Search Results

Aerial navigation : on the problem of guiding aircraft in a fog or by night when there is no visibility
Report discussing the use of magnetic fields and wire to navigate aircraft in conditions of poor visibility is presented. This field may be considered to be derived from a double lemniscate, considered in the particular case where the origin is a double point formed from the magnetic field of the slack wire, from the field produced by the return currents and from the field due to the currents induced in the conducting mass. These fields are dephased in two ways, one in the direction of the wire, the other in a direction perpendicular to it.
Behavior of Aviation Engines at Different Air Densities
The author expresses his views that engine performance would be affected only at very low temperatures is presented in this report.
The Dead Weight of the Airship and the Number of Passengers That Can Be Carried
In order to determine an approximate formula giving the weight of a dead load as a function of the volume (V) of the envelope and of the maximum velocity (v), we will take the relative weight of the various parts of the airship (P(sub v), M, V, A, T(sup 34)), adopting a mean value of the coefficients determined. This formula may be adopted both for semi-rigid airships with suspended nacelle and non-rigid envelope, with or without internal suspensions. It may also be adapted to airships with rigid longitudinal beam, with power units on external supports or in nacelles, and with non-rigid envelopes, with or without internal bracing cables.
Effect of aerofoil aspect ratio on the slope of the lift curve
On of the most important characteristics of an airfoil is the rate of change of lift with angle of attack, (sup dC)L/d alpha. This factor determines the effectiveness of a tail plane in securing static longitudinal stability. The application of the Gottingen formulas given here for calculating the variation of (sup Dc)L/d alpha with aspect ratio should be of interest to many aeronautical engineers. For the convenience of the engineer, a set of curves calculated by the method set forth here are given in graphical form. Also, the observed values of (sup dC)L/d alpha for the same airfoil at various aspect ratios follow the calculated curves closely.
The Glider of the College Aviation Group of the Technical High School, Hanover
This report presents the results of testing on a glider designed and built by the College Aviation Group. The design and construction were based on the following principles: 1) the glider will be made to descend as slowly as possible; 2) rigidity and resistance were arranged to meet the conditions of varied loads; 3) construction is as simple as possible; 4) and great ease in assembling and dismounting have been sought.
Langley Field wind tunnel apparatus
This report is broken up into two sections: one about the regulators for speed of wind tunnel drive motor and one about a vernier manometer with adjustable sensitivity.
Notes on the construction and testing of model airplanes
Here, it is shown that the construction of an airplane model can and should be simplified in order to obtain the most reliable test data. General requirements for model construction are given, keeping in mind that the general purpose of wind tunnel tests on a model airplane is to obtain the aerodynamic characteristics, the static balance, and the efficiency of controls for the particular combination of wings, tail surfaces, fuselage, and landing gear employed in the design. These parts must be exact scale reproductions. Any appreciable variation from scale reproduction must be in the remaining parts of the model, i.e., struts, wires, fittings, control horns, radiators, engines, and the various attachments found exposed to the wind in special airplanes. Interplane bracing is discussed in some detail.
A Preliminary Investigation of a New Method for Testing Aerofoils in Free Flight
"This report is a description of a new method of testing aerofoils in free flight devised by the National Advisory Committee for Aeronautics. The method consists in lowering below a flying airplane a large inverted aerofoil on three small steel wires in such a way that the lift on the aerofoil always keeps the wires tight. The resultant force is measured by the tension in the wires, and the direction of the resultant by the amount the wing trails backwards" (p. 1).
Recent Progress in the Theory of Air Flow as Applied to Aeronautics
In summing up it may be said that the hydrodynamic theories are best confirmed by experimental results for bodies with small resistance or drag and can accordingly be used in place of experimental tests.
Vibrations of Aviation Engines
Different causes of airplane engine vibration are given as well as devices to measure vibration.
Back to Top of Screen