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In recent years, social media platforms such as Twitter and Facebook have 

emerged as effective tools for broadcasting messages worldwide during disaster events. 

With millions of messages posted through these services during such events, it has 

become imperative to identify valuable information that can help the emergency 

responders to develop effective relief efforts and aid victims. Many studies implied that 

the role of social media during disasters is invaluable and can be incorporated into 

emergency decision-making process. However, due to the "big data" nature of social 

media, it is very labor-intensive to employ human resources to sift through social media 

posts and categorize/classify them as useful information. Hence, there is a growing need 

for machine intelligence to automate the process of extracting useful information from 

the social media data during disaster events. This dissertation addresses the following 

questions: In a social media stream of messages, what is the useful information to be 

extracted that can help emergency response organizations to become more situationally 

aware during and following a disaster? What are the features (or patterns) that can 

contribute to automatically identifying messages that are useful during disasters? We 

explored a wide variety of features in conjunction with supervised learning algorithms to 

automatically identify messages that are useful during disaster events. The feature 

design includes sentiment features to extract the geo-mapped sentiment expressed in 

tweets, as well as tweet-content and user detail features to predict the likelihood of the 

information contained in a tweet to be quickly spread in the network. Further 



 

experimentation is carried out to see how these features help in identifying the 

informative tweets and filter out those tweets that are conversational in nature.   
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CHAPTER 1

INTRODUCTION

In this chapter, we discuss the background and motivation of this field of research,

our research goals and contributions.

1.1. Background and Motivation

In response to increased online public engagement through micro-blogging services

and the emergence of digital volunteers, professional emergency responders have sought

to better understand how they too can use social media to communicate with the public

and collect intelligence [9, 28, 16, 63, 53]. Many emergency decision makers see the data

produced through crowdsourcing as ubiquitous, rapid and accessible - with the potential to

contribute to situational awareness [72]. As public social media use in crisis has increased,

emergency responders have started to take notice of the way citizens engaged in social media

and the information exchanges that took place there [19]. Consequently, responders began

to consider if social media might be a useful tool for their practice. Research revealed

that social media could be used to distribute information quickly to a wide-spread audience

[26] and to engage more directly in a two-way conversation with members of the public

[16, 28, 45]. According to Starbird et al. [56], social media data identified as coming from

local bystanders during a disaster can be crucial to emergency responders. Most of the

social media data surrounding a disaster are derivative in nature: information in the form of

re-posts or pointers to information available elsewhere and only a small subset of the data

comes from locally affected populations in the form of citizen reports [55]. Starbird et al.

[55] assert that bystanders “on the ground are uniquely positioned to share information that

may not yet be available elsewhere in the information space and may have knowledge about

geographic or cultural features of the affected area that could be useful to those responding

from outside the area.”

Much has been written concerning the value of using messaging and micro-blogged

data from crowds of non-professional participants during disasters. Often referred to as
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micro-blogging, the practice of average citizens reporting on activities “on-the-ground” dur-

ing a disaster is seen as increasingly valuable [43, 61, 68]. The information that the public

produced appeared to be useful, as researchers showed that it could contribute to situational

awareness during a crisis event [4, 22]. Vieweg et al. [72] found that retweet ed tweets are

likely to contain information that contributes to situational awareness and are actionable

compared with non-retweeted tweets. In addition to the information which creates aware-

ness to responders, people also post information related to relief efforts (such as offering

shelters, donations, and food) during the disasters, for which the target consumers are the

victims who need aid.

Despite the evidence of strong value to those experiencing the disaster and those

seeking information concerning the disaster, there is still very little uptake of social media

data by large-scale, disaster response organizations [67, 65]. Response organizations operate

under conditions of extreme uncertainty. The uncertainty has many sources: the sporadic

nature of emergencies, the lack of warning associated with some forms of emergencies, and the

wide array of responders who may or may not respond to any one emergency. Moreover, along

with informative messages, there are messages that do not convey any useful information

(e.g., conversational in nature) and must be filtered out to arrive at the signal of “good data.”

This increases the necessity for identifying appropriate information from the streaming data,

which could make substantial improvements in the response process. These data are not yet

seen as fully actionable because of the inability to sort and categorize the data into useful

types. One strong reason for this is that the size of the messages streaming is tremendous.

For example, in the survey by the Pew Research Center1, it is stated that more than 20

million tweets were posted during the five-day interval of Hurricane Sandy. Due to this sheer

amount of data, it is extremely difficult and time-consuming to manually sift through these

data and categorize them into useful types. Therefore, there is growing need for machine

intelligence to automate the process of categorizing the social media data into useful types.

1http://www.pewresearch.org/fact-tank/2013/10/28/twitter-served-as-a-lifeline-of-

information-during-hurricane-sandy/

2
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Machine learning [34] offers approaches to construct predictive models in the applications

where training data are available.

However, the quality of the learned models highly depends on the choice of features

that are extracted to capture the knowledge of distinctions in the given data. Through this

research, we present a wide exploration of features towards solving the problem of catego-

rizing social media data into useful types in the context of disasters. We specifically focus

on designing features for three classification tasks based on these three aspects: sentiment

(which offers insights about how people are feeling during the disaster), retweetability (which

helps to inform on how to reach more people in a fastest way) and informativeness (which

helps to keep people “on the ground” and emergency responders informed with valuable

insights about the disaster).

1.2. Research Questions

Our research questions are: In a social media stream of messages, what is the useful

information to be extracted that can help emergency response organizations to become more

situationally aware during or following a disaster? and What are the features (or patterns)

that can help to automatically identify messages that are useful during disasters?

A primary distinguishing factor between informational and conversational tweets is

discrepancies that reveal formality. Aspects of formality include correct grammar, lack of

slang, lack of swear words, etc. A formal tweet is likely informative since many credible

sources of information will most likely structure their tweets to look as professional as pos-

sible. Moreover, tweets expressing sentiment are likely to be conversational tweets, because

they express opinions/feelings of the user rather than conveying some useful information.

For example, “I hope this storm is TERRIBLEEEEEEE!!!!!! Lol forreal. Ill sleeep per-

fect.” This tweet has a positive sentiment expressing a happy feeling of an author and is

not informational in nature. Another crucial factor that helps in identifying information is:

retweetability of a tweet; it reveals the importance of the tweet with useful information. For

example, “# Sandy East coast, search for open shelters by texting: SHELTER + a zip code

to 43362 (4FEMA)”, which has ≈ 3900 retweets. This tweet conveys information for those

3



who seek shelters. A tweet with necessary information during disasters will typically get

retweet ed. Along these lines, our research questions are refined as the following:

• What are the features that could help identify the sentiment expressed in a tweet?

• What are the features that could help identify how likely a tweet can be retweeted?

• How could the features related to sentiment and retweetability of tweets help to model

the task of identifying informative tweets?

1.3. Dissertation Outline

In this section, we describe the brief outline of the dissertation. Each chapter presents

the approaches to address respective questions raised in the above discussion. The goal of

this research is to develop methods to automatically predict the messages that are useful for

the emergency responders and the bystanders. We chose Twitter (one of the most popular

social media) to carry out our research and the tweets posted during disasters. Most of the

work in this dissertation has been published in conference proceedings and journals.

Chapter 2 presents our approach to understanding the general mood during Hur-

ricane Sandy; we perform a geo-mapped sentiment analysis, where we first identify all geo-

tagged tweets in our collection and label each of these tweets using our disaster-trained

classifiers. We then associate the sentiments of tweets with their geo-locations. We show

how users’ sentiments change according not only to the locations of the users, but also based

on the relative distance from the disaster. In this work, we offer a proof of concept. Using

Twitter data from Hurricane Sandy, we identify the sentiment of tweets and then measure

the distance of each categorized tweet from the epicenter of the hurricane. We find that

extracting sentiments during a disaster may help responders develop stronger situational

awareness of the disaster zone itself. We also performed a comparison with one of the pre-

vious works related to sentiment analysis and showed that our features are better compared

with this work. Our approach can help increase situational awareness and can “visually”

inform emergency response organizations about the geographical regions that are most af-

fected by a disaster. We also study the effect of emotional divergence on retweetability

during Hurricane Sandy and how the emotional divergence can affect information spread.

4



Chapter 3 addresses the problem of retweetability prediction and a set of analyses

on retweet ed tweets during Hurricane Sandy and Hurricane Patricia to determine several

aspects affecting retweetability. We explore a wide range of features including features

extracted from the tweets’ content and user account information and use them in conjunction

with machine learning classifiers to predict the tweets’ retweetability during the hurricane.

We show that the classifiers trained on these features outperform those trained using the

“bag of words” approach. We perform feature selection to understand what features are

informative in identifying the retweetability of a tweet during disaster events.

Chapter 4 presents our approach with a wide range of feature exploration to iden-

tify informative messages (or tweets) from those that are not-informative in nature (i.e.,

pertaining to user feelings, informal communication or casual conversations). Our approach

is based on a combination of “bag-of-words” features, which are typically used for text

classification, and features that are extracted from tweets’ content (e.g., URLs, hashtags,

emoticons, slang), user details (such as number of friends, number of followers) and polarity

clues (such as positive words, negative words). Furthermore, we study the extent to which

our features can be generalized across different disaster types (e.g., natural and non-natural

disasters) by developing models trained on one disaster type (such as natural disasters) and

evaluating them on another disaster type (such as non-natural disasters).

Chapter 5 summarizes the findings of this research and provides a summary of con-

tributions and possible future directions.

1.3.1. Published Work

• Chapter 2 on sentiment analysis during hurricane Sandy in emergency response

has been published in Proceedings of Information Systems for Crisis Response and

Management (ISCRAM), 2014 [6]. This paper contains experiments on sentiment

classification using Hurricane Sandy data and the association of sentiments predicted

for tweets with geo-location on a geographical map. A journal article containing

the work in this chapter has been published recently in International Journal for

5



Disaster Risk Reduction, 2017 in Vol. 21 (213-222) [39]. In the extended work,

we augment our contributions to geo-mapped sentiment analysis in disaster events

by studying the effect of emotional divergence on retweetability during Hurricane

Sandy and how the emotional divergence can affect information spread during the

disaster.

• Chapter 3 on predicting retweetability during hurricane disasters has been pub-

lished in conference proceedings of ISCRAM’16 [37], which contains experiments

on retweetability prediction using the Hurricane Sandy dataset. A journal article

containing the work in this chapter is published in the International Journal of In-

formation Systems for Crisis Response and Management (IJISCRAM), 2017 [40].

In the extended work, we performed the experiments on one more dataset, i.e., Hur-

ricane Patricia; we modified user feature details with normalization, and compared

with two previous works.

• Chapter 4 on identifying informative tweets during disasters is to be submitted. In

this work, we experiment with a wide range of feature sets (namely user features,

polarity features) and investigate the correlation among emotional divergence, in-

formativeness and the retweet phenomenon.

1.3.2. Other published work (not included in this work)

• Twitter mining for disaster response: A domain adaptation approach, in ISCRAM’15

(joint work with Doina Caragea, Nicolais Guevara, Hongmin Li, Nic Herndon, An-

drea Tapia, and Anna Squicciarini) [30]. Microblogging data such as Twitter data

contains valuable information that has the potential to help improve the speed,

quality, and efficiency of disaster response. Machine learning can help with this

by prioritizing the tweets with respect to various classification criteria. However,

supervised learning algorithms require labeled data to learn accurate classifiers. Un-

fortunately, for a new disaster, labeled tweets are not easily available, while they

are usually available for previous disasters. Furthermore, unlabeled tweets from the

current disaster are accumulating fast. We study the usefulness of labeled data from

6



a prior source disaster, together with unlabeled data from the current target disaster

to learn domain adaptation classifiers for the target. Experimental results suggest

that, for some tasks, source data itself can be useful for classifying target data.

However, for tasks specific to a particular disaster, domain adaptation approaches

that use target unlabeled data in addition to source labeled data are superior.

• MetaSeer.STEM: Towards Automating Meta-Analyses, in Innovative Applications

in Artificial Intelligence (IAAI) 2016 (joint work with Robin Mayes, Kim Nimon,

Fred Oswald) [38]. Meta-analysis is a principled statistical approach for summa-

rizing quantitative information reported across studies within a research domain of

interest. Although the results of meta-analyses can be highly informative, the pro-

cess of collecting and coding the data for a meta-analysis is often a labor-intensive

effort fraught with the potential for human error and idiosyncrasy. This is due to the

fact that researchers typically spend weeks poring over published journal articles,

technical reports, book chapters and other materials to retrieve key data elements

that are then manually coded for subsequent analyses (e.g., descriptive statistics,

effect sizes, reliability estimates, demographics, and study conditions). In this pa-

per, we propose a machine learning based system developed to support automated

extraction of data pertinent to STEM education meta-analyses, including educa-

tional and human resource initiatives aimed at improving achievement, literacy and

interest in the fields of science, technology, engineering, and mathematics.

• Embracing Human Noise as Resilience Indicator: Twitter as Power Grid Correlate

in Journal of Sustainable and Resilient Infrastructure, 2017, (joint work with Nick

Lalone, Andrea H. Tapia, Christopher Zobel) [27] The word resilience means many

different things to many different disciplines and industries; measuring resilience

is just as varied. Despite those differences, we find that there are typically two

approaches to measuring resilience - technically dynamic, or the data produced

by sensors attached to physical objects, and socially static, or those demographic

indicators that represent a given geographic location. We find that this allows

7



resilience to represent before a disruption and examined post-disruption. During an

event, there are few ways resilience, or even status of a population, can be accounted

for. Through an analysis of tweets made during Hurricane Sandy and power outage

data obtained after the event, we find that tweets that mention power, utility, or

electricity were correlated. We believe this offers a proof of concept that social

media data can be used to interpret critical infrastructure as well as now casting

the events of an area. Despite this proof of concept, we conclude with a discussion

of barriers to fully realizing this concept’s potential.

1.4. Appendix

In this section, we describe the Twitter’s data crawling APIs that we used to crawl

the tweets for this work. Twitter provides access to most of the tweets through its Stream-

ing and REST (REpresentational State Transfer) APIs. Streaming APIs offers continuous

access to the real-time data that is flowing through Twitter and the REST API’s gives us

a programmatic access (such as adding new tweets, search a tweet). Streaming APIs are

offered in three types, namely Public Streams (streams of public data that are posted rapidly

on Twitter), User Streams (which confines the data collection to a specified user), and Site

Streams (this is multi-user version of the User Streams and is a beta version). REST API

provides a lot of methods to attain the data depending on tweet specific or user specific

information (e.g., we can get the user details by querying the REST API with user id). I

described the details of each API and the parameters used for our tasks.

Twitter Streaming API2: This API provides methods and parameters to access the

publicly available tweets that are streaming. We particularly used the streaming URL

“https://stream.twitter.com/1.1/statuses/filter.json” with “track” parameter set

to our search terms to download the tweets from the stream. The “track” parameter facili-

tates the filtering of unnecessary tweets (not related to the search terms) from the stream.

According to the information available from Twitter developers’ website3, it is mentioned

2https://dev.twitter.com/streaming/overview

3https://dev.twitter.com/streaming/overview/connecting

8
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that as long as the connection between the client and the Streaming API is established and

live, one can download as many tweets as possible from the public stream until the connec-

tion is lost. However, on the website, it is stated that too many connections in a short period

limit the access to the stream, although the exact number of attempts that limit the access

is not disclosed.

Twitter Search API4: This is a REST (REpresentational State Transfer) API which

is different from the Streaming API. It provides several methods to download tweets based

on the parameters. For example, if tweet ids are available, the total information about those

tweets can be pulled from the Twitter database. We used the REST endpoint “https://

api.twitter.com/1.1/statues/lookup.json” with “id” parameter. The “id” parameter

can take up to 100 comma-separated ids. The rate limits5 for Search API are - 900 per 15-min

window for user level authentication and 300 per 15-min window for app-level authentication.

4https://dev.twitter.com/rest/public/search

5https://dev.twitter.com/rest/public/rate-limits
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CHAPTER 2

SENTIMENT ANALYSIS DURING HURRICANE SANDY IN EMERGENCY

RESPONSE

Sentiment analysis has been widely researched in the domain of online review sites

with the aim of generating summarized opinions of users about different aspects of prod-

ucts. However, there has been little work focusing on identifying the polarity of sentiments

expressed by users during disaster events. Identifying such sentiments from online social net-

working sites can help emergency responders understand the dynamics of the network, e.g.,

the main users’ concerns, panics, and the emotional impacts of interactions among mem-

bers. In this chapter, we perform a sentiment analysis of tweets posted on Twitter during

the disastrous Hurricane Sandy and visualize online users’ sentiments on a geographical map

centered around the hurricane. We show how users’ sentiments change according to not only

to their locations, but also based on the distance from the disaster. In addition, we study

how the divergence of sentiments in a tweet posted during the hurricane affects the tweet

retweetability. We find that extracting sentiments during a disaster may help emergency

responders develop stronger situational awareness of the disaster zone itself.

2.1. Introduction

In the field of disaster response, making social media data useful to emergency respon-

ders has been the single strongest research focus for the past several years [66]. In response

to increased online public engagement and the emergence of digital volunteers, professional

emergency responders have sought to better understand how they can use social media to

collect intelligence [16]. Emergency decision makers see the data produced through crowd-

sourcing as ubiquitous, rapid and accessible, with the potential to contribute to situational

awareness [72]. Starbird et al. [55] assert that bystanders “on the ground are uniquely

positioned to share information that may not yet be available elsewhere in the information

space and may have knowledge about geographic or cultural features of the affected area

that could be useful to those responding from outside the area.”
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Despite the strong value to those experiencing the emergency and those seeking in-

formation concerning the emergency, responders are still hesitant to use social media data

for several reasons [66]. One strong reason is insecurity and apprehension concerning the

connection between the location of the disaster event and those tweeting about the disaster.

Because of the nature of social media, contributors do not have to be bystanders. Responders

interested in the wellbeing of physical bystanders seek methods of finding and measuring the

concerns of those directly affected by a disaster. Analyzing social media data and extracting

users’ geo-mapped opinions and sentiments during a disaster can help emergency respon-

ders understand the dynamics of the network, e.g., the main users’ concerns and panics, the

emotional impacts of interactions among users, and the geographical regions that are most

affected by the disaster. In addition, analyzing social media data can help obtain a holistic

view about the general mood and the situation “on the ground.”

2.1.1. Contributions and Organization

In this chapter, we aim to design accurate approaches to geo-mapped sentiment anal-

ysis during disaster events. More precisely, using Twitter data from Hurricane Sandy as a

case study, we first develop models to identify the sentiment of tweets and then measure the

distance of each categorized tweet from the epicenter of the hurricane. We show that users’

sentiments change according to not only to the locations of the users, but also based on the

relative distance from the disaster. We find that extracting sentiments during a disaster may

help emergency responders develop stronger situational awareness of the disaster zone itself.

We further analyze the impact of the divergence of sentiments in a tweet on the

likelihood of the tweet to be retweeted, which affects the information spread in Twitter (also

called as retweeting). Understanding how the retweet function inside Twitter works can

potentially shed light into the type of information being spread during disasters in large

microblogging communities. Identifying elements of a message that make it more likely to

be retweeted during a disaster can better inform emergency managers on how to reach the

widest audience in the fastest way.

The rest of the chapter is organized as follows: Section 2.2 describes the sentiment
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classification followed by a geo-tagged sentiment analysis of tweets posted during Hurricane

Sandy, in which sentiment classification of tweets is an important component. Section 2.3

describes an analysis on how the divergence of sentiments in a tweet is affecting tweets’

retweetability. Section 2.4 concludes the chapter with a summary and discussion including

related work.

2.2. Geo-Tagged Sentiment Analysis of Tweets from Hurricane Sandy

In this section, we first present the feature extraction for sentiment classification. We

then describe experiments and results of this classification task on tweets from the Hurricane

Sandy and finally, analyze the set of geo-tagged tweets, which are automatically labeled with

their sentiment polarity by our best sentiment classifier.

2.2.1. Dataset

The data used in these experiments is collected from Twitter during the disastrous

Hurricane Sandy using Twitter Streaming API discussed in Section 1.4. Specifically, the

dataset contains 12,933,053 tweets crawled between 10-26-2012 and 11-12-2012. Among

these tweets, 4,818,318 have links to external sources, 6,095,524 are retweets and 622,664

contain emoticons. We randomly sampled a subset of 602 tweets from the collected data

and asked three annotators (volunteers from our research labs) to label the 602 tweets as

positive, negative and neutral. After the annotation process, we had 249 positive examples,

216 negative examples and 137 neutral examples. These annotated tweets are used for the

evaluation of our sentiment classifiers.

2.2.2. Feature Extraction for Sentiment Classification

The supervised learning problem can be formally defined as follows. Given an inde-

pendent and identically distributed (iid) data set D of labeled examples (xi, yi)i=1,··· ,n, xi ∈ X

and yi ∈ Y , where X denotes a vocabulary of words/features and Y denotes the set of all

possible class labels; a hypothesis class H representing the set of all possible hypotheses

that can be learned; and a performance criterion P (e.g., accuracy), a learning algorithm L

outputs a hypothesis h ∈ H (i.e., a classifier) that optimizes P . The input xi can represent
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natural text over a finite vocabulary of words X , xi ∈ X ∗. During classification, the task

of the classifier h is to accurately assign a new example xtest to a class label y ∈ Y In our

case, examples are tweets posted during Hurricane Sandy. These tweets are labeled as pos-

itive, negative or neutral, based on the polarity of the emotion expressed in each tweet. In

what follows, we describe our features used as input to machine learning algorithms. These

features are divided into two types: unigrams and sentiment-based features (polarity clues,

emoticons, Internet acronyms, punctuation, and SentiStrength).

• Unigrams: This approach is widely used in sentiment classification tasks [33, 44].

Each tweet is drawn from a multinomial distribution of words from a vocabulary, and

the number of independent trials is equal to the length of the tweet. For unigrams,

we consider frequency counts of words as features. We performed stemming, stop-

word removal, and punctuation removal.

• Polarity Clues: These are the words in a tweet that express the polarity of opin-

ions/emotions. They are good indicators for calculating the sentiment of a given

text. We extract three features: PosDensity, NegDensity and PosVsNegDensity from

each tweet. PosDensity is the number of positive polarity clues (positive words) nor-

malized by the number of words in the tweet. Similarly, we compute NegDensity

for the negative polarity clues. PosVsNegDensity is the number of positive per neg-

ative polarity clues, calculated as (PosDensity+1)/(NegDensity+1). We used a list

of positive and negative words created by Hu and Li [15]. We turned a negated

positive word into a negative word and a negated negative word into a positive

word.

• Emoticons: In online interactions, emoticons such as “:)” and “:(” are widely used

to express emotional states. Each tweet is checked for emoticons by looking up an

emoticon dictionary built from Wikipedia. If a match of the emoticon pattern is

found, then the value for this feature is 1. Otherwise, the feature value is 0.

• Internet Acronyms: In Twitter, acronyms are fairly common since the length

of a tweet is restricted to 140 characters. For example, “lol” is used for laughing
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out loudly. We calculated positive and negative acronym counts by using positive

and negative dictionaries and used them as features. We collected commonly used

Internet acronyms and constructed positive and negative dictionaries.

• Punctuation: In online interactions, punctuation shows intensity of emotions.

For example, “I hate this!” and “I hate this!!!!!!!!!!” represent different means of

writing the same text, but with different intensities of emotion. Most commonly

used punctuation marks are exclamation mark ‘!’ and question mark ‘?’. We

extracted exclamation and question marks from tweets and used their counts as

features.

• SentiStrength: The sentiment strength of a tweet is calculated with the Sen-

tiStrength algorithm. SentiStrength is a tool designed for short informal text in

online social media. For a tweet, the algorithm computes a positive and a negative

sentiment score. These scores are used as features in our model.

2.2.3. Experiments and Results

We treat our three-class classification problem as two binary classification problems

as follows: first, we classify tweets as polar vs. neutral using the SentiStrength algorithm.

The algorithm returns two sentiment scores for a given English short text: a positive score

ranging from 1 to 5 and a negative score ranging from -5 to -1. A tweet with +1 and -1

scores is labeled as neutral; otherwise, it is labeled as polar. Second, we classify polar tweets

as positive vs. negative using two machine-learning classifiers, i.e., Naive Bayes and Support

Vector Machine (SVM) classifiers trained on three types of features: unigrams, sentiment-

based features, and their combination. We report the average classification accuracy obtained

in 10-fold cross-validation experiments. In the experiments, we used SVM with a linear

kernel and with different values for C = 0.1, 0.5, 0.75, 1.0 (the value of C dictates the

penalty assigned to errors).

For the positive vs. negative classification task, we used the SentiStrength algorithm

as a baseline. For each of the 465 polar tweets in our labeled dataset, we generated positive

and negative scores using SentiStrength, and used the two scores directly as rules for making
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Table 2.1. Performance of Naive Bayes and SVM for sentiment classifi-

cation using various features.

Feature type Naive Bayes
SVM

C=0.1 C=0.5 C=0.75 C=1

Sentiment-based 68.60 67.95 67.52 67.09 67.09

Unigrams 71.82 72.25 72.04 70.10 68.60

Combination 73.33 75.91 73.54 72.47 71.61

inference about the sentiment of a tweet. Again, a score of +1 and −1 implies that the

text is neutral. We say that a text is positive if its positive sentiment score is greater than

its negative sentiment score. A similar rule is used for inferring negative sentiment. For

example, a score of +3 and −2 implies positive polarity and a score of +2 and −3 implies

negative polarity. If both scores are equal for a tweet (e.g., +4 and −4), we assigned the

tweet to both classes. Applying this scheme on the 465 annotated tweets, we obtained an

accuracy of 59.13%.

Table 2.1 shows the results of the comparison of different classifiers, Naive Bayes

and SVM trained using three feature types: unigrams, sentiment-based features, and their

combination. As can be seen from the table, all classifiers trained using the combination

of unigrams and sentiment based features outperform classifiers trained using unigrams and

sentiment-based features alone. This suggests that the two sets of features complement each

other, e.g., the presence of emoticons boosts unigrams, and the presence of words not existent

in the positive and negative dictionaries boosts sentiment-based features.

The performance of SVM keeps decreasing as we increase the value of the parameter C.

This suggests that the higher the value of C, the fewer errors are allowed on the training set,

which causes the models to overfit, and hence, to result in poor performance on the test set.

SVM (C=0.1) achieves 75.91% accuracy using the combination of features as compared to

67.95% and 72.25% accuracy of SVM (C=0.1) using sentiment-based features and unigrams,

respectively, and as compared with 59.13% accuracy achieved by SentiStrength. A naive

approach that classifies all tweets in the majority class achieves 53.54% accuracy, which is
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much worse than that of SVM (C=0.1) i.e., 75.91%.

Comparison with Prior Work : Our work is the most similar with that of Nagy &

Stamberger[35]. Hence, we performed a comparison with this work. The approach presented

in Nagy & Stamberger [35] is to develop features based on emoticons and two sentiment

dictionaries - AFINN [41] and SentiWordNet [3]. In addition to the features used in Nagy

& Stamberger [35], i.e., emoticons and sentiment dictionary features, we used unigrams,

punctuation, internet acronyms, and SentiStrength scores (our features are described in

Subsection 3.2). The results of this comparison are shown in Table 2.2. As can be seen from

the table, the classifiers based on our features perform substantially better compared with

the approach proposed by Nagy & Stamberger [35]. Specifically, the highest performance

that our models achieve is 75.91% as compared with 64.30% achieved by models proposed

in Nagy & Stamberger [35].

Table 2.2. The comparison of our sentiment classification with Nagy and Stam-

berger (2012).

Feature type Naive Bayes
SVM

C=0.1 C=0.5 C=0.75 C=1

Our features 73.33 75.91 73.54 72.47 71.61

Nagy and Stamberger (2012)’s approach 64.30 61.50 63.44 63.22 63.65

2.2.4. Geo-tagged Tweets Sentiment Analysis

In order to associate the sentiment of tweets with their geo-locations, we extracted

the set of geo-tagged tweets from our Hurricane Sandy collection. In our data, there are

74,708 tweets with geo-location. We then used the SentiStrength to identify the neutral

tweets (those for which SentiStrength returns +1 and −1 scores). Finally, we used our best

performing classifier, i.e., SVM (C=0.1) with the combined features trained on Sandy data, to

label the remaining tweets as positive and negative (i.e., the tweets with SentiStrength scores

different from +1 and −1). In order to understand the general mood during the Hurricane

Sandy, we performed a geo-mapped sentiment analysis. Although Hurricane Sandy had a
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physical impact that was regionally limited, the storm affected people in locations far away

from the east coast of the United States. This is reflected in the global extent of geo-

located tweets on the topic of Sandy. Regardless, in a disaster scenario of this magnitude,

where the topic of the tweet is geographically specific and its physical impact isolated,

spatial proximity to the event understandably has an impact on the credibility of the tweeted

information [69]. Temporal distance similarly impacts the tendency of a Twitter user to

disseminate information about an emergency event [50]. In this section, we use the geographic

representation and cluster measures to examine the spatial and temporal variation of Twitter

data with respect to Hurricane Sandy.

Given a dataset of tweets related to Sandy, we rely primarily on clustering methods

to understand the spatial arrangement of geo-located tweets to avoid the stationarity of large

population centers. Although tweets contain detailed temporal information, we aggregated

them to the daily scale because of the effect of global time zones. We represent the spatial

extent of Sandy using the National Oceanic and Atmospheric Association’s (NOAA) National

Hurricane Center 34-knot (NOAA’s threshold for tropical storm classification) wind speed

approximation between October 26 and October 29, 2012 the day the storm’s threshold made

landfall in New Jersey. After making landfall and dissipating in strength, we approximate

the extent of the storm with buffers of decreasing diameter through October 31 around

the best-track of the storm’s center provided by NOAA [36]. Visual comparison of maps

generated with this data and measures of the clustering tendency of tweets around Sandy’s

landfall point reinforce the hypothesis that Twitter users tweet about a developing disaster

with greater proximity, reaching a peak of concentration during and at the location of the

disasters impact [69].

We first visually examined the spatial arrangement of tweets. Observing the move-

ment of the geographic mean center reveals the hemispheric shifts in Twitter use during

the course of Sandy’s development, landfall, and dissipation. The point at the mean center

moves from a location more central to the area which Sandy impacted (the US east coast)

to a more northern location following the onset of the storm as tweets around the globe pull
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the center of the cluster away. A one standard deviation ellipse surrounding the geographic

center also shows a similar trend in the contraction and subsequent expansion of its diameter

(Figure 2.1). This finding supports the use of social media in disaster management scenarios

as individuals are much more likely to share information via Twitter about a disaster while

and where it is occurring.

Following the visual analysis, we conducted a statistical measure of the clustering

tendency of tweets based on their proximity to the point where Sandy made landfall. We

evaluate the distance between each tweet and Sandy’s landfall point then plot them based

on the number of tweets that fall within predefined radii around that point. The positive

skewness of the resulting histograms signify a minimal distance between tweets and the

landfall point, and indicate an extreme tendency to cluster. Observing the histograms over

time reinforces our visual analysis that Twitter users tweet about Hurricane Sandy with

great proximity to it, increasing to a maximum during the storm’s maximum impact, then

quickly to a less clustered, global dispersion (Figures 2.2 and 2.3). Additionally, positive and

negative sentiments expressed in tweets about Hurricane Sandy have unique patterns. Both

positive and negative sentiment generally follow the trend of increasing clustering tendency

to the point of Sandy’s maximum impact and dispersion on the following days. However,

negative sentiment tweets consistently cluster in closer proximity to Hurricane Sandy (Figure

2.4).
While sentiment alone cannot make social media information actionable for disaster

responders, expressions of concern for others and notification of infrastructure failure, for

example, present situations of negativity and potentially a cry for help. Furthermore, we

have demonstrated that there is a spatial arrangement of positive/negative sentiment tweets.

The arrangement indicates that sentimental expression is significant for the social and spa-

tial environment of a disaster, and therefore for generating actionable information (such as

negative sentiment clusters which intimates the people need help). In our perspective, we de-

fine actionable information as the data which helps in better decision making. Through our

geo-tagged sentiment maps, emergency responders can interpret the emotional intensities on

the ground and can plan the relief efforts more efficiently. They can have an overview of the
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how people are feeling about the disaster. For example, using our sentiment map emergency

responders can focus their relief efforts on the clusters which emit negative sentiments that

are closer to the proximity of the Hurricane landfall.

2.3. The Impact of Emotional Divergence on Retweetability of Tweets during Hurricane

Sandy

In this section, we analyze the impact of emotional divergence on the retweetability

of tweets during Hurricane Sandy. During natural disasters, identifying how likely a tweet is

to be retweeted is very important since it can help promote the spread of “good” information

in Twitter, as well as it can help stop the spread of misinformation, when corroborated with

approaches that identify trustworthy information or misinformation, respectively.

We adopt the definition of “emotional divergence” (ED) from Pfitzner et al. [49],

which is defined as “the (normalized) absolute difference between the positive and the negative

sentiment score delivered by SentiStrength”. It is calculated using the formula ED = p−n
10

,

where p is a positive score and n is a negative score output by the SentiStrength algorithm.

As mentioned in Section 3.2, SentiStrength algorithm outputs a positive score ranging from

1 and 5 and a negative score ranging from −1 and −5, hence ED ∈ [0.2, 1]. Emotional

divergence in a given short text measures the spectrum of the emotions expressed in it,

whereas emotional polarity (sentiment) capture the overall emotion from the text. For

example, in the tweet “I hope this storm is TERRIBLEEEEEEE!!!!!! Lol forreal. Ill sleeep

perfect”, SentiStrength outputs a positive score (p) of 3 and a negative score (n) of -5, which

makes the emotional polarity as negative (-2). We can see that the user is expecting the

storm to be bad, but his intention to sleep well, is expressing a happy emotion. Even though

the emotional polarity is negative, there is a high divergence in the emotions present in the

tweet, which is precisely captured by the emotional divergence. In our example, ED is 0.8

showing a highly emotional contrast.

We first studied the emotional divergence using our geo-tagged tweets. In our data,

there are 74,708 tweets with geo-location, which are also used in our geo-tagged sentiment

analysis. From these geo-tagged tweets, we separated the tweets that are retweeted from
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(a) (b)

(c) (d)

(e) (f)

Figure 2.1. Maps of Positive, Neutral, and Negative Tweets at

global and regional scale. The maps are drawn using ArcGIS

(www.esri.com/software/arcgis).
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Figure 2.2. Skewness as a function of time.

Figure 2.3. Histogram of October 28. The extreme positive skewness indicates

short distances between each Tweet and the point where Hurricane Sandy made

landfall.

Figure 2.4. Positive vs. negative skewness as a function of time.
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those that are not retweeted. We then analyzed the impact of emotional divergence on

retweetability using this sample of geo-tagged tweets. The sample contains 5,823 retweeted

tweets (only initial tweets) and 68,885 tweets that are not retweeted. We then calculated the

emotional divergence value for each of geo-tagged tweets. In Figure 2.5(a), we plot the counts

of the 5,823 retweeted tweets for each emotional divergence value, from 0.2 to 1. As can be

seen from the figure, the number of retweeted tweets is decreasing with the increase in the

emotional divergence. This implies that there is a good proportion of retweeted tweets for

low emotional divergence values, and a tweet tends to have retweets if it is less emotionally

divergent. However, the correlation between the counts and the emotional divergence for

retweeted tweets does not elevate how likely a tweet can be retweeted. The likelihood of each

type (i.e., retweeted (RT) and not-retweeted (T)) gives better insight about how emotional

divergence affects retweetability.

(a) ED vs. # retweeted tweets (b) ED vs. Likelihood Ratio (α)

Figure 2.5. Impact of Emotional Divergence on Retweetability of geo-tweeets.

For each emotional divergence value (ED), we calculated Pr(ED = x|T ) for x =

0.2, . . . 1, which is the probability of a not-retweeted tweet (T) to have emotional divergence

x (i.e. the number of not-retweeted tweets having ED x, divided by the total number of not-

retweeted tweets in the sample). Similarly, Pr(ED = x|RT ) is the likelihood of a retweeted

tweet (RT) to have emotional divergence ED=x (i.e., the number of retweeted tweets having
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ED=x divided by the total number of retweeted tweets in the sample). In Figure 2.5(b), we

plotted the likelihood ratio with respective to the ED=x values. We observe a decreasing

trend as the ED value is increasing. We noted that there was a sharp decrease in the ratio

in the region ED = 0.5 to 0.8. This means that the chance of a tweet to be retweeted is

higher for low emotional divergence values. In Pfitzner et al. [49], the trend in their plots

show that the tweets with high emotional divergence value have a higher chance of being

retweeted in the network, indicating that those tweets have more number of retweets. In

contrast, we show an opposite trend, tweets that have high emotional divergence values have

a low likelihood of being retweeted. We suspect that the variation is due to the data collected

during different kinds of events. Our work is purely focused on disasters, whereas in Pfitzner

et al. the dataset contains tweets from a variety of events related to Oscar ceremony, sports,

and technological product launches, where highly emotional divergent tweets are more likely

to be retweeted.

(a) ED vs. #retweeted tweets (b) ED vs. Likelihood Ratio (α)

Figure 2.6. Impact of Emotional Divergence on Retweetability of tweets

from the whole dataset

To further validate our findings, we performed the same analysis on the whole Sandy

dataset. Out of 12.9 million tweets, 1.1 million tweets are retweeted during the disaster and

around 7 million tweets are not retweeted. The analysis results in trends that are similar

to what we found for the geo-tagged tweets sample. Figure 2.6(a), shows the correlation
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between emotional divergence and the corresponding retweeted tweets count. We observe

that, among the retweeted tweets, the proportion of the retweeted tweets is decreasing as the

emotional divergence value is increasing. We observe that the tweets having low emotional

divergence values have many retweets. Similarly, Figure 2.6(b) shows the correlation between

emotional divergence and the likelihood ratio. The chance of being retweeted is higher for

the low ED values and decreased for high ED values. We observe that a tweet with ED <

0.6 has a higher probability of being retweeted than the tweets with ED > 0.6.

Because in disaster events, tweets that convey information are more likely to be

retweeted than those that are conversational in nature, we study the correlation between low

emotional divergence (hence, high chance of retweetability) and the tweets’ informativeness

in the following section.

2.3.1. Emotional divergence vs. Informativeness

This experiment is to explore how the diversified emotions would affect the informa-

tiveness of the tweets. For each ED value, we ranked the tweets based on their retweets

counts, meaning that a top-ranked tweet will have the highest number of retweets in the

corresponding ED value. We then selected two sets of tweets, where one set contains tweets

with ED=0.2, and the other contains tweets with ED=0.8. We noticed interesting patterns

in these two sets. Tweets with ED=0.2 convey valuable information, which is useful for

the disaster bystanders and emergency response organizations. Moreover, they express a

neutral sentiment, are more objective (as opposed to being subjective), and are informative

in nature. Table 2.3 shows these example tweets and their retweets count. Moreover, tweets

with ED=0.8 are more conversational in nature. Table 2.4 shows the tweets with emotional

divergence ED= 0.8 and their retweets count. They express personal opinion/feeling of users

rather than conveying necessarily useful information. To validate this finding, we analyzed

a set of tweets available at http://crisislex.org1. This sample was constructed by Olteanu et

al. [42], which contains tweets annotated based on the tweet’s informativeness, i.e, a tweet

is labeled as informative if it conveys useful information and it is labeled as non-informative

1http://crisislex.org/data-collections.html
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Table 2.3. Examples of retweeted tweets with low emotional divergence (ED

= 0.2) and their retweets count.

Retweets Count Tweet

251 # laguardia # lga flooded. Jet bridge is around 5 feet to the bottom where you enter

the plane. @weatherchannel #sandy http://t.co/WSa2L9Ra

145 Norfolk continues to get hit hard by #Sandy #HRSandy http://t.co/MS9QAGE0

96 #Sandy power outages top 8.2 million http://t.co/gWYtG6Hx

Table 2.4. Example of retweeted tweets with high emotional divergence (ED

= 0.8) and their retweets count.

Retweets Count Tweet

6 Big Picture on Hurricane Sandy Carries far more impact than all the fakes. I quite liked

num 6. The rest devastating. http://t.co/85h5t535

2 I hope this storm is TERRIBLEEEEEEE!!!!!! Lol forreal. Ill sleeep perfect.

1 Were just going to watch bad romantic comedies dance and maybe cry a little for the

next two days. #sandy

Figure 2.7. Emotional Divergence vs Informational/Conversational.

if it doesn’t contain any useful information. The dataset contains tweets from 26 disasters

happened during 2012 and 2013 all around the world. For each disaster there are around

1000 tweets coded with informational and conversational labels. For these tweets, we cal-
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culated ED values and recorded the total number of the tweets that are distributed in each

ED value. For each ED value, we calculated the amount of tweets which are informational

and conversational, and then normalized them with the total number of tweets distributed

in each ED value.

Figure 2.7 shows the plot between emotional divergence and normalized counts of

the tweets. In the figure, the red line represents the informational tweets and the blue is

for conversational. As can be seen, the two curves show opposite trends. The curve for

informational tweets shows a decreasing trend, as the emotional divergence is increasing

the normalized counts is decreasing. Whereas, for conversational the trend is increasing,

as ED value is increasing, the normalized count is also increasing. This implies that for at

low ED values, the normalized counts value of informational tweets is higher than that of

conversational tweets. Similarly, for high ED values, the normalized counts of conversational

tweets is higher than that of informational tweets. This implies that the chance for the

tweets with low ED values to be informational is more and the chance for the tweets to be

conversational is higher at high ED values. In future, it would be interesting to see whether

emotional divergence really impacts the prediction of informative tweets. This suggests that

the chance for the tweets with low ED values to be informational is higher, whereas the

chance for the tweets to be conversational is higher at high ED values.

2.4. Summary and Discussion

We performed a sentiment analysis of user posts in Twitter during Hurricane Sandy

and visualized these sentiments on a geographical map centered around the hurricane. We

show how users’ sentiments change according not only to the locations of users, but also

based on the relative distance from the disaster. In addition, we investigated the influence of

emotional divergence on retweetability of a tweet and showed that the chance of retweeting

a tweet decreases as the emotional divergence increases. Another interesting pattern that

we discovered is that the content of tweets with low emotional divergence is generally in-

formative in nature (see Table 2.3) whereas, the content for the tweets with high emotional

divergence is more of personal opinions and do not necessarily convey any useful informa-
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tion. We supported this by using the tweets from CrisisLex datasets with informational and

conversational labels. In this analysis, we found that the proportion of informative tweets is

more than the conversational tweets at low ED values and the proportion of conversational

tweets is more than informative tweets at high ED values.

2.4.1. Related Work

There have been very few works on identifying the polarity of sentiments expressed

by users in social networking sites during disaster-related events. Nagy & Stamberger [35]

focused on sentiment detection in Twitter during the San Bruno, California gas explosion

and fires from 09/2010. They used SentiWordNet to identify the basic sentiment of a tweet,

together with dictionaries of emoticons and out of vocabulary words, and a sentiment-based

dictionary. Schulz et al. [52] proposed a fine-grained sentiment analysis to detect crisis

related micro-posts and showed significant success in filtering out irrelevant information. The

authors focused on the classification of human emotions into six classes: anger, disgust, fear,

happiness, sadness, and surprise. As features, they used bag of words, part of speech tags,

character n-grams (for n=3, 4), emoticons, and sentiment-based words compiled from the

AFINN [41] word list and SentiWordNet[3]. They evaluated their models on tweets related

to the Hurricane Sandy from October 2012. Mandel et al. [32] performed a demographic

sentiment analysis using Twitter data during Hurricane Irene. Pfitzner et al. [49] introduced

the concept of emotional divergence which measures the diversity of the emotions expressed

in a text and analyzed how likely a tweet is to be retweeted with respect to its emotional

divergence value.

In contrast to these works on sentiment analysis, we focus on geo-tagged sentiment

analysis of tweets from Hurricane Sandy in order to obtain a holistic view of the general

mood and the situation “on the ground” during the hurricane, which can help increase

situational awareness and inform emergency response organizations. We also study the

effect of emotional divergence on retweetability during Hurricane Sandy and how does the

emotional divergence affect informativeness.
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2.4.2. Discussion

There are probably many methods at gaining additional awareness of the affected

population, some traditional and some using new techniques. In this paper, we offer one

such new technique. We find that social media is a rich source of data surrounding a disaster

event. Leading up to, during and after a disaster more and more people turn to social media

to describe their experiences, express their needs, and communicate with other affected

persons. This online discussion is a rich trove of information that could possibly inform

responders, if made actionable. There are several reasons that this data is not yet seen

as fully actionable including the sheer amount of data, the inability to sort and categorize

the data into useful types, and the inability to fully trust data or unknown sources. One

additional strong reason that the data is not currently used to its full potential is a lack of

connection between the location of the disaster event and those tweeting about the disaster.

Because of the nature of social media, contributors do not have to be bystanders. Responders

interested in the wellbeing of physical bystanders seek methods of finding and measuring the

concerns of those directly affected by a disaster.

The strongest contribution of this work is a proof of concept. Using Twitter data

from Hurricane Sandy we identify the sentiment of tweets and then measure the distance

of each categorized tweet from the epicenter of the hurricane. Currently, responders can

track weather data to know where a hurricane hits an affected population, but they cannot

know in real time the effect that disaster is having on the population. They often ask, “How

bad is it out there?” Traditionally, they rely on either eyewitness accounts after the fact

from survivors, or eyewitness information offered in real time by those who can make phone

calls. In addition, through an analysis of the divergence of sentiments in tweets, we studied

how likely a tweet is to be retweeted based on its emotional divergence. Our models can be

integrated into systems that can help response organizations to have a real time map, which

displays both the physical disaster and the spikes of intense emotional activity in proximity

to the disaster. In time, such systems could pinpoint the joy of having survived a falling tree,

the horror of a bridge washing out or the fear of looters in action. Responders might be able
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to use a future iteration of such a system to provide real-time alerts of the emotional status

of the affected population. We find that mapping emotional intensity during a disaster may

help responders develop stronger situational awareness of the disaster zone itself.

In their 2011 paper, MacEachren et al. [31] argue that extracting and categorizing

social media data is where most researchers have focused their energy, and those efforts are

not enough to change the data into actionable knowledge [31]. It is essential to refocus on the

utility of the extracted information and the effectiveness of associated crisis maps to support

emergency response. In our work, we presented a method by which the affected population’s

response to a disaster might be measured through a sentiment analysis and then mapped

to the disaster in space and time. This is one big step along the path to providing official

responders with truly actionable information in real time based on social media data.
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CHAPTER 3

PREDICTING RETWEETABILITY DURING HURRICANE DISASTERS

During natural disasters, identifying how likely a tweet is to be retweeted is crucial

since it can help promote the spread of useful information in a social network such as Twitter,

as well as it can help stop the spread of misinformation when corroborated with approaches

that identify misinformation. In this chapter, we present an analysis of retweeted tweets

from two different hurricane disasters, to identify factors that affect retweetability. We then

use these factors to extract features from tweets’ content and user account information in

order to develop models that automatically predict the retweetability of a tweet. The results

of our experiments on Sandy and Patricia Hurricanes show the effectiveness of our features.

3.1. Introduction

Information diffusion is vital in the context of disasters to make the victims and

responders aware about the situations surrounding them. Many emergency decision makers

see the data produced through crowdsourcing as ubiquitous, rapid and accessible - with the

potential to contribute to situational awareness [72]. As the use of public social media in crisis

increased, emergency responders started to take notice of the way citizens engaged in social

media and the information exchanges that took place there [19]. Consequently, responders

began to consider if social media might be a useful tool for their practice. Research revealed

that social media could be used to distribute information quickly to a wide-spread audience

[26] and to engage more directly in a two-way conversation with members of the public [16].

The information that the public produced looked to be useful, as researchers showed that it

could contribute to situational awareness during a crisis event [4, 22]. According to Starbird

et al. [56], social media data that can be identified as coming from local bystanders to a

disaster can be extremely important to emergency responders. Most of the social media

data surrounding a disaster are derivative in nature: information in the form of reposts or

pointers to information available elsewhere [55]. These derivative data are abundant, as a

form of noise that must be filtered out to arrive at the signal of good data [1]. A small
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subset of the data comes from locally affected populations in the form of citizen reports [55].

Starbird et al. [55] assert that bystanders “on the ground are uniquely positioned to share

information that may not yet be available elsewhere in the information space and may have

knowledge about geographic or cultural features of the affected area that could be useful to

those responding from outside the area.”

Hughes and Palen [16] examined the role of social media in emergency management

and found that emergency managers see the potential of social media as means of engaging

the public quickly and widely during a crisis. Vieweg et al. [71] showed that retweeted tweets

are likely to contain information that contributes to situational awareness and are likely to be

actionable compared with non-retweeted tweets. In addition to the information that creates

awareness to the responders, people also post information related to relief efforts during

disasters (such as offering shelters, donations, and food), for which the target consumers

are the victims who need aid. We believe that understanding how likely a tweet is to be

re-tweeted seconds after it is posted has the potential to help responders to influence the speed

and spread of messages, which could make substantial improvements in the relief efforts and

can positively impact people who are badly affected by a disaster. However, the retweetability

of a tweet is influenced by many factors including the aspects of a user who posted the

information and the content present in it. In this paper, we focus on identifying factors that

affect retweetability of a tweet during mass emergencies. These factors could be used in a

real-time system to promote relevant tweets that convey useful information as well as to

stop the spread of misinformation when corroborated with approaches that identify rumors

and misinformation. Our research questions are: “In a social media (e.g., Twitter) stream

of messages, what features (or factors) affect the spreading (retweetability in our case) of a

message? How well do these features help in automatically predicting a message retweetability

during disasters?” We specifically address these questions with our research agenda using

Twitter datasets collected during Hurricane Sandy and Hurricane Patricia. Precisely, we

present a supervised learning approach with a wide range of feature exploration to identify

the retweetability of a tweet. Our approach, originally introduced in Neppalli et al. [39],
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can help increase situational awareness and can inform emergency response organizations

on how to reach the widest audience in the fastest way during disaster events. In this

extended work, we augment our contributions to retweetability analysis and prediction in

disaster events with our findings from a larger spectrum of experiments using state-of-the-art

classification approaches and two different hurricanes: Sandy and Patricia.

3.1.1. Contributions and Organiztion

The contributions of this chapter are as follows: (i) we present an analysis of retweeted

tweets during Sandy and Patricia Hurricanes to determine several aspects affecting retweet-

ability; (ii) we design features from tweets’ content and user account information for learning

models that predict the tweets’ retweetability during disaster events, and study the predic-

tive power of these features; (iii) we experimentally show that the models trained using

the designed features perform better than strong baselines and previous approaches; and

(iv) we find that the quantitative user features (e.g., #friends, #followers, #statuses) when

normalized with the user age show better performance than the unnormalized user features.

The rest of the chapter is organized as follows: Definitions and Datasets sections

describe the details of the datasets used for this work. Then, we present the data analysis

performed on both disasters’ tweets, followed by feature extraction. We then provide ex-

perimental design and results, and conclude the article with a summary, related work and

future work.

3.2. Datasets

3.2.1. Our Definitions

: A post on Twitter (or a tweet) is a short message of up to 140 characters, posted by

a user. A post may be direct or derivative. A direct post refers to a post that is published

for the first time (by a user), whereas a derivative post refers to a re-post of a post from

another user. In Twitter terminology, the former is called “tweeting” and the latter is called

“retweeting.” Retweeted messages have a common pattern as: “RT @A: message x,” which

specifies that the post is a retweet (“RT”) or re-post of message x that was originally posted
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by user A (“@A”). A user A is called a follower of a user B if user A “follows” (or receives

updates from) user B (but not vice-versa). If both users “follow” each other, then they are

called friends. We believe that both relations “followers” and “friends” are important since

they help pass the information in the network.

3.2.2. Hurricane Sandy

: We collected Twitter data posted during the Hurricane Sandy between October 26

and November 11, using the Twitter Streaming API (described in Section 1.4). We used

the following keywords: “#hurricanesandy,” “#sandy,” “hurricane sandy,” “#hurricane,”

“#sandyhurricane,” and “hurricane east coast” to download the tweets during Hurricane

Sandy. We used both search terms and the hashtags. Specifically, we collected 12.9 million

(M) total tweets with 5.1M unique users. Out of the 12.9M tweets, 7.1M are initial tweets

(or direct posts), and 5.8M are retweets (derivative posts). Out of the 7.1M initial tweets,

only 1.1M tweets are retweeted, whereas the remaining 6M tweets are not retweeted.

3.2.3. Hurricane Patricia

: In addition to Hurricane Sandy, we used the tweets posted during Hurricane Pa-

tricia in October 2015. We used the tweet ids provided by Kate Starbird, Asst. Professor

at the University of Washington. The search terms used by Starbird are: “#hurricane,”

“#patricia,” “hurricane patricia,” “#mexico,” and “#hurricanepatricia.” Due to Twitter

terms and conditions, it is not allowed to directly share the tweets. Hence Starbird shared

us the ids from their collection. Using the Twitter Search API (described in Section 1.4), we

crawled 4.38M tweets, which comprise of tweets in different languages. Based on the “lang”

attribute in the tweets’ metadata, we extracted 1.38M tweets in English, 2.08M in Spanish

and 59,559 tweets in other languages. We used the 1.38M ss English tweets to conduct our

analysis and experiments. From these 1.38M tweets, we extracted 86,268 tweets, which are

initial tweets that were retweeted to conduct our analysis and experiments.
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3.3. Data Analysis

In this section, we present our analysis on the set of tweets crawled during Sandy

and Patricia, and study how information is spread in the network via retweeting. Initially,

we analyzed the distribution of the posts during the events to explore the tweets’ posting

activity. In Figure 3.1, we plot the per day distribution of all the tweets - 12.9M tweets of

Sandy in the left plot and 1.38M tweets of Patricia in the right plot. We can observe a burst

after two days from the beginning of both the events. The delay can be explained by the

hurricanes’ progressive nature, i.e., they were forecasted a few days before the strike and

the pace in postings picked up as they hit the coast. As can be seen from Figure 3.1, the

frequency of the tweets decreases as time elapses.

(a) (b)

Figure 3.1. The distribution of total posts per day for Hurricane Sandy (A)

and Hurricane Patricia (B).

An analysis of retweeted tweets - 1.1M of Sandy and 86K of Patricia, reveals a similar

trend, as illustrated in Figure 3.2. Specifically, for each disaster, we remove the tweets that

are not retweeted at all and keep only the tweets (direct posts) that are retweeted. In Figure

3.2, we show the number of tweets (direct posts) that are retweeted and their retweets count

by day, where the left plot represents the data from Sandy and the right plot represents the

data from Patricia. The trend is analogous to the plot in Figure 3.1, where we can observe a

decrease in the number of tweets and retweets as the days elapse. We can also observe that

the number of retweets is much higher than the number of tweets every day, showing that
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(a) (b)

Figure 3.2. The distribution of retweeted tweets and their retweets during

Hurricane Sandy (A) and Hurricane Patricia (B).

the information is substantially spread in the network.

3.3.1. Retweetability vs. Number of Follewers/Friends

Among the retweeted tweets (i.e., the direct tweets - 1.1M from Sandy and 86K

from Patricia), we study how the number of followers or friends1 of a user would affect the

retweetability. Intuitively, we expect that a user with more followers or friends would have

a better chance of having his/her tweets retweeted more often. For this analysis, we divided

the direct tweets into five categories as shown in Table 3.1, based on their retweet count.

In Table 3.1 we show, for each category, from 1 to 5: the number of direct tweets

split by category, the average retweets (in parenthesis next to # direct tweets) and the sum

of the retweets count of all direct tweets (in a category) from Sandy and Patricia. We can

see that the number of direct tweets that are retweeted only once (last row in the table) is

significantly higher than the number of direct tweets that are retweeted more than 100 times

(first row).

As we go from Category 1 to Category 5, the number of direct tweets keeps increasing,

and the average retweets per tweet are decreasing. For Hurricane Sandy, the total number of

1Throughout this chapter, we refer to the followers (or friends) of a tweet as the followers (or friends) of the
user who posted the tweet.
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Table 3.1. The distribution of direct tweets and their retweets into five cat-

egories for Sandy and Patricia.

Retweet Category
Hurricane Sandy Hurricane Patricia

# Direct

Tweets (Avg.)
# Retweets

# Direct

Tweets (Avg.)
# Retweets

1. Retweeted > 100 times (Category 1) 4,560 (398) 1,816,676 1,408 (532) 737,017

2. Retweeted > 50 & <= 100 times (Category 2) 5,226 (69) 362,107 1,268 (70) 89,681

3. Retweeted > 20 & <= 50 times (Category 3) 15,574 (30) 483,679 3,071 (31) 96,659

4. Retweeted > 1 & <= 20 times (Category 4) 434,654 (4) 1,740,840 37,997 (5) 185,505

5. Retweeted Only Once (Category 5) 665,437 (1) 665,437 42,524 (1) 42,524

(a) (b)

Figure 3.3. The distribution of average followers for the users of the tweets

from the five categories in Table 3.1 for Hurricane Sandy (A) and Patricia (B).

retweets in Category 1 is very high compared with the other categories and has an average

of ≈398 retweets per each tweet. Category 4 has the next highest number of retweets, but

has a very low average of 4 retweets per each tweet. Similar patterns can be seen for Patricia

as well (see Table 3.1).We record the average number of followers and the average number of friends of the

unique users in each category. In Figure 3, we plot the distribution of the average number

of followers on Y-axis to the ranked categories on X-axis. Similarly, in Figure 4, we plot

the distribution of the average number of friends. In these figures, the left plots are for

Sandy and the right plots are for Patricia. We observe that the trend in all the plots is
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(a) (b)

Figure 3.4. The distribution of average friends for the users of the tweets

from the five categories in Table 3.1 for Hurricane Sandy (A) and Patricia (B).

in decreasing order. As can be seen from the figures, for both the disasters, Category 1

has the highest average number of followers and friends, whereas Category 5 has the lowest

corresponding averages. This analysis indicates the importance of the followers and friends

in the retweet phenomenon of a tweet. Despite the different datasets’ sizes of Sandy and

Patricia, we observe that the trend is the same for both the disasters.

3.3.2. Popularity Analysis among Users

We further analyze the popularity of users in terms of two measures: (1) the retweets

count of their tweets during the event, and (2) the verified status of the user. Both of these

Table 3.2. Top 5 users during

Sandy with total retweets in this dis-

aster and verified status.

User Type User id Retweets isVerified

Celeb justinbieber 137,599 true

Politician GovChristie 38,177 true

News Media cnnbrk 34,359 true

News Media HuffingtonPost 34,019 true

Parodic FillWerrell 32,984 false

Table 3.3. Top 5 users during Pa-

tricia with total retweets in this dis-

aster and verified status.

User Type User id Retweets isVerified

Astronomer StationCDRKelly 88084 true

Politician POTUS 20023 true

News Media publimetros 10874 true

Parodic BillNyeTho 11355 true

News Media ajplus 9607 false
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measures are important for the fast spreading of information in a network. For this analysis,

from all of our 1.1M retweeted tweets of Sandy and 86K retweeted tweets from Patricia, we

extracted the unique users who posted these initial tweets that were retweeted. We found

that the number of unique users in Sandy and Patricia are 487,026 and 55,459, respectively.

We ranked these users based on the retweets count of their tweets and observed that most of

the top ranked users are related to news media, celebrities (such as actors and musicians),

politicians, and a small fraction is related to regular or anonymous users. The inspection

of the top ranked users also revealed that, for these top ranked users, there is a significant

number of other users who participated in retweeting their tweets. Tables 3.2 & 3.3 show

the top five ranked users of Sandy and Patricia, respectively, along with their verifiability of

the user account (last column of each table).

For users’ credibility, we used the “verified account” attribute from Twitter, which

helps in establishing the authenticity of a user. In this aspect, we found an interesting

pattern. From the list of users ranked based on the number of retweets, we selected the

top 1000 and the last 1000 users and discovered that the accounts of the users with more

retweets are verified accounts. Figures 3.5 & 3.6 show the distribution of these 2000 users

(on X-axis) with the verified status (on Y-axis), which takes 1 if an account is verified and

0 otherwise. The figures correspond to Sandy and Patricia, respectively.

Figure 3.5. The distribution of users based on the verification status for top

1000 and last 1000 authors extracted for Hurricane Sandy.

In both the figures, as we descend to the users with less number of retweets, the

verification status is faded off. The first half of the X-axis represents the users of the top
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Figure 3.6. The distribution of users based on the verification status for top

1000 and last 1000 authors extracted for Hurricane Patricia.

1000 tweets with high retweets, where the density of blue bars is very high and the second

half is for the users of the last 1000 tweets with only one retweet, where we see only a few

blue bars. For Sandy, we found that there are around 584 verified users in the first 1000

users and only 11 verified users in the last 1000 users. Similarly, for Patricia, we found

506 verified users in the first 1000 users and 50 verified in the last 1000 users. Next, we

present details of our retweetability classification task and show how factors related to user

account information in the above analysis can affect the automatic prediction of tweets’

retweetability.

3.4. Feature Engineering

In this section, we describe our features that we use as input to machine learning

algorithms. We divide them into tweet content features (TC), user account features (U) and

bag-of-words (BOW).

• Tweet-content Features (TC): These features are extracted based on the tweet text.

They are:

– Contains Hashtag?: Hashtags are extremely relevant for the context of natural

disasters because tweets from the same topic will likely contain the same hash-

tags. A user in search for information about a disaster may search for hashtags

related to the particular disaster. We assign 1 if a hashtag is present in the
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tweet, and 0 otherwise.

– Number of Hashtags: Not only it is important to verify the presence of a

hashtag in a tweet, but also the number of hashtags may be important as well

for retweetability. The more hashtags a tweet has, the more people can see it,

thus increasing the chance of it being retweeted. The value of this feature is

the number of hashtags.

– One-word sentences: We use OpenNLP2 Java Libraries to check whether the

tweet contains a one-word sentence. We assign a feature value of 1 for the

presence of one-word sentences, otherwise 0.

– Multiple Sentences: Likewise one-word sentences, we also check for the presence

of multiple sentences in the tweet and assign feature value 1 for its presence,

otherwise 0.

– Presence of URL: URLs from news sources are important and are more likely

to be shared because they provide a complete background about a natural

disaster. The feature value is 1 for the URL presence, otherwise 0 is assigned.

– Is a Reply? A reply to a tweet usually indicates a conversation between users

and is of more personal nature. We assign 1 if the tweet is a reply, otherwise 0.

– User mentions: We check if a tweet contains user mentions or not. We used

regex

s@.*

s to check the pattern and assigned 1 as feature value if it is present, otherwise

0.

– Length of a tweet: We assign the string length as the feature value. If a tweet is

very short, it might not contain useful information. In contrast, a longer tweet

might contain useful information, and gets more retweets (Zhang et al. 2014).

– Phone Numbers: Tweets that contain phone numbers are likely to be shared by

users because the phone number might be an emergency number or a donation

2https://opennlp.apache.org/
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number. We assign feature value 1 for the presence and 0 otherwise.

– Measuring Units: In the case of natural disasters, there are many measurements

involved, such as wind speed, flood depth. This information may be important

for users participating in the disaster, and they may want to share it with other

users.

– Date or Time: A disaster could last for days. Hence, dates may be important

so that users can keep track of the progression of a disaster.

From the above features, we believe that the phone numbers, measuring units,

date or time features are informative for disasters because they have the necessary

vital information related to disasters, such as the magnitude of the disasters ex-

pressed in units, e.g., wind speed, water levels; phone numbers to inform or seek aid

from the responders. In addition to the above feature, we extracted features that are

derived based on certain word presences in the tweets. We manually parsed several

random subsets of tweets in our set and went through several online resources to

construct the dictionaries for each of these features as follows:

– Emoticons3 : Emoticons are used in social networks to express emotions. We

check for their presence and assign 1 for the presence or 0 otherwise.

– Cusswords: A tweet containing a cuss word indicates an informal way of ex-

pression, which may indicate no sign of useful information. We assign 1 for the

presence of cuss words and 0 otherwise.

– Keywords: We manually went through several random subsets of tweets and

selected a set of keywords such as “donate,” “txt” and “pm” that exist in

tweets. If a tweet contains a certain keyword, users will likely evaluate the

tweet as useful for the natural disaster and will retweet this tweet.

– Abbreviations: Users commonly use abbreviations on Twitter, due to 140 char-

acters limit. Abbreviations are a common way of expression, e.g., “LOL” which

means “Laughing Out Loudly.” We assign 1 for the presence of acronyms, and

3https://en.wikipedia.org/wiki/List_of_emoticons
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0 otherwise. If a tweet contains abbreviations, it might be viewed as more

informal. We selected most common abbreviations found in the tweets such as

lol, lmfao, lmao, roflmao, etc., from slang lookup table available in the data

folder of the SentiStrength project4.

Using Stanford Named Entity Recognizer5, we developed several other features.

Given a text, Stanford NER outputs an inline XML string containing the labels for

the entities. Named Entity is a reference to an entity or an object such as a person,

organization or a location.

– Contains Person Entity? We check for the presence of person entity and assign

feature value 1 for the presence, otherwise 0.

– Contains Location Entity? We check for the presence of location entity and

assign feature value 1 for the presence, otherwise 0.

– Contains Organization Entity? We check for the presence of organization enti-

ties such as NGO, NASA, and assigned feature value 1 for the presence, other-

wise 0.

• Normalized User Account Features : These features are designed based on the at-

tributes available in the user account information provided by Twitter. Generally,

user account attributes listed below are informative for retweetability prediction,

as shown in previous works [60, 74, 48]. However, these attributes do not provide

information related to activeness of the users. Our intuition is to understand and

quantify the activeness of a user, which plays a crucial role in the retweet phenom-

enon. For example, consider two users: A and B, whose Twitter account ages are

1000 days and 100 days, respectively, and each has posted 2000 statuses, and each

has 1000 followers on their accounts. As a result, the rate at which user A posted

is 2 tweets per day and for user B, it is 20 tweets per day. In this example, we can

observe that user B is relatively more active than user A. Thus, tweets of user B

4http://sentistrength.wlv.ac.uk/

5http://nlp.stanford.edu/software/CRF-NER.shtml
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will be more likely to get retweeted than the tweets of user A. Therefore, to extract

the activeness, we normalized the following quantitative entities (except age and

verification attribute) with the user account age:

– Number of Friends: Friends are defined as all of the followers that a given user

follows. The tweets of a user with more friends will likely be more retweeted.

– Number of Followers: If a user has a big number of followers, his/her tweets

will gain more visibility in the network. Since more people are visualizing the

tweets, the probability of a tweet being retweeted increases.

– Number of Favorites: A user with high favorites count indicates that other

people like his/her tweets in general, so a tweet created by this user may be

retweeted.

– Number of lists a user belongs to: If a user is listed in multiple lists, he is con-

nected and engaged with multiple communities. Consequently, the information

that he posts is more likely to be seen by more people. Therefore, tweets made

by this user may have a higher probability of being shared.

– Verification: This is treated as a label of popularity. Users who are verified

tend to post credible information, and this information is usually retweeted.

– Status Count: This represents the number of statuses (tweets) posted by a user

since the inception of the account. More statuses indicate active user, implying

that there might be a chance of sharing his/her information.

– Account age: If a user exists for a longer period in the network, he could

potentially reach more people. Thus, information posted by this user would

likely be retweeted. The feature value is the number of days since the creation

of the account.

• Bag of Words (BoW): A vocabulary is first constructed, which contains all unique

words from the collection of training documents (tweets). Using this vocabulary, we

use a binary representation to represent tweets as vectors. Specifically, we assign

1 for each word in the vocabulary if the word is found in the tweet, otherwise we
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assign 0.

3.5. Experiments and Results

In this section, we describe our experimental setup, and the results obtained using

machine learning approaches for retweetability prediction. More precisely, our goal is to

predict how likely a tweet is to be retweeted. We constructed several labeled datasets as

follows: if a tweet was retweeted more than k times, then the tweet was labeled as positive.

Otherwise, it was labeled as negative. For example, for a retweet threshold value k=1, we

labeled a tweet as positive if the tweet was retweeted more than one time (the tweet has more

than one retweet), and as negative otherwise. Since we are interested in predicting tweets that

are likely to be highly retweeted on Twitter during disaster events, it is reasonable to label a

tweet as negative, if the tweet is retweeted very few times. We performed experiments using

various values of k, i.e., 0, 1, 2, 5, 20, 50, 75, 90 and 100, and show results for representative

values of k = 0, 1, 5, and 20.

For evaluation, we show averaged results obtained using five disjoint train and test

random splits, each containing 8000 tweets. Examples in each split are randomly sampled

from all tweets in each disaster, depending on the retweet threshold. For example, to generate

a training set for k=0, we randomly selected 4000 positive example from 1.1M retweeted

tweets and 4000 negative examples from 6M non-retweeted tweets. Similarly, for the test

set, we randomly sampled 2000 positive examples from 1.1M retweeted tweets (other than

4000 which are selected in the training set) and 6000 negative examples from the 6M non-

retweeted tweets. Thus, the ratio of positive to negative class is 1:1 for the training set and

1:3 for the test set. For Patricia, we used the similar sampling method, but due to smaller

dataset size, each of the train and test splits’ size is reduced to 4000 tweets. This means

each training set contains 4000 tweets (2000 positive examples and 2000 negative examples)

and each test set contains 4000 tweets (1000 positive examples and 3000 negative examples).

After the generation of the labeled datasets, we performed experiments with the following

feature types: Tweet content features (TC), Normalized User account features (U) and Bag-

of-words (BOW) (see Feature Extraction section for details). We report the average of the
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metrics: precision, recall, and F1-score. We used Naive Bayes and Support Vector Machines

(SVM) classifiers to perform our experiments, and found that Naive Bayes performs better

than SVM. Hence, we only show results for Naive Bayes.

We evaluated the quality of each feature type individually and then formulated several

combinations from them. We found that not all feature combinations perform well on both

classes, and hence, selected the following feature sets - TC, TC+U, TC+U+BOW, and Only

BOW, which have good performance compared with the other combinations. In Tables 3.4

and 3.5, we show the results using these feature sets with several threshold values k for Sandy

and Patricia, respectively. We discuss the results in terms of F1-score.

Table 3.4. The performance of Naive Bayes on Sandy data, for various

retweet thresholds using TC, TC+U, TC+U+BOW and Only BOW. (P: Pre-

cision, R: Recall, F1: F1-score)

RT Threshold
TC TC+U TC+U+BOW Only BOW

P R F1 P R F1 P R F1 P R F1

Threshold 0 0.697 0.564 0.593 0.592 0.56 0.575 0.604 0.578 0.59 0.665 0.545 0.576

Threshold 1 0.657 0.564 0.592 0.672 0.731 0.68 0.68 0.729 0.69 0.659 0.597 0.62

Threshold 5 0.706 0.617 0.642 0.749 0.774 0.744 0.758 0.78 0.758 0.706 0.663 0.679

Threshold 20 0.729 0.64 0.663 0.787 0.802 0.783 0.799 0.81 0.801 0.742 0.695 0.711

3.5.1. Results Comparison on Feature Types

Among the results obtained for Sandy and Patricia, in Tables 3.4 and 3.5, the feature

set TC+U+BOW gives the best performance compared with all other feature sets. Moreover,

the best F1-score is achieved by TC+U+BOW for retweet threshold k=20. When we added

normalized user features (U) to the tweet features (TC), the F1-score is increased from 0.663

to 0.783 (18% relative increase) and adding BOW to TC+U, boosted it to 0.801 (20% relative

increase over TC). We can see that the conjunction of user account features and BOW with

tweet content features improved the classifiers’ performance for k=20. This suggests that

the user account features, BOW and tweet content features are collaboratively assisting each

other in boosting the classifier’s performance.
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Table 3.5. The performance of Naive Bayes on Patricia data, for various

retweet thresholds using TC, TC+U, TC+U+BOW and Only BOW. (P: Pre-

cision, R: Recall, F1: F1-score)

RT Threshold
TC TC+U TC+U+BOW Only BOW

P R F1 P R F1 P R F1 P R F1

Threshold 0 0.698 0.608 0.633 0.742 0.77 0.732 0.752 0.772 0.755 0.708 0.588 0.615

Threshold 1 0.703 0.608 0.634 0.785 0.788 0.74 0.772 0.79 0.763 0.711 0.617 0.642

Threshold 5 0.719 0.612 0.638 0.821 0.808 0.768 0.825 0.821 0.791 0.727 0.652 0.673

Threshold 20 0.722 0.618 0.643 0.847 0.836 0.81 0.854 0.847 0.827 0.733 0.664 0.684

3.5.2. Results Comparison on Retweet Threshold (k)

As we can see from the tables, the performance of the classifiers is increasing with

the increase in the retweet threshold value. In Tables 3.4 and 3.5, we reported the results for

only 0, 1, 5 and 20, for which the performance is significantly improved when the threshold is

increased. For example, the F1-score of TC+U feature set in Table 3.4 increases from 0.575

(for threshold k=0) to 0.744 (for threshold k=5) and increases further to 0.783 for k=20.

3.5.3. Comparison with previous works

We compared the results obtained using our best-performing feature set TC+U+BOW

with the results of the features in Petrovic et al. [48] denoted by Pt and Suh et al. [60]

denoted by Sh. These two works have the features extracted from the tweet text and the

user account information. Both of these works have very similar tweet features and user

account features. The tweet-based features are: URL (Pt & Sh), # hashtags (Pt & Sh),

# mentions (Pt & Sh), is a reply? (Pt), # retweets (Sh) and BOW (Pt); and the social

features are: # friends (Pt & Sh), # followers (Pt & Sh), # favorites (Pt & Sh), # listed

(Pt), user account age (Sh), statuses (Pt & Sh), and verified status (Pt). In parenthesis, we

show the work to which the feature belongs. In our work, we have additional features, which

are described in the Feature Extraction section. We used the normalized values of the user

account features instead of using the actual values.

In Table 3.6, we show the results comparison of our best performing feature set
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Table 3.6. Performance comparison of our work with previous works.

Features Class
Hurricane Sandy Hurricane Patricia

Precision Recall F1-Score Precision Recall F1-Score

Our model
Positive

Negative

0.213

0.734

0.256

0.686

0.233

0.709

0.568

0.813

0.375

0.905

0.452

0.856

Petrovic et al. (2011)
Positive

Negative

0.199

0.729

0.227

0.695

0.212

0.712

0.717

0.777

0.158

0.979

0.259

0.867

Suh et al. (2010)
Positive

Negative

0.19

0.72

0.25

0.645

0.215

0.68

0.676

0.767

0.103

0.984

0.179

0.862

TC+U+BOW with the feature sets of Petrovic et al. [48] and Suh et al. [60], and evaluate

them using the train and test sets for retweet threshold 0 (since the data labeling in the two

previous works is based on the retweet threshold 0). We report the metrics: precision, recall

and F1-score for positive and negative classes in Table 3.6. For both the disasters, we observe

that our feature set - TC+U+BOW performs better than the feature sets in Petrovic et al.

and Suh et al. in terms of F1-score on the positive class, whereas our feature set performs

on par or slightly worse compared with both previous works on the negative class. Hence,

our model is more successful than previous works at predicting a retweetable tweet.

3.5.4. Effect of Normalized User Features

We investigate the effect of normalized user features on the classifier’s performance.

Our idea of normalizing the quantitative entities of user account information with user ac-

count age is to quantify the user activeness, which is a helpful factor in the retweet phenom-

enon. For our best-performing feature set -TC+U+BOW, two versions of the user account

features (U) are used - one is normalized, and the other is without normalization.

In Table 3.7, we show the results (precision, recall and F1-Score) of positive and

negative classes for TC+U+BOW. In both the disasters, we can see that the negative class

is performing good and have a slight variation among the normalized and un-normalized user

features. However, in this work, it is important to predict the retweetable tweet correctly.

Hence we are interested in the performance of positive class, particularly. The performance
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Table 3.7. The performance comparison between Un-normalized User fea-

tures and Normalized User features. (P - Precision, R Recall, F1 F1-score)

RT Threshold Class

Sandy Patricia

Un-normalized Normalized Un-normalized Normalized

P R F1 P R F1 P R F1 P R F1

Threshold 0
Positive

Negative

0.202 0.232 0.216

0.731 0.694 0.712

0.213 0.256 0.233

0.734 0.686 0.709

0.729 0.171 0.278

0.78 0.979 0.868

0.568 0.375 0.452

0.813 0.905 0.856

Threshold 1
Positive

Negative

0.445 0.18 0.257

0.772 0.925 0.842

0.409 0.19 0.259

0.771 0.908 0.834

0.798 0.203 0.323

0.787 0.983 0.874

0.662 0.328 0.439

0.808 0.944 0.871

Threshold 5
Positive

Negative

0.606 0.349 0.443

0.81 0.925 0.863

0.601 0.354 0.446

0.811 0.922 0.863

0.856 0.313 0.458

0.811 0.982 0.888

0.85 0.343 0.489

0.817 0.98 0.891

Threshold 20
Positive

Negative

0.674 0.493 0.569

0.845 0.921 0.881

0.659 0.5 0.569

0.846 0.914 0.879

0.894 0.418 0.569

0.835 0.983 0.903

0.896 0.441 0.591

0.841 0.983 0.906

of positive class in Sandy dataset shows minute improvements when normalized user features

are used instead of un-normalized user features.

For Patricia, the positive class performance of normalized user features is better

compared with the performance of un-normalized user features. These results prove that the

normalization of the user attributes indeed helps in predicting the retweetability of a tweet.

It is worth noting that for the Hurricane Sandy, some of the user details are missing, and

hence, normalization may not help much, whereas for Hurricane Patricia, all user details are

available.

3.5.5. Feature Selection

In order to find out which features are more informative in the model construction,

we performed feature selection using the Weka toolkit6. The features are ranked according

to their Information Gain. We performed this experiment on the data which gave us the

best model, which is trained using TC+U+BOW with retweet threshold k=20. We present,

in Table 3.8, the top 10 features of 3237 features in Sandy and of 1633 features in Patricia.

We observe that the features belonging to user account feature type are top ranked. For

6http://www.cs.waikato.ac.nz/ml/weka/

48

http://www.cs.waikato.ac.nz/ml/weka/


both the disasters, the first four ranked features are the same, and after that, the ranking

is different. From BOW, we observe that the words which are the disaster name hashtags:

“#sandy” and “#patricia,” are ranked among the top 10 ranked features, indicating the

importance of the hashtags which are named after the events.

Table 3.8. Top 10 Ranked Features of TC+U+BOW for threshold 20.

Rank Sandy Patricia

1 Followers Count (U) Followers Count (U)

2 Is Verified (U) Is Verified (U)

3 Listed Count (U) Listed Count (U)

4 Age (U) Age (U)

5 Tweet Length (TC) Status Count (U)

6 Contains Emoticon(TC ) Tweet Length (TC)

7 “#sandy” (BOW) No. of hashtags (TC)

8 URL (TC) Contains Hashtags (TC)

9 Status Count (U) Friends Count (U)

10 No. of hashtags(TC) “#patricia” (BOW)

This feature ranking shows that the user account features are more informative and

important for achieving a promising model to predict the retweetability of a tweet. Now,

we briefly discuss the first 3 user features. Followers count is ranked as the first most

informative; this justifies the fact that followers are important means of retweeting a tweet.

Listed Count specifies the number of groups or communities in which a user is listed in,

which shows the active participation of a user, and hence, a higher chance of having his

tweets highly retweeted. Verified accounts on Twitter show the authenticity of a user as

a famous personality or as a well-known organization. As can be seen from the Figures

3.5 & 3.6 in Data Analysis section, the users of the highly retweeted tweets are mostly

verified. Hence, verifiability is a highly informative feature for the classifier in predicting the

retweetability of a tweet.
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3.6. Summary and Discussion

In this chapter, we studied the problem of predicting the retweetability of a tweet in

the context of disaster events. We used the tweets posted during the Hurricane Sandy in

2012 and Hurricane Patricia in 2015. The strongest contribution of this work is the design

and exploration of features for training machine learning classifiers that can predict how

likely a tweet is to be highly retweeted on Twitter. Unlike the features used in previous

works (e.g., the number of retweets as in Suh et al. [60]), our features are not dependent

on the retweet phenomenon. Our features are extracted from the tweet text and the user

account information only. We developed models that automatically predict the retweetability

of a tweet and found that classifiers trained on tweets’ content features (TC), normalized

user account features (U) and bag-of-words (BOW) together outperform those trained using

solely the “bag of words.”

The results of our experiments using different threshold values for labeling a tweet

as being retweetable show improved performance for classifiers trained using TC+U+BOW

over classifiers that are trained on each feature type independently. We then compared our

best feature set TC+U+BOW with the features in Petrovic et al. [48] and Suh et al. [60],

and the results indicate that our feature set performed better than the features in the other

two works. We also found that normalizing user account attribute values with the user

account age help in leveraging the activeness of a user, which is useful for predicting how

likely a tweet can be retweeted.

3.6.1. Related Work

In Twitter, users can create tweets, i.e. posts that must not exceed 140 characters,

and can share any public tweets in the network. This process of sharing a tweet is called

“Retweeting.” When users share tweets, all of the users’ followers will be able to see it.

Several research groups have demonstrated that emergency managers and responders un-

derstand the value of social media for crisis communication (see [16, 28, 13]). In addition,

there have been several studies of emergency managers and responders who have used social

media to get the word out during a crisis (see [9, 17, 53, 62]). More directly, there have been
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several research efforts to understand how emergency managers and responders have tried

to influence the public’s information or behavior via social media during crises (see [18, 63]).

With the aforementioned research efforts, and with the limitation of only 140 characters per

message, there is a strong agency for developing predefined terse messages to be used during

a given crisis [63, 64].

Much work is done on how information is propagated through a network. For example,

Sutton et al. [62] studied the effect of centrality on the dissemination information, and

how this feature allows a certain organization to broker said information. Kwak et al.

[25] conducted a quantitative study on Twitter data to find how information is diffused

in the network. They suggested that the number of followers a user has and the number

of times that a user’s tweet is retweeted are different measures of popularity. Olteanu et

al. [42] have studied the propagation of information in crisis situations using statistical

analysis and have shown that different disasters contain similar tweets, and human-induced

disasters are more analogous to each other than to natural disasters. Also, it was verified that

tweets containing keywords related to a disaster and tweets by local media and emergency

agencies are critical sources of information. Starbird and Palen [57] studied the information

propagation in Twitter during Red River floods and Oklahoma Fires and found that people

are more likely to use the retweet function to pass on crisis-related information than other

types of information during a crisis event. Hochreiter et al. [14] have applied a genetic

algorithm to improve message style and optimize a tweet composition for increasing the

reach of a message. They found that the retweetability of the optimized tweet had increased

significantly. Pervin et al. [47] studied the factors affecting the retweetability using Japan

Earthquake Twitter data and observed that network features such as the type of user sharing

a piece of information are very crucial for the propagation of the information.

Zaman et al. [74] developed a probabilistic model to predict a retweet given the

tweet content, tweeter and retweeter. They found that features such as the name, number

of retweet-followers and number of retweet following of the author of a given tweet were

important. Suh et al. [60] found that the context of a tweet author (such as age, followers,
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and friends) influenced the retweetability. They also stated that tweets with URLs and

hashtags were more likely to be retweeted. The authors developed a Generalized Linear

Model to predict the retweetability. Petrovic et al. [48] addressed the problem of predicting

retweetability in Twitter. They have shown that social features, i.e., the number of followers,

friends, statuses, favorites, the number of times that a user was listed and verified status,

play a major role in increasing the accuracy of the prediction. Uysal and Croft [70], have

proposed methods to rank tweets using retweet behavior in order to bring more important

tweets forward and also determined the audience of tweets by ranking users based on their

likelihood of retweeting the tweets. Starbird and Palen [57], have performed statistical

analysis on 2011 Egyptian uprising and showed that information diffusion is mostly due to

the retweets. They found that during political events, the work of activism is accomplished

by both local crowds through expressing social solidarity and through individual activists.

Probably the work by Jenders et al. [24] is the most similar to ours. Instead of predicting

a tweet which can be retweeted more than a threshold, we treated the problem as a binary

classification problem and solved for multiple thresholds. We additionally have features that

are designed based on the numbers in the tweet, such as phone numbers, measuring units,

dates which are useful during disasters, and are not present in Jenders et al. [24] .

3.6.2. Discussion

Through this research, we explored a wide range of features and studied the predictive

power of the features. We discovered that the features extracted from the tweet content

(TC) and user details (U) are informative for predicting the retweetability. In particular,

the user features have shown interesting results and suggest that user attributes are much

informative in modeling the retweetability prediction, since the user network aspects (such

as # followers, # friends, # listed) are important in spreading the information. Interesting

directions for future work include predicting the number of retweets for a tweet. One more

interesting future direction would be to integrate our approach with the approaches that

identify trustworthy and misinformation in Twitter, would have the potential to help to

promote useful information, which helps to flag those messages which are non-informative,
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but have a higher chance of being retweeted. Another direction would be to predict which

of the retweetable tweet is actionable for the victims and responders.
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CHAPTER 4

A FEATURE BASED APPROACH TOWARDS IDENDTIFYING INFORMATIVE

TWEETS DURING DISASTERS

In recent years, micro-blogging services such as Twitter and Facebook have emerged

as effective tools for broadcasting messages worldwide during disaster events. With millions

of messages posted through these services during such events, it has become imperative to

identify valuable information that can help the emergency responders to develop efficient

relief efforts and aid victims. In this chapter, we focus on understanding what features are

useful for identifying messages that convey information relevant to a disaster in the Twitter

platform. In particular, we design various feature sets (based on tweet content, user details

and polarity clues) and study the predictive power of these feature sets individually or in

various combinations, using Naive Bayes classifiers. Moreover, we explore how our features

generalize across different disaster types by developing models trained on one type (e.g.,

natural disasters) and evaluating them on another type (e.g., non-natural disasters). In

addition, we perform an analysis to show how diversified emotions in a tweet affect the

informativeness of the tweet. We find that tweets with high diversified emotions are more

likely to be non-informative, whereas tweets with low diversified emotions are more likely to

be informative.

4.1. Introduction

There is a growing body of research work on how to leverage micro-blogging informa-

tion from crowds of non-professional participants during disasters. Data produced through

micro-blogging is seen as ubiquitous, rapid and accessible [71], and it is believed to empower

average citizens to become more situationally aware during disasters and coordinate to help

themselves [46]. In disasters that have occurred recently in developed environments, average

citizens offered ground-level information describing the local specifics of the disaster, keeping

outsiders and emergency response organizations informed about the ground realities. In a

survey performed by the Pew Research Center, it was found that Twitter served as a major
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source of information during Hurricane Sandy, with more than 30% of the analyzed Twitter

data falling under the news and information category.

Despite the evidence of strong value to those experiencing the disaster and those

seeking information concerning the disaster, there is still very little uptake of message data

by large-scale, disaster response organizations[65, 67]. Response organizations operate under

conditions of extreme uncertainty. The uncertainty has many sources: the sporadic nature

of emergencies, the lack of warning associated with some forms of emergencies, and the wide

array of responders who may or may not respond to any one emergency. This uncertainty

increases the need for extracting appropriate information from streaming data, which could

make substantial improvements in the response process. However, the amount of online

streaming data is tremendous. For example, in the above-mentioned survey by the Pew Re-

search Center, it is stated that more than 20 million tweets were posted during the five-day

interval of Hurricane Sandy. Due to the sheer amount of data, it is extremely difficult and

time-consuming to manually sift through these data and identify valuable informative mes-

sages. We believe that data directly contributed by citizens and data scraped from disaster

bystanders have a huge potential to give responders more accurate and timely information

than it is possible with traditional information gathering methods. Still, information quality

and use in any area of disaster response remain as challenges.

Hence, one question that can be raised is: In a social media stream of messages,

what are the features that can help identify messages that convey information relevant to a

disaster? We specifically address this question with our research agenda in this chapter using

the knowledge gained from the previous feature sets of the sentiment and retweetability, and

with a Twitter dataset constructed by Olteanu et al. (2015).

4.1.1. Contributions and Organization

We present a supervised learning approach with a wide range of feature exploration

to identify informative messages (or tweets) from those that are not-informative in nature

(i.e., pertaining to user feelings, informal communication or casual conversations). We define

“informative” tweets as any tweets, which would provide valuable, concrete information to
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anybody viewing the tweets. Our approach is based on a combination of “bag-of-words”

features, which are typically used for text classification, and features that are extracted from

tweets’ content (e.g., URLs, hashtags, emoticons, slang), user details (such as number of

friends, number of followers) and polarity clues (such as positive words, negative words). In

summary, our contributions are:

• We propose an approach that combines “bag-of-words” features and features ex-

tracted from tweet content, user details, and polarity clues, for learning models that

identify informative tweets during disaster events, and study the predictive power

of our features.

• We show experimentally that models trained using the above combination of features

perform better than models trained on each feature type independently (i.e., either

“bag-of-words” or features extracted from the tweet content, user details, or polarity

clues).

• We study how well our features generalize across different disaster types (e.g., nat-

ural and non-natural) by developing models trained on one disaster type (such as

natural disasters) and evaluating them on another disaster type (such as non-natural

disasters). We also investigate how the emotional divergence affects informativeness.

Our study provides evidence to the claim that proper analysis of streaming data may

lead to applications able to help not only the disaster response providers to allocate resources

more efficiently, but also the victims who are in need and seeking support, by filtering out

necessary informative messages for immediate availability. The problem of finding relevant

information as a disaster evolves faces many challenges since extracting informative tweets

and filtering out those that are non-informative has to be done in real time and with high

accuracy.

The remaining of this chapter is organized as follows: We first discuss the Twitter

dataset and present the features used for identifying informative tweets from a stream of

messages, and then we discuss our results and conclude this chapter.
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Table 4.1. Summary of disasters used in the experiments.

S. No. Non-natural Disasters Natural Disasters

1. Colorado Wildfires (2012) Costa Rica Earthquake (2012)

2. Australia Bushfires (2012) Gautemala Earthquake (2012)

3. Venezuela Refinery (2012) Italy Earthquake (2012)

4. Boston Marathon Bombings (2013) Bohol Earthquake (2013)

5. Brazil Night Club Fire (2013) Typhoon Pablo (2012)

6. Glasgow Helicopter Crash (2013) Typhoon Yolanda (2013)

7. LA Airport Shootings (2013) Alberta Floods (2013)

8. Lac Megantic Train Crash (2013) Colorado Floods (2013)

9. NY Train Crash (2013) Philipinnes Floods (2012)

10. Savar Building Collapse (2013) Manila Floods (2013)

11. Spain Train Crash (2013) Queensland Floods (2013)

12. Singapore Haze (2013) Sardinia Floods (2013)

13. West Texas Explosion (2013) Russia Meteor (2013)

4.2. Dataset

We used a dataset constructed by Olteanu et al. [42]. This collection contains tweets

from 26 disasters that occurred during 2012 and 2013, which are manually annotated by

crowd-sourced workers with the labels: informative, not informative, and not related to the

disaster. There are about 1000 tweets manually annotated in each of the 26 disasters. Among

the 26 disasters, there are 13 non-natural disasters and 13 natural disasters. We consider a

natural disaster as any catastrophic event caused by nature or natural process of the earth

(e.g., cyclones, earthquakes, floods), whereas a non-natural disaster as an event caused by

human actions which may be intentional (e.g., gun shootings, bombings) or indirect which

leads to technological failures (e.g., industrial accidents, train crash). Table 4.1 shows the

26 disasters and their type. In these tweets, we found that some of the tweets were posted

in languages other than English based on the language attribute available from Twitter. We

removed the tweets which are not-related, non-english from the dataset and ended up with

7200 tweets related to non-natural disasters and 6480 tweets related to natural disasters.
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4.3. Feature Engineering

Next, we describe our features that we use as input to Naive Bayes classifier available

in Weka toolkit1. We divide them into four sets, namely bag-of-words, tweet content features,

user details features and polarity features.

• Bag-of-Words (BoW): A vocabulary is first constructed, which contains all unique

words from the collection of training documents (tweets). Using this vocabulary, we

use a binary representation to represent tweets as vectors. Specifically, we assign

1 for each word in the vocabulary if the word is found in the tweet, otherwise we

assign 0.

• Tweet Content Features (TC): We designed these features based on several aspects

of the content of a tweet, as follows:

– Presence of a URL: Checks whether URL is present or not.

– Presence of Hashtags: Presence of “#hashtags” in a tweet.

– Hashtag Count: Number of occurrences of hashtags in a tweet.

– Emoticons: Presence of emoticons in a tweet, highly representative of conver-

sational tweets.

– Instructional keywords: Presence of instructions words such as “text,” “call,”

and “donate.”

– Phone Numbers: Presence of a phone number in the tweet, using regex to

match phone number patterns (e.g., \d3-\d3-\d4 matches the phone numbers

like xxx-xxx-xxxx).

– Internet Slang: Presence of abbreviations and slang such as “OMG” (Oh My

God), highly representative of informalities and mostly occurring in conversa-

tional tweets.

– Is a Retweet (RT)?: Checks for the presence of the pattern “RT @” or “RT@”

in the tweet.

– Profanity - Checks for the presence of informal/cuss words.

1http://www.cs.waikato.ac.nz/ml/weka/downloading.html
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– Sentence Structure: We use OpenNLP Java Libraries to check whether the

tweet contains a one-word sentence. We assign a feature value of 1 for the

presence of one-word sentences, otherwise 0. Likewise, we also check for the

presence of multiple sentences in the tweet and assign feature value 1 for mul-

tiple sentences, and otherwise 0.

• User Details Features (UF): From the Twitter user attributes (namely, friends,

followers, verified, lists, statuses, etc.), we use the attributes below as our features.

– Followers count: Total number of followers of a user.

– Friends count: Total number of friends of a user.

– Favorites count: Total number of favorite tweets in the user account.

– Listed Count: Total number of communities that the user is listed in.

– Statuses Count: Total number of tweets posted by the user.

– Verified account: Twitter follows a procedure to verify the authenticity of the

users who are famous personalities, brands, etc. Each user account is assigned

with a special emblem, if it meets the verification criteria of Twitter. The

possible value for this feature is 1 (if verified account) and 0 (if not verified).

• Polarity Features (PF): These features are formulated based on the polarity (positive

or negative) of the words in a tweet. We identify the polarity words using lexicons of

positive and negative words created by Hu and Liu (2004) and compute the following

features:

– Positive word count: Number of positive words in a tweet.

– Negative word count: Number of negative words in a tweet.

– Positive Score: Positive score returned by the SentiStrength algorithm.

– Negative Score: Negative score returned by the SentiStrength algorithm.

– Emotional Divergence: We adopt the definition of “emotional divergence” (ED)

from Pfitzner et al. (2012). ED is defined as “the (normalized) absolute dif-

ference between the positive and the negative sentiment score delivered by

SentiStrength. It is calculated using the formula ED =(p-n)/10, where p is a
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positive score and n is a negative score output by the SentiStrength algorithm.

This feature is an aggregate of the above four polarity features.

4.4. Experiments and Results

We evaluate the performance of models trained using the above features on both

natural disasters (e.g., earthquakes and floods), and non-natural disasters (e.g., fire accidents

and train crash), as well as across disaster types. Last, we show how emotional divergence

in a tweet affects the informativeness of the tweet.

4.4.1. Comparison among Feature sets without BoW

We first contrast the feature sets described above in order to understand what feature

set or feature combinations are most predictive in identifying messages that convey infor-

mation relevant to a disaster. Thus, we compare the results of experiments obtained using

different feature sets and feature combinations, using 10-fold cross-validation experiments.

We experimented with Naive Bayes, Support Vector Machine, and Random Forest classifiers

and the following features and feature combinations: individual feature types (namely TC,

UF, and PF), bag-of-words (0/1 representation of tweets) and the combination of bag-of-

words with various feature sets. For our experiments, we separated all tweets from the 26

disasters of CrisisLex based on the disaster type and formed two subsets: one consisting

of 7200 tweets from non-natural disasters and another one consisting of 6480 tweets from

natural disasters. In order to have an equal amount of data for training in each subset and

remove the sample size bias, we randomly sampled a subset of 6400 tweets from each subset,

of which 5000 are informative tweets and 1400 are non-informative.

We show only the results for Naive Bayes classifiers, which yield better results than

SVM and Random Forest. We report F1-score of the classifiers on informative and non-

informative classes and their average. Table 4.2 shows the results of the classifiers evaluated

using 10-fold cross-validation with various feature set combinations for both disaster types,

natural and non-natural. Among individual feature sets, the classifiers trained using only

TC perform better than using only UF and only PF, on both disaster types. For example,
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the average F1-score of only TC for non-natural is 0.776, which is much better than 0.583

(for only UF) and 0.742 (for only PF). When user features (UF) are added to any feature

set, the performance does not improve for any disaster type, which indicates that the user

features are not informative and that the informativeness of a tweet is independent of the

user. Overall, we observe the best performance for TC+PF among our feature set combina-

tions. When polarity features are added to TC, we observe that the classifiers’ performance

improves, implying that these two feature sets are mutually assisting each other to boost

classifier performance. For example, for the non-natural disaster type, the average F1-score

is increased from 0.776 (for only TC) to 0.789 (for TC+PF), which is 1.68% increase.

Table 4.2. The performance (F1-score) of the classifiers with 10-fold cross-

validation setting using various feature sets.

Disaster type Class Only TC Only UF Only PF UF+PF TC+UF TC+PF TC+UF+PF

Non-Natural

Info. 0.841 0.656 0.867 0.801 0.808 0.87 0.837

Non-Info. 0.555 0.323 0.297 0.39 0.539 0.5 0.577

Avg. 0.778 0.583 0.742 0.711 0.749 0.789 0.781

Natural

Info. 0.835 0.195 0.855 0.279 0.679 0.865 0.718

Non-Info. 0.435 0.369 0.341 0.375 0.47 0.457 0.494

Avg. 0.748 0.233 0.743 0.3 0.633 0.776 0.669

4.4.2. Comparison among the combinations in conjunction with BoW

In Table 4.3, we show the results of the comparison for the classifiers trained using

best-performing feature set combinations (TC, TC+UF, TC+PF) in conjunction with BoW.

When tweet content features are combined with BoW, the classifier performance is similar

to Only BoW. Adding UF to BoW+TC, the classifier performance is degraded and when

PF is added to BoW+TC, the performance is slightly improved in comparison to only BoW.

Overall, from the results in Table 4.2 and Table 4.3, we find that among our feature sets,

user features are not useful for identifying the informative tweets, and TC and PF are

informative features for this classification task. Next, we investigate if the feature sets or

their combination will result in models that will generalize well from one type of disaster
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to another (e.g., from natural to non-natural disasters). More precisely, we use one disaster

type for training and the other disaster type for testing. Table 4.4 shows the results of these

experiments with the feature sets and BoW.

Table 4.3. The performance (F1-Score) of the classifiers with 10-fold cross-

validation setting using various feature sets and BoW.

Disaster Type Class Only BoW BoW+TC BoW+TC+UF BoW+TC+PF

Non-natural

Info.

Non-Info.

Avg.

0.903

0.704

0.859

0.902

0.703

0.858

0.894

0.696

0.850

0.905

0.710

0.862

Natural

Info.

Non-Info.

Avg.

0.900

0.681

0.852

0.901

0.688

0.855

0.880

0.670

0.834

0.902

0.688

0.855

4.4.3. Domain Adaptation

We compare these results in Table 4.4 with the 10-fold CV of the test set, since

in cross-validation all of the examples are used at least once in testing. As can be seen

from the table, the classifier trained using all natural disasters data (denoted as NTrain) and

tested on all non-natural disasters data (denoted as NNTest), shows similar performance

to the classifier evaluated using 10-fold cross-validation on all non-natural data. When

trained on all non-natural disaster data (denoted as NNTrain) and tested on all natural

disaster data (denoted as NTest), the classifier performance is worse than that of all natural

disaster 10-fold cross-validation. In terms of features, when trained and tested on opposite

disaster types (e.g., NNTrain/NTest), we observe that classifiers trained using feature sets in

conjunction with BoW are performing better than the classifiers trained on only BoW, for

example in NNTrain/ NTest, the average F1-score is 0.707 (for Only BoW) and is 0.725 (for

BOW+TC+PF) which is a 2.55% increase.

Overall, we find that the features extracted from natural disasters can be used for

developing models that could predict all disaster types (non-natural or natural), whereas non-

natural disasters do not generalize well for natural disasters. We investigate why the latter
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Table 4.4. Summary of results for cross-domain experiment with Train-on-

all/Test-on-All strategy. (10 CV- 10 fold Cross Validation; F1-scores reported)

Disaster Type Class Only BoW Only TC BoW+TC BoW+TC+PF

Non-natural 10 CV

Info.

Non-Info.

Avg.

0.903

0.704

0.859

0.841

0.555

0.778

0.902

0.703

0.858

0.905

0.710

0.862

NTrain/NNTest

Info.

Non-Info.

Avg.

0.891

0.656

0.839

0.871

0.446

0.778

0.894

0.666

0.844

0.897

0.669

0.847

Natural

Info.

Non-Info.

Avg.

0.900

0.681

0.852

0.837

0.441

0.751

0.902

0.687

0.855

0.902

0.688

0.855

NNTrain/NTest

Info.

Non-Info.

Avg.

0.753

0.540

0.707

0.817

0.497

0.747

0.768

0.546

0.719

0.773

0.555

0.725

scenario happened by comparing the examples which are misclassified in NNTrain/NTest, but

correctly classified in Natural 10-fold cross-validation. We noticed that the hashtags usage in

natural disasters tweets is greater than the usage in non-natural disasters tweets. For exam-

ple, in our natural disaster subset, there are 204 unique hashtags with occurrences accounted

up to 6174, for non-natural disasters it is 154 unique hashtags with 3758 occurrences. One

more observation we observed is that the non-natural disasters tweets have a lot of slang

words and very fewer slang words usage seen in natural disaster tweets.

4.4.4. Emotional Divergence vs. Informativeness

In this section, we analyze the impact of emotional divergence on the informativeness

of the tweets from CrisisLex. As can be seen from the experiments it is observed that the

classifiers’ performance spike when polarity features are added at some points. To understand

the correlation between the polarity clues present in a tweet and the informativeness, we used

the emotional divergence to capture the polarity clues present in the tweets and analyze the

distribution with respect to the informative and non-informative tweets. We separated these
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tweets into non-natural and natural disasters. For these tweets, we calculated ED values and

recorded the total number of the tweets that are distributed in each ED value. For each ED

value, we calculated the number of tweets which are informative and non-informative, and

then normalized them with the total number of tweets distributed in each ED value.

(a) (b)

Figure 4.1. Emotional Divergence vs. Informative/Non-informative for

Non-natural disasters (A) and Natural disasters (B).

Figure 4.1 shows the plot between emotional divergence and normalized counts of the

tweets from non-natural (left) and natural (right) disasters. We observe a similar trend for

both natural and non-natural disasters. In the figure, the red curve represents the informative

tweets, and the blue curve represents the non-informative tweets. As can be seen, the two

curves show opposite trends. The curve for informational tweets shows a decreasing trend:

as the emotional divergence is increasing, the normalized count value is decreasing, whereas

for non-informative, the trend is opposite: as the ED value is increasing, the normalized

count is also increasing. This implies that for low ED values, the normalized counts value

of informative tweets is higher than that of non-informative tweets. Similarly, for high ED

values, the normalized counts of non-informative tweets is higher than that of informative

tweets. This suggests that the chance for the tweets with low ED values to be informational

is higher, whereas the chance for the tweets to be non-informative is higher at high ED

values.

64



Table 4.5. Classifiers’ performance

using feature selection for both disas-

ter types.

Deleted Feature Non-natural Natural

None Deleted 0.778 0.751

Contains hashtag 0.778 0.756

Hashtag count 0.778 0.753

Internet slang 0.778 0.75

One-word sentence 0.778 0.747

Multiple sentences 0.777 0.739

URL 0.736 0.702

Phone number 0.738 0.721

Emoticons 0.721 0.703

Is a retweet? 0.778 0.751

Keywords 0.777 0.726

Profanity 0.778 0.751

Table 4.6. Feature Rankings based

on Information Gain for TC for both

disaster types.

Rank Non-natural Natural

1 URL URL

2 Emoticons Emoticons

3 Phone number Phone number

4 Multiple sentences Hashtag count

5 Internet slang Keywords

6 Hashtag count Contains hashtag

7 Contains hashtag Internet slang

8 One-word sentence Multiple sentences

9 Profanity One-word sentence

10 Keywords Profanity

11 Is a retweet? Is a retweet?

4.4.5. Feature Selection

From the above experiments, it is evident that the user features are not informative

for this classification task and we analyzed the effect of polarity features on identifying

informative tweets in the previous section. In this section, we study which features among

the tweet content features are more informative in the model construction. First, we perform

feature selection by training models with one feature removed at each iteration and record the

F1-score. This gives the information about the effect of the features on classifier performance.

Table 4.5 shows the results of feature selection on TC features for both disaster types. The

first row is for none of the TC features deleted. From row two, onwards, the presented feature

is removed and the remaining features are used for training. As can be seen from the table,

for both disaster types, we observe that the classifiers’ performance is severely dropped when

these features are removed - URL, phone number, and emoticons. In addition, we performed

feature rankings for TC using the Weka toolkit.
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The features are ranked according to their Information Gain. We present the ranked

features for both disaster types in Table 4.6. We observe that URL, emoticons and phone

number features are ranked top 3. For both the disasters, the first three ranked features are

the same, and after that, the ranking is different. From feature selection and ranking, we

observe that URL, emoticons and phone number features are more informative features for

identifying informative tweets despite the disaster type.

4.5. Summary

In this work, we designed several feature sets for identifying informative tweets using

CrisisLex dataset. We experimented with BoW and various combinations of our designed

feature sets TC, UF, and PF to obtain the best performing model. Among our feature set

combinations, TC+PF is performing better than other feature set combinations and adding

BoW to TC+PF shown improved classifier performance over TC+PF. We find out that

using user features is not useful for this classification task, in general, the informativeness of

a tweet is independent of user characteristics. We also explored how the models developed

for natural disasters is useful for non-natural disasters and vice-versa. We found that the

natural disasters are well generalized to all kinds of disasters, but non-natural disasters are

not.

In addition, we performed an analysis to investigate why polarity features help in

improving classifiers’ performance. We used emotional divergence (ED) to capture and

quantify the effect of having polarity clues in the tweets. We found that the tweets with

high ED values, have a high chance of being non-informative and for the tweets with low

ED values have high chance to be informative. We performed feature selection and found

that among the TC features, we found URL, emoticons and phone number features are more

informative features. This work will be very helpful when integrated into a real-time system

and filter out necessary informative data during the disasters, for immediate availability

to the emergency responders and reducing/minimizing the damage. In future, we can also

develop models that automatically identify the tweets of the users who are posting for help,

which will be an effortless task for the first responders to find those who are seeking help.
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One more interesting direction would be to identify the tweets which convey actionable

information.

4.5.1. Related Work

Sakaki et al. [51] used learning techniques to detect earthquakes in Japan using

Twitter data. They designed a model to build an autonomous earthquake reporting system

in Japan using Twitter users as sensors. Mendoza et al. (2010) studied the propagation

of rumors and misinformation from the Chilean earthquake using only a small set of cases.

Gupta et al. [12] focused on identifying fake images that were shared on Twitter, during

Hurricane Sandy. Dailey & Starbird [8] explored techniques such as visible skepticism to help

control the spread of false rumors during crisis events. Caragea et al. [5] built models for

classifying short text messages from the Haiti earthquake into classes representing people’s

most urgent needs so that relief workers, people in Haiti, and their friends and families can

easily access them. Ashktorab et al. [2] used a combination of classification, clustering,

and extraction methods to extract actionable information for disaster responders. Li et

al. [30] used a domain adaptation approach to study the usefulness of labeled data from

a source disaster, together with unlabeled data from a target disaster to learn classifiers

for the target. The authors showed that source data could be useful for classifying target

data. Similarly, Imran et al. [20] explored domain adaptation for identifying information

nuggets using conditional random fields and data from two natural disasters, Joplin 2011

tornado (as source) and Hurricane Sandy (as target). Moreover, Imran et al. [21] performed

cross-language domain adaptation using a supervised learning approach with unigrams and

bigrams features, and found that for similar languages (e.g., Italian and Spanish), the cross-

language domain adaptation is useful, whereas, for dissimilar languages (e.g., Italian and

English), it is not useful.

Starbird and Palen [57] studied information propagation in Twitter during mass emer-

gencies through the re-tweet feature of Twitter, using North Dakota Red River floods and

Oklahoma Wildfires. They focused on the retweet aspect and analyzed the percentage of

the retweets among the collected tweets to show that retweeting plays a major role in in-
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formation sharing. Neppalli et al. [37] focused on the task of automatically predicting the

retweetability of a tweet during disasters. They studied features that are useful for predicting

retweetability and found that features related to user details (e.g., friends and followers) are

generally very useful. In a similar fashion, Fujio et al. [11] analyzed behavioral changes in

users before and after the 2011 catastrophic great east Japan earthquake and showed that

the retweets are the most used form of information sharing. Cresci et al. [7] developed a sys-

tem that automatically detects the tweets that are useful for assessing the damage incurred

during natural disasters with a focus on cross-event performance.

In contrast to the above works, we aim at understanding, in a social media stream

of messages, what are the features that can help identify messages that convey information

relevant to a disaster. More precisely, we contrast several sets of features extracted from the

tweet content, user details and polarity clues, and study what are the best-performing ones.

We evaluate the performance of models trained using these features on natural disasters

(e.g., earthquakes and floods), as well as non-natural disasters (e.g., fire accidents and train

crash), and we investigate if these features will result in models that will generalize well from

one type of disaster to another (e.g., from natural to non-natural disasters). Last, we show

how diversified emotions in a tweet affect the informativeness of the tweet.
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CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

In this chapter, we summarize the contributions of this work and present some inter-

esting future directions.

5.1. Dissertation Summary

In recent years, micro-blogging services such as Twitter and Facebook have emerged

as effective tools to broadcast information world-wide [59]. Scholars from the field of disaster

management see hope in social media to extract useful information required during disasters.

Many studies were conducted concerning the value of using social media for disaster response

and their findings implied that the social media data could really help in improving accuracy

in decision making, consequently helping them to focus the relief efforts effectively [4, 43,

61, 72]. Despite the strong value of using the social media data during disasters, it is not

yet incorporated into the response processes due to several challenges which include the

heterogeneity in the content of the posted messages and the big data nature of the social

media streams. More precisely, along with the informative messages, there are messages as

a kind of noise (which do not convey any useful information) and must be filtered out to

arrive at the signal of good data. This increases the necessity for identifying appropriate

information from the streaming data, which could make substantial improvements in the

response process. Moreover, due to the big data nature of the social media, it is tough and

time-consuming to assign human resources to sift through these data and categorize them

into useful types.

Through this research, we presented several feature-based approaches to solving the

problem of categorizing social media data into useful types in the context of the disasters.

We specifically focused on classification based on these three categories: sentiment (which

offers insights about how people are feeling during the disaster), retweetability (which helps

to inform on how to reach more individuals in the fastest way) and informativeness (which

helps to keep people informed with valuable insights about the disaster). The following are
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the summary of this dissertation:

• Geo-mapped Sentiment Analysis during Disasters: In this work, we pre-

sented our approach to understanding the general mood during Hurricane Sandy.

We performed a geo-mapped sentiment analysis, where we first identified all geo-

tagged tweets in our collection and labeled each of them with sentiment labels using

our disaster-trained classifiers. We then associated the sentiments of tweets with

their geo-locations. We showed how users’ sentiments change according not only to

the locations of the users, but also based on the relative distance from the disaster.

Additionally, we investigated the impact of emotional divergence on retweetability.

We also performed a comparison with one of the previous works related to sentiment

analysis and showed that our features are better than the features in the other work.

• Retweetability Analysis and Prediction during Hurricane Disasters: In

this work we presented a set of analyses on retweeted tweets during Hurricane Sandy

and Hurricane Patricia to determine several aspects affecting the retweetability and

addressed the problem of retweetability prediction. We explored a broad range of

features including features extracted from tweets’ content and user account infor-

mation and use them in conjunction with machine learning classifiers to predict the

tweets’ retweetability during the hurricane. We also performed a comparison with

some of the previous works related to this task and showed that our features are

better.

• Identifying Informative Tweets during Disaster Events: We performed a

broad range of feature exploration to identify informative messages (or tweets) from

those that are not-informative in nature (i.e., about user feelings, informal com-

munication or casual conversations). Our approach is based on a combination of

bag-of-words features, which are typically used for text classification, and features

that are extracted from tweets’ content (e.g., URLs, hashtags, emoticons, slang),

user details (such as number of friends, number of followers) and polarity clues (such

as positive words, negative words). Furthermore, we studied how well our features
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generalize across different disaster types (e.g., natural and non-natural disasters)

by developing models trained on one disaster type (such as natural disasters) and

evaluating them on another disaster type (such as non-natural disasters).

5.2. Summary of Contributions

This section presents the contributions of this dissertation and outlines some of the

directions for further research.

• Geo-mapped Sentiment Analysis during Disasters: We performed the exper-

iments using the tweets posted during Hurricane Sandy. We found that:

– The performance of the classifiers trained using the combination of unigrams

and sentiment features outperform the baseline and the classifiers trained using

unigrams and sentiment-based features individually. This suggests that the two

sets of features complement each other, e.g., the presence of emoticons boosts

unigrams, and the presence of words not existent in the positive and negative

dictionaries boosts sentiment-based features.

– Through our geo-tagged sentiment maps, emergency responders can interpret

the emotional intensities on the ground and can plan the relief efforts more

efficiently. They can have an overview of the how people are feeling about

the disaster. For example, using our sentiment map emergency responders can

focus their relief efforts on the clusters which emit negative sentiments that are

closer to the proximity of the Hurricane landfall.

– The chance of a tweet to be retweeted is higher for low emotional divergence val-

ues using geo-tagged tweets (≈74,000). We further validated this finding using

all the tweets from the Hurricane Sandy dataset (8.1 M), which confirms that

our finding holds for both the samples (only geo-tagged tweets and the whole

dataset). We observed that a tweet with ED < 0.6 has a higher probability of

being retweeted than the tweets with ED > 0.6.

– The content of tweets with low emotional divergence is generally informative

in nature whereas, the content for the tweets with high emotional divergence
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is more of personal opinions and do not necessarily convey any useful infor-

mation. We supported this by using the tweets from CrisisLex datasets with

informational and non-informative labels. In this analysis, we found that the

proportion of informative tweets is more than the conversational tweets at low

ED values and the percentage of conversational tweets is more than informative

tweets at high ED values.

• Retweetability Analysis and Prediction: We used the tweets from Hurricane

Sandy and Hurricane Patricia and performed the analysis and the classification

experiments. We found that:

– The retweetability of a tweet is highly influenced by the user account details

(such as #followers, #friends, #statuses).

– The users with more number of followers and friends have more retweeted tweets

than the users with lesser followers and friends. This trend is same for both

the disasters (Sandy and Patricia).

– From the list of users ranked based on the number of retweets, we selected the

top 1000 and the last 1000 users and discovered that the accounts of the users

with more retweets are verified accounts.

– The strongest contribution of this work is the design and exploration of features

for training machine learning classifiers that can predict how likely a tweet is

to be highly retweeted on Twitter. Unlike the features used in previous works

(e.g., the number of retweets as in (Suh et al. 2010)), our features are not

dependent on the retweet phenomenon. Our features are extracted from the

tweet text and the user account information only.

– The performance of the classifiers trained using the combination of tweet con-

tent features (TC), user features(U) and bag-of-words (BOW) outperformed

the performance of the classifiers trained using TC, U and BOW features alone.

This suggests that the user account features, BOW and tweet content features

are collaboratively assisting each other in boosting the classifier’s performance.
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– For both the disasters, we observe that our feature set - TC+U+BOW performs

better than the feature sets in Petrovic et al. (2011) and Suh et al. (2010)

in terms of F1-score on the positive class, whereas our feature set performs

on par or slightly worse compared with both previous works on the negative

class. Hence, our model is more successful than previous works at predicting a

retweetable tweet.

– The positive class performance using normalized user features is better com-

pared with the performance of un-normalized user features. These results prove

that the normalization of the user attributes indeed helps in predicting the

retweetability of a tweet.

– We performed feature ranking to find out the informative features using In-

formation Gain algorithm and observed that the features belonging to user

account feature type are top ranked.

• Identifying Informative Tweets: We designed several feature sets for identify-

ing informative tweets using CrisisLex dataset. We experimented with BOW and

various combinations of our designed feature sets TC, UF, and PF to obtain the

best performing model. We found that:

– Among our feature set combinations, TC+PF is performing better than other

feature set combinations and adding BOW to TC+PF shown improved classifier

performance over TC+PF.

– User features are not useful for this classification task; in general, the informa-

tiveness of a tweet is necessarily dependent on the user characteristics.

– Among the TC features, the features - URL, emoticons and phone number

features are more informative for this task.

– Domain adaptation results indicate that the natural disasters are well general-

ized to all kinds of disasters, but non-natural disasters are not.

– The tweets with high emotional divergence (ED) values, have a high chance of

being non-informative and for those with low ED values have high chance of
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being informative.

5.3. Future Directions

Some directions for future research in the context of social media for emergency

response may include:

• Exploration of features to automatically identify the tweets of the users who are

posting for help, which will be an effortless task for the first responders to find

those who are seeking help.

• Identifying the tweets which convey actionable information (we define actionable

information as the data which helps in better decision making).

• Designing methods to identify the type of support offered (e.g., emotional support,

offering food and shelter) through the tweets.

• Exploration of features and identifying the trustworthiness of a tweet posted during

a disaster.

74



BIBLIOGRAPHY

[1] Anderson, K. M., & Schram, A. (2011). Design and Implementation of a Data Analytics

Infrastructure In Support of Crisis Informatics Research. ICSE 2011, 21-28 May 2011,

Honolulu, Hawaii.

[2] Ashktorab, Z., Brown, C., Nandi, M., & Culotta, A. (2014). Tweedr: Mining Twitter

to Inform Disaster Response. In ISCRAM’14.

[3] Baccianella, S., Esuli, A. & Sebastiani, F. (2010). Sentiwordnet 3.0: An enhanced lexical

resource for sentiment analysis and opinion mining, in: Proceedings of the Seventh

International Conference on Language Resources and Evaluation (LREC’10). Valletta,

Malta: European Language Resources Association (ELRA), 2010.

[4] Cameron, M. A., Power, R., Robinson, B., & Yin, J. (2012). Emergency situation

awareness from twitter for crisis management. World Wide Web - WWW 12 Companion.

[5] Caragea, C., McNeese, N., Jaiswal, A., Traylor, G., Kim, H.-W., Mitra, P., Wu, D.,

Tapia, A., Giles, L., Jansen, B., Yen, J. (2011). Classifying Text Messages for the Haiti

Earthquake. In: ISCRAM 2011.

[6] Caragea, C., Squicciarini, A., Stehle, S., Neppalli, K. & Tapia, A. (2016). Mapping

Moods: Geo-Mapped Sentiment Analysis during Hurricane Sandy. In Proceedings of

the 11th International ISCRAM Conference, PA, USA. 2014.

[7] Cresci, S., Tesconi, A., Cimino, A., & DellOrletta, F. (2015). A Linguistically-driven

Approach to Cross-Event Damage Assessment of Natural Disasters from Social Media

Messages. In International World Wide Web Conference Committee (IW3C2), Florence,

Italy.

[8] Dailey, D., & Starbird, K. (2014). Visible Skepticism: Community Vetting after Hur-

ricane Irene. In Proceedings of the 11th International ISCRAM Conference. University

Park, Pennsylvania, USA. 777- 81.

[9] Denef, S., Bayerl, P.S & Kaptein, N. (2013). Social Media and the Police-Tweeting

75



Practices of British Police Forces during the August 2011 Riots. In CHI 2013, 34713480.

New York, NY.

[10] Dandala, B. (2013). Multilingual Word Sense Disambiguation Using Wikipedia.(Order

No. 3691039). Available from Dissertations & Theses @ University of North Texas;

ProQuest Dissertations & Theses Global.

[11] Fujio, T., Takeshi, S., Kosuke, S., Kazuhiro, K., Satoshi, K., & Itsuki, N. (2013).

Information sharing on twitter during the 2011 catastrophic earthquake. Proc. of the

22nd International Conf. on World Wide Web companion. International World Wide

Web Conferences Steering Committee, 1025-1028.

[12] Gupta, A., Ponnurangam, K., Castillo, C., & Meier, P. (2014). TweetCred: Real-Time

Credibility Assessment of Content on Twitter. Social Informatics. Springer, 8851, (pp.

228-243).

[13] Hiltz, S.R., Kushma, J.A. & Plotnick, L. (2014). Use of Social Media by U.S. Public

Sector Emergency Managers: Barriers and Wish Lists. In: ISCRAM 2014. University

Park, PA.

[14] Hochreiter, R. & Waldhauser, C. (2013). A Genetic Algorithm to Optimize a Tweet for

Retweetability. In: I Proceeding of MENDEL 2013.

[15] Hu, M. and Liu, B. (2004). Mining and summarizing customer reviews. In SIGKDD 04,

pp. 168177.

[16] Hughes, A.L. & Palen, L. (2012). The Evolving Role of the Public Information Officer:

An Examination of Social Media in Emergency Management. Journal of Homeland

Security and Emergency Management 9, no. 1.

[17] Hughes, A.L., St. Denis, L.A., Palen, L. & Anderson, K.M. (2014). Online Public Com-

munications by Police & Fire Services during the 2012 Hurricane Sandy. In: CHI 2014,

15051514. New York.

[18] Hughes, A.L. & Chauhan, A. (2015). Online Media as a Means to Affect Public Trust

in Emergency Responders. In: ISCRAM 2015.

[19] Hughes, A. L., & Tapia, A. (2015). Social Media in Crisis: When Professional Respon-

76



ders Meet Digital Volunteers. Journal of Homeland Security and Emergency Manage-

ment.

[20] Imran, M., Elbassuoni, S., Castillo, C., Diaz, F., & Meier, P. (2013b). Practical ex-

traction of disaster-relevant information from social media. In Proceedings of the 22nd

international conference on World Wide Web companion (pp. 1021-1024). International

World Wide Web Conferences Steering Committee.

[21] Imran, M., Mitra, P. & Srivastava, J. (2016). Cross-Language Domain Adaptation for

Classifying Crisis-Related Short Messages. In ISCRAM16, Rio de Janeiro, Brazil.

[22] Ireson, N. (2009). Local community situational awareness during an emergency. In: 3rd

IEEE Intl. Conference on Digital Ecosystems and Technologies, 4954.

[23] Java, A.; Song, X.; Finin, T.; & Tseng, B. (2007). Why we twitter: understanding

microblogging usage and communities. Network, 43(1), 5665.

[24] Jenders, M., Kasneci, G. & Naumann, F. (2013). Analyzing and Predicting Viral Tweets.

In: WWW 2013 Companion, (pp. 657- 664) May 13 17.

[25] Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social net-

work or a news media? In: World wide web (Vol. 112, pp. 591600). ACM.

doi:10.1145/1772690.1772751

[26] Kodrich, K. & Laituri, M (2011). Making a Connection: Social Medias Key Role in

the Haiti Earthquake. In: Journal of Communication and Computer, Vol. 8, No. 8, pp.

624-627.

[27] Lalone, N., Tapia, A., Zobel, C., Caragea, C., & Neppalli, V. K. (2017). Embracing

Human Noise as Resilience Indicator: Twitter as Power Grid Correlate. In the Journal

of Sustainable and Resilient Infrastructure, 2017.

[28] Latonero, M. & Shklovski, I. (2011). Emergency Management, Twitter, and Social Me-

dia Evangelism. In the International Journal of Information Systems for Crisis Response

and Management 3, no. 4: 116.

[29] Lerman, K., & Ghosh, R. (2010). Information Contagion: an Empirical Study of the

77



Spread of News on Digg and Twitter Social Networks. Fourth International AAAI Con-

ference on Weblogs and Social Media, 9097.

[30] Li, H., Guevara, N., Herndon, N., Caragea, D., Neppalli, K., Caragea, C., Squicciarini,

A., & Tapia, A. (2015). Twitter Mining for Disaster Response: A Domain Adaptation

Approach. In ISCRAM 2015.

[31] MacEachren, A.M., Jaiswal, A., Robinson, A.C., Pezanowski, S., Savelyev, A., Mitra,

P., Zhang, X., & Blanford, J. (2011). SensePlace2: Geo-twitter Analytics Support for

Situation Awareness, in: IEEE Conference on Visual Analytics Science and Technology,

Providence, RI, 2011.

[32] Mandel, B., Culotta, A., Boulahanis, J., Stark, D., Lewis, B., & Rodrigue, J. 2012.

A demographic analysis of online sentiment during hurricane Irene. In Workshop on

Language in Social Media ’12.

[33] McClendon, S., & Robinson, A. C. (2012). Leveraging Geospatially-Oriented Social Me-

dia Communications in Disaster Response. In: The International ISCRAM Conference

2012 (pp. 211).

[34] Mitchell, T. M. Machine Learning. McGraw-Hill, New York, 1997.

[35] Nagy, A.&Stamberger, J (2012) Crowd Sentiment Detection during Disasters and Crises.

In: Proceedings of the 9th International ISCRAM Conference, Vancouver, CA.

[36] National Weather Service (2013, Oct 7 Published) NHC Data in GIS Formats. National

Hurricane Center. Retrieved Oct 20, 2013 from www.nhc.noaa.gov/gis/.

[37] Neppalli, V. K., Medeiros, M. C., Caragea, C., Caragea, D., Tapia, A., & Halse, S.

(2016). Retweetability Analysis and Prediction during Hurricane Sandy. In Proceedings

of the 13th International ISCRAM Conference, Rio de Janeiro, Brazil, 2016.

[38] Neppalli, V. K., Caragea, C., Mayes, R., Nimon, K. & Oswald, F. (2016). MetaSeer.

STEM: Towards Automating Meta-Analyses. In the Conference of Innovative Applica-

tions in Artificial Intelligence, Phoenix, AZ, USA, 2016.

[39] Neppalli, V. K., Caragea, C., Squicciarini, A., Tapia, A., & Stehle, S. (2017). Sentiment

78



Analysis during Hurricane Sandy in Emergency Response. In the International Journal

of Disaster Risk Reduction, Vol. 21 (213-222), 2017.

[40] Neppalli, K., Caragea, C., Caragea, D., Medeiros, M. C., Tapia, A. & Halse, S. (2017).

Predicting Tweet Retweetability during Hurricane Disasters. In the International Jour-

nal of Information Systems for Crisis Response and Management, Vol. 8 (32-50), IGI

Global, 2017.

[41] Nielsen, F. A. A new ANEW: Evaluation of a Word List for Sentiment Analysis in

Microblogs. CoRR, 2011. http://abs/1103.2903abs/1103.2903

[42] Olteanu, A., Vieweg, S., & Castillo, C. (2015). What to Expect When the Unexpected

Happens: Social Media Communications across Crises. In: Proc. of 18th ACM Confer-

ence on Computer Supportive Cooperative Work & Social Computing. (pp. 9941009).

DOI: 10.1145/2675133.2675242

[43] Palen, L., S. Vieweg, S. Liu,&A.L. Hughes. (2009) Crisis in a Networked World: Features

of Computer-Mediated Communication in 2007 Virginia Tech Event. Social Science

Computer Review.

[44] Pang, B., Lee, L.&Vaithyanathan, S. Thumbs up?: sentiment classification using ma-

chine learning techniques. In ACL-02, EMNLP 02, pages 7986, Stroudsburg, PA, USA,

2002.

[45] Palen, L. & Liu, S.B. (2007). Citizen communications in crisis: Anticipating a future

of ICT-supported participation. In: Proc. of the CHI Conference, San Jose, CA (pp.

727-736). New York: ACM Press

[46] Palen, L., Vieweg, S. & Anderson, K. M. (2010). Supporting “Everyday Analysts” in

Safety- and Time-Critical Situations. In: The Information Society. Vol 27 pp. 52-62.

[47] Pervin, N., Takeda, H., & Toriumi, F. (2014). Factor Effecting Retweetability: An

event-Centric Analysis on Twitter. In: 35th International Conference on Information

Systems, Auckland 2014

[48] Petrovic, S., Osborne, M., & Lavrenko, V. (2011). RT to Win! Predicting Message

79

http://abs/1103.2903abs/1103.2903


Propagation in Twitter. In 5th International AAAI Conference on Weblogs and Social

Media.

[49] Pfitzner, R., Garas, A. & Scheweitzer, F. (2012). Emotional divergence influences infor-

mation spreading in twitter, in: Proceedings of the 6th International AAAI Conference

on Weblogs and Social Media, AAAI Press, 2012, pp. 543546.

[50] Sakaki, T., Toriumi, F., Shinoda, K., Kazama, K., Kurihara, S., Noda, I.&Matsuo, Y.

(2013) Regional Analysis of User Interactions on Social Media in Times of Disaster. In:

WWW 2013, Brazil.

[51] Sakaki, T., Okazaki, M., & Matsuo, Y. (2010). Earthquake Shakes Twitter Users: Real-

time Event Detection by Social Sensors. WWW 2010, April 26-30 (pp. 851860). Raleigh,

North Carolina: ACM.

[52] Schulz, A., Thanh, T.D., Paulheim, H., & Schweizer, I. (2013) A Fine-Grained Senti-

ment Analysis Approach for Detecting Crisis Related Microposts. In: ISCRAM 2013.

[53] St. Denis, L. A., Palen, L.&Anderson, K. M. (2014). Mastering Social Media: An

Analysis of Jefferson Countys Communications during the 2013 Colorado Floods. In:

Proc. of the Information Systems for Crisis Response and Management Conference

(ISCRAM 2014).

[54] Starbird, K. Digital Volunteerism During Disaster: Crowdsourcing Information Process-

ing, in: CHI ’11 Workshop on Crowdsourcing and Human Computation, Vancouver, BC,

2011.

[55] Starbird, K., Palen, L., Hughes, A. L., & Vieweg, S. (2010). Chatter on the Red: What

Hazards Threat Reveals About the Social Life of Microblogged Information. In: CSCW

10 (pp. 241250). New York.

[56] Starbird, K., Munzy&Palen, L. (2012) Learning from the Crowd: Collaborative Filter-

ing Techniques for Identifying On-The-Ground Twitterers during Mass Disruptions. In:

ISCRAM 2012.

[57] Starbird, K. & Palen, L. (2010). Pass It On? : Retweeting in Mass Emergency. In:

Proc. of 7th ISCRAM Conference, Seattle, USA (May 2010).110.

80



[58] Starbird, K., & Palen, L. (2012). (How) will the revolution be retweeted?: informa-

tion diffusion and the 2011 Egyptian uprising. In: Proceedings of the Conference on

Computer-Supported Cooperative Work (CSCW). Bellevue, WA, USA: ACM Press.

Retrieved from http://dl.acm.org/citation.cfm?id=2145212

[59] Stefanidis, A.; Crooks, A.T.; Radzikowski, J.; Croitoru, A. & Rice, M. (2014), Social

Media and the Emergence of Open-Source Geospatial Intelligence, in Murdock, D.G.,

Tomes, R. & Tucker, C. (eds.), Human Geography: Socio-Cultural Dynamics and Global

Security, US Geospatial Intelligence Foundation, Herndon, VA, pp. 109-123.

[60] Suh, B., Hong, L., Pirolli, P., & Chi, E. H. (2010). Want to be retweeted? Large scale

analytics on factors impacting retweet in twitter network. In: SocialCom 2010, (pp.

177184).

[61] Sutton, J., Palen, L.,&I. Shklovski. (2008) Backchannels on the Front Lines: Emergent

Use of Social Media in the 2007 Southern California Fires. ISCRAM.

[62] Sutton, J. N., Spiro E. S., Johnson, B., Fitzhugh, S.M., Greczek, M. & Butts, C.T.

(2012). Connected Communications: Network Structures of Official Communications in

a Technological Disaster. In ISCRAM 2012). Vancouver, BC.

[63] Sutton, J. N., Spiro E. S., Fitzhugh, S.M., Johnson, B., Greczek, M. & Butts, C.T.

(2014). Terse Message Amplification in the Boston Bombing Response. In: ISCRAM

2014.

[64] Sutton, J., Gibson, C. Ben, Spiro, E. S., League, C., Fitzhugh, S. M., & Butts, C. T.

(2015). What it takes to Get Passed On: Message Content, Style, and Structure as

Predictors of Retransmission in the Boston Marathon Bombing Response. Plos One,

10(8).

[65] Tapia, A. H., Bajpai, K., Jansen, B. J., & Yen, J. (2011). Seeking the Trustworthy

Tweet: Can Microblogged Data Fit the Information Needs of Disaster Response and

Humanitarian Relief Organizations. In: ISCRAM 2011 (pp. 110).

[66] Tapia, A. Moore, K. Johnson, N. (2013). Beyond the Trustworthy Tweet: A Deeper

81



Understanding of Microblogged Data Use by Disaster Response and Humanitarian Relief

Organizations. In: ISCRAM 13.

[67] Tapia, A. & Moore, K. (2014). Good Enough is Good Enough: Overcoming Disaster

Response Organizations Slow Social Media Data Adoption Special Issue on Technologies

for Disaster Response. In: Journal of Computer Supported Cooperative Work. 2014.

[68] Terpstra, T. (2012). Towards a real-time Twitter analysis during crises for operational

crisis management. Proceedings of International ISCRAM Conference 2012 (pp. 19).

[69] Thomson, R., Ito, N., Suda, H., Lin, F., Liu, Y., Hayasaka, R., Isochi, R.&Z. Wang.

(2012) Trusting Tweets: The Fukushima Disaster and Information Source Credibility

on Twitter. In: ISCRAM 2012.

[70] Uysal, I., & Croft, W. B. (2011). User Oriented Tweet Ranking: A Filtering Approach

to Microblogs. In Proceedings of the International conference on Information and knowl-

edge management (CIKM) (pp. 22612264). Glasgow, Great Britain.

[71] Vieweg, S. (2010). Microblogged Contributions to the Emergency Arena: Discovery, In-

terpretation, and Implications. CSCW 2010, February 6-10 (pp. 515516). Savanah, GA:

ACM. Retrieved from http://www.citeulike.org/user/ChaTo/article/6761693

[72] Vieweg, S., Hughes, A.L., Starbird, K. & Palen, L. (2010) Supporting Situational Aware-

ness During Emergencies Using Microblogged Information. In: CHI 2010.

[73] Yang, F. (2012). Automatic Detection of Rumor on Sina Weibo Categories and Subject

Descriptors. MDS12 (Vol. 2). Beijing, China.

[74] Zaman, T. R., Herbrich, R., Van Gael, J., & Stern, D. (2010). Predicting information

spreading in twitter. In: Workshop on Computational Social Science and the Wisdom

of Crowds, NIPS.

82

http://www.citeulike.org/user/ChaTo/article/6761693

	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1. INTRODUCTION
	1.1. Background and Motivation
	1.2. Research Questions
	1.3. Dissertation Outline
	1.3.1. Published Work
	1.3.2. Other published work (not included in this work)

	1.4. Appendix

	CHAPTER 2. SENTIMENT ANALYSIS DURING HURRICANE SANDY IN EMERGENCY RESPONSE
	2.1. Introduction
	2.1.1. Contributions and Organization

	2.2. Geo-Tagged Sentiment Analysis of Tweets from Hurricane Sandy
	2.2.1. Dataset
	2.2.2. Feature Extraction for Sentiment Classification
	2.2.3. Experiments and Results
	2.2.4. Geo-tagged Tweets Sentiment Analysis

	2.3. The Impact of Emotional Divergence on Retweetability of Tweets during Hurricane Sandy
	2.3.1. Emotional divergence vs. Informativeness

	2.4. Summary and Discussion
	2.4.1. Related Work
	2.4.2. Discussion


	CHAPTER 3. PREDICTING RETWEETABILITY DURING HURRICANE DISASTERS
	3.1. Introduction
	3.1.1. Contributions and Organiztion

	3.2. Datasets
	3.2.1. Our Definitions
	3.2.2. Hurricane Sandy
	3.2.3. Hurricane Patricia

	3.3. Data Analysis
	3.3.1. Retweetability vs. Number of Follewers/Friends
	3.3.2. Popularity Analysis among Users

	3.4. Feature Engineering
	3.5. Experiments and Results
	3.5.1. Results Comparison on Feature Types
	3.5.2. Results Comparison on Retweet Threshold (k)
	3.5.3. Comparison with previous works
	3.5.4. Effect of Normalized User Features
	3.5.5. Feature Selection

	3.6. Summary and Discussion
	3.6.1. Related Work
	3.6.2. Discussion


	CHAPTER 4. A FEATURE BASED APPROACH TOWARDS IDENDTIFYING INFORMATIVE TWEETS DURING DISASTERS
	4.1. Introduction
	4.1.1. Contributions and Organization

	4.2. Dataset
	4.3. Feature Engineering
	4.4. Experiments and Results
	4.4.1. Comparison among Feature sets without BoW
	4.4.2. Comparison among the combinations in conjunction with BoW
	4.4.3. Domain Adaptation
	4.4.4. Emotional Divergence vs. Informativeness
	4.4.5. Feature Selection

	4.5. Summary
	4.5.1. Related Work


	CHAPTER 5. CONCLUSION AND FUTURE DIRECTIONS
	5.1. Dissertation Summary
	5.2. Summary of Contributions
	5.3. Future Directions

	BIBLIOGRAPHY



