Inadequate thermal refuge constrains landscape habitability for a grassland bird species

PDF Version Also Available for Download.

Description

This article uses the northern bobwhite (Colinus virginianus) as a model species for studying how microclimates serve as refuge against severe weather conditions.

Physical Description

17 p.

Creation Information

Tomecek, John M.; Pierce, Brian L.; Reyna, Kelly S. & Peterson, Markus J. August 18, 2017.

Context

This article is part of the collection entitled: UNT Scholarly Works and was provided by UNT College of Arts and Sciences to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

  • PeerJ
    Place of Publication: San Diego, California

Provided By

UNT College of Arts and Sciences

The UNT College of Arts and Sciences educates students in traditional liberal arts, performing arts, sciences, professional, and technical academic programs. In addition to its departments, the college includes academic centers, institutes, programs, and offices providing diverse courses of study.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This article uses the northern bobwhite (Colinus virginianus) as a model species for studying how microclimates serve as refuge against severe weather conditions.

Physical Description

17 p.

Notes

Abstract: Ecologists have long recognized the influence that environmental conditions have on abundance and range extent of animal species. We used the northern bobwhite (Colinus virginianus; hereafter bobwhite) as a model species for studying how microclimates serve as refuge against severe weather conditions. This species serves as an indicator or umbrella species for other sensitive ground-nesting, grassland obligate species. We conducted a mensurative field experiment in the rolling plains of Texas, USA, a semi-arid ecosystem on the southwestern periphery of bobwhite range, to determine whether native bunch grasses, apparently suitable for bobwhite nesting, could reduce ambient temperature below levels harmful for eggs. During the nesting season, we compared temperature and relative humidity readings at daily heat maxima (i.e., the 3 h during each day with highest temperatures) during the nesting season over the course of two years at 63 suitable nest sites paired with 63 random locations (n = 126) using two sensors at ∼10 and ∼60 cm above ground level. Mean temperature at nest height was 2.3% cooler at nest sites (35.99 °C ± 0.07 SE) compared to random locations (36.81 °C ± 0.07 SE); at ambient height, nest sites were slightly cooler (32.78 °C ± 0.06 SE) than random location (32.99 °C ± 0.06 SE). Mean relative humidity at nest sites was greater at nest height (34.53% ± 0.112 SE) and ambient height (36.22% ± 0.10 SE) compared to random locations at nest (33.35% ± 0.12 SE) and ambient height (35.75% ± 0.10 SE). Based on these results, cover at sites that appear visually suitable for nesting by bobwhites and other ground nesting birds provided adequate thermal refuge in the rolling plains by maintaining cooler, moister microclimates than surrounding non-nesting locations. Post-hoc analyses of data revealed that habitat conditions surrounding suitable nest sites strongly influenced thermal suitability of the substrate. Given that eggs of bobwhites and probably other species would experience lethal temperatures without these thermal refuges in the context of proper habitat condition, nesting vegetation is a critical component of niche space for bobwhites and other ground nesting birds in semi-arid regions. Many contemporary land uses, however, degrade or destroy bunch grasses and grassland systems, and thus decrease landscape inhabitability. Conservationists working with obligate grassland species that require bunch grasses in semi-arid regions should develop land management strategies that maximize the availability of these thermal refuges across space and time.

Source

  • PeerJ, 2017. San Diego, California: PeerJ

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

Publication Information

  • Publication Title: PeerJ
  • Volume: 5
  • Pages: 1-17
  • Peer Reviewed: Yes

Collections

This article is part of the following collection of related materials.

UNT Scholarly Works

Materials from the UNT community's research, creative, and scholarly activities and UNT's Open Access Repository. Access to some items in this collection may be restricted.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Submitted Date

  • April 11, 2017

Accepted Date

  • July 28, 2017

Creation Date

  • August 18, 2017

Added to The UNT Digital Library

  • Aug. 29, 2017, 9:38 a.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Tomecek, John M.; Pierce, Brian L.; Reyna, Kelly S. & Peterson, Markus J. Inadequate thermal refuge constrains landscape habitability for a grassland bird species, article, August 18, 2017; San Diego, California. (digital.library.unt.edu/ark:/67531/metadc990999/: accessed April 22, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT College of Arts and Sciences.