ACADEMIC STRESS IN STUDENT-ATHLETES

Christina James, BA

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2017

APPROVED:

Rick Grimes, Major Professor
John Collins, Committee Member
Cinnamon Sheffield, Committee
John Nauright, Committee Member and Chair of the Department of Kinesiology, Health Promotions, and Recreation
Bertina H. Combes, Interim Dean of the College of Education
Victor Prybutok, Vice Provost of the Toulouse Graduate School
Academic stress and the causes of such stress are subjects that are found in very few studies concerning student-athletes. Therefore, the purpose of this quantitative study is to determine how the following variables relate to academic stress and perceived stress either through correlations or differences—demographics, academic classification, major or field of study, athletic scholarship status, and season of sport (in-season/ out of season). An online questionnaire containing a Perceived Stress Scale and a Perception of Academic Stress scale were distributed to 151 student-athlete participants at a university in the southwest United States. The results indicated that biological sex has a significant relationship to perceived stress. No other variables were found significant to perceived stress or academic stress.
Copyright 2017

by

Christina James
ACKNOWLEDGMENTS

I would like to say thank you to my thesis committee members and a special thank you to Dr. Rick Grimes and Dr. John Collins. Thank you for meeting with me for hours at a time and being patient throughout this entire process. I appreciate every talk and every meeting. Also, thank you to Dr. Cinnamon Sheffield with her efforts concerning my participant group. Thank you for taking the time to contact the coaches and athletes. I am so happy that you all chose to be a part of my thesis committee. We made a great team.
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGMENTS .. iii</td>
</tr>
<tr>
<td>LIST OF TABLES .. vi</td>
</tr>
<tr>
<td>CHAPTER 1. INTRODUCTION ... 1</td>
</tr>
<tr>
<td>Background ... 3</td>
</tr>
<tr>
<td>Definition of Terms .. 6</td>
</tr>
<tr>
<td>CHAPTER 2. LITERATURE REVIEW .. 8</td>
</tr>
<tr>
<td>Demographics .. 8</td>
</tr>
<tr>
<td>Biological Sex .. 8</td>
</tr>
<tr>
<td>Ethnicity .. 9</td>
</tr>
<tr>
<td>Socioeconomic Status .. 11</td>
</tr>
<tr>
<td>Academic Classification .. 11</td>
</tr>
<tr>
<td>Major or Field of Study ... 13</td>
</tr>
<tr>
<td>Athletic Scholarship Status ... 15</td>
</tr>
<tr>
<td>Season of Sport .. 16</td>
</tr>
<tr>
<td>Scales .. 17</td>
</tr>
<tr>
<td>Life Event Scales ... 17</td>
</tr>
<tr>
<td>Perceived Stress Scales ... 18</td>
</tr>
<tr>
<td>Hypotheses .. 19</td>
</tr>
<tr>
<td>CHAPTER 3. METHODOLOGY ... 21</td>
</tr>
<tr>
<td>Participants .. 21</td>
</tr>
<tr>
<td>Materials .. 21</td>
</tr>
<tr>
<td>Procedures .. 23</td>
</tr>
<tr>
<td>Statistical Analysis .. 23</td>
</tr>
<tr>
<td>CHAPTER 4. RESULTS .. 25</td>
</tr>
<tr>
<td>t-Test and One-Way ANOVA ... 28</td>
</tr>
<tr>
<td>Biological Sex .. 28</td>
</tr>
<tr>
<td>Ethnicity .. 28</td>
</tr>
<tr>
<td>Socioeconomic Status ... 28</td>
</tr>
</tbody>
</table>
LIST OF TABLES

Table 1. Frequencies and Percentages for Student-Athletes Variables 26
Table 2. Frequency and Percentage for Academic Majors, separated by colleges 27
Table 3. Mean and Standard Deviations for Age, Perceived Stress, and Academic Stress .. 27
Table 4. High School and College Grade Point Averages for Males and Females 32
CHAPTER 1
INTRODUCTION

The National College Athletic Association (NCAA) consists of nearly 1,100 colleges and universities and provides athletics to 480,000 student-athletes. Although this number only represents four percent of the overall student population (National Collegiate Athletic Association [NCAA], 2016; Hodes, James, Martin, and Milliner, 2015), the role of a student-athlete exceeds that of their non-athlete peers. Collegiate student-athletes devote over 30 hours per week to sport while continuing the role and expectations of a student, which includes an expectation to study two hours outside of class for every hour in class (Papanikolaou, Nikolaidis, Patsiaouras, and Alexopoulos, 2003). Student-athletes must also maintain NCAA eligibility standards by completing academic tasks and degree requirements such as completing a certain number of credit hours by a specific semester or year (Carodine, Almond and Gratto, 2001). If academic standards are not completed, it could result in the student-athlete’s ineligibility to play, loss of scholarship, and ultimately not graduating (Carodine et al., 2001). These combined roles, student and athlete, tend to take a toll on the athlete and in some cases can result in academic stress.

Academic stress(ors) can be defined as a “student’s perception of extension knowledge base required and the perception of an inadequate time to develop it” (Misra and McKean, 2000, p. 41; Hwang and Choi, 2016). Student-athletes are known to encounter unique stressors, such as time management, relationships with coaches, and missed scheduled classes (Davoren and Hwang, 2014; Cosh and Tully, 2014; Beauchemin, 2014; Surujlal, Van Zyl, and Nolan, 2013). These stressors have a severe
effect on the athlete’s well-being and, at times, can significantly affect the athletes’ mental health (Davoren and Hwang, 2014; Wilson and Pritchard, 2005; Beauchemin, 2014). Lin and Huang (2014) indicated that stress is significant when predicting psychological distress in college students and has been known to manifest into anxiety and depression; academic anxiety was the most influential in student-athlete perceived stress (Hwang and Choi, 2016). The American College Health Association (ACHA) surveyed 195,000 college students, including student-athletes, resulting in 58,500 respondents reporting feelings of depression and anxiety (Davoren and Hwang, 2014). With growing concerns, the NCAA believes that the results of the ACHA survey are highly significant factors related to the success of academics with student-athletes.

Due to their tedious schedules, many student-athletes reported having a difficult time incorporating studying into their training schedules (Comeaux and Harrison, 2011; Harris, Altekruse, and Engels, 2003; Cosh and Tully, 2014). Sport and education are seen as a trade-off, one being sacrificed in order to complete the other (Cosh and Tully, 2014). When the severity of stressors becomes too much, stressors can often be categorized as symptoms of a major life crisis (Wilson and Pritchard, 2005; Papanikolaou et al., 2003).

In order to decrease academic stressors, it is important to identify the antecedents to academic stress. Identifying stressors may result in curriculum assistance that could lead to an increase in grade point averages and graduation rates. This could reverse the idea that athletes feel unprepared for academic life. In many instances, athletes feel that they are treated differently or stereotyped in class because
of their athletic status (Wilson and Pritchard, 2005; Simons, Rheenen, and Covington, 1999).

Background

There has been an increase in collegiate graduation rates for student-athletes. Approximately 86% of student-athletes graduated in 2015 with a total of 16,565 more student-athletes graduating from 2001 to 2015 (Hosick, 2015). Even with the increase in graduation rates (Gaston-Gayles, 2004), student-athletes continue to have difficulty excelling academically throughout their college career. Studies indicate that on average student-athletes report lower grades, lower overall grade point averages, lower SAT (scholastic aptitude test) scores, and spent less time completing school work than their non-athlete peers (Yopyk and Prentice, 2005). Wilson and Pritchard (2005) noted that 95% of male athletes and 86% of female athletes reported feeling stressed due to tests and examinations, essays, absences due to frequent travel, and turning in missed assignments. It has been reported that student-athletes, on athletic scholarships, receive on the average 0.13 points lower than walk-on athletes and 0.20 points lower than non-athletes on graded assignments (Robinson, 2016). This decrease in performance may be due to academic stressors.

Academic stressors are not new to the athletic-academic world. As stressors continue to increase and academic performance continues to decrease, the NCAA is persistent in pursuing measures to improve academic performance (Comeaux and Harrison, 2011). The NCAA continues to adjust the student-athletes initial eligibility standards. The standards are to increase the likelihood of graduation. Currently the initial standards are based on a sliding scale that combines the GPA of sixteen
approved core courses with the SAT or ACT score. In order to participate and receive an athletic scholarship, the student must minimally meet the sliding scale criteria that starts at a GPA of 2.3 on the approved core courses with a 900 SAT or 75 ACT. This was done in an effort to reduce academic stress and increase collegiate preparation for the first year athletic participation of student-athletes (National Collegiate Athletic Association [NCAA], 2016).

The NCAA has also created the Academic Progress Rate (APR). The APR makes student-athletes and college administration accountable for academic performance through a team-based metric that accounts for student-athlete eligibility and retention during each academic term (National Collegiate Athletic Association [NCAA], 2016). The APR rewards superior academic performance and penalizes teams that do not reach certain academic requirements. For example, an athletic team that has shown superior academic performance may be rewarded into a bowl game if their athletic record is equal to that of another team, whose APR is not as good. Rewards and penalties are imposed by the Division I Committee on Academic Performance (NCAA, 2016).

With continued efforts to support student-athletes, the NCAA created the Challenging Athletic Minds for Personal Success, CHAMPS/Life Skills Program. CHAMPS consists of three programs: academic commitment, athletic commitment, and commitment to personal development. The program was created to increase success for all student-athletes. CHAMPS helps student-athletes with necessary skills needed to excel in college, commit to their academics, and create life skills for after college
(Davoren and Hwang, 2014; Comeaux and Harrison, 2011; Harris et al., 2003; Carodine et al., 2001).

While studying the lives of athletes and the functions of athletics, considerable research has been devoted to examining academic success in student-athletes and life stress of college students, but few studies have examined the causes or associations of academic stress in student-athletes.

The purpose of this study was to determine how the following variables relate to academic stress and perceived stress either through correlations or differences—demographics, academic classification, major or field of study, athletic scholarship status, and season of sport (in-season/out of season). To assess this relationship, an online questionnaire, including two perceived stress scales, was collected at the beginning of the spring academic semester. This study will provide athletic administrators a point of reference related to academic stress which should allow the administrators an opportunity to better serve their student-athletes.

Research has shown a correlation between the decrease of academic stressors and the increase in academic success and a reduction of college student life stress (Papanikolaou et al., 2003; Gaston-Gayles, 2004; Howard-Hamilton and Sina, 2001; Harris et al., 2003). By recognizing these academic stressors, interventions may be created to decrease academic stress levels and eliminate the imbalance between athletics and academics. This thesis paper examines academic stress in collegiate student-athletes.
Definition of Terms

- **Academic Progress Rate (APR)** – a real time snapshot of a team’s academic success for each semester that examines the current academic progress of every student-athlete

- **Division I** – an institute that sponsors at least seven sports for men and seven sport for women (or six for men and eight for women) with two team sports for each gender; each playing season represented by each gender; minimum financial aid awards for athletes must be met

- **Division II** – an institute that sponsors at least five sports for men and five for women (or four for men and six for women) with two team sports for each gender; each playing season represented by each gender; many student-athletes pay for school through a combination of scholarships, grants, and student loans; but financial aid through athletes may be awarded

- **Division III** – an institute that sponsors at least five sports for men and five for women, with two sports for each gender; each playing season represented by each gender; student-athletes may not receive any financial aid related to athletic ability

- **NCAA** – National Collegiate Athletic Association – the governing body that oversees, guides and manages the athletic departments of those schools that opt to become a part of the association.

- **Nonrevenue** – any sport excluding football, baseball, and basketball

- **Revenue** – commonly known in football, baseball, and basketball; sports that generate income for their college universities
• **Stress** – negative feeling that occurs when an individual is unable to cope with the demands placed upon them

• **Student-athlete** – any person who is enrolled as a full-time student and participates in an intercollegiate sport

• **Walk-on** – an athlete who becomes part of a team without being actively recruited beforehand or awarded an athletic scholarship
CHAPTER 2
LITERATURE REVIEW

Previous literature has indicated variables that cause an increase in the stress levels of collegiate student-athletes plus strategies to help cope with these stressors. To determine if a significant relationship and/or difference exist with student-athlete academic stress, the following variables—demographics, academic classification, major or field of study, athletic scholarship status, and season of sport—will be analyzed.

Demographics

Biological sex, ethnicity, and socioeconomic status have been found to be the most common demographic variables to have a significant impact on academic stress (Comeaux and Harrison, 2011; Gaston-Gayles, 2004; Yopyk and Prentice, 2005).

Biological Sex

Male and female athletes tend to prioritize academics and athletics differently and consequently experience academic stress differently. Previous studies have shown that females are significantly more likely to report general college stress compared to their male counterparts (Bedewy and Gabriel, 2015; Lin and Huang, 2014), but are superior to their male counterparts in terms of higher scores on high school GPA, SAT scores, college GPA, and graduation rates (Simons et al., 1999; Reynolds, Fisher, and Cavil, 2012). Females have also indicated a likelihood to resist athletic pressures and have a history of taking the necessary measures to be successful academically, while male athletes were significantly more likely to have a history of academic failure (Simons et al., 1999). It has also been mentioned that unlike male athletes, female athletes were able to separate their academic and athletic roles and transfer their hard
work into both categories. Howard-Hamilton and Sina (2001) believe this may be due to higher levels of academic support given to female student-athletes or as a result of female athletes having better time management, setting and prioritizing goals, and being more organized compared to their male classmates (Misra and McKean, 2000).

Ethnicity

Diversity among ethnicities and the impact one’s ethnicity may have on their academic stress levels is very noteworthy when studying information regarding student-athletes. Yopyk and Prentice (2005) stated “Minority status is a way of life for many students in academic settings… and is often linked to negative academic stereotypes” (Yopyk and Prentice, 2005, p. 335). Research suggests that being a racial minority may have a negative impact on student-athletes’ experiences in their sport and the stressfulness of the sport (Kimball and Freysinger, 2003), and can be an umbrella for other factors related to athletes such as GPA. Simons et al. (1999) found that compared to other student-athletes, black student-athletes were associated with students who have low academic self-worth, high self-handicapping excuses, and less intrinsic motivation to succeed academically. Yopyk and Prentice (2005) conducted a study in which black student-athletes were given an academic test to analyze stereotype threat. When conditioned to only think about being a male, the student-athlete performed well on the test, but when ethnicity became a distinguishable factor, the black student-athletes performed poorly on the academic test.

Prior to starting college, black student-athletes have reportedly been known to come from poor backgrounds and, compared to their nonblack teammates, are less academically prepared for college. Black student-athletes are also more likely to have
parents with professional degrees, while white student-athletes are more likely to have parents with college degrees. Research has found that white student-athletes are positively associated with achieving professional goals and study skills when provided help from faculty; these results were not the same for non-white athletes (Comeaux and Harrison, 2011). Non-white athletes did not have significant academic success when provided help from faculty. This is due to a diminishing black campus involvement as a result of racial climate and low academic expectations seen upon black student-athletes at predominately white institutes (Comeaux and Harrison, 2011).

The effect that ethnicity has on athletics is commonly seen during college as well as in life after college. Studies have shown that white athletes graduated at a rate higher than that of black athletes. Gaston-Gayles (2004) provided statistics for graduation rates of 53% for white basketball players and 62% for white football players, while black basketball players were graduating at a rate of 35% and black football players at a rate of 45%. Gaston-Gayles (2004) also mentioned that for black athletes there was a greater desire to play sports on a professional level and such a high desire can be linked to an imbalance of academic and athletic tasks. This is a growing concern, due to the fact that of the 480,000 student-athletes only about 10% make it professionally (Reynolds et al., 2012), and a study by Beamon and Bell (2006) found similar results to Gaston-Gayles. Their study indicated that black football players graduated at a rate 21% lower than their white teammates, and black basketball players graduated at a rate of 38%, while their white teammates graduated at a rate of 52%. Beamon and Bell (2006) also agree that black athletes have higher expectations for a professional sports career compared to nonblack and female athletes.
Socioeconomic Status

Socioeconomic status (SES) refers to the income and educational level of the student-athlete’s parents, and is a major concern when pursuing funding without a scholarship (Reynolds et al., 2012). Research indicates that having a lower socioeconomic background, similar to that of a racial minority, may also negatively impact the collegiate sport experience and stressfulness of that sport for college student-athletes (Kimball and Freysinger, 2003). Gaston-Gayles (2004) found that a student-athletes’ high school GPA and mother’s occupation were the main predictors of college GPA for black athletes. On the other hand, for white athletes, it was found that high school GPA, socioeconomic status, and SAT scores were the main predictors for college GPA (Gaston-Gayles, 2004). Studies have revealed that student-athletes from higher SES families have a greater likelihood for academic success than student-athletes from lower SES families (Comeaux and Harrison, 2011).

Academic Classification

Entering college can be stressful for freshmen students. Many freshmen enter college underprepared for college level work and unaware of the difference between college course workload and high school workload (Papanikolaou et al., 2003). Being unprepared and unaware can lead to an unbalanced lifestyle later in a student-athlete’s college career. The attention given to a sport can cause an athlete to view his or her athletic priority with more importance than the academic priority. Pascarella et al. (1999, p.1) stated, “The public’s image of an institution as well as its attractiveness to prospective students are often influenced by the performance of its athletic teams.” This can create a gray area for some student-athletes, especially those new to collegiate
sports. In order to increase athletic performance and maintain the attractiveness of the university, student-athletes may feel that athletics should be take precedence over academics, therefore, providing more time to improve their skill and decreasing time for their studies.

Students reported experiencing the greatest amount of academic stress when they were taking and studying for exams, competing for grades, and mastering large amounts of content in a short amount of time (Misra and McKean, 2000). The added course load in addition to the added athletic load can be difficult for new college students-athletes. Lin and Huang (2014) found stress to be the main reason most undergraduate students do not complete their degree requirements and ultimately drop out of college. The NCAA requires that student-athletes complete 40% of their course requirements by their junior year, 60% by their senior year, and 80% if completing a fifth year. Teams that do not complete these requirements receive penalties imposed by the Division I Committee on Academic Performance (NCAA, 2016).

As each semester passes and students mature, the stress that student-athletes experience can vary; the stressors that impact their stress levels change, therefore, resulting in what could be an increase or decrease in stress. In a study by Hwang and Choi (2016), student-athletes with higher GPAs reported having lower stress. The reverse was seen in younger students as reported in a study by Lloyd, Alexander, Rice and Greenfield (1980) which indicated a negative relationship between stress and GPA for freshmen and sophomores. As stress increased, GPA decreased. There was no relationship between stress and GPA for juniors and seniors. Stress levels had no effect on GPA for upperclassmen. It has been noted that upper-level students-athletes are
more likely to have learned skills that allow them to cope with the several demands and roles of student-athletes (Petrie and Stoever, 1997). Similarly, Misra and McKean (2000) also found that freshmen and sophomores had higher reactions to stress in comparison to juniors and seniors. It was shown that juniors and seniors had lower anxiety levels and were able to manage their time better, which resulted in lower stress levels.

Major or Field of Study

The clustering of majors is quite recurrent in collegiate sports. Athletes tend to choose “easier” majors in order to lessen their course workload, accommodate their schedules (Cosh and Tully, 2014), and achieve or maintain NCAA requirements. Failing to meet and maintain NCAA requirements, could result in loss of athletic scholarship eligibility as well as decrease the chances to graduate (Hwang and Choi, 2016; Carodine et al., 2001). In order to reduce the stressors that could possibly lead to their academic stress, specific majors are chosen for student-athletes resulting in a clustering of majors. Clustering occurs when more than 25% of athletes on a team are in the same major (Kulics, Kornspan, and Kretovics, 2015). As a result of clustering, a significant amount of student-athletes do not choose a major based on their interests, but instead choose majors based on level of challenge and maintenance of athletic eligibility. This may add to a lack of prioritizing and studying.

The choosing of majors is not affected by the amount of money the sport brings to the university. Football, basketball, and baseball are generally considered revenue producing sports. The majors chosen by student-athletes in revenue producing sports
did not differ from the majors chosen by student-athletes involved in non-revenue sports.

When the question of biological sex and academic major was addressed, males differed from females when choosing majors. The sexes were also different in the reasoning behind choosing certain majors. Kulics et al. (2015) interviewed their student-athlete population and gathered results demonstrating that most male athletes were frequently enrolled in the following similar majors: sport studies, sports management, communications, physical education, recreation management, criminal justice, and business. Female athletes frequently chose the following majors: sports management, physical education, sport studies, business, communications, education, and recreation management.

Petrie and Stoever (1997) stated that athletes who take the minimum course requirements and choose less challenging majors are more likely to become academically unmotivated and are less likely to put the necessary time and energy into their academic studies. Male student-athletes have remarkably been shown to choose majors for athletic reasons over academic reasons. This may be due to the fact that some male student-athletes are only interested in the short term benefits of academics and majors and not long term solutions to life after graduation or sport (Kulics et al., 2015; Aries and Richards, 1999). In a study by Kulics et al. (2015), female student-athletes stated that athletes are in college for more than playing a sport, and if handling their required coursework is problematic, the athlete should not compete.
Athletic Scholarship Status

A collegiate athletic scholarship can be an elaborate contribution to a student-athletes’ future college career. When student-athletes receive an athletic scholarship, they become obligated to their universities for four-years, but the universities are only responsible for a one year commitment (scholarship) to their student-athletes (Harris et al., 2003). Athletes are able to receive full and partial scholarships. Not all athletes receive a scholarship, but if given the financial support, an athletic scholarship can cover most or all expenses. Those who do not receive a scholarship will need to use other avenues, such as academic scholarships, grants, loans, employment, or other means to pay for their collegiate experience (Reynolds et al., 2012).

The difference between receiving and not receiving an athletic scholarship, may have an effect on the different stressors impacting a student-athlete. Simons et al. (1999) indicated that some athletes showed an apparent lack of academic motivation and seemed less able to transfer the hard work necessary for athletics into the hard work necessary for academics. Athletes who receive athletic scholarships often have been associated with lower academic achievement and less rigorous academic majors. This lack in prior academic rigor may not be due to their scholarship status. In a study by Cosh and Tully (2014) student-athletes who did not receive athletic scholarships were interviewed to investigate their priority levels for sport and academics. Regardless of not obtaining a scholarship, students responded that sacrificing their education was okay in order to prioritize their sport. The students believed that for academics “just doing enough to pass” was sufficient (Cosh and Tully, 2014). This imbalance, also known as difficulty in separating sport from academics and prioritizing one over the
other, is quite common among student-athletes (Comeaux and Harrison, 2011). Studies have shown that when student-athletes are able to separate their academic and athletic roles, their academic performance increases (Yopyk and Prentice, 2005).

Season of Sport

Collegiate sports occur at different times throughout the year. For example, fall sports include football, cross country, soccer, and woman’s volleyball. Winter sports consist of swimming and diving, indoor track and field, and basketball; and spring sports include baseball, softball, tennis, outdoor track and field, and men’s volleyball. Whether an athlete’s sport is currently in-season or currently out of season could be an additional influence to their level of stress.

The time requirements for an in-season sport vary from the time required for an out of season sport. Usually when a sport is in-season, “student athletes are required to devote upwards of 25 hours per week...”; the athletes spend more time practicing as well as traveling for competitions, which results in “…miss[ing] numerous classes for university-sanctioned athletic competitions, and deal[ing] with fatigue and injuries as a result of their athletic participation” (Simons et al., 1999, p. 151). The increased time for athletics and decreased time for academics can be detrimental to the academic stress levels of the student-athletes. Wilson and Pritchard (2005) reported that for more than 40% of male athletes and over half of female athletes, “time” is one of the top causes of stress. Many of the athletes felt that there was not enough time to devote their best efforts to both academics and athletics.

With travel utilizing a notable amount of in-season athletic time, the association between athletics and academic stress becomes clear. The fact that students are away
from their classes while traveling, is likely to affect their studies, but Cosh and Tully (2014) made a very important suggestion implying athletes choose not to study during particular times, such as travel time. However, time spent on a bus or plane could very well be useful study time. The amount of time that athletes choose to study may have a significant impact on their academic stress.

Scales

Life Event Scales

Many previous researchers have used life event scales to analyze the stress levels of college students and college student-athletes. Previous life event scales were used to assess the different stressors between college students and college student athletes (Aries and Richards, 1999; Wilson and Pritchard, 2005) and college student stress in relation to anxiety, time management, and leisure (Misra and McKeon, 2000). Other life events scales measured injured college athletes’ stress in association with their social support (Malinauskas, 2010) and student-athletes’ ability to cope with common stressors (Surujlal et al., 2013). These life event scales are suitable when measuring collegiate stress and the consequences of such stress, but the studies did not specifically measure academic stress or the relationship between variables and academic stress. Within these prior studies, academic stress was mentioned only briefly or not mentioned at all. In order to determine if a significant relationship exists between the previous variables and student-athlete academic stress, it is necessary to use scales that specifically analyze stress levels and academic stress.
Perceived Stress Scales

In order to identify the type of stress an individual is feeling and the level or amount of stress that is occurring, previous researchers have used a perceived stress scale. The globally used 14 item Perceived Stress Scale (PSS) was created in 1983 by Cohen, Kamarck, and Mermelstein. The scale was created to measure the degree to which situations in a person's life are considered as stressful (Cohen et al., 1983). While completing this study, the PSS was found to show significant increases in correlations between perceived stress and life events. Cohen et al. (1983) created the items of the PSS to test how unpredictable, uncontrollable, and overloaded people find their lives. The 14 item PSS was later reduced to a more usable scale of only 10 items. The four questions that were eliminated were related to irritations from life hassles, coping with important changes, thinking about future accomplishments, and controlling the way one spends their time.

Since 1983, the PSS-10 has been used globally to measure stress levels for medical patients, athletes, college students, and several other participant groups. One particular study, by Surujlal et al. (2013), administered the PSS-10 to determine the relationship between perceived stress and coping skills in relation to life satisfaction for college student-athletes. The PSS-10 signified that when compared to nonathletes, student-athletes perceived their stress levels to be higher than average. Through the utilization of the PSS-10, Surujlal et al. and Cohen et al. (1983) both found their collegiate participants to experience increased stress levels compared to others. Baghurst and Kelley (2014) employed the PSS-10 to determine whether stress reduction interventions (stress management, physical activity, and fitness groups) could
alter stress levels experienced by college students. Their results were similar to that of
Surujlal et al. and Cohen et al., indicating a difference in stress levels between their
collegiate participant groups.

To assess whether student-athletes have experienced stress in the last
academic semester, it will be advantageous to use the PSS-10, but in order to assess
academic stress, the Perceived Academic Stress scale created by Bedewy and Gabriel
(2015) will also be used. The Perceived Academic Stress (PAS) scale was created to
measure perceived sources of academic stress among university students. The PAS is
an 18 item scale measuring academic expectations, workload and examinations, and
students’ academic self-perceptions. These two scales, along with demographic
questions, will indicate whether a relationship between the previously stated variables
exists with student-athlete academic stress.

Hypotheses

The purpose of this study was to determine how the following variables relate to
perceived and academic stress either through correlations or differences—
demographics, academic classification, major or field of study, athletic scholarship
status, and season of sport (in-season/out of season). In order to investigate these
questions, the following hypotheses were utilized:

H1: There will not be a significant difference between the stress levels of student-
athletes on the Perceived Stress Scale based on biological sex.

H2: There will not be a significant difference between the stress levels of student-
athletes on the Perceived Stress Scale based on ethnicity.

H3: There will not be a significant difference between the stress levels of student-
athletes on the Perceived Stress Scale based on socioeconomic status.
H4: There will not be a significant difference between the stress levels of student-athletes on the Perceived Stress Scale based on academic classifications, including freshmen, sophomore, junior, and senior.

H5: There will not be a significant difference between the stress levels of student-athletes on the Perceived Stress Scale based on their athletic scholarship status, which include full, partial, and none.

H6: There will not be a significant difference between the stress levels of student-athletes on the Perceived Stress Scale who are in-season compared to those who are out of season when completing the online questionnaire.

H7: There will not be a significant difference between the stress levels of student-athletes on the Perceived Stress Scale based on major or field of study.

H8: There will be no significant correlation between the Perceived Stress Scale and the Perception of Academic Stress Scale.

H9: There will not be a significant difference between the stress levels of student-athletes on the Perception of Academic Stress scale based on biological sex.

H10: There will not be a significant difference between the stress levels of student-athletes on the Perception of Academic Stress scale based on ethnicity.

H11: There will not be a significant difference between the stress levels of student-athletes on the Perception of Academic Stress scale based on socioeconomic status.

H12: There will not be a significant difference between the stress levels of student-athletes on the Perception of Academic Stress scale based on academic classifications, including freshmen, sophomore, junior, and senior.

H13: There will not be a significant difference between the stress levels of student-athletes on the Perception of Academic Stress scale based on their athletic scholarship status, which include full, partial, and none.

H14: There will not be a significant difference between the stress levels of student-athletes on the Perception of Academic Stress scale who are in-season compared to those who are out of season when completing the online questionnaire.

H15: There will not be a significant difference between the stress levels of student-athletes on the Perception of Academic Stress scale based on major or field of study.
CHAPTER 3

METHODOLOGY

Participants

Participants consisted of student-athletes (age ≥ 18 years) from a southwestern mid-major university in the United States of America. The participants, classified by academic classification, were athletes who took part in one of the fifteen collegiate sports offered at the university.

Materials

Students were given an online questionnaire, created through the university system Qualtrics, which consisted of 47 questions separated into three components: a Perceived Stress Scale, Perception of Academic Stress Scale, and demographic questions.

The first component included a 10 items from the Perception of Stress Scale (PSS-10) created by Cohen et al. (1983). The PSS-10 is the most widely used psychological measurement for the perception of stress, to which situations in one’s life are appraised as stressful (Cohen et al., 1983). It includes items measuring control, overload, and thoughts and feelings towards stressful events and experiences (Baghurst and Kelley, 2014) The PSS also considers the degree in which external factors exceed an individual’s perceived ability to cope (Nielsen et al., 2016). A 5-point Likert scale ranging from 0 (never) to 4 (always) is used for answering statements. Scores are formed by reversing positive stated items (e.g. 0 = 4, 1 = 3, 2 = 2, 3 = 1, and 4 = 0) to correct for the original scoring, and summing across all items with a total score ranging from 0 to 40. The positive stated items that were reversed are 4, 5, 7, and 8.
The score indicates the degree of perceived stress; the higher the score, the higher the perceived stress. The PSS-10 has a test-retest reliability of \(r = 0.66 \) and \(r = 0.50 \) and a Cronbach’s \(\alpha \) of 0.84–0.86.

The second component consisted of 18 items from the Perception of Academic Stress Scale (PAS) created by Bedewy and Gabriel (2015). It was developed as an instrument to measure sources of stress and the associated causes of such stress in order to minimized student anxiety and decrease distress. The PAS has three main factors characterized by (1) academic expectations, (2) workload and examination, and (3) students’ academic self-perceptions. Academic expectations consist of four items, workload consists of eight items, and self-perceptions can be examined through six items. The scale is measured using a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree) for the first 5 positively stated items (Items 1 through 5), and 1 (strongly agree) to 5 (strongly disagree) for the 13 negatively stated items (Items 6 through 18). In order to score the PAS, the first 5 positively stated items are reversed (1 strongly disagree = 1 strongly agree) to match the remaining 13 items. The PAS has an internal consistency reliability of 0.7. The scale has been revised in order to increase legibility for the participants.

The third component included 19 questions specific to each individual student-athlete. The questions were centered on the independent variables—demographics, academic classification, major or field of study, athletic scholarship status, and season of sport.
Procedures

Student-athletes were informed of the study during their weekly team meetings. With the help of the Student-Athlete Services Center and the athletic coaches, the student investigator was able to attend team meeting where she informed student-athletes about the Academic Stress study. The coaches agreed to allow time for the questionnaire to be completed during the meetings. Student-athletes were given an online web address, created by the Qualtrics company, which could be entered into their electronic devices. The web address directed the athletes to an informed consent form and the online questionnaire. If the student-athlete agreed to the informed consent form, he or she could then begin the questionnaire. The informed consents, approved by the Institutional Review Board, are stored through the Qualtrics system, but separately from the questionnaires in order to maintain confidentiality. The student investigator allotted a period of three weeks in which to attend team meetings and complete the data collection process. After each questionnaire was complete, student-athletes received a confirmation thanking them for their participation and indicating the completion of the questionnaire.

Statistical Analysis

For the purpose of this study, the statistical techniques of the t-test, one-way analysis of variance, and Pearson product moment correlations were used. t-Test and one-way analysis of variance were conducted to determine if a significant difference exists between independent variable groups on stress levels. The correlation analysis was used to examine the relationship between the Perceived Stress Scale and the
Perception of Academic Stress scale. An alpha level of .05 was also used for each analysis.
CHAPTER 4

RESULTS

The purpose of this study was to determine how the following variables relate to academic and perceived stress either through correlations or differences—demographics, academic classification, major or field of study, athletic scholarship status, and season of sport (in-season/out of season). Data was collected from a mid-major university in the southwest United States. To examine whether these variables have a relationship to student-athlete academic stress, data was collected from 151 student-athletes’ questionnaires. The total number of student-athletes who began the questionnaire was 157, but due to incomplete questionnaires, the usable sample decreased to 151 participants.

Student-athletes indicated a participation in the following sports: volleyball ($n = 11$), men’s basketball ($n = 11$), women’s basketball ($n = 14$), soccer ($n = 19$), tennis ($n = 6$), women’s golf ($n = 6$), track and field with cross country ($n = 59$), softball ($n = 14$), swimming and diving ($n = 10$), and football ($n = 1$). Of the 151 participants, academic classifications were identified as freshman 29.8% ($n = 45$), sophomores 31.1% ($n = 47$), juniors 23.2% ($n = 35$), and seniors/5th year 15.9% ($n = 24$). The mean age was 20.6 years ($SD = 1.25$) and included 38 (25.2%) males and 113 (74.8%) females. Participants also provided their athletic scholarship status with 39.1% ($n = 59$) receiving a full scholarship, 48.3% ($n = 73$) receiving a partial scholarship, and 12.6% ($n = 19$) receiving no athletic scholarship. During the time of the data collection, 72.9% of the student-athletes were participating in a sport that was in-season, indicating that 27.1% of the student-athlete participants were currently out of season. The ethnicities of the
student-athletes ranged from Caucasian/White at 53.6%, African American/Black at 34.4%, and “Others” at 11.9%. Due to low participant numbers for Hispanics and Asians, the frequencies were combined to create the “other” category. Variable descriptives can be seen in Table 1. Student-athletes also participated in a variety of academic majors. The majors have been classified by the college to which the majors are housed, and can be seen in Table 2. Due to low participation numbers within the seven remaining colleges at this university, the seven colleges were combined to create the “other” category.

Table 1

Frequencies and Percentages for Student-Athletes Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>38</td>
<td>25.2%</td>
</tr>
<tr>
<td>Female</td>
<td>113</td>
<td>74.8%</td>
</tr>
<tr>
<td>Ethnicity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caucasian</td>
<td>81</td>
<td>53.6%</td>
</tr>
<tr>
<td>African American</td>
<td>52</td>
<td>34.4%</td>
</tr>
<tr>
<td>Other</td>
<td>18</td>
<td>11.9%</td>
</tr>
<tr>
<td>Socioeconomic Status</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low/ Middle</td>
<td>66</td>
<td>43.7%</td>
</tr>
<tr>
<td>High</td>
<td>85</td>
<td>56.3%</td>
</tr>
<tr>
<td>Academic Classification</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Freshman</td>
<td>45</td>
<td>29.8%</td>
</tr>
<tr>
<td>Sophomore</td>
<td>47</td>
<td>31.1%</td>
</tr>
<tr>
<td>Junior</td>
<td>35</td>
<td>23.2%</td>
</tr>
<tr>
<td>Senior/5th year</td>
<td>24</td>
<td>15.9%</td>
</tr>
<tr>
<td>Athletic Scholarship</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full</td>
<td>59</td>
<td>39.1%</td>
</tr>
<tr>
<td>Partial</td>
<td>73</td>
<td>48.3%</td>
</tr>
<tr>
<td>No Scholarship</td>
<td>19</td>
<td>12.6%</td>
</tr>
<tr>
<td>Season of Sport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In season</td>
<td>110</td>
<td>72.9%</td>
</tr>
<tr>
<td>Out of Season</td>
<td>41</td>
<td>27.2%</td>
</tr>
</tbody>
</table>
Table 2

Frequency and Percentage for Academic Majors, separated by colleges

<table>
<thead>
<tr>
<th>Variable</th>
<th>Frequency</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arts and Science</td>
<td>55</td>
<td>36.4%</td>
</tr>
<tr>
<td>Business</td>
<td>32</td>
<td>21.2%</td>
</tr>
<tr>
<td>Education</td>
<td>39</td>
<td>25.8%</td>
</tr>
<tr>
<td>Other</td>
<td>25</td>
<td>16.6%</td>
</tr>
</tbody>
</table>

The means and standard deviations for the Perceived Stress Scale-10 (PSS-10) $(M = 2.0, SD = 0.59)$ and the Perception of Academic Stress (PAS) $(M = 2.9, SD = 0.43)$ can be seen in Table 3.

Table 3

Mean and Standard Deviations for Age, Perceived Stress, and Academic Stress

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>Standard Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>20.6</td>
<td>1.25</td>
</tr>
<tr>
<td>Perceived Stress Total</td>
<td>2.0</td>
<td>0.59</td>
</tr>
<tr>
<td>Academic Stress Total</td>
<td>2.9</td>
<td>0.43</td>
</tr>
</tbody>
</table>

To test the null hypothesis in relation to student-athletes academic stress levels *t*-tests and one way analysis of variances (ANOVA) were conducted. *t*-Tests were used to analyze biological sex, socioeconomic status, and season of sport. One way ANOVAs were used to analyze ethnicity, academic classification, major or field of study, and athletic scholarship status.

t-Test and One-Way ANOVA

Biological Sex

To test the null hypothesis for each of the stress scales, a *t*-test was conducted to determine if a significant difference exists between stress levels of student-athletes on the PSS-10 based on sex. An additional *t*-test was conducted to determine if there was a significant difference between the PAS scale score based on sex. The results of the *t*-test indicated that there was a significant difference between males ($M = 1.58$) and females ($M = 2.12$) for perceived stress ($t_{(149)} = -5.3$, $p \leq .05$). These results indicated that the null hypothesis was rejected. There was no significant difference between sexes for academic stress ($t_{(149)} = -.67$, $p = .50$); therefore, the researcher failed to reject the null hypothesis for academic stress.

Ethnicity

Analysis of variance was used to determine if a significant difference existed between the three levels of ethnicity. The analysis for ethnicity indicated that there was no significant difference in stress levels between Caucasians, African Americans, or “Others” on the perceived stress scale ($F_{(3,147)} = 1.06$, $p = .37$) or the academic stress scale ($F_{(3,147)} = .52$, $p = .67$). Therefore, the analysis failed to reject the null hypothesis indicating no significant difference between ethnicities on the PSS-10 or PAS scale.

Socioeconomic Status

For socioeconomic status (SES), a *t*-test was conducted and analysis was found that there was no significant difference for perceived stress ($t_{(149)} = .50$, $p = .62$) or academic stress ($t_{(149)} = -.72$, $p = .47$) between the high SES student-athletes and the combined low and middle SES student-athletes. Analysis failed to reject the null
hypothesis for socioeconomic status indicating no significant difference between SES stress levels on either stress scale.

Academic Classification

Analysis of variance was used to determine if a significant difference existed between the four levels of classification. There was no significant difference between classifications (freshmen, sophomore, juniors, and seniors) on stress levels. No classification group indicated a significant difference in stress compared to another classification on either the perceived stress scale \(F(4,146) = .28, p = .89 \) or academic stress scale \(F(4,146) = 1.74, p = .14 \). Therefore, the analysis failed to reject the null hypothesis indicating no significant difference between academic classification stress levels on the PSS-10 or PAS scale.

Major or Field of Study

Analysis of variance was also used to determine if a significant difference existed between the four levels of majors. Major or field of study (arts and sciences, business, education, and “other”) indicated no significant difference on student-athletes' perceived stress \(F(7,143) = .71, p = .66 \) or academic stress \(F(7,143) = .87, p = .53 \). The analysis failed to reject the null hypothesis, therefore, indicating no significant difference between majors or field of studies on the PSS-10 or PAS scale.

Athletic Scholarship

In order to determine if a significant difference existed between those student-athletes on the various levels of academic scholarship and stress, an ANOVA model was employed. The stress level of student-athletes was compared according to if the student-athletes were on full, partial, or no scholarship. The variable athletic scholarship
resulted in no significant difference for perceived stress \(F(2,148) = 1.64, p = .20 \) nor academic stress \(F(2,148) = .03, p = .97 \). The analysis failed to reject the null hypothesis regarding athletic scholarship.

Season of Sport

When the PSS-10 and PAS was analyzed with season of sport, it was found that there was no significant difference between those student-athletes who were in season and those who were out of season. A \(t \)-test was used in this analysis. There was also no significant difference in stress level for the perceived stress scale \(t(149) = -1.92, p = .06 \). Similar results were found for the academic stress scale \(t(149) = 1.9, p = .06 \). Analysis failed to reject the null hypothesis for season of sport indicating that there was no significant difference between the in-season and out of season stress levels on either stress scale.

Correlations

Stress Scales

A Pearson product moment correlation analysis was used to test whether a correlation exist between the Perceived Stress Scale-10 and the Perception of Academic Stress scale. There was a weak inverse correlation \(r = -.212, n = 151, p = .009 \) found between the PSS-10 and PAS. The coefficient of determinations was .04, indicating a 4% differences between the two scales, leaving 96% of the differences unexplained.

Summary of Results

A significant difference was found between biological sexes on the Perceived Stress Scale \(t(149) = -5.3, p \leq .05 \). No other significant differences on the Perceived
Stress Scale or Perception of Academic Stress scale were found for ethnicity, socioeconomic status, academic classification, major or field of study, athletic scholarship status, or season of sport.
CHAPTER 5
DISCUSSION

Research addressing academic stress and student-athletes regarding the causes of academic stress and the relationship between variables such as demographics, academic classification, major or field of study, athletic scholarship status, and season of sport (in-season/ out of season), is limited in the present literature. The results of this study addressed issues that may be used by administrators to reduce the stress levels for student-athletes.

Biological Sex

Biological sex, male and female, showed a significant difference on the Perceived Stress Scale (male: $M = 1.58$, female: $M = 2.12$) but did not show a significant difference on the Perception of Academic Stress scale (male: $M = 2.86$, female: $M = 2.91$), which can be seen in Table 4. Although no significant difference was found for academic stress, the results demonstrated that women report more stress on both scales compared to males, which was also seen in the previous studies (Bedewy and Gabriel, 2015; Lin and Huang, 2014). Also, additional analyses indicated results similar to that of Simons et al. (1999) and Reynolds et al. (2012) in which females were superior to their male counterparts in terms of higher high school and college GPA.

Table 4

<table>
<thead>
<tr>
<th>High School and College Grade Point Averages for Males and Females</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological Sex</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>HS GPA</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td>Current GPA</td>
</tr>
<tr>
<td>Male</td>
</tr>
<tr>
<td>Female</td>
</tr>
</tbody>
</table>
Ethnicity

There was no significant difference between Caucasian and African American student-athletes on perceived or academic stress scales. Results did not align with previous research findings that indicated minorities, non-Caucasians, experienced increased stress (Kimball and Freysinger, 2003), and are less motivated and less prepared academically compared to Caucasian student-athletes (Comeaux and Harrison, 2011; Yopyk and Prentice 2005). With no significance found between the stress levels of ethnicity groups, it may be indicated that the student-athletes at this university received the same support from faculty and therefore are provided the same opportunities to be successful academically.

Socioeconomic Status

There was no significant difference between high SES student-athletes and the combined low and middle SES student-athletes on the perceived stress and academic stress scales. Prior research only indicated that those from higher SES backgrounds are more likely to succeed academically throughout college, there is no prior research on the differences of stress levels of those from different SES backgrounds. In college, students are provided tutors and faculty assistance. No one is excluded based on the community in which they lived or the income of their parents, therefore the stressors of college may be due to other factors not socioeconomic status.

Academic Classification

Lloyd et al. (1980), Petrie and Stoever (1997), and Misra and McKean (2000) all found similar results in which freshmen and sophomores experienced more stress than juniors and seniors. This particular study did not find the same results. There was no
significant difference between classifications (freshmen, sophomore, junior, and senior/5th year) on the perceived stress and academic stress scales. Freshmen and sophomores did not experience more stress than upperclassmen.

Major or Field of Study

Kulic et al. (2015) gathered results indicating student-athlete involvement in sports management, communications, physical education, recreation, and business. Although no significance was found between majors on the perceived and academic stress scales, the majors listed by Kulic et al. still aligned with those of the arts and science (36.4%), business (21.2%), and education (25.8%) colleges, which include the majority of majors provided by this participant group. Therefore, clustering did seem to occur as mentioned in previous studies.

Athletic Scholarship

No significant difference was found between student-athletes with full, partial, and no athletic scholarship when examining perceived and academic stress scales. Therefore, perhaps, scholarship status does not affect academic performance. Academic performance may be solely based on athlete priority preference and “doing enough to pass” as noted by Yopyk and Prentice (2005), Comeaux and Harrison (2011), and Cosh and Tully (2014).

Season of Sport

There was no significant difference found between in-season sports and out of season sports on the perceived stress scale or the academic stress scale. Although not significant, there was a slight shift in perceived stress when student-athletes were out of season ($M = 3.14$) compared to in-season ($M = 2.93$). This slight increase does not
align with the past research of Simons et al. (1999) or Wilson and Pritchard (2005), which indicated that student-athletes are more stressed in season due to lack of time and more hours devoted to sport and traveling. It can be suggested that athletes felt stress when their sport was out of season because more attention is now focused on the issues of everyday life, issues that could be avoided when in season.

Stress Scales

There was a weak inverse correlation ($r = -.212$, $n = 151$, $p = .009$) found between the Perceived Stress Scale and the Perception of Academic Stress Scale, but the means for each scale were particularly close (PSS-10: $M = 3.0$; PAS: $M = 2.9$). Therefore, based on the results, as perceived stress increases, academic stress decreases and as perceived stress decreases, academic stress increases; but, no stress level was significantly higher than the other as seen in the similar means.

Limitations and Implications

Although this study was significant in its finding, limitations should also be considered. This study did not consider motivational factors such as athletic achievement, social support, and recognition, or psychological factors such as anxiety, competence, and depression in relation to academic performance. Athletic identity and stereotyping, although briefly mentioned throughout the literature review, were not considered as additional independent variables. The literature review contained several references that only examined white and black student-athletes. Future studies should also include information relevant to Asian and Hispanic athletes. Also, the season in which the questionnaire was distributed occurred during a time of the semester when
academic stress levels may have been at their lowest, and while some student-athletes were in season, other student-athletes’ sports were not in season.

Future studies should analyze the effect of ethnicities and stress level on graduation rates. In addition, further research should also consider academic stressors related to the type of sport an athlete plays. Type of sport could be split between individual and group sports or revenue and nonrevenue sports. Due to the small sample size of this study, student-athletes were unable to be significantly distinguished as revenue athletes or nonrevenue athletes. There was only one football player in this present study. Also due to vagueness of the definition of a Pell Grant, student-athletes did not answer the financial aid question correctly. The question should be reworded in future studies to signify a difference in socioeconomic statuses.

By recognizing academic stressors indicated within this study, interventions may be created to decrease academic stress levels and eliminate the imbalance between athletics and academics.

There are tremendous amounts of responsibility and high expectations placed on the shoulders of all the young athletes who come to our institutions. If what is expected of them is success in the classroom as well as on the court or field, it is imperative that support be provided at all levels of the institution so that they can be intellectually, emotionally, and physically fit. (Howard-Hamilton and Sina, 2001, p. 43).
1. Your Birthdate (Please include year): __________________

2. My college classification is:
 a. Freshmen
 b. Sophomore
 c. Junior
 d. Senior
 e. 5th year

3. I consider myself:
 a. Male
 b. Female

4. I identify as:
 a. White or Caucasian
 b. Black or African American
 c. Hispanic
 d. Asian or Pacific Islander

5. Is your first language English?
 a. Yes
 b. No
6. Are you an international student?
 a. Yes
 b. No

7. My high school GPA: ____________________________

8. During college, I receive financial support such as a Pell Grant:
 a. Yes
 b. No

9. Please answer one of the following:
 a. I currently receive a full athletic scholarship.
 b. I currently receive a partial athletic scholarship.
 c. I currently do not receive an athletic scholarship.

10. I participant in the following sport: ___________________________

11. How many years have you played your sport?

12. My sport is currently:
 a. In-season
 b. Out of season
13. Outside of my required weekly study hall hours, I spend the following amount of
time studying on my own: _________________ hours

14. Major/Field of Study: ___________________________

15. My current major is relevant to my future career?
 a. Yes
 b. No

16. My current GPA: ___________________

17. Do you currently hold a paying job?
 a. Yes
 b. No

18. If yes, approximately how many hours do you work per week:

19. If yes, is your current job:
 a. On campus
 b. Off campus
REFERENCES

Cosh, S., & Tully, P. J. (2014). “All I have to do is pass”: A discursive analysis of student athletes' talk about prioritising sport to the detriment of education to overcome stressors encountered in combining elite sport and tertiary education. *Psychology of Sport and Exercise, 15*(2), 180-189.

