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CHAPTER 1

INTRODUCTION

In [12], Karl Weierstrass defined the function

f(x) =
∞∑
n=0

an cos(bnπx)

where 0 < a < 1, b is a positive integer, and

ab > 1 +
3

2
π.

This function is everywhere continuous but nowhere differentiable. The graph of

such a function would today be considered a fractal. Later, in [5], Helge von Koch

gave a definition for a similar curve, this curve later became known as the von Koch

Snowflake. Later, in 1915, Wac law Sierpiński gave a definition for his triangle and

Figure 1.1. The von Koch Snowflake

one year later produced his carpet. George Cantor also constructed several subsets

of the real line with peculiar properties, today these Cantor Sets are recognized as

fractals as well.

All of these structures share a common attribute, they are all self-similar, in other

words they are similar or approximately similar to parts of themselves.
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The main topic of this dissertation is the iterated function system. The back-

ground for this concept was introduced in 1981 in [4] by John Hutchinson, where it is

shown that there is a compact set which is invariant with respect to a finite collection

of special functions called contractions. As it turns out, these invariant sets, called

attractors, are often self-similar.

The contents of ths dissertation are summarized as follows:

In this chapter, we gather together some theorems and definitions from topology

which are important to the theory of iterated function systems. We define three

different notions of dimension. We also define the notion of an iterated function

system, and we give a few examples of attractors. All theorems and definitions in

the chapter are generally known, and proofs are only given to those results that are

either essential to the theory of iterated function systems or are not known to the

general mathematical community.

In chapter 2 we give further examples of attractors of iterated function systems.

We show that every geometric sequence with positive common ratio less than 1 is

an attractor of an iterated function. We also show that for every p > 0, the set

Fp = {1/np}n≥1 ∪ {0} is also an attractor. We also give examples of sets which are

not attractors of any iterated function system, one of which is countable.

In chapter 3, we investigate the topological properties of sets of attractors and

non-attractors of iterated function systems. We show that the set of all attractors

forms a dense Fσ set in the space of all compact subspaces in some topological space

X. We also show that the set of all non-attractors forms a dense Gδ set in the space

of all compact subspaces of X.

Finally, in chapter 4, we investigate the dimensional properties of the set of all

attractors of iterated function systems whose contractions satisfy certain properties.

Some of these properties include similarity maps in C([0, 1]) and collection of con-

tractions which are closed under multiplication by elements of [0, 1].
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For the purposes of this paper, let (X, d) be a compact metric space, and let A

be a finite alphabet. We will also primarily consider X to be a real Euclidean space.

Infinite iterated function systems have been studied by Mauldin and Urbanski in [8]

and [9].

1.1. Topological Background

One of the most important concepts in the theory of iterated function systems is

the concept of a contraction. A contraction is a function f : X → X such that there

exists a real number 0 ≤ r < 1 so that for any x, y ∈ X, d(f(x), f(y)) ≤ r · d(x, y).

Such an r will be called a contraction factor of the function f . Note that f is a special

case of a Lipschitz function, therefore it follows that f is uniformly continuous. Also

note that if f is a contraction, then there is a least r which satisfies the contraction

factor condition. For the rest of this paper, when we refer to the contraction factor

of a contraction, we are refering to this least r.

The following theorem is essential to to theory of iterated function systems, and

so a proof is given of this result. Note, however, that this is a widely known result

and can be found in any introductory level topology text book.

Theorem 1.1 (Banach Fixed Point Theorem). If f : X → X is a contraction map

with contraction factor r, then there exists a unique point x0 ∈ X with f(x0) = x0.

Furthermore, for any x ∈ X and any n ∈ N, we have d(f (n)(x), x0) ≤ rn · d(x, x0)

where

f (n)(x) =

f ◦ f ◦ . . . ◦ f︸ ︷︷ ︸
n times

 (x).

Proof. For x ∈ X, consider the sequence {xn}n≥1 where and xn = f (n)(xn−1) for

n ≥ 1. It is clear that {xn}n≥1 is a Cauchy sequence.

Since (X, d) is a complete metric space and the sequence {xn}n≥1 is Cauchy, we

may let x0 ∈ X so that xn → x0 as n→∞. We now show that x0 is the unique fixed

point of the contraction f : X → X.
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First note that as xn → x0 and f : X → X is continuous, we conclude that

f(xn) → f(x0). But the sequence {f(xn)}n≥0 is the same as the sequence {xn}n≥1,

and is therefore a subsequence of {xn}n≥0. Hence both sequences must converge to

the same point, i.e, f(x0) = x0.

Now suppose y ∈ X with f(y) = y and x 6= y. Then

0 < d(x, y) = d(f(x), f(y)) < r · d(x, y).

Which is impossible as d(x, y) > 0 and 0 < r < 1. Therefore x = y, and x is the

unique fixed point of the contraction f : X → X.

Finally, a simple induction argument shows that for every n ∈ N and for every

x ∈ X, d(f (n)(x), x0) ≤ rn · d(x, x0). �

Now, let f, g : X → X be contraction maps with contraction factors r and s

respectively, and observe that

d(f(g(x)), f(g(y)) ≤ r · d(g(x), g(y)) ≤ rs · d(x, y),

for every x, y ∈ X. Also, since 0 < r, s < 1 we have 0 < rs < max{r, s} <

1, and therefore f ◦ g : X → X is a contraction map with contraction factor at

most max{r, s}. Using mathematical induction, this result can be extended to finite

compositions of contraction maps. That is, if f1, f2, . . . fn : X → X are contractions

with contraction factors r1, r2, . . . rn respectively, then f1 ◦ f2 ◦ . . . ◦ fn : X → X is a

contraction map with contraction factor at most r = max{ri}ni=1.

As attractors of iterated function systems are compact subsets of X, the natural

topological space to consider in studying attractors is the metric space (K(X), dH)

where

K(X) := {K ⊆ X : K 6= ∅ is compact}

and dH : K(X)×K(X)→ [0,+∞) is defined by

dH(K1, K2) = max{d(K1, K2), d(K2, K1)},
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where

d(K1, K2) = sup
k1∈K1

inf
k2∈K2

d(k1, k2).

The topology on K(X) generated by the metric dH will be called the Vietoris topology

on K(X). Note that since (X, d) is a compact metric space, then (K(X), dH) is also

a compact metric space. Also note that the set F = {K ∈ K(X) : |K| is finite} is

dense in K(X). When considering any collection of attractors as a topological space,

we will give the collection the subspace topology inherited from the Vietoris topology

on K(X).

Now consider a collection of contractions f1, f2, . . . , fn : X → X with contraction

factors ri. Since each fi is continuous, for every A ∈ K(X), the set fi(A) = {fi(a) :

a ∈ A} ∈ K(X). Therefore, we may think of each fi as a function from K(X) to

K(X). Next, define the Hutchinson operator as F : K(X)→ K(X) by

F (A) =
n⋃
i=1

fi(A).

In [4], it is shown that there is a unique set A ∈ K(X) so that F (A) = A, where F

is the Hutchinson operator. What follows is an alternate proof of this fact, however,

we show that the Hutchinson operator is actually a contraction on the space K(X).

Theorem 1.2. The function F : K(X)→ K(X) as defined is a contraction.

Proof. Let K1, K2 ∈ K(X). Then F (K1) =
⋃
i∈A fi(K1) and F (K2) =

⋃
i∈A fi(K2).

Thus for any point x ∈ F (K1),

d(x, F (K2)) = min
y∈F (K2)

d(x, y)

= min
i∈A
{d(x, fi(K2))}

≤ d(x, fj(K2))

for any j ∈ A. Next we compute d(x, F (K2)) over all x ∈ F (K1). Since x ∈ F (K1),

there exists j ∈ A and y ∈ K1 so that x = fj(y). Then, by the previous inequality,
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we have

d(x, F (K2)) = d(fj(y), F (K2)) ≤ d(fj(y), fj(K2)).

Now, for any z ∈ X, d(fj(y), fj(z)) ≤ rj · d(y, z). Thus,

d(x, F (K2)) ≤ rj · d(y,K2) ≤ r · d(y,K2).

Therefore,

max
x∈fj(K1)

d(x, F (K2)) ≤ r ·max
y∈K1

d(y,K2).

Taking the maximum over all j, we conclude

max
x∈F (K1)

d(x, F (K2)) ≤ r ·max
y∈K1

d(y,K2).

By a symmetric argument, one can show that

max
x∈F (K2)

d(x, F (K1)) ≤ r ·max
y∈K2

d(y,K1).

The last two inequalities imply that dH(F (K1), F (K2)) ≤ r·dH(K1, K2), thus showing

that F : K(X)→ K(X) as defined above is a contraction. �

Since (K(X), dH) is a complete metric space, the Banach Fixed Point Theorem

yields a unique fixed point for F , label this set by JF ∈ K(X).

As this dissertation does make use of some dimension theory, a few definitions

and basic theorems about these dimensions are in order.

The first dimension we will define will be the Hausdorff dimension, these defini-

tions and the following propositions can all be found in [3].

Suppose that X is a subset of Rn for some n and that {Ui} is a countable collection

of sets each with diameter at most δ so that

F ⊂
∞⋃
i=1

Ui,
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then the collection {Ui} is called a δ-cover of F . Now suppose s ∈ [0,+∞), for any

δ > 0, we may define

Hs
δ(X) := inf

{
∞∑
i=1

diam (Ui)
s : {Ui} is a δ-cover of X

}
.

Now we write

Hs(X) = lim
δ→0
Hs
δ(X).

Note that this limit may be 0 or even +∞. Hs(X) is called the s-dimensional Haus-

dorff measure of F .

Proposition 1.3. Let X ⊂ Rn and let f : X → X be a Hölder continuous function

with exponent α, i.e.,

|f(x)− f(y)| ≤ r · |x− y|α

for all x, y ∈ X and some constant r > 0. Then for each s ∈ [0,∞)

Hs/α(f(X)) ≤ rs/αHs(X).

Proof. Let {Ui} be a δ-cover of X. Then, since diam (f(X ∩ Ui)) ≤ r · diam (Ui)
α,

it follows that {f(X ∩ Ui)} is an ε-cover of f(X) where ε = rδα. Thus

∞∑
i=1

diam (f(X ∩ Ui))s/α ≤ rs/α
∞∑
i=1

diam (Ui)
s.

Therefore, Hs/α
ε (f(X)) ≤ rs/αHs

δ(X). But note that as δ → 0, ε → 0, and therefore

Hs/α(f(X)) ≤ rs/αHs(X). �

Note that if f : X → Rn is Hölder continuous with exponent α = 1, then f is

Lipschitz continuous, and the above result reduces to

Hs(f(X)) ≤ rsHs(X).

Now suppose t > s and that {Ui} is a δ-cover of X, then∑
i

diam (Ui)
t ≤

∑
i

diam (Ui)
t−s · diam (Ui)

s ≤ δt−s
∑
i

diam (Ui)
s.
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Thus, by taking infima, we see that

Ht
δ(X) ≤ δr−sHs

δ(X).

Therefore, by taking δ → 0, we see that if Hs(X) < ∞, then Ht(X) = 0 for any

t > s. Thus there is a critical value of s where Hs(X) jumps from +∞ to 0, this

critical value is called the Hausdorff dimension of X.

Definition 1.4. The Hausdorff dimension of a set X ⊂ Rn is given by

dimH(X) := inf{s ∈ [0,+∞) : Hs(X) = 0} = sup{s ∈ [0,+∞) : Hs(X) = +∞}.

Note that if f : X → Rn is Lipschitz continuous, we have

dimH(f(X)) = inf{s ∈ [0,+∞) : Hs(f(X)) = 0}

≤ inf{s ∈ [0,+∞) : rsHs(X) = 0}

= inf{s ∈ [0,+∞) : Hs(X) = 0}

= dimH(X).

The next dimension we will define is the small transfinite inductive dimension,

this definition can be found in [2].

Definition 1.5. Let X be a regular space and define the small transfinite inductive

dimension of X, denoted by trindX, in the following way:

• trindX = −1 if and only if X = ∅;

• trindX ≤ α, where α is an ordinal number, if for every point x ∈ X and

each open neighborhood V of x there is an open set U ⊂ X such that

x ∈ U ⊂ V and trind FrU < α;

• trindX = α if trindX ≤ α and the inequality trindX ≤ β does not hold

for any ordinal β < α;

• trindX =∞ if the inequality trindX ≤ α does not hold for any ordinal α.
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It is easy to see that the small transfinite inductive dimension is a tological in-

variant. Also if U ⊂ X, then trindU ≤ trindX.

Now for the definition of the small inductive dimension of X, denoted by indX,

simply take the definition of trindX and replace all ordinals with natural numbers.

Obviously, for n ≥ 0, a regular space X satisfies indX ≤ n if and only if X has a

base B such that ind FrU ≤ n− 1 for every U ∈ B. However, since every base B for a

separable space X contains a countable family B′ which is still a base for X, we have

Theorem 1.6. For n ≥ 0, a separable metric space X satisfies indX ≤ n if and only

if X has a countable base B such that ind FrU ≤ n− 1 for every U ∈ B.

A very useful theorem that relates the Hausdorff dimension and the small inductive

dimension can be found in [11] the proof of which is due to Eilenberg, and is stated

as follows:

Theorem 1.7. If a space X satisfies indX ≤ n then there is a homeomorphism h of

X into I2n+1 such that for every real number r > n

Hr(h(X)) = 0.

Moreover, the space (I2n+1)X contains a dense Gδ set of homeomorphisms satisfying

the above condition.

Thus we may conclude that dimH(X) ≥ indX.

Recall from topology that a separable metric space X is said to be 0-dimensional

if and only if X is non-empty and has a countable base consisting of clopen sets. Also

note that a separable metric space X is 0-dimensional if and only if indX = 0, as

can be seen from the previous theorem.

The last dimension that we will define is the box-counting dimension, this defini-

tion can also be found in [3].
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Definition 1.8. Let X be any bounded set and let Nδ(X) be the smallest number

of sets of diameter less than or equal to δ which can cover X. The lower box-counting

dimension and the upper box-counting dimension are defined respectively as follows:

dimBX = lim
δ→0

logNδ(X)

− log δ

dimBX = lim
δ→0

logNδ(X)

− log δ
.

If the lower box-counting dimension agrees with the upper box-counting dimension,

then this common value is called the box-counting dimension of X, and

dimBX = lim
δ→0

logNδ(X)

− log δ
.

When calculating the box-counting dimension of a set, it is enough to consider

limits as δ tends to 0 through any decreasing sequence δk such that δk+1 ≥ cδk for

some constant 0 < c < 1. To see this, note that if δk+1 ≤ δ < δk, then

logNδ(F )

− logδ
≤

logNδk+1
(F )

− log δk

=
logNδk+1

(F )

− log δk+1 + log(δk+1/δk)

≤
logNδk+1

(F )

− log δk+1 + log c
,

so that

lim
δ→0

logNδ(X)

− log δ
≤ lim

k→∞

logNδk(F )

− log δk
.

The opposite inequality is trivial; the case of lower limits is handled in a similar way.

Proposition 1.9. For any p > 0 let Fp = {1/np}n≥1 ∪ {0}. Then

dimB Fp =
1

p+ 1
.

10



Proof. First note that by letting f(x) = x−p for x > 0, we have f ′(x) = −px−(p+1),

and therefore, by the mean value theorem, ∃c ∈ [k, k + 1] so that f(k)− f(k + 1) =

pc−(p+1). In other words, ∃c ∈ [k, k + 1] so that

1

kp
− 1

(k + 1)p
=

p

cp+1
,

and also note that

p

(k + 1)p+1
≤ p

cp+1
≤ p

kp+1
.

First we give a lower estimate of the lower box-counting dimension. Let

δk = p/(k + 1)(p+1),

and note that an interval of length δk can contain at most one point of the set

{1, 1/2p, 1/3p, . . . , 1/kp}.

Therefore, at least k intervals of length δk are required to cover Fp. Therefore

logNδk(Fp)

− log δk
≥ log k

log (k+1)p+1

p

=
log k

(p+ 1) log(k + 1)− log p
.

Letting k →∞, so that δk → 0, yields

dimBFp ≥
1

p+ 1
.

Now, we give an upper estimate of the upper box-counting dimension. Let δk =

p/k(p+1), and note that k/p intervals of length δk are required to cover [0, 1/kp], leaving

another k−1 points in Fp not yet covered. Also note that an interval of length δk can

contain at most one point of the set {1, 1/2p, 1/3p, . . . , 1/(k − 1)p}. Thus we have

logNδk(Fp)

− log δk
≤

log(k
p

+ k − 1)

log kp+1

p

=
log(k

p
+ k − 1)

(p+ 1) log k − log p
.

11



Again, letting k →∞, so that δk → 0, yields

dimBFp ≤
1

p+ 1
.

Therefore, we conclude that

dimB Fp =
1

p+ 1
.

�

We also have

Proposition 1.10. Let 0 < r < 1, and let Gr = {rn}n≥0 ∪ {0}. Then dimB Gr = 0.

1.2. Basic Definitions and Examples of Iterated Function Systems

In this section we will give a brief introduction to the theory of iterated function

systems and we will give 2 common examples of attractors.

Definition 1.11. Let A be a finite set and for each i ∈ A, let ϕi : X → X be

a contraction with contraction factor ri. The space X together with the collection

{ϕi}i∈A is called an Iterated Function System. The notation for such a system will

be {X;ϕi : i ∈ A}. The number r = max{ri : i ∈ A} is the contraction factor of the

iterated function system.

For the alphabet A, we define A∞ to be the set of all infinite words on A, A∗ is

the set of all finite words on A, and An is the set of all words on A of length n. For

any ω ∈ A∗, let |ω| = n be the unique natural number so that ω ∈ An. Also, for

ω ∈ A∞, let ω|n = ω1ω2 . . . ωn.

For each ω ∈ A∗, say ω = ω1ω2 . . . ωn, define the map coded by ω as the function

ϕω = ϕω1 ◦ ϕω2 ◦ . . . ◦ ϕωn : X → X.

Note that the map coded by ω is a finite composition of contractions and is therefore

a contraction with contraction factor r.

12



Also note that for ω ∈ A∞, the collection of sets {ϕω|n(X)}n∈N forms a nested

collection of closed subsets of X and also note that diam (ϕω|n(X)) ≤ rn ·diam (X)→

0 as n→∞. Thus, ⋂
n∈N

ϕω|n(X) = {x}

for some x ∈ X. Thus we can define a map π : A∞ → X by letting π(ω) be the

unique element in this intersection. Now let

J := π(A∞) =
⋃

ω∈A∞

⋂
n∈N

ϕω|n(X).

The set J is called the attractor of the iterated function system {X;ϕi : i ∈ A}.

For an alternative formulation for the attractor of an iterated function system, we

must first state a lemma due to Dénes König and appears in [6].

Lemma 1.12 (König’s Lemma). If G is a connected graph with infinitely many vertices

such that every vertex has finite degree, then every vertex of G is part of an infinitely

long simple path, that is, a path with no repeated vertices.

A special case of this lemma states any finitely branching tree with infinitely many

vertices has an infinitely long branch.

Theorem 1.13. If {X;ϕ1, ϕ2, . . . , ϕn} is an iterated function system with attractor

J , then

J =
⋂
n∈N

⋃
ω∈An

ϕω(X).

Proof. First, suppose x ∈ J . Therefore, π(ω) = x for some ω ∈ A∞. Thus, for

every n ∈ N, there exists ω′ ∈ An with x ∈ ϕω′(X), i.e.,

x ∈
⋂
n∈N

⋃
ω∈An

ϕω(X).

Now, let

x ∈
⋂
n∈N

⋃
ω∈An

ϕω(X).
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Thus, for every n ∈ N there exists ω′ ∈ An with x ∈ ϕω′(X). Therefore, by the

note following König’s Lemma, there exists an ω ∈ A∞ with π(ω) = x, and thus

x ∈ J . �

Now we present a method for determining if a given set is the attractor of a given

iterated function system.

Lemma 1.14. Consider the iterated function system {X;ϕi : i ∈ A} with attractor

J . Then

J =
⋃
i∈A

ϕi(J ).

Proof. Let x0 ∈
⋃
i∈A ϕi(J ). Then there exists i(0) ∈ A and x1 ∈ J such that

x0 = ϕi(0)(x1). Since x1 ∈ J , there exists ω ∈ A∞ with x1 = π(ω). But then

ω′ = (i(0)ω) ∈ A∞ and clearly π(ω′) = x0. Therefore x0 ∈ J .

Now suppose x ∈ J , then x = π(ω) =
⋂
n∈N ϕω|n(X) for some ω ∈ A∞. But note

that for any ω ∈ A∞ we have

π(ω) =
∞⋂
n=1

ϕω|n(X)

⊂ ϕω1

(
∞⋂
k=1

ϕσω|k(X)

)
= ϕω1(π(σω))

∈ ϕω1(J )

Thus x ∈ ϕω1(J ), which concludes the proof. �

Recall that the function Φ̂ : K(X) → K(X) defined by Φ̂(K) =
⋃
i∈A ϕi(K) is a

contraction, and therefore has a unique fixed point, but the previous lemma shows

that J is a fixed point of this map. Thus we have
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Theorem 1.15. For any iterated function system {X;ϕi : i ∈ A} there is a unique

attractor J ∈ K(X). Furthermore,

J ∈ K(X)

is the attractor of the iterated function system {X;ϕi : i ∈ A} if and only if

J =
⋃
i∈A

ϕi(J ).

Now we present two examples of iterated function systems, and we also present

their attractors.

Example 1.16 (Cantor’s Middle Third Set). Consider the iterated function system

{[0, 1];ϕ1, ϕ2}

where  ϕ1(x) = 1
3
x

ϕ2(x) = 1
3
x+ 2

3

According to the Banach Fixed Point Theorem, limn→∞ Φ̂(n)(K) = J for any

compact set K ⊂ [0, 1].

Take as our K, the compact set [0, 1]. Then

Φ̂(K) = ϕ1([0, 1]) ∪ ϕ2([0, 1]) =

[
0,

1

3

]
∪
[

2

3
, 1

]
.

Now

Φ̂(2)(K) = Φ̂(Φ̂([0, 1]))

= Φ̂
([

0, 1
3

]
∪
[

2
3
, 1
])

= Φ̂
([

0, 1
3

])
∪ Φ̂

([
2
3
, 1
])

=
[
0, 1

9

]
∪
[

2
9
, 1

3

]
∪
[

2
3
, 7

9

]
∪
[

8
9
, 1
]

At each step, we are removing the middle third of the remaining intervals from the

previous step. This naturally leads to Cantor’s Middle Third Set.

For the next example, we will consider an iterated function system whose attractor

is a compact subset of C.
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Example 1.17 (The Sierpinski Gasket). Consider the iterated function system

{T ;ϕ1, ϕ2, ϕ3}

where T is the closed triangle in the Complex plane with vertices given by the complex

numbers 0 + 0i, 2 + 0i, and 1 +
√

3i and
ϕ1(t) = 1

2
t

ϕ2(t) = 1
2
t+ 1

ϕ3(t) = 1
2
t+ 1+

√
3i

2

Again, the function Φ̂(K) = ϕ1(K) ∪ ϕ2(K) ∪ ϕ3(K) has a fixed point, and this

fixed point can be found by iterating the function Φ̂ with T as the initial set, as shown

in fig. 1.2.

Figure 1.2. The initial set T

After one iteration, we arrive at the set Φ̂(T ), which is shown in fig. 1.3. Note

that in this figure, the triangle labeled as 1 is the image of the contraction ϕ1.

Figure 1.3. The set Φ̂(T )
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For the nth iterate, Φ̂(n)(T ), we would remove the middle upside down triangle

from each of the remaining triangles from the (n − 1)st iterate. This process will

approach the set, in the Hausdorff distance, to the set shown in fig. 1.4.

Figure 1.4. The attractor of the IFS {T ;ϕ1, ϕ2, ϕ3}

1.3. Applications of Iterated Function Systems

In this section we give a brief discussion of one of the possible applications of

iterated functions systems. This application is to the area of image compression.

The following theorem, the Collage Theorem, which was originally proven by Michael

Barnsley, is an important theorem to theory of iterated function systems, and so its

proof is given here. The statement of the following theorem and corollary along with

there proofs can be found in [3].

Theorem 1.18 (Collage Theorem). Let {X;ϕ1, ϕ2, . . . , ϕn} be any iterated function

system with contraction factor r and attractor J . For any non-empty set E ∈ K(X)

dH(E,J ) ≤ dH

(
E,

n⋃
i=1

ϕi(E)

)
1

1− r
.

Proof. By using the triangle inequality for the Hausdorff metric and the definition

of the attractor of an iterated function system, we have

dH(E,J ) ≤ dH

(
E,

n⋃
i=1

ϕi(E)

)
+ dH

(
n⋃
i=1

ϕi(E),J

)

= dH

(
E,

n⋃
i=1

ϕi(E)

)
+ dH

(
n⋃
i=1

ϕi(E),
n⋃
i=1

ϕi(J )

)

17



≤ dH

(
E,

n⋃
i=1

ϕi(E)

)
+ rdH(E,J ),

which finishes the proof. �

A corollary to the collage theorem is

Corollary 1.19. If E 6= ∅ is a compact subset of X, then for every δ > 0 there

exists an iterated function system {X;ϕ1, ϕ2, . . . , ϕn} with attractor J satisfying

dH(J , E) < δ. In other words, the set of all attractors is a dense subset of K(X).

Proof. Let B1, B2, . . . , Bn be a collection of open balls that cover E which have

centers in E and whose radii are at most 1
4
δ. Such a collection exists since E is

compact. Therefore we have E ⊂
⋃n
i=1Bi ⊂ Eδ/4, where Eδ/4 is the δ/4-neighborhood

of E. Now for each i, let ϕi be a contraction map so that ϕi(E) ⊂ Bi and whose

contraction factor is less than 1
2
. But then

ϕi(E) ⊂ Bi ⊂ (ϕi(E))δ/2,

so that (
n⋃
i=1

ϕi(E)

)
⊂ Eδ/4 and E ⊂

n⋃
i=1

(ϕi(E))δ/2.

But then we have

dH

(
E,

n⋃
i=1

ϕi(E)

)
≤ 1

2
δ.

It follows from the collage theorem that

dH(J , E) ≤ dH

(
E,

n⋃
i=1

ϕi(E)

)
1

1− r

<
1

2
δ

(
1

1− 1/2

)
= δ.

�
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Therefore, we may approximate any compact subset of Rn with an attractor of

some iterated function system. Unfortunately, the number of contractions needed to

approximate a compact set may be very large. For some fractals, we can try to calcu-

late the box-counting dimension of the the fractal, thus we may restrict ourselves to

sets of contractions which yield an attractor with the desired box-counting dimension.

For example, the Sierpinski triangle has a box-counting dimension of log 3/ log 2, and

we have seen that we need three contractions each with contractive factor 1/2 to

generate the Sierpinski triangle.

However, for other fractals, such as the fern, we may draw a rough outline of

the image, then cover this image by smaller similar or affine copies of itself. These

similarities and affine maps may then be used to generate an iterated function system

whose attractor approximates the original image.

Figure 1.5. The Barnsley Fern
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CHAPTER 2

ATTRACTORS AND NON-ATTRACTORS OF ITERATED FUNCTION

SYSTEMS

In this chapter we will present sets which are attractors of iterated function sys-

tems and sets which are not attractors of any iterated function system. For any

x ∈ [0, 1) we will construct a subset of [0, 1] which is an attractor of some iterated

function system and whose box-counting dimension is x. We will give an example

of a countable subset of [0, 1] which has box-counting dimension 1 and which is not

an attractor of any iterated function system. Finally, for any n ∈ N, we will give

an example of a set which has exactly n points where local connectivity fails, these

n points are also the only degenerate connected components of the set, and which

is an attractor of some iterated function. These sets will become more important in

Chapter 3.

2.1. Preliminaries

Let I = [0, 1] be the closed unit interval in R, and let f : I → Rn be an embedding.

We define the variation of f as follows: Let P = {x0 < x1 < x2 < . . . < xn−1 < xn}

where x0 = 0 and xn = 1 be a partition of I. Let

Vf (P ) :=
n∑
k=1

|f(xi)− f(xi−1)|

where |f(xi) − f(xi−1)| is the standard Euclidean distance from f(xi) and f(xi−1).

Then we take Vf = sup{Vf (P ) : P is a partition of I}. The set Im(f) = {f(x) : x ∈

I} is called an arc and Vf is called the arc length of f . Note that if f : I → Rn

and g : I → Rn are two embeddings and Im(f) = Im(g), then Vf = Vg. Thus it

makes sense to talk about the arc length of an arc without relying on any specific
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embedding. If β is an arc in Rn, then the arc length of β will be denoted by V (β).

Note that if β is an arc, then H1(β) = V (β).

Since β is an arc in Rn, there exist two distinct non-cutpoints of β, call these

points a, b ∈ β. We will refer to these non-cutpoints as endpoints of the arc β. We

can place a natural order on β so that a < b. Now, for c, d ∈ β with a < c < d < b,

we write βdc to denote the sub-arc of β with endpoints c < d.

Let β be an arc in Rn with endpoints a < b. Then

• V (β) > 0.

• If c ∈ β with a < c < b, then V (βca) + V (βbc) = V (β).

• If V (β) < ∞, then the function v : β → [0,∞) defined by v(x) = V (βxa ) is

strictly increasing.

• If V (β) <∞, then v : β → [0,∞) as defined above is also continuous.

2.2. Examples of Attractors and Non-Attractors

In [10], it is shown that if β is an arc in Rn with V (β) <∞, then β is an attractor

of some iterated function system in Rn. It is also shown that if {β1, β2, . . . , βn} is a

collection of arcs in Rn so that V (βi) <∞ for each i = 1, 2, . . . , n, then

n⋃
i=1

βi

is also an attractor of some iterated function system in Rn.

However, it is also shown in [10], that if β is an arc in Rn with endpoints a < b

satisfying

(i) V (βyx) <∞ whenever x, y ∈ β with x, y 6= b, and

(ii) V (βbx) =∞ whenever x ∈ β with x 6= b,

then β is not an attractor of any iterated function system in Rn.

We would now like to generalize this statement. To this end, let β be an arc in Rk

satisfying (i) and (ii) above, also assume that ~0 = (0, 0, . . . , 0) and ~1 = (1, 0, . . . , 0)

are the endpoints of β and order β so that ~1 < ~0. For simplicity, let J = β × In.
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Lemma 2.1. Suppose X is a compact subset of Rk+n containing J and J is the

attractor of the iterated function system {X;ϕ1, ϕ2, . . . , ϕm}. Let (xi, yi) ∈ J be the

unique fixed point of ϕi. Then xi = ~0 or for every y ∈ In, (~0, y) 6∈ ϕi(J \ ({~0}× In)).

Proof. Suppose, by way of contradiction, xi 6= ~0 and there exists y ∈ In so that

(~0, y) ∈ ϕi(J \ ({~0}× In)). Let (c, d) ∈ J \ ({~0}× In) so that (~0, y) = ϕi((c, d)). Now

take γ to be a rectifiable arc joining (c, d) and (xi, yi); this can be done as xi, c 6= ~0.

But then ϕi(γ) is a rectifiable arc joining ϕi((c, d)) = (~0, y) and ϕi((xi, yi)) = (xi, yi),

which is impossible. Therefore, either xi = ~0 or for every y ∈ In, (~0, y) 6∈ ϕi(J \

({~0} × In)). �

Lemma 2.2. Suppose X is a compact subset of Rk+n containing J and J is the

attractor of the iterated function system {X;ϕ1, ϕ2, . . . , ϕm}. Then there exists 1 ≤

i ≤ m so that ({~0} × In) ∩ ϕi(J ) 6= ∅ and ϕi(J ) 6⊂ {~0} × In.

Proof. Suppose, by way of contradiction, that for all i, ({~0} × In) ∩ ϕi(J ) = ∅

or ϕi(J ) ⊆ {~0} × In, and for convenience set A = {1, 2, . . . ,m}. Let A1 := {i ∈

A : ({~0} × In) ∩ ϕi(J ) 6= ∅} and note that A1 6= ∅. Also note that if i ∈ A1, then

ϕi(J ) ⊆ {~0} × In. Therefore, we may conclude that

J =

(⋃
i∈A1

ϕi(J )

)
∪

 ⋃
i∈A\A1

ϕi(J )

 .

By hypothesis, (⋃
i∈A1

ϕi(J )

)
∩

 ⋃
i∈A\A1

ϕi(J )

 = ∅.

Since both A1 and A \ A1 are finite, both unions are finite unions of closed sets and

are therefore closed. Thus we have written J as a finite disjoint union of closed sets.

This violates the connectedness of J . Therefore, there exists 1 ≤ i ≤ m so that

({0} × In) ∩ ϕi(J ) 6= ∅ and ϕi(J ) 6⊂ {~0} × In. �

Now we present the generalization of the result from [10].
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Theorem 2.3. J is not an attractor of any iterated function system on Rk+n for

any k ∈ N.

Proof. Suppose, by way of contradiction, that there exists a compact subset, X,

of Rk+n containing J and that J is the attractor of the iterated function system

{X,ϕ1, ϕ2, . . . , ϕm}. By lemma 2.2, let i ∈ {1, 2, . . . ,m} be so that ({~0} × In) ∩

ϕi(J ) 6= ∅ and ϕi(J ) 6⊂ {~0} × In, and let (xi, yi) ∈ J be the unique fixed point of

ϕi. Thus, by lemma 2.1, xi = ~0 of for every y ∈ In, (~0, y) 6∈ ϕi(J \ ({~0} × In)).

First, suppose xi = ~0. By lemma 2.2, there exists z ∈ (β \ {~0}) × In so that

ϕi(z) 6∈ {~0} × In. Thus we may join z and ϕi(z) with a rectifiable arc γ. Therefore,

by letting

γ∞ =

(
∞⋃
k=0

ϕ
(k)
i (γ)

)
∪ {(xi, yi)},

we get a rectifiable curve joining z and (xi, yi) which is impossible.

Therefore, for every y ∈ In, (~0, y) 6∈ ϕi(J \ ({~0} × In)). But then

{~0} × In ⊆ ϕ
(k)
i ({~0} × In)→ (xi, yi)

in the Hausdorff metric as k →∞, but this is also impossible.

Therefore, J is not the attractor of the iterated function system {X,ϕ1, ϕ2, . . . , ϕm}.

�

For another example of a non-attractor, we refer to [1], where it is shown that

there exists a set C ⊂ [0, 1] which is homeomorphic the the Cantor Middle Third set

and is not the attractor of any iterated function system {[0, 1];ϕ1, ϕ2, . . . , ϕn}. This

implies that being an attractor of an iterated function system is not topologically

invariant.

The following will become important in chapter 3 of this dissertation, but we

define these sets now for purposes of continuity. We set

J (1) := {0} ∪

(
∞⋃
i=0

[
1

22i+1
,

1

22i

])
,
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and, for n ≥ 2, we set

J (n) := J ∪
n−1⋃
m=1

Jm,

where

Jm := {22m−1} ∪
∞⋃
i=1

[
1 + 22i+1

22(i−m)+2
,

1 + 22i

22(i−m)+1

]
.

Theorem 2.4. J (1) is the attractor of an iterated function system.

Proof. Consider the iterated function system {[0, 1], ϕ1, ϕ2, ϕ3} where
ϕ1(x) = 1

4
x

ϕ2(x) = 1
2
x+ 1

2

ϕ3(x) = 1
4
x+ 1

2

Now

ϕ1(J (1)) =
1

4
(J (1))

= {0} ∪ 1

4

(
∞⋃
i=0

[
1

22i+2
,

1

22i+1

])

= {0} ∪

(
∞⋃
i=1

[
1

22i+2
,

1

22i+1

])
and

ϕ2(J (1))− 1

2
=

1

2
(J (1))

= {0} ∪ 1

2

(
∞⋃
i=0

[
1

22i+2
,

1

22i+1

])

= {0} ∪

(
∞⋃
i=1

[
1

22i+1
,

1

22i

])
.

Therefore, we have

ϕ1(J (1)) ∪
(
ϕ2(J (1))− 1

2

)
=

(
ϕ3(J (1))− 1

2

)
∪
(
ϕ2(J (1))− 1

2

)
=

(
ϕ3(J (1)) ∪ ϕ2(J (1))

)
− 1

2
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= {0} ∪

(
∞⋃
i=1

[
1

22i+2
,

1

22i+1

])
∪

(
∞⋃
j=1

[
1

22j+1
,

1

22j

])

=

[
0,

1

2

]
.

Thus, we conclude that ϕ2(J (1)) ∪ ϕ3(J (1)) = [1
2
, 1], and therefore

Φ̂(J (1)) = J (1)

and thus J (1) is the attractor of the iterated function system {[0, 1];ϕ1, ϕ2, ϕ3}. �

Theorem 2.5. For every n ≥ 2, the set J (n) is an attractor of some iterated function

system.

Proof. Let

X = [0, 1] ∪
n−1⋃
i=1

[22i−1, 22i],

and consider the iterated function system {X;ϕ1, ϕ2, . . . , ϕ2n} where ϕ1(x) = (41−n)x,

ϕ2(x) =



(41−n)x x ∈ [0, 1]

21−2nx+ 41−n x ∈ [2, 4]

21−2nx+ 42−n x ∈ [8, 16]

...

21−2nx+ 4m−n x ∈ [22m−1, 22m]

...

21−2nx+ 4−1 x ∈ [22n−3, 22n−2]

and for 3 ≤ k ≤ 2n,

ϕk(x) =

 (2k−2ϕ1 + 2k−2)(x) for k odd

(2k−3ϕ2 + 2k−3)(x) for k even

We will first show that ϕ1(J (n)) ∪ ϕ2(J (n)) = J (1). To start, note that

ϕ1(J (1)) =
1

22n−2

(
{0} ∪

∞⋃
i=0

[
1

22i+1
,

1

22i

])
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= {0} ∪
∞⋃
i=0

[
1

22(i+n)−1
,

1

22(i+1)−2

]

= {0} ∪
∞⋃

i=n−1

[
1

22i+1
,

1

22i

]
Now

ϕ1(Jm) =
1

22n−2

(
{22m−1} ∪

∞⋃
i=0

[
1 + 22i+1

22(i−m)+2
,

1 + 22i

22(i−m)+1

])

= {22(m−n)+1} ∪
∞⋃
i=0

[
1 + 22i+1

22(i−m+n)
,

1 + 22i

22(i−m+n)−1

]
Next, note that ϕ2(J (1)) = ϕ1(J (1)), and that

ϕ2(Jm) =
1

22n−1

(
{22m−1} ∪

∞⋃
i=0

[
1 + 22i+1

22(i−m)+2
,

1 + 22i

22(i−m)+1

])
+

1

22n−2m

= {22m−2n} ∪
∞⋃
i=0

[
1 + 22i+1

22(i−m+n)+1
,

1 + 22i

22(i−m+n)

]
+

1

22n−2m

= {22m−2n+1} ∪
∞⋃
i=0

[
1 + 22i+2

22(i−m+n)+1
,

1 + 22i+1

22(i−m+n)

]
Since the right endpoint of the intervals in ϕ2(Jm) agree with the left endpoints

of the intervals in ϕ1(Jm), we see that

ϕ1(Jm) ∪ ϕ2(Jm) =

[
1

22n−2m−1
,

1

22n−2m−2

]
.

Thus, we get

ϕ1(J (n)) ∪ ϕ2(J (n)) = {0} ∪
∞⋃

i=n−1

[
1

22i+ 1
,

1

22i

]
∪

n−1⋃
m=1

[
1

22n−2m−1
,

1

22n−2m−2

]
.

By letting j = n−m− 1, and re-indexing the above unions we get

ϕ1(J (n)) ∪ ϕ2(J (n)) = {0} ∪
∞⋃

i=n−1

[
1

22i+1
,

1

22i

]
∪
n−2⋃
j=0

[
1

22j+1
,

1

22j

]

= {0} ∪
∞⋃
i=0

[
1

22i+1
,

1

22i

]
= J (1).
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Now, to cover Jm, note that diam (Jm) = 22m−1 = 22m−1diam (J (1)) and the left

endpoint of Jm is {22m−1}. Therefore, in order to cover Jm, we need to stretch ϕ1 and

ϕ2 by a factor of 22m−1 and shift them to the right 22m−1 units. But this is exactly

what the contractions ϕk and ϕk+1 do for k = 2m+ 1. Therefore, for k = 2m+ 1, we

have

ϕk(J (n)) ∪ ϕk+1(J (n)) = Jm.

Thus,

Φ̂(J (n)) =
2n⋃
i=1

ϕi(J (n))

= (ϕ1(J (n)) ∪ ϕ2(J (n))) ∪ . . . ∪ (ϕ2n−1(J (n)) ∪ ϕ2n(J (n)))

= J (1) ∪ J1 ∪ . . . ∪ Jn−1

= J (n).

Thus, we have shown that J (n) is indeed the attractor of the iterated function system

{X;ϕ1, ϕ2, . . . , ϕ2n}. �

Recall that for every p > 0, we have Fp := {1/np}n≥1∪{0} and for every 0 < r < 1

we defined Gr := {rn}n≥0 ∪ {0}.

Proposition 2.6. For every p > 0, Fp is an attractor of an iterated function system.

Proof. Consider the functions
ϕ1(x) =

(
1
2

)p
x

ϕ2(x) = x

(2+ p√x)
p

ϕ3(x) = 1

Clearly, ϕ1 and ϕ3 are contractions. It remains to show that ϕ2 is a contraction and

that Φ̂(J ) = J . We will first show that ϕ2 is a contraction.

To that end, note that

ϕ′2(x) =
2

(2 + p
√
x)p+1
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and

ϕ′′2(x) = −2(p+ 1)x(p−1)/p

p(2 + p
√
x)p+2

< 0.

Since ϕ′′2(x) < 0 for every x ∈ [0, 1], we conclude that ϕ′2(x) is a strictly decreasing

function, and therefore it attains its maximum value at x = 0. But note that

ϕ′2(0) =
1

2p
< 1

and therefore ϕ2 is indeed a contraction.

Now, it only remains to show that Φ̂(J ) = J . Note that

ϕ1

({
1

np

}
n≥1

∪ {0}

)
=

{
1

(2n)p

}
∪ {0},

ϕ2(x)

({
1

np

}
n≥1

∪ {0}

)
=

{ 1
np

(2 + 1
n
)p

}
n≥1

∪ {0}

=

{
1

np(2 + 1
n
)p

}
n≥1

∪ {0}

=

{
1

(2n+ 1)p

}
n≥1

∪ {0}.

Therefore, we have ϕ1(Fp) ∪ ϕ2(Fp) ∪ ϕ3(Fp) = Fp as desired. �

Proposition 2.7. For every 0 < r < 1, the set Gr is an attractor of an iterated

function system.

Proof. For 0 < r < 1 consider the two contractions ϕ1(x) = rx

ϕ2(x) = 1

Then Gr is obviously the attractor of {[0, 1];ϕ1, ϕ2}. �

Recall that

dimB Fp =
1

p+ 1
,

and dimB Gr = 0. Since 1/(p+ 1) ranges over (0, 1) as p ranges over (0,∞), we have

examples of attractors whose box dimensions range over [0, 1).
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Now we wish to show that there exists a compact countable set which is not an

attractor of any iterated function system.

To this end, consider the space X = [0, 1], and for n ∈ N let

In =

[
1

22n−1
,

1

22n−2

]
.

Now, for n ∈ N, define

Pn :=

{
1

22n−2
= p(n,1) > p(n,2) > . . . > p(n,(n+1)(n+1)) =

1

22n−1

}
,

so that the points in Pn are equidistant from each other, and set

P := {0} ∪
∞⋃
n=1

Pn.

Since P is the countable union of finite sets, P is countable. Now we show that P is

not the attractor of any iterated function system.

Lemma 2.8. For any n ∈ N

n
n∑
i=1

ii + n < (n+ 1)(n+1).

Proof. We will begin this proof by first proving that

n∑
i=1

ii ≤ (n+ 1)n − 1

for every n ∈ N. To accomplish this, we will proceed by mathematical induction.

First note that for n = 1, the result is certainly true.

Now assume
k∑
i=1

ii ≤ (k + 1)k − 1.

Note that

k+1∑
i=1

ii =
k∑
i=1

ii + (k + 1)(k+1)

≤ (k + 1)k + (k + 1)(k+1) − 1

≤ 2(k + 1)(k+1) − 1
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≤ (k + 2)(k+1) − 1.

Thus, by mathematical induction, we can conclude that

n∑
i=1

ii ≤ (n+ 1)n − 1.

Therefore, we have

n

n∑
i=1

ii + n ≤ n(n+ 1)n < (n+ 1)n+1.

�

Theorem 2.9. P as defined above is not an attractor of any iterated function system.

Proof. Suppose {[0, 1];ϕ1, ϕ2, . . . , ϕm} is an iterated function system so that Φ̂(P ) =

P . Without loss of generality, assume k ∈ {1, 2, . . . ,m} so that for 1 ≤ i ≤ k,

ϕi(0) = 0 and for k+ 1 ≤ i ≤ m, |ϕi(P )| < ℵ0. Note that if ϕi(0) = 0, then ϕi(x) < x

for all x ∈ (0, 1]. So that the points of Pn+1 can only be mapped to, under ϕi, by

points from
n⋃
j=i

Pj,

or from points in Pn+1 itself. But if ϕi takes a point of Pn+1 and maps it into Pn+1,

then ϕi|Pn+1 is constant. Thus the maximum number of points of Pn+1 covered by

k⋃
i=1

ϕi(P )

is given by

k
n∑
j=1

jj + k.

But note that for n > k, k
∑n

j=1 j
j + k < n

∑n
j=1 j

j + n < (n + 1)(n+1) = |Pn+1|.

Therefore, for every n > k, there are points in Pn+1 which are not covered by the

above union. Thus the number of total points not covered by this union is countably

infinite. Since
m⋃

i=k+1

ϕi(P )
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is finite, we see that Φ̂(P ) 6= P . �

Theorem 2.10. dimB P = 1

Proof. First, since P ⊂ [0, 1] and dimB[0, 1] = 1, we immediately have dimBP ≤ 1.

Thus we only need to show that dimBP ≥ 1. To see this note that |Pn| = (n+ 1)n+1

and the distance bewtween points in Pn is given by

rn =
1

(n+ 1)n+122n−1
.

Therefore we have

Nrn(P )

− log rn
≥ (n+ 1) log(n+ 1)

(2n− 1) log 2 + (n+ 1) log(n+ 1)
.

The right hand side of the above inequality converges to 1 as n→∞. Hence dimBP ≥

1. Therefore we conclude that dimB P = 1. �

Conjecture 2.11. If X is a compact countable subset of R with |X| = ℵ0 and

dimBX = 1, then X is not an attractor of any iterated function system.
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CHAPTER 3

THE STRUCTURE OF THE SETS OF ALL ATTRACTORS AND

NON-ATTRACTORS

3.1. Defining Sets of Iterated Function Systems and Attractors

In this dissertation, we are concerned about the topological structure and dimen-

sion of the sets of attractors and non-attractors of iterated function systems. To that

end, a few definitions are in order.

Let C be a collection of contraction maps from X into X. By the set IFS(X, C)

we mean the set of all iterated function systems on X consisting of finitely many

contractions all of which belong to C. In this setting, if Φ ∈ IFS(X, C), then Φ =

{X;ϕi : i ∈ A} for some finite alphabet A, and we can define the function Φ̂ :

K(X)→ K(X) by

Φ̂(K) =
⋃
i∈A

ϕi(K),

that is Φ̂ is the Hutchinson operator for Φ. Now define

ATT(X, C) := {J ∈ K(X) : ∃Φ ∈ IFS(X, C) so that Φ̂(J ) = J .}

If n ∈ N, then we define IFS(X, C, n) as the set of all iterated function systems on

X which consist of exaclty n contraction maps, all of which belong to C. We define

ATT(X, C, n) in a similar manner as before.

Finally, let 0 ≤ ε < s < 1, by the set IFS(X, C, n, ε, s) we mean the set of

all iterated function systems on X which consist of exaclty n contraction maps all

belonging to C, and whose contraction factors are uniformly bounded below by ε and

above by s. ATT(X, C, n, ε, s) is defined in a similar fashion as ATT(X, C).
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Note that for any collection of contraction maps C, we have

IFS(X, C, n, ε, s) ⊂ IFS(X, C, n) ⊂ IFS(X, C),

and therefore

ATT(X, C, n, ε, s) ⊂ ATT(X, C, n) ⊂ ATT(X, C).

Also note that

IFS(X, C, n) =
⋃
k≥3

IFS

(
X, C, n, 0, 1− 1

k

)
,

and

IFS(X, C) =
⋃
n≥1

IFS(X, C, n),

so that

IFS(X, C) =
⋃
n≥1

[⋃
k≥3

IFS

(
X, C, n, 0, 1− 1

k

)]
.

Similar equalities hold for ATT
(
X, C, n, 0, 1− 1

k

)
, ATT(X, C, n), and ATT(X, C).

3.2. Topological Properties of IFS(X, C) and ATT(X, C)

In this section, we are going to demonstrate several topological properties of the

sets IFS(X, C) and ATT(X, C). However, before we can continue on with this section,

we must first state an important theorem from general topology. The proof of this

theorem is omitted, and can be found in any topology book.

Theorem 3.1 (Arzela-Ascoli). Let X ⊂ Rn be compact. If a sequence {fn}n≥1 in

C(X) is bounded and equicontinuous then it has a uniformly convergent subsequence.

For the remained of this chapter let IFS(X) denote the set of all iterated function

systems on X, and let

ATT(X) := {J ∈ K(X) : ∃Φ ∈ IFS(X) so that Φ̂(J ) = J }.

We now wish to show that the set ATT(X) is a dense Fσ set while the set K(X)\

ATT(X) is a denseGδ set. This would say that the setK(X)\ATT(X) is topologically
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large in the space K(X). The next lemma states an important fact about convergent

subsequences between two sequences, and will be used in the next theorem.

Lemma 3.2. Let X be a compact metric space and let {xn}∞n=1 and {yn}∞n=1 be se-

quences of points from X. Then there is some sequence of natural numbers n1, n2, n3, . . .

so that both {Xni
}∞i=1 and {yn1}∞i=1 converge.

Note that the previous lemma can be extended, by mathematical induction, to

any finite collection of sequences.

Theorem 3.3. Let X be a compact metric space. If A is the collection of all contrac-

tions on X, then the set ATT(X,A, n, ε, s) is closed in K(X) for any 0 ≤ ε < s < 1.

Proof. Let 0 ≤ ε < s < 1 and take a sequence {Ji}i≥1 in ATT(X,A, n, ε, s) which

converges, in the Hausdorff metric, to the set J , and let

Φi = {X;ϕi,1, ϕi,2, . . . , ϕi,n} ∈ IFS(X,A, n, ε, s)

so that Φ̂i(Ji) = Ji. Now note that for each j ∈ {1, 2, . . . , n}, the sequence {ϕi,j}i≥1

is bounded and equicontinuous. Thus, by Theorem 3.1, this sequence has a uniformly

convergent subsequence. Thus, by the previous lemma, there is a sequence of natural

numbers k1, k2, . . . so that for every j ∈ {1, 2, . . . , n}, the subsequence {ϕki,j}∞i=1

converges uniformly to ϕj. Note that as ϕj is a uniform limit of uniformly bounded

contractions, ϕj is also a contraction whose contraction factor is bounded below by ε

and above by s. Thus we may consider the iterated function system

Φ = {X;ϕ1, ϕ2, . . . , ϕn} ∈ IFS(X,A, n, ε, s).

We now show that J is the attractor of the iterated function system Φ. To this

end, note that

J = lim
i→∞
Jki

= lim
i→∞

n⋃
j=1

ϕki,j(Jki
)
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=
n⋃
j=1

lim
i→∞

ϕki,j(Jki
)

=
n⋃
j=1

ϕj(J )

= Φ̂(J ).

�

Corollary 3.4. The set ATT(X) is an Fσ set in K(X).

Proof. Since

ATT(X) =
⋃
n∈N

[⋃
k≥3

ATT

(
X,A, n, 0, 1− 1

K

)]
,

it is a countable union of closed sets, and is therefore an Fσ set. �

Corollary 3.5. The set K(X) \ ATT(X) is a Gδ set.

Lemma 3.6. Let J ∈ ATT(X) and suppose J = J1 ∪ J2, where J1 ∩ J2 = ∅. Suppose

further that there exists a Lipschitz map g : X → X such that g(J1) = J2. Then

J1 ∈ ATT(X).

Proof. First, since J ∈ ATT(X) let Φ = {X;ϕ1, ϕ2, . . . , ϕm} ∈ IFS(X) so that

Φ̂(J) = J and set A = {1, 2, . . . ,m}. Now let n ∈ N be large enough so that for all

ω in A∗ with |ω| > n, we have diam (ϕω(J)) < dist (J1, J2). Set A1 := {ω ∈ An :

ϕω(J) ∩ J1 6= ∅}. Thus for any ω ∈ A1 we have ϕω(J) ⊂ J1. Now consider the

collection of functions

{ϕω : ω ∈ A1} ∪ {ϕω ◦ g : ω ∈ A1}.

Recall that the lipschitz constant of a composition of lipschitz maps is less than or

equal to the product of the two lipschitz contants. Therefore, we may, if necessary,

increase the size of our original n to ensure that this collection of functions is a

collection of contractions.
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It remains to show that J1 is an attractor of some iterated function system. To

this end, note that( ⋃
ω∈A1

ϕω(J1)

)
∪

( ⋃
ω∈A1

ϕω ◦ g(J1)

)
=

( ⋃
ω∈A1

ϕω(J1)

)
∪

( ⋃
ω∈A1

ϕω(J2)

)

=
⋃
ω∈A1

ϕω(J)

= J1.

Thus J1 is the attractor of an iterated function system, whose contractions are

described as above. �

Theorem 3.7. The sets ATT(X) and K(X) \ ATT(X) are both dense in K(X).

Proof. The collage theorem from chapter 1 shows that ATT(X) is dense in K(X).

To show that K(X) \ ATT(X) is dense in K(X), we rely on the previous lemma.

Let A ∈ K(X) and let ε > 0. Since the collection of finite sets is dense in K(X), we

may let D ∈ K(X) be finite so that dH(A,D) < ε/2. Now let d ∈ D and let β be an

arc in Rm with endpoints a < d which satisfies

(i) V (βyx) <∞ whenever x, y ∈ β with x, y 6= d,

(ii) V (βdx) =∞ whenever x ∈ β with x 6= d, and

(iii) dH(β,D) < ε/2.

Thus β ∈ K(X) \ ATT(X). Now, for every point a ∈ D \ {d}, let fa : X → X be a

Lipschitz map so that fa(d) = a, dH(fa(β), D) < ε/2, and fa(β)∩fb(β) = ∅ whenever

a 6= b. Thus, by the previous lemma, we can conclude that W = β ∪
⋃
a∈D\{d} fa(β)

is also in K(X) \ ATT(X). Finally, the triangle inequality yields

dH(W,A) ≤ dH(W,D) + dH(D,A)

<
ε

2
+
ε

2

= ε

Therefore, K(X) \ ATT(X) is dense in K(X). �
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Now we turn our attention to attractors of iterated function systems whose con-

traction maps are all injective. Iterated function systems which are composed of only

injective contractions will be called injective iterated function systems, and as we shall

soon see, attractors of such systems must satisfy a very strong topological property.

Theorem 3.8. If A ∈ ATT(X, I), where I is the set of all injective contractions

from X into X, with |A| ≥ 2, then A is perfect.

Proof. Suppose A has an isolated point x, and suppose A is the attractor of

{X;ϕ1, ϕ2, . . . , ϕn} ∈ IFS(X, I).

Note that as x is an isolated point of A, the set {x} is open in A.

Now let ω ∈ {1, 2, . . . , n}∞ be so that π(ω) = x, but then

∞⋂
i=1

ϕω|i(A) = {x}.

Thus, for some k large enough, ϕω|k(A) = {x}. Therefore ϕω|k |A is the constant

map, and hence ϕω|k is not an injective map. But ϕω|k is a finite composition of

injective maps, and is therefore injective, this is a contradiction. Therefore A can

have no isolated points, i.e., it is perfect. �

This theorem discounts a large class of sets which can be attractors of injective

iterated function systems, namely any set which is not perfect must be an element

of K(X) \ ATT(X, I). Since every perfect subset if Rn is uncountable, we have the

following corollary:

Corollary 3.9. If J is a countable subset of Rn with |J | ≥ 2, then J is not an

attractor of any injective iterated function system.

Now we shift over to finding sets which are homeomorphic to an attractor of some

iterated function system. To this end, recall the sets
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J (1) := {0} ∪

(
∞⋃
i=0

[
1

22i+1
,

1

22i

])
,

and, for n ≥ 2, we set

J (n) := J ∪
n−1⋃
m=1

Jm,

where

Jm := {22m−1} ∪
∞⋃
i=1

[
1 + 22i+1

22(i−m)+2
,

1 + 22i

22(i−m)+1

]
.

from Chapter 2. Furthermore for any non-empty compact perfect set X ⊂ R; denote

by D the set of all points in X which are degenerate connected components of X,

i.e., if x ∈ D, then the set {x} ⊂ X is a connected component of X. Also, denote by

L the set of all points in X where local connectedness fails, i.e., if x ∈ L, then there

exists an open set V such that if U is an open set satisfying x ∈ U ⊂ V , then U is

not connected. We now wish to show that if X is a compact subset of R for which

D = L and 0 ≤ |D| < ∞, then X is homeomorphic to an attractor of some iterated

function system. In fact,

Theorem 3.10. Let X ⊂ R be non-empty compact perfect set. Suppose further that

D = L and that |D| = n where n ∈ N. Then X is homeomorphic to J (n). If |D| = 0,

then X is a finite union of closed intervals.

Proof. Clearly, if D = L and |D| = 0, then X is a finite union of closed intervals,

and is therefore an attractor of some iterated function system.

We will proceed by mathematical induction to prove the remainder of the theorem.

Suppose |D| = 1. First, map the single element x ∈ D to 0. Now note that

X \{x} must be a countable disjoint union of closed intervals. These intervals can be

homeomorphically mapped to the closed intervals in J (1) in such a way as to ensure

that this map together with the map x 7→ 0 is a homeomorphism. Therefore X is

homeomorphic to J (1).
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Now assume that if |D| = n−1, then X is homeomorphic to J (n−1). We now wish

to show that if |D| = n, then X is homeomorphic to J (n). To this end, let x ∈ D

and let {Ii}i∈N be a collection of closed intervals which are all contained in some open

interval centered at x which contains no other points of D. Then

X ′ := X \

(
{x} ∪

⋃
i∈N

Ii

)
is a non-empty compact perfect subset of R with |D| = n − 1. Therefore, by our

inductive hypothesis, X ′ is homeomorphic to J (n−1). But we also have that the set(
{x} ∪

⋃
i∈N

Ii

)
is homeomorphic to J (1) which is homeomorphic to Jn−1. Thus we can combine the

homeomorphisms so that we get a homeomorphism from X to J (n). �
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CHAPTER 4

DIMENSIONAL PROPERTIES OF SETS OF ATTRACTORS

In this chapter we investigate dimensional properties of

ATT([0, 1],S, n) and ATT([0, 1],S),

where S is the collection of all contractive similarity maps mapping [0, 1] in itself, i.e.,

ϕ ∈ S if and only if

(i) ϕ : [0, 1]→ [0, 1],

(ii) ϕ is a contraction, and

(iii) ϕ(x) = mx+ b for some m, b ∈ R.

We will show that ATT([0, 1],S) is a strongly countable-dimensional space and

if it has small transfinite dimension, then its small transfinite dimension must be

strictly greater than ω0.

For this chapter, we will need to place a metric structure on the set IFS(X, C, n).

We let ρ : IFS(X, C, n)× IFS(X, C, n)→ [0,+∞) be defined as

ρ(Φ,Ψ) = max
1≤i≤n

{
sup
x∈X

d(ϕi(x), ψi(x))

}
.

Under this definition (IFS(X, C, n), ρ) is a metric space. We give IFS(X, C, n) the

topology generated by this metric.

4.1. The Small Inductive Dimension of ATT([0, 1],S, n)

Before we can discuss the small inductive dimension of ATT([0, 1],S, n) we must

first evaluate ind ATT([0, 1],S, n, ε, s). Our first lemma tells that the map which

takes a uniformly bounded iterated function system to its attractor is Lipschitz con-

tinuous. This allows us to use results about Hausdorff dimensions to easily calculate

ind ATT([0, 1],S, n, ε, s).
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Lemma 4.1. Let 0 ≤ ε < s < 1. The map P : IFS(X, C, n, ε, s)→ ATT(X, C, n, ε, s)

defined by P (Φ) = JΦ is Lipschitz continuous with Lipschitz constant (1− s)−1.

Proof. Let Φ,Ψ ∈ IFS(X, C, n, ε, s) and let ω ∈ {1, 2, . . . , n}∞. Define Dn = ||ϕω|n−

ψω|n||. Then

|ϕω|n+1(x)− ψω|n+1(x)| = |ϕω|n(ϕωn+1(x))− ψω|n(ψωn+1(x))|

≤ |ϕω|n(ϕωn+1(x))− ψω|n(ϕωn+1(x))|

+|ψω|n(ϕωn+1(x))− ψω|n(ψωn+1(x))|

≤ Dn + |ψω|n(ϕωn+1(x))− ψω|n(ψωn+1(x))|

≤ Dn + sn|ϕωn+1(x)− ψωn+1(x)|

≤ Dn + snρ(Φ,Ψ).

Therefore we have D1 = ρ(Φ,Ψ) and, by induction,

Dk ≤ ρ(Φ,Ψ)
k−1∑
j=0

sj

≤ (1− s)−1ρ(Φ,Ψ).

Therefore, |πϕ(ω)−πψ(ω)| ≤ (1− s)−1ρ(Φ,Ψ). Thus, dH(JΦ,JΨ) ≤ (1− s)−1ρ(Φ,Ψ).

�

Recall from Chapter 1 that the Hausdorff dimension of a space is greater than

or equal to the Hausdorff dimension of any Lipschitz image of that space, also recall

that the small inductive dimension of a space is less than or equal to its Hausdorff

dimension. Using these two results, we are able to prove

Lemma 4.2. For any 0 ≤ ε < s < 1, we have ind ATT([0, 1],S, n, ε, s) = 2n.

Proof. First note that

ind ATT([0, 1],S, n, ε, s) ≤ dimH ATT([0, 1],S, n, ε, s)
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≤ dimH IFS([0, 1],S, n, ε, s)

≤ 2n,

where the last inequality is true because IFS([0, 1],S, n, ε, s) is homeomorphic to a

subset of R2n.

Now let ∆1,∆2, . . . ,∆n be pairwise disjoint closed subintervals of [0, 1] so that

sup ∆k < inf ∆k+1 and let IFS∗ be the subset of IFS([0, 1],S, n, ε, s) so that if

Φ = {[0, 1];ϕ1, ϕ2, . . . , ϕn} ∈ IFS∗,

then ϕi(x) = mix+ bi where

(i) mi > 0 for each 1 ≤ i ≤ n,

(ii) bi > 0 for each 1 ≤ i ≤ n, and

(iii) ϕi(X) ⊂ ∆i for 1 ≤ i ≤ n,

also let J ∈ ATT∗ if and only if there exists Φ ∈ IFS∗ so that Φ̂(J ) = J .

We now show that P |IFS∗ : IFS∗ → ATT∗ is a bijection, and therefore we may

conclude that IFS∗ and ATT∗ are homeomorphic since IFS∗ is compact. First of all,

P |IFS∗ is clearly a surjection, thus it only remains to show that it is injective. To this

end, let Φ = {[0, 1], ϕ1, . . . , ϕn},Ψ = {[0, 1];ψ1, . . . , ψn} ∈ IFS∗ with Φ 6= Ψ. For each

1 ≤ i ≤ n, consider the sets

{inf ϕi(JΦ), supϕi(JΦ)} and {inf ψi(JΨ), supψi(JΨ)}.

It is clear that the fixed point of ϕ1 is equal to inf ϕ1(JΦ) and the fixed point of

ϕn is equal to supϕn(JΦ). Similar conclusions can be made about about the fixed

points for ψ1 and ψn. Note that if inf ϕ1(JΦ) 6= inf ψi(JΨ) then JΦ 6= JΨ, also if

supϕn(JΦ) 6= supψn(JΨ) then JΦ 6= JΨ.

Let x1 be the fixed point of ϕ1 and xn be the fixed point of ϕn, and note that

inf ϕi(JΦ) = ϕi(x1), supϕi(JΦ) = ϕi(xn). Letting y1 be the fixed point of ψ1 and yn

be the fixed point of ψn, similar conclusions can be drawn for ψi. Now suppose, by
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way of contradiction, that JΦ = JΨ. Therefore it must be the case that

{x1, ϕ2(x1), . . . , ϕn(x1)} = {y1, ψ2(y1), . . . , ψn(yn)},

and

{ϕ1(xn), ϕ2(xn), . . . , xn} = {ψ1(yn), ψ2(yn), . . . , yn}.

Therefore x1 = y1, xn = yn, ϕi(x1) = ψi(yi), and ϕi(xn) = ϕi(xn) for each 1 ≤ i ≤ n.

This can easily be seen from property (iii) from above. However, since each ϕi and

ψi is of the form mx+ b, we conclude that ϕi = ψi for each 1 ≤ i ≤ n, a contradiction

as Φ 6= Ψ. Therefore P |ATT∗ is injective.

Since we now have that IFS∗ is homeomorphic with ATT∗, we have ind ATT∗ = 2n.

Thus we conclude that 2n ≤ ind ATT([0, 1],S, n, ε, s) ≤ 2n. Therefore

ind ATT([0, 1],S, n, ε, s) = 2n.

�

Before we prove that ind ATT([0, 1],S, n) = 2n, we must state a short lemma and

then a theorem from the theory of inductive dimensions. The proof of the lemma

is omitted here, however the proof of the theorem will be given. The proof of the

following lemma and theorem can be found in [2].

Lemma 4.3. If a separable metric space X can be represented as the union of two

subspaces Y and Z such that indY ≤ n− 1 and indZ ≤ 0, then indX ≤ n.

Theorem 4.4 (The Sum Theorem). If a separable metric space X can be written

as the union of a sequence F1, F2, F3, . . . of closed subspaces such that indFi ≤ n for

i = 1, 2, . . ., then indX ≤ n.

Proof. We will prove this theorem by induction on n. The proof that this theorem

is true when n = 0 is a result from general topology and can be found in [7]. Now

assume that the theorem holds for spaces whose dimension is less than n, and consider
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a space X =
⋃∞
i=1 Fi, where each Fi is closed and indFi ≤ n for n ≥ 1. Now, by

theorem 1.6, for i = 1, 2, . . . choose a countable base Bi for the space Fi such that

ind FrU ≤ n − 1 for every U ∈ B, where Fr denotes the boundary operator in the

space Fi. By the inductive hypothesis, the subspace

Y =
⋃{

FrU : U ∈
∞⋃
i=1

Bi

}

of X satisfies the inequality indY ≤ n−1. By the definition of a 0-dimensional space,

we have that the space Zi = Fi \ Y satisfies the inequality indZi ≤ 0; hence by the

case of this theorem for n = 0, we have the subspace Z =
⋃∞
i=1 Zi = X \ Y of X also

satisfies the inequality indZ ≤ 0, since Zi = Fi \ Y = Fi ∩ Z which is closed in Z.

Thus by the previous lemma, we have indX ≤ n. �

Theorem 4.5. For any n ∈ N, we have

ind ATT([0, 1],S, n) = 2n.

Proof. Since

ATT([0, 1],S, n) =
∞⋃
k=3

ATT

(
[0, 1],S, n, 0, 1− 1

k

)

is a countable union of closed subsets each with small inductive dimension 2n, we

conclude that ind ATT([0, 1],S, n) ≤ 2n by the Sum Theorem. However, since

ATT

(
[0, 1],S, n, 0, 1− 1

k

)
⊂ ATT([0, 1],S, n),

we have that

ind ATT([0, 1],S, n) ≥ ind ATT

(
[0, 1],S, n, 0, 1− 1

k

)
= 2n

for all k ≥ 3. Therefore ind ATT([0, 1],S, n) = 2n. �
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4.2. The Small Transfinite Inductive Dimension of ATT([0, 1],S)

Since

ATT([0, 1],S) =
⋃
n≥1

ATT([0, 1],S, n),

we see that ATT([0, 1],S) is a countable union of closed sets each with finite small

inductive dimension, and therefore ATT([0, 1],S) is strongly countable-dimensional.

However, this does not imply that ATT([0, 1],S) has small transfinite dimension. We

now wish to show that if ATT([0, 1],S) has small transfinite dimension, then

trind ATT([0, 1],S) > ω0.

An interesting question that arises from this is: If ATT([0, 1],S) has small transfinite

dimension, then what is trind ATT([0, 1],S)?

The Mazurkiewicz theorem for Rn states that any set K ⊂ Rn which satisfies the

inequality indK ≤ n−2 can not cut Rn. This result is well known and can be found,

for example, in [2]. The following lemma and Theorem generalize the Mazurkiewicz

theorem to n-mainfolds.

Lemma 4.6. Let Mn be an n-manifold. If K ⊂ Mn satisfies the inequality indK ≤

n− 1, then K has empty interior.

Proof. Suppose IntK 6= ∅. Thus there exists x ∈ K and an open set U so that

x ∈ U ⊂ K. But then there exists an open set V so that V is homeomorphic to Rn

and x ∈ V ⊂ U ⊂ K. Therefore indK ≥ indV = n, and hence indK = n. �

Theorem 4.7 (Mazurkiewicz Theorem for n-manifolds). Let Mn ba an n-manifold

and let G be a region in Mn. If K ⊂ G satisfies the inequality indK ≤ n − 2, then

K does not cut G.

Proof. Let x, y ∈ G \K, where K ⊂Mn satisfies indK ≤ n− 2. Let R1, R2, . . . , R`

be a sequence of open sets in MN satisfying

(i) Ri is homeomorphic to Rn for each i.
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(ii) x ∈ R1 and y ∈ R`.

(iii) Ri ∩Ri+1 6= ∅ for i = 1, 2, . . . , `− 1.

(iv) Ri ⊂ G for each i.

Such a sequence is possible as G is connected and the open subsets of Mn which are

homeomorphic to Rn form a basis for the topology on Mn.

By the previous lemma, K has an empty interior. Thus there exists a point

zi ∈ (Ri ∩Ri+1) \K,

for i = 1, 2, . . . , ` − 1. For convenience, let z0 = x and z` = y. Now, by the

Mazurkiewicz Theorem for Rn, there is a continuum Ci ⊂ Ri \K which contains zi−1

and zi. Thus the union

C =
⋃̀
i=1

Ci ⊂ G \K

is a continuum which contains x and y. �

Theorem 4.8. If ATT([0, 1],S) has small transfinite dimension, then

trind ATT([0, 1],S) > ω0.

Proof. Suppose ATT([0, 1],S) has small transfinite dimension and let

{[0, 1];ϕ1, ϕ2} ∈ IFS∗,

and note that the iterated function system {[0, 1];ϕω : ω ∈ {1, 2}k} is also in IFS∗

and these two iterated functions systems have the same attractor.

Now let ω ∈ {1, 2}k and let t : {1, 2}k → [0, 1] and let Φt ∈ IFS∗ be defined as

Φt = {[0, 1]; t(ω)ϕω : ω ∈ {1, 2}k},

and note that the collection of iterated function systems {Φt}
t∈R{1,2}k is a 2k-manifold,

and hence the collection of attractors of these iterated function systems would also

be a 2k-manifold. By letting t1 ≡ 1 and t0 ≡ 0, we see that our original iterated func-

tion system and the iterated function system whose contractions are all equivalently
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0 belong to the above collection of iterated function systems. Hence, our original

attractor and {0} are among the attractors of this class of iterated function systems.

Hence any open set containing our original attractor but not containing {0} would

cut the space of attractors and by the Mazurkiewicz Theorem for m-manifolds, the

inductive dimension of this open set would have to be greater than 2k − 1. There-

fore, for every k, we have found an open set whose boundary has small transfinite

inductive dimension which is greater than 2k−1, and therefore we may conclude that

trind ATT([0, 1],S) > ω0. �

4.3. Future Research

In this dissertation we discussed topological properties of sets of attractors and

non-attractors. We also discussed dimensional properties of the sets

ATT([0, 1],S, n)

and

ATT([0, 1],S).

In the future we would like to investigate the same topological and dimensional prop-

erties for infinite iterated function systems.

Remaining in the field of finite iterated function systems, we would like to give

a classification of which countable subsets of Rn are elements of ATT(X) and which

are in K(X) \ ATT(X), and we would like to solve contecture 2.11.

Another issue within finite iterated function systems, we would like address is

Conjecture 4.9. If J ⊂ Rn is countable and has infinite Cantor-Bendixson rank,

then J is not an attractor of any iterated function system.

If this conjecture turns out to be true, then we would also like to solve the following

problem
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Problem 4.10. What is the least ordinal α so that if J ⊂ Rn is countable and has

Cantor-Bedixson rank greater than or equal to α, then J is not an attractor of any

iterated function system.
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