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The problem of computing the minimum distance between two convex hulls has 

applications to many areas including robotics, computer graphics and path planning. 

Moreover, determining the minimum distance between two convex hulls plays a significant 

role in support vector machines (SVM). In this study, a new algorithm for finding the 

minimum distance between two convex hulls is proposed and investigated. A convergence of 

the algorithm is proved and applicability of the algorithm to support vector machines is 

demostrated. The performance of the new algorithm is compared with the performance of one 

of the most popular algorithms, the sequential minimal optimization (SMO) method. The new 

algorithm is simple to understand, easy to implement, and can be more efficient than the 

SMO method for many SVM problems. 
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CHAPTER 1

INTRODUCTION

1.1. Introduction and Discussion of the Problem

Finding the minimum distance between two convex hulls is a popular research topic with

important real-world applications. The fields of robotics, animation, computer graphics

and path planning all use this distance calculation. For example, in robotics, the distance

between two convex hulls is calculated to determine the path of the robot so that it can

avoid collisions.

However, computing the minimum distance between two convex hulls plays its most sig-

nificant role in support vector machines (SVM) [6], [7], [10], [15]. SVM is a very useful

classification tool. SVM gets its popularity because of its impressive performance in many

real world problems. Many fast iterative methods are introduced to solve the SVM prob-

lems. The popular sequential minimal optimization (SMO) method is one of them. There are

also many algorithms for finding the minimum distance between two convex hulls, including

the Gilbert algorithm and Mitchell-Dem’yanov-Malozemov (MDM) algorithm. These two

algorithms are the most basic algorithms for solving the SVM problems geometrically. Fur-

thermore there have been many published papers based on these two algorithms. Keerthi’s

paper [2] is an important example of this. In this work, he uses these two algorithms to

produce a new hybrid algorithm, and he shows that the SVM problems can be transformed

by computing the minimum distance between two convex hulls.

Definition 1.1

Let {x1, ..., xm} be a set of vectors in Rn. Then the convex combination of {x1, ..., xm} is

given by

(1)
∑

i

αixi where
∑

i

αi = 1 and αi ≥ 0
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Definition 1.2

For a given set X = {x1, ..., xm}, coX is the convex hull of X. coX is the set of all convex

combinations of elements of X.

(2) coX = {
∑

i

αixi|
∑

i

αi = 1, αi ≥ 0}

Gilbert’s algorithm and the MDM algorithm are easy to understand and implement. How-

ever, these two algorithms are designed for finding the nearest point to the origin from the

given convex hull. Let X = {x1, ..., xm} and Y = {y1, ..., ys} be finite point sets in Rn. U

and V denote convex hulls that are generated by X and Y , respectively.

U = {u =
∑

i

αixi|
∑

i

αi = 1, αi ≥ 0}

V = {v =
∑

j

βjyj|
∑

j

βj = 1, βj ≥ 0}

Then the Gilbert and the MDM algorithms find the solution for the following problem :

min ‖u‖

subject to u =
∑

i

αixi ,
∑
i=1

αi = 1, αi ≥ 0

This problem is called the minimal norm problem (MNP). The solution for the above

MNP is the nearest point to the origin from U . For x, y ∈ Rn, the Euclidean norm can

be defined as follows. ‖x‖ =
√

(x, x) where the inner product is defined by (x, y) = xty =

x1y1 + ... + xnyn. The minimum distance between two convex hulls can be found by solving

an optimization problem. This problem is called the nearest point problem (NPP). A NPP

problem can be seen in Figure 1.1. By using Gilbert’s algorithm or the MDM algorithm, a

user of these algorithms can find the minimum distance between two convex hulls by finding

the nearest point to the origin from the convex hull that is generated by the difference of

vectors.

min ‖u− v‖ Nearest Point Problem (NPP)
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subject to u =
m∑

i=1

αixi,

m∑
i=1

i

αi = 1, αi ≥ 0

v =
s∑

j=1

βjyj,

s∑
j=1

βj = 1, βj ≥ 0

Figure 1.1. Nearest Point Problem

Set Z = {xi − yj|xi ∈ X and yj ∈ Y }. Let W = coZ.

W = {w =
∑

l

γlzl |
∑

l

γl = 1, γl ≥ 0}

Then the minimum distance between two convex hulls can be found by solving the following

MNP.

min ‖w‖

subject to w =
∑

l

γlzl

∑

l=1

γl = 1 , γl ≥ 0

However, computing the minimum distance between two convex hulls by using such

algorithms requires big memory storage, because the convex hull W has m× s vertices.

For example, let X = {x1, x2} and Y = {y1, y2, y3},

3



then Z = X − Y = {x1 − y1, x1 − y2, x1 − y3, x2 − y1, x2 − y2, x2 − y3}. This means that if

one set has 1000 points and the other set has 1000 points, then 1,000,000 points will be

used in the Gilbert or the MDM method. If these methods are used to find the minimum

distance between two convex hulls, the calculation would be too expensive. Thus, a direct

method without forming the difference of vectors is desired. This dissertation study presents

a direct method of computing the minimum distance between two convex hulls. Chapter 2

proposes a new algorithm for finding the solution for NPP. Convergence is proved in chapter

2. Chapter 3 introduces Support Vector Machines (SVM). Chapter 4 discusses solving SVM

by using the new algorithm. Chapter 5 shows the experiment results comparing SMO and

the new algorithm. Finally, the conclusion and the future work for the new algorithm is

discussed in chapter 6.

1.2. Previous Works

In this section, two important iterative algorithms for finding the nearest point to the ori-

gin from a given convex hull are discussed beginning with Gilbert’s algorithm [5]. Gilbert’s

algorithm was the first algorithm developed for finding the minimum distance to the origin

from a convex hull. Gilbert’s algorithm is a geometric method used to find the minimum

distance. Additionally, Gilbert’s algorithm can be viewed geometrically. Gilbert’s Algorithm

can be explained by using convex hull representation.

First, let X = {x1, ..., xm} and U = {u =
∑

i

αixi|
∑

i

αi = 1, αi ≥ 0}.

Definition 1.3

For u ∈ U , define

(3) δMDM(u) = (u, u)−min(xi, u)

Theorem 1 in [1] states that δMDM(u) = 0 if and only if u is the nearest to the origin.

Gilbert’s algorithm
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Step 1 Choose uk ∈ U.

Step 2 Find (xk, uk) = min(xi, uk).

Step 3 If δMDM(uk) = 0 then stop. Otherwise, find uk+1 where uk+1 is the point of the

line segment joining uk and xk that has the minimum norm.

Step 4 Go to Step 2.

In Step 3, the minimum norm of line segment of uk and xk can be found in the following

way. The minimum norm of line segment of uk and xk is

uk if (−uk, xk − uk) ≤ 0

xk if ‖b− a‖2 ≤ (−uk, xk − uk)

uk + (−uk,xk−uk)

‖b−a‖2 otherwise

Gilbert’s Algorithm tends to converge fast at the beginning, but it is very slow as it

approaches the solution, because Gilbert’s Algorithm remains zigzagging until it finds the

solution. Using the fast convergence at the beginning, Keerthi [2] used it when he made a

hybrid algorithm. After Gilbert’s algorithm, Mitchell-Dem’yanov-Malozemov (MDM) sug-

gested a geometric algorithm to find the nearest point to the origin. Like Gilbert’s algorithm,

the MDM algorithm is an iterative method to find the nearest point from the origin. Let

X and U be the same as the previous page. Let u∗ be the nearest to the origin. Define

(x′, u) = max
αi>0

(xi, u) where α[i is the coefficient of xi in the convex hull representation and

(x, u) = min(xi, u).

Definition 1.4 Define

(4) ∆MDM(u) = (x′, u)− (x, u)

Note that

(5) (x′, u)− (x, u) = (x′ − x, u)

Lemma 2 in [1] states that α′∆MDM(u) ≤ δMDM(u) ≤ ∆MDM(u) where α′ is the coefficient

of x′ in the convex hull representation.
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Then by theorem 1 and lemma 2 in [1], u is the nearest point to the origin if and only if

4MDM(u) = 0. Then the algorithm for finding u∗ is the following.

The MDM Algorithm

Step 1 Choose uk ∈ U

Step 2 Find x′k and xk

Step 3 Set uk(t) = uk + tα′k(xk − x′k) where α′ has the same index of x′k and t ∈ [0, 1]

Step 4 Set uk+1 = uk + tkα
′
k(xk − x′k) where (uk(tk), uk(tk)) = min

t∈[0,1]
(uk(t), uk(t))

Step 5 If ∆MDM,k(uk) = (x′k − xk, uk) = 0 then stop. Otherwise go to Step 2.

The convergence was proved in [1]. This algorithm is also very simple to implement. In

this algorithm, uk needs to stay in the convex hull. In order to be inside of the convex hull,

the algorithm adds tα′kx and subtracts tα′kx
′
k to the current point so that the sum of αi is

1. Here, it may take some time to comprehend why only a nonzero α is used while trying to

find x′ in the convex hull representation. The MDM algorithm has a reason to use x′ when

the current point uk moves. If max(xi, u) were used instead of max
αi>0

(xi, u), uk may converge

slowly or may not converge to u∗. tkα
′
k will decide how far the current point can move and

xk−x′k will give the direction for uk. Note that in each iteration, uk updates two coefficients

in the representation. By taking this method, four or more coefficients are updated at a

time. The method will be shown in the Appendix A.

6



CHAPTER 2

A NEW ALGORITHM FOR FINDING THE MINIMUM DISTANCE BETWEEN TWO

CONVEX HULLS

2.1. A New Algorithm for Finding the Minimum Distance of Two Convex Hulls

This chapter introduces a new algorithm for finding the minimum distance of two convex

hulls and a proof for its convergence of the algorithm. This algorithm is an iterative method

for computing the minimum distance between two convex hulls. Moreover, this algorithm

has a good application to SVM.

Let X, Y , Z, U , V and W be the same as in chapter 1. As mentioned in Chapter 1,

finding the nearest point to the origin of W is equivalent to solving NPP. Let w∗ be the

nearest point to the origin and u∗ − v∗ be the solution for NPP, then w∗ = u∗ − v∗.

Note that for any w ∈ W,

w = u− v =
∑

i

αixi −
∑

j

βjyj

δMDM(w) = (w, w)−min
l

(zl, w) = (w, w)−min
i,j

(xi − yj, w)

∆MDM(w) = max
γl>0

(zl, w)−min
l

(zl, w) = max
αi>0,βj>0

(xi − yj, w)−min
i,j

(xi − yj, w)

Mitchell-Dem’yanov-Malozemov defined ∆MDM(w) and δMDM in their paper [1].

Definition 2.1

For u ∈ U and v ∈ V , define

(6) ∆x(u− v) = max
αi>0

(xi, u− v)−min
i

(xi, u− v)

(7) ∆y(v − u) = max
βj>0

(yj, v − u)−min
j

(yj, v − u)

Actually, ∆MDM(u−v) = ∆x(u−v)+∆y(v−u) in order to show this. Lemma 2.1 is needed.
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Lemma 2.1

(8) max(xi − yj, u− v) = max(xi, u− v)−min(yj, u− v)

(9) min(xi − yj, u− v) = min(xi, u− v)−max(yj, u− v)

(10) max(yj, u− v) = −min(yj, v − u)

(Proof) (8) can be shown by inequalities (≤). Let (xM − yM , u− v) = max(xi − yj, u− v),

then (xM − yM , u− v) = (xM , u− v)− (yM , u− v).

(xM , u− v) ≤ max(xi, u− v) and (yM , u− v) ≥ min(yj, u− v).

Thus (xM − yM , u− v) = (xM , u− v)− (yM , u− v) ≤ max(xi, u− v)−min(yj, u− v).

=⇒ max(xi − yj, u− v) ≤ max(xi, u− v)−min(yj, u− v).

(≥) Let (xm, u− v) = max(xi, u− v) and (ym, u− v) = min(yj, u− v),

then (xm, u− v)− (ym, u− v) = (xm − ym, u− v).

max(xi − yj, u− v) ≥ (xm − ym, u− v)

=⇒ max(xi − yj, u− v) ≥ max(xi, u− v)−min(yj, u− v)

Proof of (9) is similar to (8).

Proof of (10) can be shown by inequalities.¥

Let (yM , u− v) = max(yj, u− v), then (yM , u− v) = −(yM , v − u).

=⇒ max(yj, u− v) = −(yM , v − u) ≤ −min(yj, v − u)

Let (ymin, v − u) = min(yj, v − u), then (ymin, v − u) = −(ymin, u− v).

=⇒ −min(yj, v − u) = (ymin, u− v) ≤ max(yj, u− v).¥

Lemma 2.2

(11) ∆MDM(u− v) = ∆x(u− v) + ∆y(v − u)

(Proof) Since u− v ∈ W,

∆MDM(u− v) = max
αi>0,βj>0

(xi − yj, u− v)−min
i,j

(xi − yj, u− v)

= max
αi>0

(xi, u− v)−min
βj>0

(yj, u− v)−min
i

(xi, u− v) + max
j

(yj, u− v)

= max
αi>0

(xi, u− v)−min
i

(xi, u− v)−min
βj>0

(yj, u− v) + max
j

(yj, u− v)

8



= max
αi>0

(xi, u− v)−min
i

(xi, u− v) + max
βj>0

(yj, v − u)−min
j

(yj, v − u)

= ∆x(u− v) + ∆y(v − u).¥

Using (8), (9) and (10), lemma 2.2 was shown. A new algorithm for finding the minimum

distance between two convex hulls uses the iterative method. In the new algorithm, the

following notations are used.

Let (x′k, uk − vk) = max
αik

>0
(xik , uk − vk) and (xk, uk − vk) = min

i
(xik , uk − vk).

(12) ∆x(uk − vk) = (x′k − xk, uk − vk)

(13) ∆y(vk − uk) = (y′k − yk, vk − uk)

Algorithm 2.1

Step 1 Choose uk ∈ U and vk ∈ V

where uk =
∑
i

αikxi and vk =
∑
j

βjk
yj.

Step 2 Find xik and x′ik

where (xik , uk − vk) = min
i

(xik , uk − vk) and (x′ik , uk − vk) = max
αik

>0
(xik , uk − vk).

Step 3 uk+1 = uk + tkαi′k(xik − xi′k)

where 0 ≤ tk ≤ 1 and tk = min{1, ∆x(uk−vk)

αi′
∥∥∥xik

−x′ik

∥∥∥
2}.

Note tk is defined by

(uk(tk)− vk, uk(tk)− vk) = min
t∈[0,1]

(uk(t)− vk, uk(t)− vk)

where uk(t) = uk + tαi′k(xik − x′ik) and

(uk(t)− vk, uk(t)− vk) = αi′k

∥∥xik − x′ik
∥∥2

t2 − 2αi′k∆x(uk − vk)t + (uk − vk, uk − vk).

Step 4 Find yjk
and y′jk

where (yjk
, vk − uk+1) = min

j
(yjk

, vk − uk+1)

and (y′jk
, vk − uk+1) = max

βjk
>0

(yjk
, vk − uk+1).

Step 5 vk+1 = vk + t′kβj′k(yjk
− y′jk

)

where 0 ≤ t′k ≤ 1 and t′k = min{1, ∆y(vk−uk+1)

βj′
k

∥∥∥yjk
−y′jk

∥∥∥
2}.

Note t′k is defined by
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(vk(t
′
k)− uk+1, vk(t

′
k)− uk+1) = min

t′∈[0,1]
(vk(t

′)− uk+1, vk(t
′)− uk+1)

where vk(t
′) = vk + t′βj′k(yjk

− y′jk
) and

(vk(t
′)−uk+1, vk(t

′)−uk+1) = βj′k

∥∥yjk
− y′jk

∥∥2
t′2−2t′βj′k∆y(vk−uk+1)+(vk−uk+1, vk−uk+1).

Step 6. Iterating this way, a sequence {uk − vk} is obtained such that ‖uk+1 − vk+1‖ ≤
‖uk − vk‖ since ‖uk+1 − vk‖ ≤ ‖uk − vk‖ and ‖uk+1 − vk+1‖ ≤ ‖uk+1 − vk‖.

Figure 2.1. Algorithm 2.1

Figure 2.1 describes how to find new u and new v. First find new u by using old u, old

v, then find new v by using old v and new u. Iterated this way, this algorithm finds the

solution u∗ − v∗ for NPP.
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2.2. Convergence for Algorithm 2.1

Before proving the convergence for Algorithm 2.1, let’s define the following.

Definition 2.2

For u ∈ U and v ∈ V ,

define

(14) δx(u− v) = (u, u− v)−min
i

(xi, u− v)

(15) δy(v − u) = (v, v − u)−min
j

(yj, v − u)

Lemma 2.3 Show that ‖u− v − (u∗ − v∗)‖ ≤ √
δx(u− v) + δy(v − u).

(Proof) By lemma 2 in [1] states that for any w ∈ W, ‖w − w∗‖ ≤
√

δMDM(w)

Note that since u− v ∈ W,

δMDM(u− v) = (u− v, u− v)−min
i,j

(xi − yj, u− v)

= (u, u− v)− (v, u− v)−min
i

(xi, u− v)−min
j

(yj, v − u)

= (u, u− v)−min
i

(xi, u− v) + (v, v − u)−min
j

(yj, v − u)

= δx(u− v) + δy(v − u).

Then ‖u− v − (u∗ − v∗)‖ ≤
√

δMDM(u− v) =
√

δx(u− v) + δy(v − u). ¥

Lemma 2.4 Suppose uk ∈ U , vk ∈ V, k = 1, 2... is a sequence of points such that

‖uk+1 − vk+1‖ ≤ ‖uk − vk‖ and there is a subsequence such that

δx(ukj
− vkj

) → 0 and δy(vkj
− ukj

) → 0 then uk − vk → u∗ − v∗ = w∗.

(Proof) Since ‖uk − vk‖ is a nonincreasing sequence bounded below, it has a limit

‖uk − vk‖ → µ.

By lemma 2.3,
∥∥ukj

− vkj
− (u∗ − v∗)

∥∥ → 0 since δx(ukj
− vkj

) → 0 and δy(vkj
− ukj

) → 0.

This implies
∥∥ukj

− vkj

∥∥ → ‖u∗ − v∗‖ = ‖w∗‖ .

Hence ‖uk − vk‖ → ‖u∗ − v∗‖ = ‖w∗‖ .

Any convergent subsequence of uk−vk must converge to w∗ = u∗−v∗ because of unique-

ness of w∗ = u∗ − v∗. ¥
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Lemma 2.3 and 2.4 are important lemmas to prove the convergence of Algorithm 2.1. After

the following theorem, support vectors will be defined. Support vectors are significant con-

cept in this dissertation and support vector machines (SVM).

Theorem 1 Show

(16) min
i

(xi, u
∗ − v∗) = (u∗, u∗ − v∗)

(17) min
j

(yj, v
∗ − u∗) = (v∗, v∗ − u∗)

(proof) Let u∗ =
∑
i

α∗i x
∗
i and v∗ =

∑
j

β∗j y
∗
j .

Note min
i

(xi − v∗, u∗ − v∗) ≥ (u∗ − v∗, u∗ − v∗)

and min
j

(yj − u∗, v∗ − u∗) ≥ (v∗ − u∗, v∗ − u∗).

Then min
i

(xi, u
∗ − v∗)− (v∗, u∗ − v∗) ≥ (u∗, u∗ − v∗)− (v∗, u∗ − v∗).

=⇒ min
i

(xi, u
∗ − v∗) ≥ (u∗, u∗ − v∗) = (

∑
i

α∗i x
∗
i , u

∗ − v∗)

but min
i

(xi, u
∗ − v∗) ≤ ∑

i

α∗i (x
∗
i , u

∗ − v∗).

Thus min
i

(xi, u
∗ − v∗) = (u∗, u∗ − v∗).

Also min
j

(yj, v
∗ − u∗)− (u∗, v∗ − u∗) ≥ (v∗, v∗ − u∗)− (u∗, v∗ − u∗).

=⇒ min
j

(yj, v
∗ − u∗) ≥ (v∗, v∗ − u∗) = (

∑
j

β∗j y
∗
j , v

∗ − u∗)

but min
j

(yj, v
∗ − u∗) ≤ ∑

j

β∗j (y
∗
j , v

∗ − u∗).

Thus min
j

(yj, v
∗ − u∗) = (v∗, v∗ − u∗). ¥

Definition 2.3

Let the solution of NPP be u∗ − v∗ then those x∗i ’s corresponding to α∗i > 0 and y∗j ’s

corresponding to β∗j > 0 are called support vectors.

As seen in Figure 2.1, u∗ and v∗ can be represented by support vectors x1, x2, y1 and y6.

Subtract (v∗, u∗ − v∗) on both sides from (16), then

min
i

(xi − v∗, u∗ − v∗) = (u∗ − v∗, u∗ − v∗).

Similarly from (17),

min
j

(yj − u∗, v∗ − u∗) = (v∗ − u∗, v∗ − u∗).

12



Figure 2.2. Support Vectors

Lemma 2.5 For any vector u− v, u ∈ U , v ∈ V

(18) αi′∆x(u− v) ≤ δx(u− v) ≤ ∆x(u− v)

where αi′ > 0 and (xi′ , u− v) = max
αi>0

(xi, u− v).

(19) βj′∆y(v − u) ≤ δy(v − u) ≤ ∆y(v − u)

where βj′ > 0 and (yj′ , v − v) = max
βj>0

(yj, v − u).

(Proof of (18)) Let u =
m∑

i=1

αixi, then

(u− v, u− v) =
m∑

i=1

αi(xi − v, u− v) ≤ max
αi>0

(xi − v, u− v).

⇒ δx(u− v) ≤ ∆x(u− v)

13



Let (xi′′ , u− v) = min
i

(xi, u− v) and (xi′ , u− v) = max
αi>0

(xi, u− v)

Then ∆x(u− v) = (xi′ − xi′′ , u− v). Set A = (α1, ..., αm) where

αi = αi if i 6= i′, i′′

αi = 0 if i = i′

αi = αi′ + αi′′ if i = i′′.

u = u + αi′(xi′′ − xi′)

(u− v, u− v) = (u + αi′(xi′′ − xi′)− v, u− v)

= (u, u− v) + αi′((xi′′ − xi′)− v, u− v)

= (u, u)− (u, v) + αi′((xi′′ − xi′), u− v)− (v, u− v)

= (u, u)− (u, v)− αi′∆x(u− v)− (v, u) + (v, v)

= (u− v, u− v)− αi′∆x(u− v).

so

δx(u− v) = (u− v, u− v)−min
i

(xi − v, u− v) ≥ (u− v, u− v)− (u− v, u− v).

But the right hand side of inequity is equal to

(u− v, u− v)− (u− v, u− v) + αi′∆x(u− v).

⇒ δx(u− v) ≥ αi′∆x(u− v)

Proof of (19) is similar to the proof of (18). ¥

Lemma 2.6

(20) lim
k→∞

α′k∆x(uk − vk) = 0

(21) lim
k→∞

β′k∆y(vk − uk) = 0

14



(Proof of (20)) First, observe that uk(t) = uk + tα′k(xk − x′k), vk(t
′) = vk + t′β′k(yk − y′k) and

‖uk+1 − vk+1‖ ≤ ‖uk − vk‖.
Note that

(uk(t)− vk, uk(t)− vk) = (uk − vk, uk − vk)− 2tα′i′∆x(uk − vk) + t2(α′i′‖xk − x′k‖).

Suppose the assertion false. Then there is a subsequence ukj
− vkj

for which

α′kj
∆x(ukj

− vkj
) ≥ ε > 0. Then (ukj

(t)− vkj
, ukj

(t)− vkj
) ≤ (ukj

− vkj
, ukj

− vkj
)− 2tε+ t2d2

where d = max
l,p

‖xl − xp‖. Because right hand side of inequality is minimized at t◦ =

min{ ε
d2 , 1}

(2.6.1) If t◦ = ε
d2 ,

(ukj
(t)− vkj

, ukj
(t)− vkj

) ≤ (ukj
− vkj

, ukj
− vkj

)− 2 ε
d2 ε + ( ε

d2 )
2d2

= (ukj
− vkj

, ukj
− vkj

)− ε2

d2

= (ukj
− vkj

, ukj
− vkj

)− t◦ε.

(2.6.2) If t◦ = 1(⇒ ε
d2 > 1 ⇒ ε > t◦d

2)

(ukj
(t)− vkj

, ukj
(t)− vkj

) ≤ (ukj
− vkj

, ukj
− vkj

)− 2t◦ε + t2◦d
2

≤ (ukj
− vkj

, ukj
− vkj

)− 2t◦ε + εt◦

= (ukj
− vkj

, ukj
− vkj

)− t◦ε.

By (2.6.1) and(2.6.2)

(ukj
(t)− vkj

, ukj
(t)− vkj

) ≤ (ukj
− vkj

, ukj
− vkj

)− t◦ε.

This contradicts ‖uk+1 − vk+1‖ ≤ ‖uk − vk‖.
Proof of (21) is similar to (20). ¥

Lemma 2.7

(22) lim∆x(uk − vk) = 0

(23) lim∆y(vk − uk) = 0

(proof) Suppose lim∆x(uk − vk) 6= 0 and lim∆y(vk − uk) 6= 0

then there is ∆′
x(u

′ − v′) such that lim∆x(uk − vk) = ∆′
x(u

′ − v′).

15



Then for sufficiently large k > K1

(24) ∆x(uk − vk) ≥ ∆′
x(u

′ − v′)
2

.

And there is ∆′′
y(v

′′ − u′′) such that lim∆y(vk − uk) = ∆′
y(v

′′ − u′′). Then for sufficiently

large k > K2

(25) ∆y(vk − uk) ≥
∆′′

y(v
′′ − u′′)

2
.

By lemma 2.6, α′k → 0

Let tk be a point that (uk(t)− vk, uk(t)− vk) assumes its global minimum.

Then

(uk(t)− vk, uk(t)− vk)

= (uk + tαi′(xk − x′k)− vk, uk + tαi′(xk − x′k)− vk)

= (uk − vk + tαi′(xk − x′k), uk − vk + tαi′(xk − x′k))

= (uk − vk, uk − vk)− 2tαi′(uk − vk, (x
′
k − xk)) + t2(αi′‖xk − x′k‖)2

= (uk − vk, uk − vk)− 2tαi′∆x(uk − vk) + t2(αi′‖xk − x′k‖)2.

(26) ⇒ tk =
∆x(uk − vk)

αi′‖xk − x′k‖2

By ∆x(uk − vk) ≥ ∆′x(u′−v′)
2

and α′k → 0, tk →∞.

Again by lemma 2.6 β′k → 0 and let t′k be a point that that (vk(t
′) − uk, vk(t

′) − uk)

assumes its global minimum. Then

(27) t′k =
∆y(vk − uk)

βi′ ‖yk − y′k‖

Again by ∆y(vk − uk) ≥ ∆′′y (v′′−u′′)
2

and β′k → 0, t′k →∞.

Hence, for large k > K > K1, the minimum of (uk(t) − vk, uk(t) − vk) on the segment

0 ≤ t ≤ 1 is obtained at tk = 1 so that for such values k

(28) uk+1 = uk + α′k(xk − x′k).
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Also, for large k > K > K2, the minimum of (vk(t
′) − uk, vk(t

′) − uk) on the segment

0 ≤ t′ ≤ 1 obtained at t′k = 1 so that for such values k

(29) vk+1 = vk + β′k(yk − y′k).

Let ukj
− vkj

be a subsequence such that

(30) ∆x(ukj
− vkj

) → ∆′
x(u

′ − v′).

By discarding terms from the sequence ukj
− vkj

, the following conditions are satisfied.

(31) α
kj

i → α∗i and β
kj

i → β∗i

where α∗i and β∗i are coefficient for u′ and v′ respectively.

(32) xkj
= x ∈ X

This means that min(xi, ukj
− vkj

) is obtained for all kj at the same value of i

(x, ukj
− vkj

) = min
i

(xi, ukj
− vkj

)

(33) x′kj
= x′ ∈ X

(34) (x′, ukj
− vkj

) = max
αi>0

(xi, ukj
− vkj

)

Using (30), (31), (32) and (33), the following is obtained (x′ − x, u′ − v′) = ∆′
x(u

′ − v′)

Now introduce the new notations,

(35) ρ∗x = min(xi, u
′ − v′)

(36) X∗
1 = {xi ∈ X | (xi, u

′ − v) = ρ∗x}

(37) X∗
2 = X \X∗

1

Note that

(38) xi ∈ X∗
2 ⇐⇒ (xi, u

′ − v′) > ρ∗x

17



(39) x ∈ X∗
1

and

x′ ∈ X∗
2

Set

(40) ρ′x = min
xi∈X∗

2

(xi, u
′ − v′)

and

(41) ρ′x > ρ∗x

then

(42) τx = min{∆′
x(u

′ − v′), ρ′x − ρ∗x}.

Note that for xi ∈ X∗
2 , (xi, u

′ − v′) ≥ ρ∗x + τx.

Choose δox such that whenever ‖(u− v)− (u′ − v′)‖ < δox ,

(43) max
i
|(xi, u− v)− (xi, u

′ − v′)| < τx

4

(Claim) Let kj be such that ‖ukj
− vkj

− (u′ − v′)‖ < δox . Then X1(ukj
− vkj

) ⊂ X∗
1

where X1(ukj
− vkj

) = {xi ∈ X | (xi, ukj
− vkj

) = min(xi, ukj
− vkj

)}.
(proof of claim) Let xi ∈ X1(ukj

− vkj
), then

(xi, u
′ − v′) = (xi, ukj

− vkj
) + (xi, (u

′ − v′)− (ukj
− vkj

))

= min
i

(xi, ukj
− vkj

) + (xi, (u
′ − v′)− (ukj

− vkj
))

= min
i

(xi, ukj
− vkj

) + (xi, u
′ − v′)− (xi, (ukj

− vkj
))

= ρ∗x − ρ∗x + min
i

(xi, ukj
− vkj

) + (xi, u
′ − v′)− (xi, ukj

− vkj
)

= ρ∗x + (xi, (u
′ − v′)− (ukj

− vkj
)) + [−min

i
(xi, u

′ − v′) + min
i

(xi, ukj
− vkj

)]

≤ ρ∗x + (xi, (u
∗ − v∗)− (ukj

− vkj
)) + max

i
|(xi, ukj

− vkj
)− (xi, u

′ − v′)|

≤ ρ∗x + τx/4 + τx/4 = ρ∗x + τx/2.
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Since δOx was chosen arbitrarily and (xi, u
′ − v′) ≤ ρ∗x + τx/2.

⇒ xi ∈ X∗
1

(end of claim)

Let kj > K be such that the following conditions hold.

(44) ∆x(uk − vk) ≥ ∆′
x(u

′ − v′)− τx/4

(45) ‖ukj
− vkj

− (u′ − v′)‖ < δox/2

(46)

p∑

l=1

α′kj+l−1 < δox/4d since α′k → 0

where dx = max
∀l,r

‖xl − xr‖ > 0, dy = max
∀l,r

‖yl − yr‖ and d = {dx, dy}

(47)

p∑

l=1

β′kj+l−1 < δox/4d since β′k → 0

By (28) and (46),

(48) ukj+p = ukj
+

p∑

l=1

α′kj+l−1(xkj+l−1 − x′kj+l−1)

(49) ‖ukj+p − ukj
‖ <

δox

4d
d = δox/4

By (29) and (47),

vkj+p = vkj
+

p∑

l=1

β′kj+l−1(ykj+l−1 − y′kj+l−1)

‖vkj+p − vkj
‖ <

δox

4d
d = δox/4.

Then by (46)

‖ukj+p − vkj+p − (u′ − v′)‖ ≤ ‖ukj+p − vkj+p − (ukj
− vkj

)‖+ ‖ukj
− vkj

− (u′ − v′)‖ < δox
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Hence X1(ukj+p − vkj+p) ⊂ X∗
1 .

Next for all xi ∈ X∗
1 and p ∈ [1 : m], the followings are obtained

(xi, ukj+p − vkj+p) = (xi, u
′ − v′) + (xi, ukj+p − vkj+p − (u′ − v′))

= (xi, u
′ − v′) + (xi, ukj+p − vkj+p)− (xi, u

′ − v′)

≤ ρ∗x + τx/4 ≤ ∆′
x(u

′ − v′)− τx + ρ∗x + τ/4 = ∆′
x(u

′ − v′) + ρ∗x −
3τx

4

(50) (xi, ukj+p − vkj+p) ≤ ∆′
x(u

′ − v′) + ρ∗x −
3τx

4
.

Now show that for some vector ukj+p − vkj+p, p ∈ [1 : m]

max
{i|αkj+p

i >0}
(xi, ukj+p − vkj+p) ≤ ∆′

x(u
′ − v′) + ρ∗x −

3τx

4
.

If this inequality fails to hold for some p, then x′kj+p ∈ X∗
2 .

Since X1(ukj+p − vkj+p) ⊂ X∗
1 , ukj+p+1 = ukj+p + α′kj+p(xkj+p − x′kj+p) involves the vector

x′kj+P with zero coefficients, while the newly introduced vector xkj+p satisfies (50). Since

X∗
2 contains at most m-1 vectors, there is p ∈ [1 : m] such that all vectors appearing in the

representation hold (50).

⇒ max
αi>0

(xi, ukj+p − vkj+p) ≤ ∆′
x(u

′ − v′) + ρ∗x −
3τx

4

On the other hand,

(51) min(xi, ukj+p − vkj+p) ≥ ρ∗x − τx/4.

Thus

∆x(ukj+p − vkj+p) = max
αi>0

(xi, ukj+p − vkj+p)−min(xi, ukj+p − vkj+p) ≤ ∆′
x(u

′ − v′)− τx/2.

This contradicts (44), Thus lim∆x(uk − vk) = 0.

Similarly, lim∆y(vk − uk) = 0 can be shown. ¥

Theorem 2 ∆x(u− v) + ∆y(v − u) = 0 if and only if u− v = u∗ − v∗.
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(proof) By lemma 2.2, ∆x(u− v) + ∆y(v − u) = ∆MDM(u − v). And by theorem 1 and

lemma 2 in [1], ∆MDM(u− v) = 0 if and only if u− v = u∗ − v∗.

Thus, theorem has been proved.¥

Theorem 3. The sequence uk − vk converges to u∗ − v∗.

(proof) By Lemma 2.7, there are subsequence ukj
−vkj

and vkj
−ukj

such that ∆x(ukj
−vkj

) →
0 and ∆y(vkj

− ukj
) → 0. Then by Lemma 2.3, 2.4 and 2.5 uk − vk converges to u∗ − v∗. ¥

Theorem 4. Let

(52) G = {u =
∑

i

αixi | (u, u∗ − v∗) = (u∗, u∗ − v∗)}

(53) G′ = {v =
∑

j

βjxj | (v, v∗ − u∗) = (v∗, v∗ − u∗)}

Then for large k, uk ∈ G and vk ∈ G′

(proof) By theorem 1, min
i

(xi, u
∗ − v∗) = (u∗, u∗ − v∗)

and min
j

(yj, v
∗ − u∗) = (v∗, v∗ − u∗).

Set

X1 = {xi ∈ X | (xi, u
∗ − v∗) = (u∗, u∗ − v∗)},

X2 = X \X1 = {xi ∈ X | (xi, u
∗ − v∗) > (u∗, u∗ − v∗)},

Y1 = {yj ∈ Y | (yj, v
∗ − u∗) = (v∗, v∗ − u∗)}

and

Y2 = {yj ∈ Y | (yj, v
∗ − u∗) > (v∗, v∗ − u∗)}.

If X2 = ∅ then uk ∈ G , ∀k.

If Y2 = ∅ then vk ∈ G′ , ∀k.

Now suppose X2 6= ∅, Y2 6= ∅
Let

(54) τ = min
xi∈X2

(xi, u
∗ − v∗)− (u∗, u∗ − v∗) > 0
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and

(55) τ ′ = min
yj∈Y2

(yj, v
∗ − u∗)− (v∗, v∗ − u∗) > 0

Note that (xi− vk, uk− vk) → (xi− vk, u
∗− v∗) and (yj−uk, vk−uk) → (yj−uk, v

∗−u∗)

since uk − vk → v∗ − u∗, this follows that for large k > K1

(56) max
i
|(xi − vk, uk − vk)− (xi − vk, u

∗ − v∗)| < τ

4

(57) max
j
|(yj − uk, vk − uk)− (yj − uk, v

∗ − u∗)| < τ ′

4

Then by the claim in lemma 2.7 for large k > K1

X1(uk − vk) ⊂ X1 ,

where X1(uk − vk) = {xi ∈ X | (xi, uk − vk) = min
i

(xi, uk − vk)}
and Y1(vk − uk) ⊂ Y1 ,

where Y1(vk − uk) = {yj ∈ Y | (yj, vk − uk) = min
j

(xj, vk − uk)}.
Now let x ∈ X1 then

(58) (x, u∗ − v∗) = (u∗, u∗ − v∗)

By (56), max
i
|(xi, uk − vk)− (xi, u

∗ − v∗)| < τ
4
. Then

(59) |(x, uk − vk)− (x, u∗ − v∗)| < τ

4

By (58), (x, uk − vk)− (u∗, u∗ − v∗) < τ
4
. Then

(60) (xi, uk − vk) < (u∗, u∗ − v∗) +
τ

4

Now let x ∈ X2, then by (54)

(61) (x, u∗ − v∗)− (u∗, u∗ − v∗) ≥ τ

and by (56)

(62) −τ

4
< (x, uk − vk)− (x, u∗ − v∗) <

τ

4

Add (x, uk − vk)− (x, u∗ − v∗) to (61) on both sides,

Then
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(x, uk − vk)− (x, u∗ − v∗) + (x, u∗ − v∗)− (u∗, u∗ − v∗) ≥ τ + (x, uk − vk)− (x, u∗ − v∗).

And by (62),

(63) (x, uk − vk) ≥ (u∗, u∗ − v∗) +
3τ

4
.

Similarly,

(64) (yj, vk − uk) ≤ (v∗, v∗ − u∗) +
τ ′

4
if yj ∈ Y1

and

(65) (yj, vk − uk) ≥ (v∗, v∗ − u∗) +
3τ ′

4
if yj ∈ Y2.

are obtained.

For uk, k > K1, if the convex hull representation for uk involves xi ∈ X2 with a nonzero

coefficient, then ∆x(uk − vk) ≥ τ
2

by (60), (63) and X1(uk − vk) ⊂ X1 .

Similarly, for vk′ , k′ > K ′
1, involves yj ∈ Y2 with a nonzero coefficient, then

(66) ∆y(uk′ − vk′) ≥ τ ′

2
.

Then for large k > K1 and k̇ > K ′
1, uk and vk can be written as below

(67) uk =
∑

{i|xi∈X1}
α

(k)
i xi +

∑

{i|xi∈X2}
α

(k)
i xi

(68) vk =
∑

{j|yj∈Y1}
β

(k)
j yj +

∑

{j|yj∈Y2}
β

(k)
j yj

Consider

(uk − u∗, u∗ − v∗)

= (uk, u
∗ − v∗)− (u∗, u∗ − v∗)

= (
∑

{i|xi∈X1}
α

(k)
i xi +

∑
{i|xi∈X2}

α
(k)
i xi, u

∗ − v∗)− (u∗, u∗ − v∗)

= (
∑

{i|xi∈X1}
α

(k)
i xi, u

∗ − v∗) + (
∑

{i|xi∈X2}
α

(k)
i xi, u

∗ − v∗)− (u∗, u∗ − v∗)

=
∑

{i|xi∈X1}
α

(k)
i (xi, u

∗ − v∗) +
∑

{i|xi∈X2}
α

(k)
i (xi, u

∗ − v∗)

− ∑
{i|xi∈X1}

α
(k)
i (u∗, u∗ − v∗)− ∑

{i|xi∈X2}
α

(k)
i (u∗, u∗ − v∗)

=
∑

{i|xi∈X2}
α

(k)
i (xi − u∗, u∗ − v∗) ≥ τ

∑
{i|xi∈X2}

α
(k)
i
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since (xi, u
∗ − v∗) = (u∗, u∗ − v∗) if xi ∈ X1 and (xi − u∗, u∗ − v∗) ≥ τ if xi ∈ X2.

By the convergence of uk−vk, the left hand side of this inequality tends to zero as k →∞
This means that

∑
{i|xi∈X2}

α
(k)
i → 0.

Similarly,

(v − u∗, v∗ − u∗)

=
∑

{j|yj∈Y2}
β

(k)
j (yj − u∗, v∗ − u∗) ≥ τ ′

∑
{j|yj∈Y2}

β
(k)
j

Also,
∑

{j|yj∈Y2}
β

(k)
j → 0 can be seen.

Choose K > K1 so large and for k ≥ K,

(69)
∑

{ii∈X2}
α

(k)
i ≤ τ

2d2

where d = max
xi∈X1,xj∈X2

‖xi − xj‖ > 0.

Let tk be a point that (uk(t)− vk, uk(t)− vk) assumes a global minimum.

If the representation of uk, k ≥ K, involves xi ∈ X2 with a nonzero coefficient then

tk = ∆x(uk−vk)

α′k‖xk−x′k‖2
≥ τ

2 (
∑

{i|xi∈X2}
α

(k)
i )d2

≥ 1

by ∆x(uk − vk) ≥ τ
2
. Hence uk+1 = uk + α′k(xk − x′k).

Similarly, choose K ′ > K ′
1 so large and for k ≥ K ′ then

vk+1 = vk + β′k(yk − y′k).

Now, for uk+1, xk ∈ X1 meanwhile x′k will be disappeared in the representation of uk+1.

(i.e x′k has zero coefficient α′k in uk+1)

Then there is l ∈ {1, ...,m} such that uk+l does not involve the vector xi ∈ X2

so there k > K + l such that uk ∈ G.

Similarly, there is some k′ such that v′k ∈ G′. ¥

24



CHAPTER 3

SUPPORT VECTOR MACHINES

3.1. Introduction for Support Vector Machines (SVM)

Support vector machines (SVM) is a family of learning algorithms used for the classi-

fication of objects into two classes. The theory is developed by Vapnik and Chervonenkis.

SVM became very popular in the early 90’s. SVM has been broadly applied to all kinds

of classifications from handwritten recognition to face detection in image. SVM has gained

popularity because it can be applied to a wide range of real world applications and compu-

tational efficiency. Moreover, it is theoretically robust.

In linearly separable data sets, there are many decision boundaries. In order to have a

good generalization for a new decision, a good decision boundary is needed. The decision

boundaries of two sets should be as far away from two classes as possible in order to make

an effective generalization.

The shortest distance between two boundaries is called a margin. SVM maximizes the

margin so that the maximized margin results in less errors for a future test, while other

methods only reduce classification errors. In this view, SVM enables more generalization

than other methods. To illustrate this, consider the Figure 3.1.

Line (1) and (2) have zero errors for classifying the two groups, but the goal of this

classification is to classify future inputs. If test point T belongs to O group , then (1) and

(2) are not the same any more. This means that (2) is a better generalization than (1).

Maximal margin can be obtained by solving a quadratic programming (QP) optimization

problem. The optimal hyperplane which has the maximal margin can be obtained by solving

the quadratic programming optimization problem. The SVM QP optimization problem will

be introduced in Section 3.2. A classifier will be defined in Section 3.2 as well. In 1992,

Bernhard Boser, Isabelle Guyon and Vapnik added a kernel trick which will be introduced
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Figure 3.1. SVM Generalization

in Section 3.5 to linear classifier. This kernel trick makes linear classification possible in a

feature space that is usually bigger than the original space.

3.2. SVM for Linearly Separable Sets

This section will introduce the most basic SVM problem: SVM with linearly separable

sets. Let S be a training of points xi ∈ Rm with ti ∈ {−1, 1} for i = 1, ..., N , then

S = {(x1, t1), ..., (xN , tN)}
i.e If ti = +1 then xi belongs to the first class.

If ti = −1 then xi belongs to the second class.

Let S be linearly separable, then there is a hyperplane wx + b = 0 where w in Rm and

wx + b = 0 correctly classifies all in S.

Define classifier f(xi) = wxi + b, f(xi) = 1 if ti = 1 and f(xi) = −1 if ti = −1.

i.e wxi + b > 0 if ti = +1

wxi + b < 0 if ti = −1
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Figure 3.2. Linear Classifier

Even if there is a classifier that separates the training set correctly, a maximal margin

is needed. In order to separate the two sets correctly and a have better generalization,

it is necessary to maximize the margin. To compute an optimal hyperplane, consider the

following inequalities for any i = 1, ..., N

wxi + b > 1 if ti = +1

wxi + b < −1 if ti = −1

These two inequalities are decision boundaries. To compute the margin, consider the

following two hyperplanes :

wx1 + b = 1

wx2 + b = 0

where distance from x1 to x2 is the shortest distance of two hyperplanes. This means

that the direction x2 − x1 is parallel to w.

Subtracting the first from the second equality, w(x2−x1) = 1 is obtained, since w and x2−x1

have the same direction, ‖x2 − x1‖ = 1
‖w‖ . In order to minimize the error, ‖x2 − x1‖ should

be maximized. Maximizing ‖x2 − x1‖ is equivalent to minimizing ‖w‖ .

Thus, the optimal hyperplane can be found by solving the following optimization problem.

(70) min
1

2
‖w‖2
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Figure 3.3. Classifier with Margin

subjec to ti(w
T xi + b) ≥ 1

3.3. SVM Dual Formulation

This section will introduce the dual formulation of SVM optimization problem. The dual

formulation is usually efficient in implementation. Also, in dual formulation, a non-separable

set will be more generalized. The most important aspect of dual formulation is the kernel

trick. The kernel trick can be used in the dual formulation. The last part of this section will

show the dual formulation using KKT condition in optimization theory.

Let’s consider the Lagrangian function from (70),

(71) L(w, b, λ) =
1

2
‖w‖2 −

N∑
i=1

λi[ti(w
T xi + b)− 1]

where λ = (λ1, ...λN)

and differentiate with respect to the original variables.

(72)
∂L

∂w
(w, b, λ) = w −

N∑
i=1

λitixi = 0.

(73)
∂L

∂b
(w, b, λ) = −

N∑
i=1

λiti = 0.
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From (72),

(74) w =
N∑

i=1

λitixi.

Substitute (74) into (71)

L(w, b, λ) =
1

2

N∑
i=1

N∑
j=1

titjλiλjxixj −
N∑

i=1

N∑
j=1

titjλiλjxixj − b

N∑
i=1

λti +
N∑

i=1

λi

= −1

2

N∑
i=1

N∑
j=1

titjλiλjxixj +
N∑

i=1

λi.

Thus SVM-DUAL is the following.

(75) max−1

2

N∑
i=1

N∑
j=1

titjλiλjxixj +
N∑

i=1

λi

s.t

N∑
i=1

λiti = 0

λi ≥ 0

Once λ is found, (w, b) can be found easily by using w =
N∑

i=1

λitixi and wxi + b = 1 for xi in

the first class.

3.4. Linearly Nonseparable Training Set

In the case of a linearly nonseparable training set, linear classifier wx + b = 0 cannot

separate the training set correctly. This means that the linear classifier needs to allow some

errors. The following three cases will happen with linear classifier wx + b = 0.

Case 1 : Satisfy ti(wxi + b) ≥ 1

Case 2 : 0 ≤ ti(wxi + b) < 1

Case 3 : ti(wxi + b) < 0

Case 2 and case 3 have errors while Case 1 does not have an error. These errors can be

measured using slack variable si. In Case 1, si = 0. In Case 2, 0 < si < 1. And in Case 3,

si > 1.

Figure 3.4 shows the case of a linearly nonseparable set.
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Figure 3.4. Linearly Nonseparable Set

In the case of a linearly nonseparable set, the margin is maximized while the number of

si > 0 is minimized. So there are two goals. The first goal is to maximize the margin, and

the second goal is to minimize the number of si > 0.

Now, consider

(76)
1

2
‖w‖2 + C

N∑
i=1

si

In (76), C was introduced. Let’s think of two extreme cases. When C = 0, the second

goal can be ignored. This is the case of a linearly separable set. When C →∞, the margin is

ignored. C is a parameter that the user of SVM can choose to tune the trade off between the

width of margin and the number of si. So the optimization problem for nonlinearly separable

case is the following :

(77) min
1

2
‖w‖2 + C

N∑
i=1

si

s.t ti(wxi + b) ≥ 1− si

si ≥ 0
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i = 1, 2, ..., N

Now let’s consider Lagrangian function from (77).

(78) L(w, b, s, λ, µ) = (
1

2
‖w‖2 + C

N∑
i=1

si)− [
N∑

i=1

λi(ti(w
T xi + b)− 1 + si) +

N∑
i=1

µisi]

And differentiate with respect to the original variables.

(79)
∂L

∂w
(w, b, s, λ, µ) = w −

N∑
i=1

λitixi = 0

(80)
∂L

∂b
(w, b, s, λ, µ) = −

N∑
i=1

λiti = 0

(81)
∂L

∂s
(w, b, s, λ, µ) = C − λ− µ = 0

From (78),

(82) w =
N∑

i=1

λitixi

Substitute (82) into (78),

L(w, b, s, λ, µ)

= 1
2

N∑
i=1

N∑
j=1

titjλiλjxixj + C
N∑

i=1

si−
N∑

i=1

N∑
j=1

titjλiλjxixj − b
N∑

i=1

λti−
N∑

i=1

λisi−
N∑

i=1

µsi +
N∑

i=1

λi

= −1
2

N∑
i=1

N∑
j=1

titjλiλjxixj +
N∑

i=1

λi + C
N∑

i=1

si −
N∑

i=1

λisi −
N∑

i=1

µsi

By (81)

= −1
2

N∑
i=1

N∑
j=1

titjλiλjxixj +
N∑

i=1

λi

Thus, Daul-SVM linearly separable is obtained as follows

(83) max−1

2

N∑
i=1

N∑
j=1

titjλiλjxixj +
N∑

i=1

λi

s.t

N∑
i=1

λiti = 0

0 ≤ λi ≤ C

i = 1, 2, ..., N

31



3.5. Kernel SVM

In many problems, a linear classifier could not have both high performance and good

generalization in the original space.

Figure 3.5. Nonlinear Classifier

In Fig 3.5, a linear classifier cannot separate two data sets correctly, so a nonlinear

classifier must be considered. As a result, a nonlinear classifier produces an efficient gener-

alization for the future test. As it is shown in the above Figure 3.5, the nonlinear classifier

has a good performance (i.e., generalization.) Then how does SVM separate a nonlinear

separable data set? Consider the training set S = {(x1, t1), ..., (xN , tN)} which is not linearly

separable. However S can be linearly separable in a different space which is usually a higher

dimension than the original space using the set of real function φ1, ..., φM . Here, assume

φ to be unknown. These functions are called features . Using φ, x = (x1, .., xm) can be

mapped to φ(x) = (φ1(x), ..., φM(x)). After mapping to the feature space, the new training

set S ′ = {(φ(x1), t1), ..., (φ(xN), tN)} is obtained.

To see this clearly, consider the following example. S1 = {(a, 1), (b,−1), (c,−1), (d, 1)}
where a = (0, 0), b = (1, 0), c = (0, 1) and d = (1, 1). S1 cannot be linearly separable without

making any error.
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Now let φ(x) =




x2
1

√
2x1x2

x2
2


 where x = (x1, x2). By the feature function φ(x),

a = (0, 0) → φ(a) = a′ = (0, 0, 0)

b = (1, 0) → φ(b) = b′ = (1, 0, 0)

c = (0, 1) → φ(c) = c′ = (0, 0, 1)

d = (1, 1) → φ(d) = d′ = (1,
√

2, 1)

First, check that S ′1 = {(a′, 1), (b′,−1), (c′,−1), (d′, 1)} is linearly separable in R3, so φ(x)

can be seen. However, as mentioned earlier, φ usually is unknown if the kernel function is

used. Let x = (x1, x2) and y = (y1, y2).

Then define K(x, y) = (x, y)2 = x2
1y

2
1 + 2x1y1x2y2 + x2

2y
2
2. We can easily check K(a, b) =

φ(a)φ(b)

K(c, d) = φ(c)φ(d).

SVM uses a kernel function that the value of the kernel function is the same as the value

of inner product in the feature space. Thus, using new training set S ′ and by (83), let’s

consider the following optimization problem :

(84) max−1

2

N∑
i=1

N∑
j=1

titjλiλjφ(xi)φ(xj) +
N∑

i=1

λi

s.t

N∑
i=1

λiti = 0

0 ≤ λi ≤ C

i = 1, 2, ..., N

Now, define the kernel K(xi, xj) = φ(xi)φ(xj) for any inner product (xi, xj) in the original

space. Then (84) can be written as the following :

(85) max−1

2

N∑
i=1

N∑
j=1

titjλiλjK(xi, xj) +
N∑

i=1

λi
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s.t

N∑
i=1

λiti = 0

0 ≤ λi ≤ C

i = 1, 2, ..., N

By the definition of kernel, K(xi, xj) is always corresponding to the inner product in

some feature space. The kernel K(xi, xj) can be computed without computing the image

φ(xi) and φ(xj).

(85) is called kernel substitution. By using kernel substitution, inner product evaluations

can be computed in the original space without knowing the feature space.

Now, the followings are popular kernel functions.

1. Polynomial kernels

K(xi, xj) = [(xi, xj) + c]d

where d is the degree of the polynomial and c is a constant.

2. Radial basis function kernel

K(xi, xj) = e−‖xi−xj‖/2γ2

Where γ is a parameter.

3. Sigmoid kernel

K(xi, xj) = tanh[α(xi, xj) + β]

where α and β are parameters.
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CHAPTER 4

SOLVING SUPPORT VECTOR MACHINES USING THE NEW ALGORITHM

4.1. Solving SVM Problems Using the New Algorithm

This chapter will show that Algorithm 2.1 can be used to solve SVM problems. Section

4.1 will show that solving SVM is equivalent to finding the minimum distance of two convex

hulls. Finding the maximal margin of training data sets and finding the minimum distance

of two convex hulls given by the training data sets seems to be different processes. Yet, after

reformulating SVM-NV, SVM-NV can be recognized as a NPP.

Let {xi}m
i=1 be a training data set, Let I be the index set for the first class and J be the

index set for the second class. Also, set U = {u | u =
∑

βixi,
∑

βi = 1, βi ≥ 0, i ∈ I} and

V = {v | v =
∑

βjxj,
∑

βj = 1, βj ≥ 0, j ∈ J}
Reformulation of SVM-NV was done by Keerthi[2]. SVM Dual is equivalent to

(86) min
1

2

∑
s

∑
t

βsβttstt(xs, xt)

s.t βs ≥ 0,

∑
i∈I

βi = 1,
∑
j∈J

βj = 1

Now consider an NPP problem. In an NPP problem, ‖u− v‖2 needs to be minimized.

‖u− v‖2

=

∥∥∥∥∥
∑

i

βixi −
∑

j

βjxj

∥∥∥∥∥

2

= (
∑

i

βixi −
∑

j

βjxj,
∑

i

βixi −
∑

j

βjxj)

= (
∑

i

βixi,
∑

i

βixi)− (
∑

i

βixi,
∑

j

βjxj)− (
∑

j

βjxj,
∑

i

βixi) + (jβjxj,
∑

j

βjxj)
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(87) =
∑

i

∑
i

βiβi(xi, xi)−
∑

i

∑
j

βiβj(xi, xj)−
∑

i

∑
j

βiβj(xi, xj) +
∑

j

∑
j

βjβj(xj, xj).

Note that in (87), if the inner product of two vectors is from the same index set, then

the sign of the inner product is positive. Otherwise, it is negative.

Thus, (87) can be written as the following:

(88)
∑

s

∑
t

βsβttstt(xs, xt)

where tstt = 1 if xs and xt are from the same index set

tstt = −1

The minimum distance between two convex hulls is nonzero if and only if two convex

hulls do not intersect. That is, if two convex hulls intersect, then the minimum distance of

two convex hulls is zero. As it is shown earlier in chapter 3, real SVM problems have some

violations. If some x violates, then two convex hulls could intersect. However, having zeros

for a minimum distance for two convex hulls is not desired. Here, Friess recommends using

a sum of squared violations in the cost function.

min
1

2
‖w‖2 +

C̃

2

∑

k

s2
k

s.t wxi + b > 1− si

wxi + b < −1 + si

This problem is called SVM Sum of Squared Violation (SVM-VQ). SVM-VQ can be con-

verted to (89) by simple transformation. To see this, let’s set

w̃ =

(
w√
C̃s

)
; b = b̃; x̃i =

(
xi
1√
C̃
ei

)
, i ∈ I and x̃j =

(
xj

− 1√
C̃
ej

)
, j ∈ J

where ei is the m dimensional vector in which the ith component is 1 and all are 0. Then

1

2
‖w̃‖2 =

1

2
‖w‖2 +

C̃

2

∑

k

s2
k

and

w̃x̃i + b̃ = wxi + b + si

w̃x̃j + b̃ = wxj + b− si
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Thus, SVM-VQ is equivalent to

(89) min
1

2
‖w̃‖2

s.t w̃x̃i + b̃ > 1

w̃x̃j + b̃ < −1

Here, feasible space of SVM-VQ is non-empty because of slack variable s, and the result of

(89) is automatically feasible.

By setting,

x̃i =

(
xi
1√
C̃
ei

)
, i ∈ I and x̃j =

(
xj

− 1√
C̃
ej

)
, j ∈ J. the new algorithm can be used as usual.

4.2. Stopping Method for the Algorithm

This section will show the stopping method for NPP using Algorithm 2.1. This section

will use the KKT condition of optimization theory.

First, consider the general Quadratic Programming Problem.

(Quadratic Programming Problem)

min
1

2
xtQx + cx + d

s.t Ax− b = 0

x ≥ 0.

KKT for the Quadratic programming is the following

L(x, λ, µ) = 1
2
xtQx + cx + d− λ′(Ax− b)− µ′x = 0

1. ∂L(x,λ,µ)
∂x

= Qx + c− λtA− µ = 0

2. λi(Ax− b)i = 0, µtx = 0

3. λi ≥ 0, µi ≥ 0

By KKT condition, xi 6= 0 then (Qx + c − λtA)i = 0. This means if nonzero index i is

known, then (Qx + c − λtA)i = 0. Using 2, the linear system can be solved to solve the

Quadratic programming problem.
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By (88), the NPP problem is equivalent to the following Quadratic programming problem.

min 1
2
atAa where A =


 X tX −X tY

−Y tX Y tY


 (NPP-QP) s.t

∑
i=1

ai = 2, ai ≥ 0

Consider lagrangian for NPP-QP

L(a, λ, u) =
1

2
atAa− λ(ate− 2)− µta

Then by KKT condition,

1. Aa− λe− µ = 0

2. λ(ate− 2)i = 0

3. µta = 0

4. By 1, µ = Aa− λe

5. By 3, if ai 6= 0, (Aa− λe)i = 0

6. By 3, if ai = 0, (Aa− λe)i ≥ 0

Then by the above, if the nonzero indices for a is known, only linear system 2 and 5 need

to be solved. Finally, by using theorem 4 in chapter 2, it is noted that indices for uk and

vk are not changed for large k. From this, it can be assumed that uk and vk are on G and

G’ respectively. Once uk and vk are on G on G’ respectively, nonzero indices for a can be

determined in the NPP-QP. After solving linear system 2 and 5, condition 6 must be checked

to determine if the zero indices are satisfied.
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CHAPTER 5

EXPERIMENTS

5.1. Comparison with Linearly Separable Sets

This section will compare performance between Algorithm 2.1 and sequential minimal

optimization(SMO) using linearly separable sets. The MATLAB program was used to com-

pare the performance. First, performance of Algorithm 2.1 and the MDM algorithm are

compared in dimension 100. By increasing the number of points, the results of experiments

can be seen in Figure 5.1. Second, twenty non-intersected pairs of convex hulls in dimen-

sions 100, 200, 300, 500, 700, 1000, 1200, 2000, and 2500 are randomly generated. Then the

minimum distances between two convex hulls is computed. In each dimension, the number

of vectors is changed to see the performance of two algorithms. The following graphs show

CPU times for Algorithm 2.1 and SMO in linear kernel with coefficient 0, linear kernel with

coefficient 1, polynomial kernel with degree 3, and polynomial kernel with degree 5. In the

graphs, linear kernel with coefficient 0 was denoted by Lin(0), linear kernel with coefficient 1

was denoted by Lin(1), polynomial kernel with degree 3 was denoted by P3, and polynomial

kernel with degree 5 was denoted by P5. Also in the graphs, for example the expression

7000×100 indicates that 7000 vectors are in dimension 100. Figures 5.2 to 5.12 illustrate the

results for the experiments in section 5.1.

5.2. Comparison with Real World Problems

In this section, the performance between algorithm 2.1 and sequential minimal optimiza-

tion (SMO) is compared with real world problems. Four kernel functions are used to compare

the performance of Algorithm 2.1 and SMO. Those kernels are polynomial kernel with de-

gree 3, polynomial kernel with degree 5, radical basis with gamma 1 and radical basis with

gamma 10. Polynomial kernel with degree 3 , polynomial kernel with degree 5 , radical basis
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Figure 5.1. Algorithm 2.1 and the MDM Algorithm

with gamma 1 and radical basis with gamma 10 are denoted d3,d5, g1 and g10 respectively.

Figures 5.13 to 5.16 illustrate the results for the experiments in section 5.2.
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Figure 5.2. 100 Points in Dimension 100
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Figure 5.5. 1000 Points in Dimension 1000
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Figure 5.6. 1200 Points in Dimension 1200
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Figure 5.7. 2000 Points in Dimension 2000
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Figure 5.8. 2500 Points in Dimension 2500
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Figure 5.9. 7000 Points in Dimension 100
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Figure 5.10. 7000 Points in Dimension 300
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Figure 5.11. 7000 Points in Dimension 500
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Figure 5.12. 7000 Points in Dimension 700
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Figure 5.14. Breast Cancer
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CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1. Conclusion

As shown previously in section 1 of chapter 5, the performance of SMO is better than

Algorithm 2.1 with 100×100, 200×200, and 500×500. The performance with 1000×1000

or with higher dimensions, Algorithm 2.1 works better than SMO. Algorithm 2.1 performs

better for higher dimensions. To show this, fix the number of points and increase the

dimension from dimension 100 to 300. In the dimensions of both 100 and 300 with 7000 points

respectively, SMO performs faster than Algorithm 2.1. However, with data set randomly

generated by the MATLAB, CPU time for Algorithm is shorter than SMO in the dimensions

of both 500 and 700 with 7000 points respectively. Therefore, in randomly generated linearly

separable sets with a higher dimension, Algorithm 2.1 performs better than SMO. Although

many application problems have a small number of support vectors, data sets that are

generated by the MATLAB usually have a small number of support vectors. That is, if the

data sets have a large number of support vectors, then Algorithm 2.1 may perform slower

than SMO. Unfortunately, most of the real world data sets are in a low dimension format.

Since the performance of SMO is better than Algorithm 2.1 with linearly separable sets, SMO

performed better with those data sets. But as shown in section 2 in chapter 5, Algorithm

2.1 is still comparable with SMO. By the theorem 4 in chapter 2 and stopping method for

the algorithm in section 2 in chapter 4, Algorithm 2.1 can find the solution for the NPP in

a finite number of iterations.

6.2. Future Work

In Algorithm 2.1, two coefficients of uk in representation at each iteration are updated,

but note that, in fact, four or more coefficients of uk can be updated. Instead of using
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uk+1 = uk +α′k(xk−x′k), uk+1 = uk + tkαk(xmin,av−xmax,av) can be used. In the new update,

0 ≤ tk ≤ 1, αk = min{αi′k, α2,i′k},
xmin,av =

xi′′k+x2,i′′k
2

, xmax,av =
xi′k +x2,i′k

2

where (xi′′k, uk−vk) = min(xi, uk−vk), (x2,i′′k, uk−vk) = min
i6=i′′

(xi, uk−vk), (xi′k, uk−vk) =

max
ai>0

(xi, uk − vk) and (x2,i′k, uk − vk) = max
ai>0 andai 6=αi′

(xi, uk − vk). With this expression, four

coefficients in uk+1 are updated. The precise method of updating four coefficients at a time

will be shown in Appendix B. When Algorithm 2.1 and the improved version of Algorithm

2.1 are compared, the number of iterations for the improved version of Algorithm 2.1 is

always smaller than the one with Algorithm 2.1. By using the above method, CPU time for

Algorithm 2.1 is improved. Moreover, improved Algorithm 2.1 could perform better than

SMO in lower dimensions.
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Appendix A

Improved MDM.

Define u′2 = max
αj>0,αj 6=α′

(xi, u) and u2 = min
xj 6=u

(xj, u)

and u′av =
u′+u′2

2
and uav = u+u2

2

This section will show the improved MDM algorithm by using the average points u′av and

uav .

Improved MDM

Step 1 Choose uk ∈ U and find u′k and uk

Step 2 Find u′2k and u2k.

If u′2k does not exist, then use the MDM.

If (u′2k, u
′
2k) ≤ (uk, uk), then use the MDM.

If (u2k, u2k) > (uk, uk), then use the MDM.

If δ(uk) > ∆k(uk) = (u′avk − uavk, uk), then use the MDM.

Step 3 Otherwise, set uk(t) = uk + tαk(uavk−u′avk) where α = min{α′, α′2} and t ∈ [0, 1]

α = min{α′, α′2} is used since each coefficient of α need to be greater than or equal to 0

in order to be in the convex hull.

Step 4 Set uk+1 = uk + tkαk(uavk − u′avk) where (uk(tk), uk(tk)) = min
t∈[0,1]

(uk(t), uk(t))

Step 5 Iterate until ∆k(uk) = (u′avk − uavk, uk) → 0.

In the representation uk =
m∑

i=1

αikxi, the improved MDM is updating 4 coefficient of the

representation meanwhile the MDM is updating 2 coefficient of the representation. This

makes the iteration faster. However, updating two many coefficient could make the iteration

slow around the solution u∗. By Step 4 ‖uk+1‖ ≤ ‖uk‖ is obtained.

The proof of the convergence

Assumption 1

(1) u′2k exist

(2) (u′2k, u
′
2k) > (uk, uk)

(3) (u2k, u2k) ≤ (uk, uk)

(4) δ(uk) ≤ ∆k(uk)
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Define δ(u) = (u, u) − (uav, u). Then clearly δ(u) ≥ 0.By Corollay 2 to Lemma 2 in [1],

If {uk} , uk ∈ U, k = 0, 1, 2...is a sequence of points such that ‖uk+1‖ ≤ ‖uk‖ and there is a

subsequence
{
ukj

}
such that δ(ukj

) →
kj→∞

0 then uk → u∗. Also, by the Assumption 1 for any

u =
m∑

i=1

αixi ∈ U, δ (u) ≤ ∆ (u) . Lemma A.1 lim
k→∞

αk∆k(uk) = 0 where αk = min{α′, α′2}

(proof) Let uk(t) = uk + 2tαk(uavk − u′k).

Then (uk(t), uk(t)) = (uk, uk)− 4tαk∆k(uk) + (4α2)t2 ‖uavk − u′av‖2 .

Suppose lim
k→∞

αk∆k(uk) 6= 0. then there is a subsequnce ukj
that αkj

∆kj
≥ ε > 0.

Then
(
ukj

(t), ukj
(t)

) ≤ (ukj
, ukj

)− 4tε + 16t2d2 where d = max ‖xl − xp‖ .

(ukj
, ukj

)− 4tε + 16t2d2 is minimized at t = min{ ε
d2 , 1}

If t = 1, then ε > d2t since ε
d2 > t.

Then by (uk(t), uk(t)) = (uk, uk)− 4tαk∆k(uk) + (4α2)t2 ‖uavk − u′av‖2

(
ukj

(t), ukj
(t)

) ≤ (ukj
, ukj

)− 4ε + 4ε

= (ukj
, ukj

)

This is a contradiction.

If t = ε
d2 then

(
ukj

(t), ukj
(t)

) ≤ (ukj
, ukj

)− 4 ε
d2 ε + 4( ε

d2 )
2d2

= (ukj
, ukj

)

This is a contradiction. Thus lim
k→∞

αk∆k(uk) = 0 ¥

A.2 lim
k→∞

∆k(uk) = 0

(proof) Suppose lim
k→∞

∆k(uk) = ∆#(u#) > 0

Then for large k > K, ∆k(uk) ≥ ∆#(u#)
2

.

By Lemma A.1 αk → 0. Assume (uk(t), uk(t)) is minimized at tk = ∆k(uk)

2αk‖uavk−u′av‖2
.

Hence, for large k > K ≥ K1

tk = 1, thus uk+1 = uk + 2αk(uavk − u′av)

Let
{
ukj

}
be subsequence such that ∆kj

(ukj
) → ∆#(u#)

In the sequence
{
ukj

}
, some terms can be omitted if necessary. The sequence that

satisfies the following 3 conditions hold can be found.

(1) αi,kj
→ α#

i
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=⇒ ukj
→ u#

(2) uav,kj
= uav ∈ H∗ = {uav | uav =

xi+xj

2
, for any i, j ∈ [1 : m]}

(3) u′av,kj
= u′ ∈ H∗

Then (u′av − uav, u
#) = ∆#(u#), and ∆#(u#) > 0 is obtained.

Define ρ∗ = min
i

(xi, u
#), Hρ = {xi | (xi, u

#) = min(xi, u
#)}

H∗
1 = {uav ∈ H∗ | (uav, u

#) = ρ∗}, H∗
2 = H∗ \H∗

1

ρ′ = min
uav∈H∗

2

(uav, u
#)

τ = min{∆#(u#), ρ′ − ρ∗}
Note uav ∈ H∗

2 ,then (uav, u
#) ≥ ρ∗ + τ.

Because if τ = ρ′ − ρ∗ then ρ∗ + τ = ρ∗ + ρ′ − ρ∗ = ρ′

Since uav ∈ H∗
2 , (uav, u

#) ≥ ρ′

Because if τ = ∆#(u#) then ρ′ − ρ∗ ≥ ∆#(u#) =⇒ ρ∗ + τ ≤ ρ∗ + ρ′ − ρ∗ = ρ′

=⇒ (uav, u
#) ≥ ρ′ ≥ ρ∗ + τ.

Choose δ > 0 such that whenever
∥∥u− u#

∥∥ < δ ,

max
i
|(uav,i, u)− (uav,i, u

#)| < τ

4

(Claim) Let kj be such that
∥∥ukj

− u#
∥∥ < δ then H1(ukj

) ⊂ H∗
1

where H1(ukj
) = {uav ∈ H∗ | (uav, ukj

) = min(uav, ukj
)}

(proof of claim) Let uav ∈ H1(ukj
).

(uav, u
#) = (uav, ukj

) + (uav, u
# − ukj

)

= min(uav, ukj
) + (uav, u

# − ukj
)

= ρ∗ + (uav, u
# − ukj

) + [min(uav, ukj
)−min(uav, u

#)]

≤ ρ∗ + (uav, u
# − ukj

) + max |(uav, ukj
)− (uav, u

#)| ≤ ρ∗ + τ
2
.

Let kj > k be such that the following conditions hold

(a) ∆k′′(uk′′) ≥ ∆#(u#)− τ
4

for k′′ > kj

(b)
∥∥ukj

− u#
∥∥ < δ

2
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(c) s
l=1αkj+l−1 < δ

2d
where d = max

i,j

∥∥uav,i − uav,j

∥∥ and αk ∈ min{α′k, α′2,k}
Then ukj+p = ukj

+ s
l=1αkj+l−1(uav,kj+l−1

− u′av,kj+l−1
) is obtained.

∥∥ukj+p − ukj

∥∥ ≤ ds
l=1αkj+l−1 < δ

2

=⇒
∥∥ ukj+p − u#

∥∥ ≤
∥∥ukj+p − ukj

∥∥ +
∥∥ukj

− u#
∥∥ < δ

By the claim, H1(ukj
) ⊂ H∗

1

Now, for all uav ∈ H∗
1 ,

(
uav, uav,kj+p

)
= (uav, u

#) + (uav, uav,kj+p − u#)

= (uav, u
#) + (uav, uav,kj+p)− (uav, u

#)

≤ ρ∗ + τ
4

≤ ∆#(u#)− τ + ρ∗ + τ
4

= ∆#(u#) + ρ∗ − 3τ
4

For large k, kj > k,

ukj+1 = ukj
+ αkj

(uav,kj
− u′av,kj

).

Then for any p ≥ 1, ukj+p+1 involve at least one of the vector from u′av,kj+p =
u′av,kj+p+u′av2,kj+p

2

with zero coefficent. Then for any q ≥ 1, ukj+p+q does not involve the vectors u′av,kj+p+l,

for l < q because ukj+p+l and u2,kj+p+l are in Hρ. Since X has a finite number of vec-

tors, H∗, H∗
1 and H∗

2 have finite number of vectors. This means for large r, ukj+p+r+1 =

ukj+p+r + αkj
(uav,kj+p+r − u′av,kj+p+r) where uav,kj+p+r, u

′
av,kj+p+r ∈ H∗

1 .

Now (ukj+p+r, u
′
av,kj+p+r) ≤ ∆#(u#)+ρ∗− 3τ

4
is obtained and (ukj+p+r, uav,kj+p+r) ≥ ρ∗− τ

4

This implies ∆kj+p+r(ukj+p+r) = (ukj+p+r, u
′
av,kj+p+r)−(ukj+p+r, uav,kj+p+r) ≤ ∆#(u#)− τ

2

This contradicting (a). This proves the lemma. ¥

Theorem A.1 Let {uk} be a sequence obtained from Algorithm 2. Then uk → u∗.

(proof) By the lemma A.2, lim
k→∞

∆k(uk) = 0 is obtained. By the condition in improved

MDM, δ (uk) ≤ ∆ (uk) . Then by Corollay 2 to Lemma 2 in [1], uk → u∗.¥
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Appendix B

Improved version of algorithm 2.1

Algorithm 2.1 can be combined with appendix A. so each iteration, 4 vectors are updated

meanwhile algorithm 2.1 update only update 2 vector at each iteration.

The following algorithm is improved version of algorithm 2.1.

Improved 2.1

1. Choose uk ∈ U and vk ∈ V

2. Find xi′′k, x2,i′′k, xi′k and x2,i′k

where (xi′′k, uk − vk) = min(xik, uk − vk),

(x2,i′′k, uk − vk) = min
x2,i′′k 6=xik

(xik, uk − vk),

(xi′k , uk − vk) = max
aik>0

(xi′k , uk − vk)

and (x2,i′k, uk − vk) = max
aik>0 and aik 6=αi′k

(xi′k , uk − vk)

If x2,i′′k does not exist, then go to step 3 in the algorithm 2.1

if x2,i′k does not exist, then go to step 3 in the algorithm 2.1

3. uk+1 = uk + tkαk(xmin,av − xmax,av)

where 0 ≤ tk ≤ 1, αk = min{αi′k, α2,i′k},
xmin,av =

xi′′k+x2,i′′k
2

, xmax,av =
xi′k +x2,i′k

2

and tk is defined by

(uk(tk), uk(tk)) = min
t∈[0,1]

(uk(t), uk(t)) where uk(t) = uk + tαk(xmin,av − xmax,av)

4. Find yj′′k, y2,j′′k, yj′k and y2,j′k

where (yj′′k, vk − uk) = min(yjk, vk − uk),

(y2,j′′k, vk − uk) = min
y2,j′′k 6=yjk

(yjk, vk − uk),

(yj′k , vk − uk) = max
βjk>0

(yj′k , vk − uk)

and (y2,j′k, vk − uk) = max
βjk>0 and βjk 6=βj′k

(yj′k , vk − uk)

If y2,j′′k does not exist, then go to step 5 in the algorithm 2.1

if y2,j′k does not exist, then go to step 5 in the algorithm 2.1

5.vk+1 = vk + t′k(ymin,av − ymax,av)

where 0 ≤ t′k ≤ 1, βk = min{βj′k, β2,j′k},
ymin,av =

yi′′k+y2,i′′k
2

, ymax,av =
yi′k +y2,i′k

2

62



and t′k is defined by

(vk(t
′
k), vk(t

′
k)) = min

t′∈[0,1]
(vk(t

′), vk(t
′)) where vk(t

′) = vk + t′βk(ymin,av − ymax,av)
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