National Advisory Committee for Aeronautics (NACA) - Browse

ABOUT BROWSE FEED
The 7 by 10 foot wind tunnel of the National Advisory Committee for Aeronautics
This report presents a description of the 7 by 10 foot wind tunnel and associated apparatus of the National Advisory Committee for Aeronautics. Included also are calibration test results and characteristic test data of both static force tests and autorotation tests made in the tunnel.
A Comparison of Theory and Experiment for High-Speed Free-Molecule Flow
Comparison of free-molecule-flow theory with the results of wind-tunnel tests performed to determine the drag and temperature-rise characteristics of a transverse circular cylinder.
The Measurement of Fuel-Air Ratio by Analysis of the Oxidized Exhaust Gas
An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.
Summary of Airfoil Data
Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from Tests at Large Reynolds Number and Low Turbulence," by Eastman N. ...
A low-speed experimental investigation of the effect of a sandpaper type of roughness on boundary-layer transition
No Description Available.
Standardization tests of NACA no. 1 wind tunnel
The tests described in this report were made in the 5-foot atmospheric wind tunnel of the National Advisory Committee for Aeronautics, at Langley Field. The primary objective of collecting data on the characteristics of this tunnel for comparison with those of others throughout the world, in order that, in the future, the results of tests made in all the principle laboratories may be interpreted, compared, and coordinated on a basis of scientifically established relationships, a process hitherto impossible due to the lack of comparable data. The work includes tests of a disk, spheres, cylinders, and airfoils, explorations of the test section for static pressure and velocity distribution, and determination of the variations of air flow direction throughout the operating range of the tunnel. (author).
Static, drop, and flight tests on Musselman type airwheels
The purpose of this investigation was to obtain quantitative information on the shock-reducing and energy-dissipating qualities of a set of 30 by 13-6 Musselman type airwheels. The investigation consisted of static, drop, and flight tests. The static tests were made with inflation pressures of approximately 0, 5, 10, 15, 20, and 25 pounds per square inch and loadings up to 9,600 pounds. The drop tests were with the inflation pressures approximately 5, 10, 15, 20, and 25 pounds per square inch and loadings of 1,840, 2,440, 3,050, and 3,585 pounds. The flight tests were made with VE-7 airplane weighing 2,153 pounds, with the tires inflated to 5, 10, and 15 pounds per square inch. The landing gears used in conjunction with airwheels were practically rigid structures. The results of the tests showed that the walls of the tires carried a considerable portion of the load, each tire supporting a load of 600 pounds with a depression of approximately 6 inches. The shock-reducing qualities, under severe tests, and the energy dissipating characteristics of the tires, under all tests, were poor. The latter was evidenced by the rebound present in all landings made. In the severe drop tests, the free rebound reached as much as 60 per cent of the free drop. The results indicate that a shock-reducing and energy-dissipating mechanism should be used in conjunction with airwheels.
Standard nomenclature for airspeeds with tables and charts for use in calculation of airspeed
Symbols and definition of various airspeed terms that have been adopted as standard by the NACA subcommittee on aircraft structural design are presented. The equations, charts, and tables required in the evaluation of true airspeed, calibrated airspeed, equivalent airspeed, impact and dynamic pressures, and Mach and Reynolds numbers have been compiled. Tables of the standard atmosphere to an altitude of 65,000 feet and a tentative extension to an altitude of 100,000 feet are given along with the basic equations and constants on which both the standard atmosphere and the tentative extension are based.
Static thrust and power characteristics of six full-scale propellers
Static thrust and power measurements were made of six full-scale propellers. The propellers were mounted in front of a liquid-cooled-engine nacelle and were tested at 15 different blade angles in the range from -7 1/2 degrees to 35 degrees at 0.75r. The test rig was located outdoors and the tests were made under conditions of approximately zero wind velocity.
Statistical measurements of contact conditions of 478 transport-airplane landings during routine daytime operations
Statistical measurements of contact conditions have been obtained, by means of a special photographic technique, of 478 landings of present-day transport airplanes made during routine daylight operations in clear air at the Washington National Airport. From the measurements, sinking speeds, rolling velocities, bank angles, and horizontal speeds at the instant before contact have been evaluated and a limited statistical analysis of the results has been made and is reported in this report.
A study of the problem of designing airplanes with satisfactory inherent damping of the dutch roll oscillation
Considerable interest has recently been shown in means of obtaining satisfactory stability of the dutch roll oscillation for modern high-performance airplanes without resort to complicated artificial stabilizing devices. One approach to this problem is to lay out the airplane in the earliest stages of design so that it will have the greatest practicable inherent stability of the lateral oscillation. The present report presents some preliminary results of a theoretical analysis to determine the design features that appear most promising in providing adequate inherent stability. These preliminary results cover the case of fighter airplanes at subsonic speeds. The investigation indicated that it is possible to design fighter airplanes to have substantially better inherent stability than most current designs. Since the use of low-aspect-ratio swept-back wings is largely responsible for poor dutch roll stability, it is important to design the airplane with the maximum aspect ratio and minimum sweep that will permit attainment of the desired performance. The radius of gyration in roll should be kept as low as possible and the nose-up inclination of the principal longitudinal axis of inertia should be made as great as practicable. (author).
A study of the torque equilibrium of an autogiro rotor
Two improvements have been made in the method developed in NACA Reports nos. 487 and 591 for the estimation of the inflow velocity required to overcome a given decelerating torque in an autogiro rotor. At low tip-speed ratios, where the assumptions necessary for the analytical integrations of the earlier papers are valid, the expressions therein derived are greatly simplified by combining and eliminating terms with a view of minimizing the numerical computations required. At high tip-speed ratios, by means of charts based on graphical integrations, errors inherent in the assumptions associated with the analytical method are largely eliminated. The suggested method of estimating the inflow velocity presupposes a knowledge of the decelerating torque acting on the rotor; all available full-scale experimental information on this subject is included.
A study of the two-control operation of an airplane
The two-control operation of a conventional airplane is treated by means of the theory of disturbed motions. The consequences of this method of control are studied with regard to the stability of the airplane in its unconstrained components of motion and the movements set up during turn maneuvers.
A study of the use of experimental stability derivatives in the calculation of the lateral disturbed motions of a swept-wing airplane and comparison with flight results
An investigation was made to determine the accuracy with which the lateral flight motions of a swept-wing airplane could be predicted from experimental stability derivatives, determined in the 6-foot-diameter rolling-flow test section and 6 by 6-foot curved-flow test section of the Langley stability tunnel. In addition, determination of the significance of including the nonlinear aerodynamic effects of sideslip in the calculations of the motions was desired. All experimental aerodynamic data necessary for prediction of the lateral flight motions are presented along with a number of comparisons between flight and calculated motions caused by rudder and aileron disturbances.
A study of the zero-lift drag-rise characteristics of wing-body combinations near the speed of sound
Comparisons have been made of the shock phenomena and drag-rise increments for representative wing and central-body combinations with those for bodies of revolution having the same axial developments of cross-sectional areas normal to the airstream. On the basis of these comparisons, it is concluded that near the speed of sound the zero-lift drag rise of a low-aspect-ratio thin-wing and body combination is primarily dependent on the axial development of the cross-sectional areas normal to the airstream. It follows that the drag rise for any such configuration is approximately the same as that for any other with the same development of cross-sectional areas. Investigations have also been made of representative wing-body combinations with the body so indented that the axial developments of cross-sectional areas for the combinations were the same as that for the original body alone. Such indentations greatly reduced or eliminated the zero-lift drag-rise increments associated with the wings near the speed of sound.
Summary of drag characteristics of practical-construction wing sections
The effect of several parameters on the drag characteristics of practical-construction wing sections have been considered and evaluated. The effects considered were those of surface roughness, surface waviness, compressive load, and de-icers. The data were obtained from a number of tests in the Langley two-dimensional low-turbulence tunnels.
A summary and analysis of the low-speed longitudinal characteristics of swept wings at high Reynolds number
An analysis of the longitudinal characteristics of swept wings which is based on available large-scale low-speed data and supplemented with low-scale data when feasible is presented. The emphasis has been placed on the differentiation of the characteristics by a differentiation between the basic flow phenomenon involved. Insofar as possible all large-scale data available as of August 15, 1951 have been summarized in tabular form for ready reference.
Summary of information relating to gust loads on airplanes
Available information on gust structure, airplane reactions, and pertinent operating statistics has been examined. This report attempts to coordinate this information with reference to the prediction of gust loads on airplanes. The material covered represents research up to October 1947. (author).
Summary of Airfoil Data
The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author).
Summary of section data on trailing-edge high-lift devices
A summary has been made of available data on the characteristics of airfoil sections with trailing-edge high-lift devices. Data for plain, split, and slotted flaps are collected and analyzed. The effects of each of the variables involved in the design of the various types of flap are examined and, in cases where sufficient data are given, optimum configurations are deduced. Wherever possible, the effects of airfoil section, Reynolds number, and leading-edge roughness are shown. For single and double slotted flaps, where a large amount of unrelated data are available, maximum lift coefficients of many configurations are presented in tables.
Tank investigation of a powered dynamic model of a large long-range flying boat
Principles for designing the optimum hull for a large long-range flying boat to meet the requirements of seaworthiness, minimum drag, and ability to take off and land at all operational gross loads were incorporated in a 1/12-size powered dynamic model of a four-engine transport flying boat having a design gross load of 165,000 pounds. These design principles included the selection of a moderate beam loading, ample forebody length, sufficient depth of step, and close adherence to the form of a streamline body. The aerodynamic and hydrodynamic characteristics of the model were investigated in Langley tank no. 1. Tests were made to determine the minimum allowable depth of step for adequate landing stability, the suitability of the fore-and-aft location of the step, the take-off performance, the spray characteristics, and the effects of simple spray-control devices. The application of the design criterions used and test results should be useful in the preliminary design of similar large flying boats.
Tank tests of NACA model 40 series of hulls for small flying boats and amphibians
The NACA model 40 series of flying-boat hull models consists of 2 forebodies and 3 afterbodies combined to provide several forms suitable for use in small marine aircraft. One forebody is the usual form with hollow bow sections and the other has a bottom surface that is completely developable from bow to step. The afterbodies include a short pointed afterbody with an extension for the tail surfaces, a long afterbody similar to that of a seaplane float but long enough to carry the tail surfaces, and a third obtained by fitting a second step in the latter afterbody. The various combinations were tested in the NACA Tank by the general method over a suitable range of loadings. Fixed-trim tests were made for all speeds likely to be used and free-to-trim tests were made at low speeds to slightly beyond the hump speed. The characteristics of the hulls at best trim angles have been deduced from the data of the tests at fixed trim angles and are given in the form of nondimensional coefficients applicable to any size hull.
Test of single-stage axial-flow fan
A single-stage axial fan was built and tested in the shop of the propeller-research tunnel of the NACA. The fan comprised a simple 24-blade rotor having a diameter of 21 inches and a solidity of 0.86 and a set of 37 contravanes having a solidity of 1.33. The rotor was driven by a 25-horsepower motor capable of rotating at a speed of 3600 r.p.m. The fan was tested for volume, pressure, and efficiency over a range of delivery pressures and volumes for a wide range of contravane and blade-angle settings. The test results are presented in chart form in terms of nondimensional units in order that similar fans may be accurately designed with a minimum effort. The maximum efficiency (88 percent) was obtained by the fan at a blade angle of 30 degrees and a contravane angle of 70 degrees. An efficiency of 80 percent was obtained by the fan with the contravanes removed.
Tests in the variable-density wind tunnel of the NACA 23012 airfoil with plain and split flaps
Section characteristics for use in wing design are presented for the NACA 23012 airfoil with plain and split flaps of 20 percent wing chord at a value of the effective Reynolds number of about 8,000,000. The flap deflections covered a range from 60 degrees upward to 75 degrees downward for the plain flap and from neutral to 90 degrees downward for the split flap. The split flap was aerodynamically superior to the plain flap in producing high maximum lift coefficients and in having lower profile-drag coefficients at high lift coefficients.
Tests of 16 related airfoils at high speed
In order to provide information that might lead to the development of better propeller section, 13 related symmetrical airfoils were tested in the NACA high-speed wind tunnel for a study of the effect of thickness form on the aerodynamic characteristics. The thickness-form variables studies were the value of the maximum thickness, the position along the chord at which the maximum thickness occurs, and the value of the leading-edge radius. The tests were conducted through the low angle-of-attack range for speeds extending from 35 percent of that of sound to slightly in excess of the speed at which a compressibility burble, or breakdown of flow, occurs. The corresponding Reynolds number range is 350,000 to 750,000.
A theoretical analysis of the effect of time lag in an automatic stabilization system on the lateral oscillatory stability of an airplane
A method is presented for determining the effect of time lag in an automatic stabilization system on the lateral oscillatory stability of an airplane. The method is based on an analytical-graphical procedure. The critical time lag of the airplane-autopilot system is readily determined from the frequency-response analysis. The method is applied to a typical present-day airplane equipped with an automatic pilot sensitive to yawing acceleration and geared to the rudder so that rudder control is applied in proportion to the yawing acceleration. The results calculated for this airplane-autopilot system by this method are compared with the airplane motions calculated by a step-by-step procedure.
A theoretical analysis of the effects of fuel motion on airplane dynamics
The general equations of motion for an airplane with a number of spherical fuel tanks are derived. The motion of the fuel is approximated by the motion of solid pendulums. The same type of derivation and equations are shown to apply to any type of fuel tank where the motion of the fuel may be represented in terms of undamped harmonic oscillators. Motions are calculated for a present-day high-speed airplane and a free-flying airplane model with two spherical tanks in the symmetry plane.
Theoretical and analog studies of the effects of nonlinear stability derivatives on the longitudinal motions of an aircraft in response to step control deflections and to the influence of proportional automatic control
Through theoretical and analog results the effects of two nonlinear stability derivatives on the longitudinal motions of an aircraft have been investigated. Nonlinear functions of pitching-moment and lift coefficients with angle of attack were considered. Analog results of aircraft motions in response to step elevator deflections and to the action of the proportional control systems are presented. The occurrence of continuous hunting oscillations was predicted and demonstrated for the attitude stabilization system with proportional control for certain nonlinear pitching-moment variations and autopilot adjustments.
Theoretical and experimental analysis of low-drag supersonic inlets having a circular cross section and a central body at Mach numbers 3.30, 2.75, and 2.45
Contains theoretical and experimental analysis of circular inlets having a central body at Mach numbers of 3.30, 2.75, and 2.45. The inlets have been designed in order to have low drag and high pressure recovery. The pressure recoveries obtained are of the same order of magnitude as those previously obtained by inlets having very large external drag.
Investigation of full-scale split trailing-edge wing flaps with various chords and hinge locations
This report gives the results of an investigation conducted in the NACA full-scale wind tunnel on a small parasol monoplane equipped with three different split trailing-edge wing flaps. The object of the investigation was to determine and correlate data on the characteristics of the airplane and flaps as affected by variation in flap chord, flap deflection, and flap location along the wing chord. The results give the lift, the drag, and the pitching moment characteristics of the airplane, and the flap forces and moments, the pressure distribution over the flaps and wing at one section, and the downwash characteristics of the flap and wing combinations.
The calculated performance of airplanes equipped with supercharging engines
In part one of this report are presented the theoretical performance curves of an airplane engine equipped with a supercharging compressor. In predicting the gross power of a supercharging engine, the writer uses temperature and pressure correction factors based on experiments made at the Bureau of Standards (NACA report nos. 45 and 46). Means for estimating the temperature rise in the compressor are outlined. Part two of this report presents an estimation of the performance curves of an airplane fitted with a supercharging engine. A supercharging installation suitable for commercial use is described, and it is shown that with the use of the compressor a great saving in fuel and a considerable increase in carrying capacity can be effected simultaneously. In an appendix the writer derives a theoretical formula for the correction of the thrust coefficient of an airscrew to offset the added resistance of the airplane due to the slip-stream effect.
An investigation of the aerodynamic characteristics of an airplane equipped with several different sets of wings
This investigation was conducted by the National Advisory Committee for Aeronautics at Langley Field, Va., at the request of the Army Air Corps, for the purpose of comparing the full scale lift and drag characteristics of an airplane equipped with several sets of wings of commonly used airfoil sections. A Sperry Messenger Airplane with wings of R.A.F.-15, U.S.A.-5, U.S.A.-27, and Gottingen 387 airfoil sections was flown and the lift and drag characteristics of the airplane with each set of wings were determined by means of glide tests. The results are presented in tabular and curve form. (author).
Dynamic stability as affected by the longitudinal moment of inertia
In a recent Technical Note (NACA-TN-115, October, 1922), Norton and Carrol have reported experiments showing that a relatively large (15 per cent) increase in longitudinal moment of inertia made no noticeable difference in the stability of a standard SE-5A airplane. They point out that G. P. Thomson, "Applied Aeronautics," page 208, stated that an increase in longitudinal moment of inertia would decrease the stability. Neither he nor they make any theoretical forecast of the amount of decrease. Although it is difficult, on account of the complications of the theory of stability of the airplane, to make any accurate forecast, it is the purpose of this report to attempt a discussion of the matter theoretically with reference to finding a rough quantitative estimate.
An investigation of the coefficient of discharge of liquids through small round orifices
The work covered by this report was undertaken in connection with a general investigation of fuel injection engine principles as applied to engines for aircraft propulsion, the specific purpose being to obtain information on the coefficient of discharge of small round orifices suitable for use as fuel injection nozzles. Values for the coefficient were determined for the more important conditions of engine service such as discharge under pressures up to 8,000 pounds per square inch, at temperatures between 80 degrees and 180 degrees F. And into air compressed to pressures up to 1,000 pounds per square inch. The results show that the coefficient ranges between 0.62 and 0.88 for the different test conditions between 1,000 and 8,000 pounds per square inch hydraulic pressure. At lower pressures the coefficient increases materially. It is concluded that within the range of these tests and for hydraulic pressures above 1,000 pound per square inch the coefficient does not change materially with pressure or temperature; that it depends considerably upon the liquid, decreases with increase in orifice size, and increases in the case of discharge into compressed air until the compressed-air pressure equals approximately three-tenths of the hydraulic pressure, beyond which pressure ratio it remains practically constant.
Investigation of the compressive strength and creep lifetime of 2024-T3 aluminum-alloy plates at elevated temperatures
The results of elevated-temperature compressive strength and creep tests of 2024-t3 (formerly 24s-t3) aluminum alloy plates supported in v-grooves are presented. The strength-test results indicate that a relation previously developed for predicting plate compressive strength for plates of all materials at room temperature is also satisfactory for determining elevated-temperature strength. Creep-lifetime results are presented for plates in the form of master creep-lifetime curves by using a time-temperature parameter that is convenient for summarizing tensile creep-rupture data. A comparison is made between tensile and compressive creep lifetime for the plates and a method that made use of isochronous stress-strain curves for predicting plate-creep failure stresses is investigated.
Investigation of the diaphragm-type pressure cell
This report relates to various improvements in the process of manufacture of the NACA standard pressure cell. Like most pressure recording devices employing thin diaphragms, they would in general show considerable change in calibration with temperature and also some change of calibration with time or aging effect. The required diaphragm thickness and the desirable rate of mechanical magnification have been determined on the basis of several hundred tests.
Scale effect on Clark Y airfoil characteristics from NACA full-scale wind-tunnel tests
This report presents the results of wind tunnel tests conducted to determine the aerodynamic characteristics of the Clark Y airfoil over a large range of Reynolds numbers. Three airfoils of aspect ratio 6 and with 4, 6, and 8 foot chords were tested at velocities between 25 and 118 miles per hour, and the characteristics were obtained for Reynolds numbers (based on the airfoil chord) in the range between 1,000,000 and 9,000,000 at the low angles of attack, and between 1,000,000 and 6,000,000 at maximum lift. With increasing Reynolds number the airfoil characteristics are affected in the following manner: the drag at zero lift decreases, the maximum lift increases, the slope of the lift curve increases, the angle of zero lift occurs at smaller negative angles, and the pitching moment at zero lift does not change appreciably.
Shear lag in box beams methods of analysis and experimental investigations
The bending stresses in the covers of box beams or wide-flange beams differ appreciably from the stresses predicted by the ordinary bending theory on account of shear deformation of the flanges. The problem of predicting these differences has become known as the shear-lag problem. The first part of this paper deals with methods of shear-lag analysis suitable for practical use. The second part of the paper describes strain-gage tests made by the NACA to verify the theory. Three tests published by other investigators are also analyzed by the proposed method. The third part of the paper gives numerical examples illustrating the methods of analysis. An appendix gives comparisons with other methods, particularly with the method of Ebner and Koller.
A simplified application of the method of operators to the calculation of disturbed motions of an airplane
A simplified treatment of the application of Heaviside's operational methods to problems of airplane dynamics is given. Certain graphical methods and logarithmic formulas that lessen the amount of computation involved are explained. The problem representing a gust disturbance or control manipulation is taken up and it is pointed out that in certain cases arbitrary control manipulations may be dealt with as though they imposed specific constraints on the airplane, thus avoiding the necessity of any integration. The application of the calculations described in the text is illustrated by several examples chosen to show the use of the methods and the practicability of the graphical and logarithmic computations described.
Some effects of frequency on the contribution of a vertical tail to the free aerodynamic damping of a model oscillating in yaw
The damping in yaw and the directional stability of a model freely oscillating in yaw were measured tail-off and tail-on and compared with the values obtained by theoretical consideration of the unsteady lift associated with an oscillating vertical tail. A range of low frequencies comparable to those of the lateral motions of airplanes was covered. The analysis includes the effects of vertical-tail aspect ratio and the two-dimensional effects of compressibility.
Some effects of nonlinear variation in the directional-stability and damping-in-yawing derivatives on the lateral stability of an airplane
A theoretical investigation has been made to determine the effect of nonlinear stability derivatives on the lateral stability of an airplane. Motions were calculated on the assumption that the directional-stability and the damping-in-yawing derivatives are functions of the angle of sideslip. The application of the Laplace transform to the calculation of an airplane motion when certain types of nonlinear derivatives are present is described in detail. The types of nonlinearities assumed correspond to the condition in which the values of the directional-stability and damping-in-yawing derivatives are zero for small angle of sideslip.
Some theoretical low-speed span loading characteristics of swept wings in roll and sideslip
The Weissinger method for determining additional span loading for incompressible flow is used to find the damping in roll, the lateral center of pressure of the rolling for wing plan forms of various aspect ratios, taper ratios, and sweep angles. In addition, the applicability of the method to the determination of certain other aerodynamic derivatives is investigated, and corrections for the first-order effects of compressibility are indicated. The agreement obtained between experimentally and theoretically determined values for the aerodynamic coefficients indicates that the method of Weissinger is well suited to the calculation of such resulting aerodynamic derivatives of wings as do not involve considerations of tip suction.
Sound-level measurements of a light airplane modified to reduce noise reaching the ground
An Army liaison-type airplane, representative of personal airplanes in the 150 to 200 horsepower class, has been modified to reduce propeller and engine noise according to known principles of airplane-noise reduction. Noise-level measurements demonstrate that, with reference to an observer on the ground, a noisy airplane of this class can be made quiet -- perhaps more quiet than necessary. In order to avoid extreme and unnecessary modifications, acceptable noise levels must be determined.
Sound from a two-blade propeller at supersonic tip speeds
Report presents the results of sound measurements at static conditions made for a two-blade 47-inch-diameter propeller in the tip Mach number range 0.75 to 1.30. For comparison, spectrums have been obtained at both subsonic and supersonic tip speeds. In addition, the measured data are compared with calculations by the theory of Gutin which has previously been found adequate for predicting the sound at subsonic tip speeds. Curves are presented from which the maximum over-all noise levels in free space may be estimated if the power, tip Mach number, and distance are known.
Stalling of helicopter blades
Theoretical studies have predicted that operation of helicopter rotor beyond certain combinations of thrust, forward speed, and rotational speed might be prevented by rapidly increasing stalling of the retreating blade. The same studies also indicate that the efficiency of the rotor will increase until these limits are reached or closely approached, so that it is desirable to design helicopter rotors for operation close to the limits imposed by blade stalling. Inasmuch as the theoretical predictions of blade stalling involve numerous approximations and assumptions, an experimental investigation was needed to determine whether, in actual practice, the stall did occur and spread as predicted and to establish the amount of stalling that could be present without severe vibration or control difficulties being introduced. This report presents the results of such an investigation.
The influence of lateral stability on disturbed motions of an airplane with special reference to the motions produced by gusts
Distributed lateral motions have been calculated for a hypothetical small airplane with various modifications of fin area and dihedral setting. Special combinations of disturbing factors to simulate gusts are considered and the influence of lateral stability on the motions is discussed. Fin area and wing dihedral were found to be of primary importance in side gusts. It was found that the rolling action of the wing with as much as 5 degrees dihedral was distinctly unfavorable, especially when the weathercock stability was small. It is pointed out that the greatest susceptibility to lateral disturbances lies in the inherent damping and coupling moments developed by the wing.
Initial results of instrument-flying trials conducted in a single-rotor helicopter
Instrument-flying trials have been conducted in a single-rotor helicopter, the maneuver stability of which could be changed from satisfactory to unsatisfactory. The results indicated that existing longitudinal flying-qualities requirements based on contact flight were adequate for instrument flight at speeds above that for minimum power. However, lateral-directional problems were encountered at low speeds and during precision maneuvers. The adequacy, for helicopter use, of standard airplane instruments was also investigated, and the conclusion was reached that special instruments would be desirable under all conditions, and necessary for sustained low-speed instrument flight.
The interference between struts in various combinations
This report presents the results of wind tunnel tests made to determine the interference drag arising from various arrangements of streamline struts and round struts, or cylinders. Determinations were made of the interference drag of struts spaced side by side, struts in tandem, tandem struts encased in a single fairing, a strut intersecting a plane, and struts intersecting to form a v. Three sizes of struts were used for most of the tests. These tests show that the interference drag arising from struts in close proximity may be of considerable magnitude, in some instances amounting to more than the drag of the struts themselves.
Interference method for obtaining the potential flow past an arbitrary cascade of airfoils
A procedure is presented for obtaining the pressure distribution on an arbitrary airfoil section in cascade in a two-dimensional, incompressible, and nonviscous flow. The method considers directly the influence on a given airfoil of the rest of the cascade and evaluates this interference by an iterative process, which appeared to converge rapidly in the cases tried (about unit solidity, stagger angles of 0 degree and 45 degrees). Two variations of the basic interference calculations are described. One, which is accurate enough for most purposes, involves the substitution of sources, sinks, and vortices for the interfering airfoils; the other, which may be desirable for the final approximation, involves a contour integration. The computations are simplified by the use of a chart presented by Betz in a related paper. Illustrated examples are included.
Interference of Tail Surfaces and Wing and Fuselage from Tests of 17 Combinations in the N.A.C.A. Variable-Density Tunnel
An investigation of the interference associated with tail surfaces added to wing-fuselage combinations was included in the interference program in progress in the NACA variable-density tunnel. The results indicate that, in aerodynamically clean combinations, the increment of the high-speed drag can be estimated from section characteristics within useful limits of accuracy. The interference appears mainly as effects on the downwash angle and as losses in the tail effectiveness and varies with the geometry of the combination. An interference burble, which markedly increases the glide-path angle and the stability in pitch before the actual stall, may be considered a means of obtaining satisfactory stalling characteristics for complete combination.