National Advisory Committee for Aeronautics (NACA) - 371 Matching Results

Search Results

The 7 by 10 foot wind tunnel of the National Advisory Committee for Aeronautics
This report presents a description of the 7 by 10 foot wind tunnel and associated apparatus of the National Advisory Committee for Aeronautics. Included also are calibration test results and characteristic test data of both static force tests and autorotation tests made in the tunnel.
An aerodynamic analysis of the autogiro rotor with a comparison between calculated and experimental results
This report presents an extension of the autogiro theory of Glauert and Lock in which the influence of a pitch varying with the blade radius is evaluated and methods of approximating the effect of blade tip losses and the influence of reversed velocities on the retreating blades are developed. A comparison of calculated and experimental results showed that most of the rotor characteristics could be calculated with reasonable accuracy, and that the type of induced flow assumed has a secondary effect upon the net rotor forces, although the flapping motion is influenced appreciably. An approximate evaluation of the effect of parasite drag on the rotor blades established the importance of including this factor in the analysis.
Aerodynamic characteristics of a large number of airfoils tested in the variable-density wind tunnel
From Summary: "The aerodynamic characteristics of a large number of miscellaneous airfoils tested in the variable-density tunnel have been reduced to a comparable form and are published in this report for convenient reference. Plots of the standard characteristics are given in tabular form. Included is a tabulation of important characteristics for the related airfoils reported in NACA report 460. This report, in conjunction with NACA report 610, makes available in comparable and convenient form the aerodynamic data for airfoils tested in the variable-density tunnel since January 1, 1931."
The aerodynamic characteristics of a slotted Clark y wing as affected by the auxiliary airfoil position
From Summary: "Aerodynamic force tests on a slotted Clark Y wing were conducted in a vertical wind tunnel to determine the best position for a given auxiliary airfoil with respect to the main wing. A systematic series of 100 changes in location of the auxiliary airfoil were made to cover all the probable useful ranges of slot gap, slot width, and slot depth. The results of the investigation may be applied to the design of automatic or controlled slots on wings with geometric characteristics similar to the wing tested. The best positions of the auxiliary airfoil were covered by the range of the tests, and the position for desired aerodynamic characteristics may easily be obtained from charts prepared especially for the purpose."
Aerodynamic characteristics of a wing with Fowler flaps including flap loads, downwash, and calculated effect on take-off
From Summary: "This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash."
Aerodynamic characteristics of airfoils VI : continuation of reports nos. 93, 124, 182, 244, and 286
This collection of data on airfoils has been made from the published reports of a number of the leading aerodynamic laboratories of this country and Europe. The information which was originally expressed according to the different customs of the several laboratories is here presented in a uniform series of charts and tables suitable for use of designing engineers and for purposes of general reference. The authority for the results here presented is given as the name of the laboratory at which the experiments were conducted, with the size of the model, wind velocity, and year of test.
Aerodynamic characteristics of circular-arc airfoils at high speeds
From Summary: "The aerodynamic characteristics of eight circular-arc airfoils at speeds of 0.5, 0.8, 0.95, and 1.08 times the speed of sound have been determined in an open-jet air stream 2 inches in diameter, using models of 1-inch chord. The lower surface of each airfoil was plane; the upper surface was cylindrical. As compared with the measurements described in NACA-TR-319, the circular-arc airfoils at speeds of 0.95 and 1.08 times the speed of sound are more efficient than airfoils of the R. A. F. or Clark Y families. At a speed of 0.5 times the speed of sound, the thick circular-arc sections are extremely inefficient, but thin sections compare favorably with those of the R. A. F. family. A moderate round of the sharp edges changes the characteristics very little and is in many instances beneficial. The results indicate that the section of the blades of propellers intended for use at high tip-speeds should be of the circular-arc form for the outer part of the blade and should be changed gradually to the R. A. F. or Clark Y form as the hub is approached."
The aerodynamic characteristics of eight very thick airfoils from tests in the variable density wind tunnel
Report presents the results of wind tunnel tests on a group of eight very thick airfoils having sections of the same thickness as those used near the roots of tapered airfoils. The tests were made to study certain discontinuities in the characteristic curves that have been obtained from previous tests of these airfoils, and to compare the characteristics of the different sections at values of the Reynolds number comparable with those attained in flight. The discontinuities were found to disappear as the Reynolds number was increased. The results obtained from the large-scale airfoil, a symmetrical airfoil having a thickness ratio of 21 per cent, has the best general characteristics.
The aerodynamic characteristics of four full-scale propellers having different plan forms
From Introduction: "Its main purpose is to present propeller data for four full-scale propellers of Navy design, three of which have somewhat unusual plan forms and the other one has a normal (usual present-day type) plan form. These data may give some clue as to what may be expected from fundamental changes in blade plan form."
The aerodynamic characteristics of full-scale propellers having 2, 3, and 4 blades of Clark y and R.A.F. 6 airfoil sections
Aerodynamic tests were made of seven full-scale 10-foot-diameter propellers of recent design comprising three groups. The first group was composed of three propellers having Clark y airfoil sections and the second group was composed of three propellers having R.A.F. 6 airfoil sections, the propellers of each group having 2, 3, and 4 blades. The third group was composed of two propellers, the 2-blade propeller taken from the second group and another propeller having the same airfoil section and number of blades but with the width and thickness 50 percent greater. The tests of these propellers reveal the effect of changes in solidity resulting either from increasing the number of blades or from increasing the blade width propeller design charts and methods of computing propeller thrust are included.
Aerodynamic characteristics of NACA 23012 and 23021 airfoils with 20-percent-chord external-airfoil flaps of NACA 23012 section
Report presents the results of an investigation of the general aerodynamic characteristics of the NACA 23012 and 23021 airfoils, each equipped with a 0.20c external flap of NACA 23012 section. The tests were made in the NACA 7 by 10-foot and variable-density wind tunnels and covered a range of Reynolds numbers that included values corresponding to those for landing conditions of a wide range of airplanes. Besides a determination of the variation of lift and drag characteristics with position of the flap relative to the main airfoil, complete aerodynamic characteristics of the airfoil-flap combination with a flap hinge axis selected to give small hinge moments were measured in the two tunnels. Some measurements of air loads on the flap itself in the presence of the wing were made in the 7 by 10-foot wind tunnel.
The aerodynamic characteristics of six full-scale propellers having different airfoil sections
From Summary: "Wind-tunnel tests are reported of six 3-blade 10-foot propellers operated in front of a liquid-cooled engine nacelle. The propellers were identical except for blade airfoil sections, which were: Clark y, R.A.F. 6, NACA 4400, NACA 2400-34, NACA 2rsub200, and NACA 6400. The range of blade angles investigated extended for 15 degrees to 40 degrees for all propellers except the Clark y, for which it extended to 45 degrees. The results showed that the range in maximum efficiency between the highest and lowest values was about 3 percent. The highest efficiencies were for the low-camber sections."
Aerodynamic characteristics of twenty-four airfoils at high speeds
From Summary: "If a propeller is mounted directly on the of a modern high-speed airplane engine, the outer airfoil sections of the propeller travel at speeds approaching the speed of sound. It is possible by the use of gearing and a somewhat larger propeller to reduce the speed of the propeller sections, but only at the expense of additional weight and some frictional loss of power. This report presents the results of this work."
Aerodynamic characteristics of wings with cambered external airfoil flaps, including lateral control, with a full-span flap
From Summary: "The results of a wind-tunnel investigation of the NACA 23012, the NACA 23021, and the Clark Y airfoils, each equipped with a cambered external-airfoil flap, are presented in this report. The purpose of the research was to determine the relative merit of the various airfoils in combination with the cambered flap and to investigate the use of the flap as a combined lateral-control and high-lift device."
The aerodynamic effects of wing cut-outs
From Introduction: "The information now available concerning wing cut-outs or applicable to the analysis of their effects is plentiful (references 1 to 7) but too disconnected and unorganized to be of the greatest possible usefulness. In connection with the interference program being conducted in the N.A.C.A. varible-density wind tunnel, an analysis was therefore made of existing material to determine the qualitative effects of the different features of wing cut-outs, and to obtain means of calculating wing characteristics as affected by them."
The aerodynamic forces and moments exerted on a spinning model of the NY-1 airplane as measured by the spinning balance
From Summary: "A preliminary investigation of the effects of changes in the elevator and rudder settings and of small changes in attitude upon the aerodynamic forces and moments exerted upon a spinning airplane was undertaken with the spinning balance in the 5-foot vertical tunnel of the National Advisory Committee for Aeronautics. The tests were made on a 1/12-scale model of the "NY-1" airplane. Data by which to fix the attitude, the radius of spin, and the rotational and air velocities were taken from recorded spins of the full-scale airplane."
Air conditions close to the ground and the effect on airplane landings
This report presents the results of an investigation undertaken to determine the feasibility of making glide landings in gusty air. Wind velocities were measured at several stations between the ground and a height of 51 feet, and flight tests were made to determine the actual influence of gusts on an airplane gliding close to the ground.
Air flow around finned cylinders
Report presents the results of a study made to determine the air-flow characteristics around finned cylinders. Air-flow distribution is given for a smooth cylinder, for a finned cylinder having several fin spacings and fin widths, and for a cylinder with several types of baffle with various entrance and exit shapes. The results of these tests show: that flow characteristics around a cylinder are not so critical to changes in fin width as they are to fin spacing; that the entrance of the baffle has a marked influence on its efficiency; that properly designed baffles increase the air flow over the rear of the cylinder; and that these tests check those of heat-transfer tests in the choice of the best baffle.
Air flow in a separating laminar boundary layer
Report discussing the speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.
Air flow in the boundary layer near a plate
From Summary: "The published data on the distribution of speed near a thin flat plate with sharp leading edge placed parallel to the flow (skin friction plate) are reviewed and the results of some additional measurements are described. The purpose of the experiments was to study the basic phenomena of boundary-layer flow under simple conditions."
Air flow in the boundary layer of an elliptic cylinder
From Introduction: "The present investigation was carried out for the purpose of supplementing the earlier work with information on the boundary layer under such conditions of air speed and turbulence that transition occurs and the layer is partly laminar and partly turbulent. In the work reported in reference 1, the air speed was about 12 feet per second, and it was assumed that the boundary layer remained in the laminar condition until after separation because the separation point remained fixed and the pressure distribution about the cylinder was unaffected until an air speed of 15 feet per second was reached."
Air propellers in yaw
Report presents the results of tests conducted at Stanford University of a 3-foot model propeller at four pitch settings and at 0 degree, 10 degrees, 20 degrees, and 30 degrees yaw.
Aircraft accidents : method of analysis
The revised report includes the chart for the analysis of aircraft accidents, combining consideration of the immediate causes, underlying causes, and results of accidents, as prepared by the special committee, with a number of the definitions clarified. A brief statement of the organization and work of the special committee and of the Committee on Aircraft Accidents; and statistical tables giving a comparison of the types of accidents and causes of accidents in the military services on the one hand and in civil aviation on the other, together with explanations of some of the important differences noted in these tables.
Aircraft accidents.method of analysis
This report is a revision of NACA-TR-357. It was prepared by the Committee on Aircraft Accidents. The purpose of this report is to provide a basis for the classification and comparison of aircraft accidents, both civil and military.
Aircraft compass characteristics
From Summary: "A description of the test methods used at the National Bureau of Standards for determining the characteristics of aircraft compasses is given. The methods described are particularly applicable to compasses in which mineral oil is used as the damping liquid. Data on the viscosity and density of certain mineral oils used in United States Navy aircraft compasses are presented. Results of flight tests are presented."
Aircraft power-plant instruments
From Summary: "The report includes a description of the commonly used types and some others, the underlying principle utilized in the design, and some design data. The inherent errors of the instrument, the methods of making laboratory tests, descriptions of the test apparatus, and data in considerable detail in the performance of commonly used instruments are presented. Standard instruments and, in cases where it appears to be of interest, those used as secondary standards are described."
Aircraft rate-of-climb indicators
From Summary: "The theory of the rate-of-climb indicator is developed in a form adapted for application to the instrument in its present-day form. Certain dynamic effects, including instrument lag, and the use of the rate-of-climb indicator as a statoscope are also considered. Modern instruments are described. A laboratory test procedure is outlined and test results are given."
Aircraft speed instruments
From Summary: "This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the Pitot-static air-speed meter which is the standard in the United States for airplanes. A bibliography on air-speed measurement concludes the report."
Aircraft woods: their properties, selection, and characteristics
From Summary: "This report presents, further, information on the properties of various other native species of wood compared with spruce, and discusses the characteristics of a considerable number of them from the standpoint of their possible application in aircraft manufacture to supplement the woods that are now most commonly used."
Airfoil pressure distribution investigation in the variable density wind tunnel
Report presents the results of wind tunnel tests of pressure distribution measurements over one section each of six airfoils. Pressure distribution diagrams, as well as the integrated characteristics of the airfoils, are given for both a high and a low dynamic scale or, Reynolds number VL/V, for comparison with flight and other wind-tunnel tests, respectively. It is concluded that the scale effect is very important only at angles of attack near the burble.
Airfoil section characteristics as affected by protuberances
From Introduction: "The present report deals with another phase of the investigation; that is, the effects on airfoil section characteristics of protuberances extending along the entire span from the airfoil surface."
Airfoil section characteristics as affected by variations of the Reynolds number
Report presents the results of an investigation of a systematically chosen representative group of related airfoils conducted in the NACA variable-density wind tunnel over a wide range of Reynolds number extending well into the flight range. The tests were made to provide information from which the variations of airfoil section characteristics with changes in the Reynolds number could be inferred and methods of allowing for these variations in practice could be determined. This work is one phase of an extensive and general airfoil investigation being conducted in the variable-density tunnel and extends the previously published researches concerning airfoil characteristics as affected by variations in airfoil profile determined at a single value of the Reynolds number.
Airfoil section characteristics as applied to the prediction of air forces and their distribution on wings
From Introduction: "The system presented herein yields, within the limitations of our present knowledge of aerodynamics, a general solution of the resultant wing forces and moments and their distribution. For the sake of completeness and facility in use, the report contains a table of the important section parameters for many commonly used sections and all other necessary data required to solve the most practical design problems coming within the scope of the system."
Airfoil section data obtained in the NACA variable-density tunnel as affected by support interference and other corrections
From Introduction: "The purpose of this report is to present the corrections for application to published results from the variable-density tunnel to give more reliable values of section profile-drag coefficient for airfoils of various thickness."
Airship model tests in the variable density wind tunnel
This report presents the results of wind tunnel tests conducted to determine the aerodynamic characteristics of airship models. Eight Goodyear-Zeppelin airship models were tested in the original closed-throat tunnel. After the tunnel was rebuilt with an open throat a new model was tested, and one of the Goodyear-Zeppelin models was retested. The results indicate that much may be done to determine the drag of airships from evaluations of the pressure and skin-frictional drags on models tested at large Reynolds number.
Alternating-current equipment for the measurement of fluctuations of air speed in turbulent flow
From Summary: "Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed."
Altitude-pressure tables based on the United States standard atmosphere
This report is a revision of the altitude pressure tables of the United States standard atmosphere given in Technical Report No. 246 and the altitude range has been extended from 50,000 to 80,000 feet.
Analysis of 2-spar cantilever wings with special reference to torsion and load transference
From Summary: "This paper deals with the analysis of 2-spar cantilever wings in torsion, taking cognizance of the fact that the spars are not independent, but are interconnected by ribs and other structural members. The principles of interaction are briefly explained, showing that the mutual relief action occurring depends on the "pure torsional stiffness" of the wing cross section. Various practical methods of analysis are outlined."
An analysis of lateral stability in power-off flight with charts for use in design
From Introduction: "In this report lateral stability will be discussed and analyzed in a way that, it is believed, will aid in the acquisition of a working knowledge of the subject without long and intensive study."
An analysis of longitudinal stability in power-off flight with charts for use in design
From Summary: "This report presents a discussion of longitudinal stability in gliding flight together with a series of charts with which the stability characteristics of any airplane may be readily estimated."
An analysis of the factors that determine the periodic twist of an autogiro rotor blade, with a comparison of predicted and measured results
Report presents an analysis of the factors that determine the periodic twist of a rotor blade under the action of the air forces on it. The results of the analysis show that the Fourier coefficients of the twist are linear expressions involving only the tip-speed ratio, the pitch setting, the inflow coefficient, the pitching-moment coefficient of the blade airfoil section, and the physical characteristics of the rotor blade and machine.
An analytical and experimental study of the effect of periodic blade twist on the thrust, torque, and flapping motion of an autogiro rotor
An analysis is made of the influence on autogiro rotor characteristics of a periodic blade twist that varies with the azimuth position of the rotor blade and the results are compared with experimental data. The analysis expresses the influence of this type of twist upon the thrust, torque, and flapping motion of the rotor. The check against experimental data shows that the periodic twist has a pronounced influence on the flapping motion and that this influence is accurately predicted by the analysis. The influence of the twist upon the thrust and torque could be demonstrated only indirectly, but its importance is indicated.
The application of basic data on planing surfaces to the design of flying-boat hulls
From Introduction: "This report is concerned with the presentation of planning data in a form that facilities direct application to the initial stage of design."
Application of practical hydrodynamics to airship design
The purpose of the first two parts of this report is to present in concise format all the formulas required for computation of the hydrodynamic forces, so that they can be easily computed for either straight or curvilinear flight. Improved approximations are also introduced having a high degree of accuracy throughout the entire range of practical proportions. The remaining two parts of the report are devoted respectively to stability and skin friction, as functions of the same hydrodynamic forces.
Approximate stress analysis of multistringer beams with shear deformation of the flanges
The problem of the skin-stringer combinations used as axially loaded panels or as covers for box beams is considered from the point of view of the practical stress analyst. By a simple substitution the problem is reduced to the problem of the single-stringer structure, which has been treated in NACA Report no. 608. The method of making this substitution is essentially empirical; in order to justify it, comparisons are shown between calculations and strain-gage tests of three beams tested by the author and of one compression panel and three beams tested and reported elsewhere.
Auto-ignition and combustion of diesel fuel in a constant-volume bomb
Report presents the results of a study of variations in ignition lag and combustion associated with changes in air temperature and density for a diesel fuel in a constant-volume bomb. The test results have been discussed in terms of engine performance wherever comparisons could be drawn. The most important conclusions drawn from this investigation are: the ignition lag was essentially independent of the injected fuel quantity. Extrapolation of the curves for the fuel used shows that the lag could not be greatly decreased by exceeding the compression-ignition engines. In order to obtain the best combustion and thermal efficiency, it was desirable to use the longest ignition lag consistent with a permissible rate of pressure rise.
The automotive ignition coil
This report gives the results of a series of measurements on the secondary voltage induced in an ignition coil of typical construction under a variety of operating conditions. These results show that the theoretical predictions hitherto made as to the behavior of this type of apparatus are in satisfactory agreement with the observed facts. The large mass of data obtained is here published both for the use of other investigators who may wish to compare them with other theoretical predictions and for the use of automotive engineers who will here find definite experimental results showing the effect of secondary capacity and resistance on the crest voltage produced by ignition apparatus.
Blower cooling of finned cylinders
Several electrically heated finned steel cylinders enclosed in jackets were cooled by air from a blower. The effect of the air conditions and fin dimensions on the average surface heat-transfer coefficient q and the power required to force the air around the cylinders were determined. Tests were conducted at air velocities between the fins from 10 to 130 miles per hour and at specific weights of the air varying from 0.046 to 0.074 pound per cubic foot. The fin dimensions of the cylinders covered a range in pitches from 0.057 to 0.25 inch average fin thicknesses from 0.035 to 0.04 inch, and fin widths from 0.67 to 1.22 inches.
Calculated and measured pressure distributions over the midspan section of the NACA 4412 airfoil
Pressures were simultaneously measured in the variable-density tunnel at 54 orifices distributed over the midspan section of 5 by 30 inch rectangular model of the NACA 4412 airfoil at 17 angles of attack ranging from -20 degrees to 30 degrees at a Reynolds number of approximately 3,000,000. Accurate data were thus obtained for studying the deviations of the results of potential-flow theory from measured results. The results of the analysis and a discussion of the experimental technique are presented.
The calculation of take-off run
A comparatively simple method of calculating length of take-off run is developed from the assumption of a linear variation in net accelerating force with air speed and it is shown that the error involved is negligible.