National Advisory Committee for Aeronautics (NACA) - Browse

ABOUT BROWSE FEED

Aerodynamic characteristics and flying qualities of a tailless triangular-wing airplane configuration as obtained from flights of rocket-propelled models at transonic and supersonic speeds

Description: A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.
Date: November 1956
Creator: Mitcham, Grady L; Stevens, Joseph E & Norris, Harry P
Item Type: Report
Partner: UNT Libraries Government Documents Department

Aerodynamic characteristics of a circular cylinder at Mach number 6.86 and angles of attack up to 90 degrees

Description: Pressure-distribution and force tests of a circular cylinder have been made in the Langley 11-inch hypersonic tunnel at a Mach number of 6.88, a Reynolds number of 129,000, and angles of attack up to 90 degrees. The results are compared with the hypersonic approximation of Grimminger, Williams, and Young and a simple modification of the Newtonian flow theory. An evaluation of the crossflow theory is made through comparison of present results with available crossflow Mach number drag coefficients.
Date: January 1957
Creator: Penland, Jim A
Item Type: Report
Partner: UNT Libraries Government Documents Department

Aerodynamic characteristics of a refined deep-step planing-tail flying-boat hull with various forebody and afterbody shapes

Description: An investigation was made in the Langley 300-mph 7- by 10-foot tunnel to determine the aerodynamic characteristics of a refined deep-step planing-tail hull with various forebody and afterbody shapes and, for comparison, a streamline body simulating the fuselage of a modern transport airplane. The results of the tests indicated that the configurations incorporating a forebody with a length-beam ratio of 7 had lower minimum drag coefficients than the configurations incorporating a forebody with length-beam ratio of 5. The lowest minimum drag coefficients, which were considerably less than that of a conventional hull and slightly less than that of a streamline body, were obtained on the length-beam-ratio-7 forebody, alone and with round center boom. Drag coefficients and longitudinal- and lateral-stability parameters presented include the interference of a 21-percent-thick support wing.
Date: June 1952
Creator: Riebe, John M & Naeseth, Rodger L
Item Type: Report
Partner: UNT Libraries Government Documents Department

Aerodynamic characteristics of a two-blade NACA 10-(3)(062)-045 propeller and of a two-blade NACA 10-(3)(08)-045 propeller

Description: Characteristics are given for the two-blade NACA 10-(3)(062)-045 propeller and for the two-blade NACA 10-(3)(08)-045 propeller over a range of advance ratio from 0.5 to 3.8, through a blade-angle range from 20 degrees to 55 degrees measured at the 0.75 radius. Maximum efficiencies of the order of 91.5 to 92 percent were obtained for the propellers. The propeller with the thinner airfoil sections over the outboard portion of the blades, the NACA 10-(3)(062)-045 propeller, had lower losses at high tip speeds, the difference amounting to about 5 percent at a helical tip Mach number of 1.10.
Date: January 1953
Creator: Solomon, William
Item Type: Report
Partner: UNT Libraries Government Documents Department

The aerodynamic design and calibration of an asymmetric variable Mach number nozzle with a sliding block for the Mach number range 1.27 to 2.75

Description: A method of designing as asymmetric, fixed geometry, variable Mach number nozzle has been developed by using the method of characteristics. A small nozzle conforming to the analytically determined ordinates was constructed and calibrated over a range of Mach numbers extending from 1.27 to 2.75. The results show the variation in Mach number to be plus or minus 0.01 or less and in the flow direction to be plus or minus 0.2 degrees within the test section. The range of Mach numbers from 1.27 to 2.75 was obtained by translating the lower block in a straight line parallel to the test-section center line for a distance of 2.17 test-section heights.
Date: April 1953
Creator: Burbank, Paige B & Byrne, Robert W
Item Type: Report
Partner: UNT Libraries Government Documents Department

Aerodynamic Effects Caused by Icing of an Unswept NACA 65A004 Airfoil

Description: The effects of ice formations on the section lift, drag, and pitching-moment coefficients of an unswept NACA 65A004 airfoil section of 6-foot chord were studied.. The magnitude of the aerodynamic penalties was primarily a function of the shape and size of the ice formation near the leading edge of the airfoil. The exact size and shape of the ice formations were determined photographically and found to be complex functions of the operating and icing conditions. In general, icing of the airfoil at angles of attack less than 40 caused large increases in section drag coefficients (as much as 350 percent in 8 minutes of heavy glaze icing), reductions in section lift coefficients (up to 13 percent), and changes in the pitching-moment coefficient from diving toward climbing moments. At angles of attack greater than 40 the aerodynamic characteristics depended mainly on the ice type. The section drag coefficients generally were reduced by the addition of rime ice (by as much as 45 percent in 8 minutes of icing). In glaze icing, however, the drag increased at these angles of attack. The section lift coefficients were variably affected by rime-ice formations; however, in glaze icing, lift increases at high angles of attack amounted to as much as 9 percent for an icing time of 8 minutes. Pitching-moment-coefficient changes in icing conditions were somewhat erratic and depended on the icing condition. Rotation of the iced airfoil to angles of attack other than that at which icing occurred caused sufficiently large changes in the pitching-moment coefficient that, in flight, rapid corrections in trim might be required in order to avoid a hazardous situation.
Date: February 1958
Creator: Gray, Vernon H. & vonGlahn, Uwe H.
Item Type: Report
Partner: UNT Libraries Government Documents Department