# National Advisory Committee for Aeronautics (NACA) - 170 Matching Results

# Search Results

- Analytical Treatment of Normal Condensation Shock
- The condensation of water vapor in an air consequences: acquisition of heat (liberated heat vaporization; loss of mass on the part of the flowing gas (water vapor is converted to liquid); change in the specific gas constants and of the ratio k of the specific heats (caused by change of gas composition). A discontinuous change of state is therefore connected with the condensation; schlieren photographs of supersonic flows in two-dimensional Laval nozzles show two intersecting oblique shock fronts that in the case of high humidities may merge near the point of intersection into one normal shock front.
- An application of statistical data in the development of gust-load criterions
- No Description Available.
- Application of the analogy between water flow with a free surface and two-dimensional compressible gas flow
- The theory of the hydraulic analogy -- that is, the analogy between water flow with a free surface and two-dimensional compressible gas flow -- and the limitations and conditions of the analogy are discussed. A test was run using the hydraulic analogy as applied to the flow about circular cylinders of various diameters at subsonic velocities extending into the supercritical range. The apparatus and techniques used in this application are described and criticized. Reasonably satisfactory agreement of pressure distributions and flow fields existed between water and air flow about corresponding bodies. This agreement indicated the possibility of extending experimental compressibility research by new methods.
- Bending Stresses Due to Torsion in a Tapered Box Beam
- No Description Available.
- Boundary-layer momentum equations for three-dimensional flow
- No Description Available.
- Buckling stresses of simply supported rectangular flat plates in shear
- No Description Available.
- The Calculation of Compressible Flows with Local Regions of Supersonic Velocity
- This report addresses a method for the approximate calculation of compressible flows about profiles with local regions of supersonic velocity. The flow around a slender profile is treated as an example.
- The calculation of the heat required for wing thermal ice prevention in specified icing conditions
- No Description Available.
- Calculation of the Pressure Distribution on Bodies of Revolution in the Subsonic Flow of a Gas, Part 1, Axially Symmetrical Flow
- The present report concerns a method of computing the velocity and pressure distributions on bodies of revolution in axially symmetrical flow in the subsonic range. The differential equation for the velocity potential Phi of a compressible fluid motion is linearized tn the conventional manner, and then put in the form Delta(Phi) = 0 by affine transformation. The quantity Phi represents the velocity potential of a fictitious incompressible flow, for which a constant superposition of sources by sections is secured by a method patterned after von Karman which must comply with the boundary condition delta(phi)/delta(n) = 0 at the originally specified contour. This requirement yields for the "pseudo-stream function" psi a differential equation which must be fulfilled for as many points on the contour as source lengths are assumed. In this manner, the problem of defining the still unknown source intensities is reduced to the solution of an inhomogeneous equation system. The pressure distribution is then determined with the aid of Bernoulli's equation and adiabatic equation of state. Lastly, the pressure distributions in compressible and incompressible medium are compared on a model problem.
- Calculations and Experimental Investigations on the Feed-Power Requirement of Airplanes with Boundary-Layer Control
- Calculations and test results are given about the feed-power requirement of airplanes with boundary-layer control. Curves and formulas for the rough estimate of pressure-loss and feed-power requirement are set up for the investigated arrangements which differ structurally and aerodynamically. According to these results the feed power for three different designs is calculated at the end of the report.
- Calibration and Measurement in Turbulence Research by the Hot-Wire Method
- The problem of turbulence in aerodynamics is at present being attacked both theoretically and experimentally. In view of the fact however that purely theoretical considerations have not thus far led to satisfactory results the experimental treatment of the problem is of great importance. Among the different measuring procedures the hot wire methods are so far recognized as the most suitable for investigating the turbulence structure. The several disadvantages of these methods however, in particular those arising from the temperature lag of the wire can greatly impair the measurements and may easily render questionable the entire value of the experiment. The name turbulence is applied to that flow condition in which at any point of the stream the magnitude and direction of the velocity fluctuate arbitrarily about a well definable mean value. This fluctuation imparts a certain whirling characteristic to the flow.
- Changes found on run-in and scuffed surfaces of steel chrome plate, and cast iron
- No Description Available.
- Charts showing relations among primary aerodynamic variables for helicopter-performance estimation
- In order to facilitate solutions of the general problem of helicopter selection, the aerodynamic performance of rotors is presented in the form of charts showing relations between primary design and performance variables. By the use of conventional helicopter theory, certain variables are plotted and other variables are considered fixed. Charts constructed in such a manner show typical results, trends, and limits of helicopter performance. Performance conditions considered include hovering, horizontal flight, climb, and ceiling. Special problems discussed include vertical climb and the use of rotor-speed-reduction gears for hovering.
- Coefficient of Friction, Oil Flow and Heat Balance of a Full-Journal Bearing
- No Description Available.
- The Combination of Internal-Combustion Engine and Gas Turbine
- While the gas turbine by itself has been applied in particular cases for power generation and is in a state of promising development in this field, it has already met with considerable success in two cases when used as an exhaust turbine in connection with a centrifugal compressor, namely, in the supercharging of combustion engines and in the Velox process, which is of particular application for furnaces. In the present paper the most important possibilities of combining a combustion engine with a gas turbine are considered. These "combination engines " are compared with the simple gas turbine on whose state of development a brief review will first be given. The critical evaluation of the possibilities of development and fields of application of the various combustion engine systems, wherever it is not clearly expressed in the publications referred to, represents the opinion of the author. The state of development of the internal-combustion engine is in its main features generally known. It is used predominantly at the present time for the propulsion of aircraft and road vehicles and, except for certain restrictions due to war conditions, has been used to an increasing extent in ships and rail cars and in some fields applied as stationary power generators. In the Diesel engine a most economical heat engine with a useful efficiency of about 40 percent exists and in the Otto aircraft engine a heat engine of greatest power per unit weight of about 0.5 kilogram per horsepower.
- Comparative tests on extruded 14S-T and extruded 24S-T hat-shape stiffener sections
- No Description Available.
- Comparison of crystal structures of 10 wrought heat resisting alloys at elevated temperatures with their crystal structures at room temperatures
- No Description Available.
- Compressible Flow Tables for Air
- This paper contains a tabulation of functions of the Mach number which are frequently used in high-speed aerodynamics. The tables extend from M = 0 to M = 10.0 in increments of 0.01 and are based on the assumption that air is a perfect gas having a specific heat ratio of 1.400.
- Compression Shocks of Detached Flow
- It is known that compression shocks which lead from supersonic to subsonic velocity cause the flow to separate on impact on a rigid wall. Such shocks appear at bodies with circular symmetry or wing profiles on locally exceeding sonic velocity, and in Laval nozzles with too high a back pressure. The form of the compression shocks observed therein is investigated.
- Concerning the Velocity of Evaporation of Small Droplets in a Gas Atmosphere
- The evaporation velocity of liquid droplets under various conditions is theoretically calculated and a number of factors are investigated which are neglected in carrying out the fundamental equation of Maxwell. It is shown that the effect of these factors at the small drop sizes and the small weight concentrations ordinarily occurring in fog can be calculated by simple corrections. The evaporation process can be regarded as quasi-stationary in most cases. The question at hand, and also the equivalent question of the velocity of growth of droplets in a supersaturated atmosphere, is highly significant in meteorology and for certain industrial purposes. Since the literature concerning this is very insufficient and many important aspects either are not considered at all or are reported incorrectly, it seems that a short discussion is not superfluous. A special consideration will be given to the various assumptions and neglections that are necessary in deriving the fundamental equation of Maxwell. The experimental work available, which is very insufficient and in part poorly dependable, can be used as an accurate check on the theory only in very few cases.
- Cones in Supersonic Flow
- In the case of cones in axially symmetric flow of supersonic velocity, adiabatic compression takes place between shock wave and surface of the cone. Interpolation curves betwen shock polars and the surface are therefore necessary for the complete understanding of this type of flow. They are given in the present report by graphical-numerical integration of the differential equation for all cone angles and airspeeds.
- Cooling of Gas Turbines, 6, Computed Temperature Distribution Through Cross Section of Water-Cooled Turbine Blade
- A theoretical analysis of the cross-sectional temperature distribution of a water-cooled turbine blade was made using the relaxation method to solve the differential equation derived from the analysis. The analysis was applied to specific turbine blade and the studies icluded investigations of the accuracy of simple methods to determine the temperature distribution along the mean line of the rear part of the blade, of the possible effect of varying the perimetric distribution of the hot gas-to -metal heat transfer coefficient, and of the effect of changing the thermal conductivity of the blade metal for a constant cross sectional area blade with two quarter inch diameter coolant passages.
- Correlation of Two Experimental Methods of Determining the Rolling Characteristics of Unswept Wings
- No Description Available.
- Deformation analysis of wing structures
- No Description Available.
- Description of Russian Aircraft Engines "AM 35" and "AM 38"
- The Russian AM 35 and AM 38 aircraft engines have superchargers with a swirl throttle, which appears to be a purely Russian development. This paper gives the results of test runs of the two engines, including the effects of the swirl throttle on engine performance.
- Determination of the Stress Concentration Factor of a Stepped Shaft Stressed in Torsion by Means of Precision Strain Gages
- The stress distribution in stepped shafts stressed in torsion is determined by means of the electric precision strain gage the stress concentration factor is ascertained from the measurements. It is shown that the test values always are slightly lower than the values resulting from an approximate formula.
- Development and Construction of an Interferometer for Optical Measurements of Density Fields
- A method of interference is described in the present report which promises profitable application in aeronautical research. The physical foundation of the method and a simple method of adjustment are briefly discussed. The special technical construction of the instrument is described which guarantees its use also in the case of vibrations of the surrounding space and permits the investigation of unsteady phenomena. It is found that the interference method will make the small differences in density in the flow field around the body even at low speeds. (40 m/sec) optically measurable.
- Device for measuring principal curvature and principal strains on a nearly plane surface
- No Description Available.
- The Distribution of Loads on Rivets Connecting a Plate to a Beam under Transverse Loads
- This report gives theoretical discussion of the distribution of leads on rivets connecting a plate to a beam under transverse leads. Two methods of solution are given which are applicable to loads up to the limit of proportionality; in the first the rivets are treated as discrete members, and in the second they are replaced by a continuous system of jointing. A method of solution is also given which is applicable to the case when nonlinear deformations occur in the rivets and the plate, but not in the beam. The methods are illustrated by numerical examples, and these show that the loads carried by the rivets and the plate are less than the values given by classical theory, which does not take into account the slip of the rivets, even below the limit of proportionality. The difference is considerably accentuated when nonlinear deformations occur in the restructure and the beam then carries the greater portion of the bending moment. If the material of the beam has a higher proportional limit and a higher ultimate strength than the material of the plate, there is thus a transfer of load from weaker to stronger material, and this is to the advantage of the structure. The methods given are of simple application and are recommended for use in the design of light-alloy structures when the design lead is likely to be above the proportional limit.
- Drag Reduction by Suction of the Boundary Layer Separated Behind Shock Wave Formation at High Mach Numbers
- With an approach of the velocity of flight of a ship to the velocity of sound, there occurs a considerable increase of the drag. The reason for this must be found in the boundary layer separation caused by formation of shock waves. It will be endeavored to reduce the drag increase by suction of the boundary layer. Experimental results showed that drag increase may be considerably reduced by this method. It was, also, observed that, by suction, the position of shock waves can be altered to a considerable extent.
- Drag Tests of an NACA 65(215)-114, a = 1.0 Practical-Construction Airfoil Section Equipped with a 0.295-Airfoil-Chord Slotted Flap
- No Description Available.
- Effect of Aerodynamic Refinement on the Aerodynamic Characteristics of a Flying-Boat Hull
- No Description Available.
- Effect of Aspect Ratio and Taper on the Pressure Drag at Supersonic Speeds of Unswept Wings at Zero Lift
- No Description Available.
- Effect of compressibility at high subsonic velocities on the moment acting on an elliptic cylinder
- No Description Available.
- Effect of compressibility on the distribution of pressures over a tapered wing of NACA 230-series airfoil sections
- No Description Available.
- Effect of Exhaust Pressure on the Performance of an 18-Cylinder Air-Cooled Radial Engine with a Valve Overlap of 40 Degrees
- No Description Available.
- Effect of Finite Span on the Airload Distributions for Oscillating Wings I : Aerodynamic Theory of Oscillating Wings of Finite Span
- No Description Available.
- Effect of finite span on the airload distributions for oscillating wings. II - Methods of calculation and examples of application
- No Description Available.
- Effect of Geometric Dihedral on the Aerodynamic Characteristics of Two Isolated Vee-Tail Surfaces
- No Description Available.
- The effect of preheating and postheating on the quality of spot welds in aluminum alloys
- No Description Available.
- Effect of product of inertia on lateral stability
- No Description Available.
- Effect of Slipstream Rotation in Producing Asymmetric Forces on a Fuselage
- No Description Available.
- The Effect of Turbulence on the Flame Velocity in Gas Mixtures
- The present report deals with the effect of turbulence on the propagation of the flame. Being based upon experiments with laminar as well as turbulent Bunsen flames, both the physico-chemical and the hydro-dynamical aspects of the problem are analyzed. A number of new deductions, interesting from the point of view of engine combustion and other very rapidly changing flame reactions, are made.
- The effects of aerodynamic heating and heat transfer on the surface temperature of a body of revolution in steady supersonic flight
- No Description Available.
- Effects on Performance of Changing the Division of Work Between Increase of Angular Velocity and Increase of Radius of Rotation in an Impeller
- No Description Available.
- Elastic properties in tension and shear of high strength nonferrous metals and stainless steel - effect of previous deformation and heat treatment
- A resume is given of an investigation of the influence of plastic deformation and of annealing temperature on the tensile and shear elastic properties of high strength nonferrous metals and stainless steels in the form of rods and tubes. The data were obtained from earlier technical reports and notes, and from unpublished work in this investigation. There are also included data obtained from published and unpublished work performed on an independent investigation. The rod materials, namely, nickel, monel, inconel, copper, 13:2 Cr-Ni steel, and 18:8 Cr-Ni steel, were tested in tension; 18:8 Cr-Ni steel tubes were tested in shear, and nickel, monel, aluminum-monel, and Inconel tubes were tested in both tension and shear. There are first described experiments on the relationship between hysteresis and creep, as obtained with repeated cyclic stressing of annealed stainless steel specimens over a constant load range. These tests, which preceded the measurements of elastic properties, assisted in devising the loading time schedule used in such measurements. From corrected stress-set curves are derived the five proof stresses used as indices of elastic or yield strength. From corrected stress-strain curves are derived the secant modulus and its variation with stress. The relationship between the forms of the stress-set and stress-strain curves and the values of the properties derived is discussed. Curves of variation of proof stress and modulus with prior extension, as obtained with single rod specimens, consist in wavelike basic curves with superposed oscillations due to differences of rest interval and extension spacing; the effects of these differences are studied. Oscillations of proof stress and modulus are generally opposite in manner. The use of a series of tubular specimens corresponding to different amounts of prior extension of cold reduction gave curves almost devoid of oscillation since the effects of variation of rest interval and extension spacing ...
- Empirical method for frequency compensation of the hot-wire anemometer
- No Description Available.
- An empirically derived method for calculating pressure distribution at supercritical Mach numbers and moderate angles of attack
- Report presenting a procedure for calculating pressure distributions over airfoils at supercritical Mach numbers. Only the forward portion of the airfoil, where interaction between local boundary-layer thickness and local-pressure distribution is negligible, is considered in detail. The method cannot be considered definitive because it requires that certain characteristics regarding pressure distributions and geometric properties be known.
- Equations for Adiabatic but Rotational Steady Gas Flows without Friction
- This paper makes the following assumptions: 1) The flowing gases are assumed to have uniform energy distribution. ("Isoenergetic gas flows," that is valid with the same constants for the the energy equation entire flow.) This is correct, for example, for gas flows issuing from a region of constant pressure, density, temperature, end velocity. This property is not destroyed by compression shocks because of the universal validity of the energy law. 2) The gas behaves adiabatically, not during the compression shock itself but both before and after the shock. However, the adiabatic equation (p/rho(sup kappa) = C) is not valid for the entire gas flow with the same constant C but rather with an appropriate individual constant for each portion of the gas. For steady flows, this means that the constant C of the adiabatic equation is a function of the stream function. Consequently, a gas that has been flowing "isentropically",that is, with the same constant C of the adiabatic equation throughout (for example, in origination from a region of constant density, temperature, and velocity) no longer remains isentropic after a compression shock if the compression shock is not extremely simple (wedge shaped in a two-dimensional flow or cone shaped in a rotationally symmetrical flow). The solution of nonisentropic flows is therefore an urgent necessity.
- Experimental investigation of the stress distribution around reinforced circular cut-outs in skin stringer panels under axial loads
- No Description Available.