab was found to vary radically with amplitude, the flutter speed decreased with increase in initial displacement of the tab.
Date: December 15, 1947
Creator: Smith, N H; Clevenson, S A & Barmby, J G
Partner: UNT Libraries Government Documents Department

Flight Measurements of the Flying Qualities of a Lockheed P-80A Airplane (Army No. 44-85099) - Stalling Characteristics

Description: This report contains the flight-test results of the stalling characteristics measured during the flying-qualities investigation of the Lockheed P-8OA airplane (Army No. 44-85099). The tests were conducted in straight and turning flight with and without wing-tip tanks. These tests showed satisfactory stalling characteristics and adequate stall warning for all configurations and conditions tested.
Date: December 4, 1947
Creator: Anderson, Seth B. & Cooper, George E.
Partner: UNT Libraries Government Documents Department

Flight Tests of Rocket-Powered "Tin-Can" Models of AAF Project MX-800

Description: Flight tests were made of six noninstrumented rocket-powered "Tin Can" models of AAF Project MX-800. Velocity and drag data were obtained by use of CU Doppler radar. The existence of stability and adequate structural strength for flight near zero lift was checked by visual and photographic observation. Drag data obtained during the tests agreed reasonably well with estimates based on experimental data from NACA RM-2 rocket-powered drag research models.
Date: December 1, 1947
Creator: Purser, Paul E. & Stone, David G.
Partner: UNT Libraries Government Documents Department

Fundamental Aerodynamic Investigations for Development of Arrow-Stabilized Projectiles

Description: The numerous patent applications on arrow-stabilized projectiles indicate that the idea of projectiles without spin is not new, but has appeared in various proposals throughout the last decades. As far as projectiles for subsonic speeds are concerned, suitable shapes have been developed for sometime, for example, numerous grenades. Most of the patent applications, though, are not practicable particularly for projectiles with supersonic speed. This is because the inventor usually does not have any knowledge of aerodynamic flow around the projectile nor any particular understanding of the practical solution. The lack of wind tunnels for the development of projectiles made it necessary to use firing tests for development. These are obviously extremely tedious or expensive and lead almost always to failures. The often expressed opinion that arrow-stabilized projectiles cannot fly supersonically can be traced to this condition. That this is not the case has been shown for the first time by Roechling on long projectiles with foldable fins. Since no aerodynamic investigations were made for the development of these projectiles, only tedious series of firing tests with systematic variation of the fins could lead to satisfactory results. These particular projectiles though have a disadvantage which lies in the nature cf foldable fins. They occasionally do not open uniformly in flight, thus causing unsymmetry in flow and greater scatter. The junctions of fins and body are very bad aerodynamically and increase the drag. It must be possible to develop high-performance arrow-stabilized projectiles based on the aerodynamic research conducted during the last few years at Peenemuende and new construction ideas. Thus the final shape, ready for operational use, could be developed in the wind tunnel without loss of expensive time in firing tests. The principle of arrow-stabilized performance has been applied to a large number of caliburs which were stabilized by various means ...
Date: December 1, 1947
Creator: Kurzweg, Hermann
Partner: UNT Libraries Government Documents Department

High-Speed Wind-Tunnel Investigation of the Lateral Control Characteristics of Plain Ailerons on a Wing with Various Amounts of Sweep

Description: A three-dimensional investigation of straight-sided-profile plain ailerons on a wing with 30 degrees and 45 degrees of sweepback and sweepforward was made in a high-speed wind tunnel for aileron deflections from -10 degrees to 10 degrees and at Mach numbers from 0.60 to 0.96. Wing configurations of 30 degrees generally reduced the severity of the large changes in rolling-moment and aileron hinge-moment coefficients experienced by the upswept wing configurations as the result of compression shock and extended to higher Mach numbers the speeds at which such changes occurred.
Date: December 19, 1947
Creator: Luoma, Arvo A.; Bielat, Ralph P. & Whitcomb, Richard T.
Partner: UNT Libraries Government Documents Department

Introduction to the problem of rocket-powered aircraft performance

Description: An introduction to the problem of determining the fundamental limitations on the performance possibilities of rocket-powered aircraft is presented. Previous material on the subject is reviewed and given in condensed form along with supplementary analyses. Some of the problems discussed are: 1) limiting velocity of a rocket projectile; 2) limiting velocity of a rocket jet; 3) jet efficiency; 4) nozzle characteristics; 5) maximum attainable altitudes; 6) ranges. Formulas are presented relating the performance of a rocket-powered aircraft to basic weight and nozzle dimensional parameters. The use of these formulas is illustrated by their application to the special case of a nonlifting rocket projectile.
Date: December 1, 1947
Creator: Ivey, H Reese; Bowen, Edward N JR & Oborny, Lester F
Partner: UNT Libraries Government Documents Department

Investigation of Pressure Distribution over an Extended Leading-Edge Flap on a 42 Degrees Sweptback Wing

Description: Pressure distribution over an extended leading-edge flap on a 42 degree swept-back wing was investigated. Results indicate that the flap normal-force coefficient increased almost linearly with the angle of attack to a maximum value of 3.25. The maximum section normal-force coefficient was located about 30 percent of the flap span outboard of the inboard end and had a value of 3.75. Peak negative pressures built up at the flap leading edge as the angle of attack was increased and caused the chordwise location of the flap center of pressure to be move forward.
Date: December 19, 1947
Creator: Conner, D. William & Foster, Gerald V.
Partner: UNT Libraries Government Documents Department