
CASE STUDIES TO LEARN HUMAN MAPPING STRATEGIES IN A VARIETY OF

COARSE-GRAINED RECONFIGURABLE ARCHITECTURES

Tika K. Malla

Thesis Prepared for the Degree of

MASTER OF SCIENCE

UNIVERSITY OF NORTH TEXAS

May 2017

APPROVED:

Gayatri Mehta, Major Professor
Kamesh Namuduri, Committee Member
Parthasarathy Guturu, Committee Member
Shengli Fu, Chair of the

Department of Electrical Engineering
Costas Tsatsoulis, Dean of the

College of Engineering
Victor Prybutok, Vice Provost of the

Toulouse Graduate School

Malla, Tika K. Case Studies to Learn Human Mapping Strategies in a Variety of

Coarse-Grained Reconfigurable Architectures. Master of Science (Electrical

Engineering), May 2017, 57 pp., 5 tables, 53 figures, 33 numbered references.

Computer hardware and algorithm design have seen significant progress over the

years. It is also seen that there are several domains in which humans are more efficient

than computers. For example in image recognition, image tagging, natural language

understanding and processing, humans often find complicated algorithms quite easy to

grasp. This thesis presents the different case studies to learn human mapping strategy to

solve the mapping problem in the area of coarse-grained reconfigurable architectures

(CGRAs). To achieve optimum level performance and consume less energy in CGRAs,

place and route problem has always been a major concern. Making use of human

characteristics can be helpful in problems as such, through pattern recognition and

experience. Therefore to conduct the case studies a computer mapping game called

UNTANGLED was analyzed as a medium to convey insights of human mapping

strategies in a variety of architectures. The purpose of this research was to learn from

humans so that we can come up with better algorithms to outperform the existing

algorithms. We observed how human strategies vary as we present them with different

architectures, different architectures with constraints, different visualization as well as

how the quality of solution changes with experience. In this work all the case studies

obtained from exploiting human strategies provide useful feedback that can improve

upon existing algorithms. These insights can be adapted to find the best architectural

solution for a particular domain and for future research directions for mapping onto

mesh-and- stripe based CGRAs.

Copyright 2017

by

Tika K Malla

ii

ACKNOWLEDGMENT

First and foremost, I would like to express my sincere appreciation to Dr. Gaya-

tri Mehta for giving me the opportunity to do research and providing invaluable guidance

throughout this research. It was a great privilege and honor to work and study under her

guidance. Without her help and counsel, always generously and effortlessly given, the com-

pletion of this work would have been immeasurably more difficult.I would also like to express

my sincere gratitude to Dr.Kamesh Namuduri and Dr.Parthasarthy Guturu for their time

and consent to be on my thesis committee. During the course of this work, the constant

association with the members of the Department of Electrical Engineering at University of

North Texas has been most pleasurable. This thesis would not have been possible without

the guidance and the help of several individuals who in one way or another contributed and

extended their valuable assistance in the preparation and completion of this study.

iii

TABLE OF CONTENTS

Page

ACKNOWLEDGMENT iii

LIST OF TABLES vi

CHAPTER 1 INTRODUCTION 1

1.1. Introduction 1

CHAPTER 2 BACKGROUND 3

2.1. UNTANGLED-The Mapping Game 3

2.2. Coarse-Grained Reconfigurable Architectures 3

2.3. Data Flow Graph Mapping 4

CHAPTER 3 RELATED WORK 5

CHAPTER 4 CASE STUDY-1: ANALYSIS OF STRATEGY IN MESH AND STRIPE

ARCHITECTURE 8

4.1. Mesh Architecture 8

4.2. Stripe Architecture 18

CHAPTER 5 CASE STUDY 2- ANALYSIS OF STRATEGY IN RESOURCE

CONSTRAINT ARCHITECTURE 22

5.1. Input Output (I/O) Constraint 22

5.2. Limited Connectivity (LC) Constraint 28

5.3. Dedicated Multiplier (DM) Constraint 33

CHAPTER 6 CASE STUDY 3- ANALYSIS OF STRATEGY IN VARIOUS

REPRESENTATION OF THE SAME PROBLEM 36

CHAPTER 7 CASE STUDY 4- ANALYSIS OF STRATEGY FOR A GAME PLAYED

iv

MULTIPLE TIMES. 50

CHAPTER 8 CASE STUDY 5- CORRELATION BETWEEN MOVE AND SCORE 52

8.1. Mesh architecture 52

8.2. I/O architecture 52

CHAPTER 9 CONCLUSION 53

BIBLIOGRAPHY 54

v

LIST OF TABLES

Page

Table 6.1. Top 10 Player’s Feasible Solution 38

Table 6.2. Top 10 Player’s Average Grid Size 39

Table 6.3. Graph Information (Easy Level) 48

Table 6.4. Graph Information (Medium Level) 48

Table 6.5. Graph Information (Hard Level) 49

vi

CHAPTER 1

INTRODUCTION

1.1. Introduction

Coarse-Grained Reconfigurable Architectures hold a promising future in hardware

platform for high computation throughput, low cost, scalability, and efficient energy. One

of the major challenges with CGRAs is placement and routing problem. To systematically

tackle and solve the mapping problem, human computing abilities holds some unexplored

potential. To drive more humans to engage in problem-solving exercise, games are con-

sidered to be an excellent platform in human computation. Over the years many games

have been developed where computational tasks are solved by human power. Those games

are developed in a way for humans to enjoy and at the same time perform computational

tasks. To develop the dimensions in our work we analyzed a computer mapping game called

UNTANGLED [2], [21] which utilizes human computation power where a player solves the

important scientific problem of mapping or placement of logic blocks. The developers of the

game believe that the next generation of mapping algorithm will demonstrate human char-

acteristics consisting of pattern recognition, skill to learn from experience and recognition of

creative solutions, thus suggesting directions for future mapping onto CGRAs. [22].

The game is used as a medium to provide all the required computational facilities to

solve various problems in different application fields so that no deep knowledge of engineering

is needed. Players participate in organizing most compact, visually appealing arrangements

of circuit elements onto a grid. The circuit elements are represented as blocks in bold colors

that are jumbled up. The player is required to untangle those blocks and arrange it in a

compact manner while still following certain rules for the game. The game illustrates efficient

crowd-sourcing of mapping problem where successful players have common strategies and

can also improve upon existing algorithms [22].

Our case study revolves around how players strategies vary, as we give player puzzles

in a variety of architecture styles in UNTANGLED. In the game, the styles are classified

1

into Mesh and Stripe architecture. We also analyzed players strategy when a constraint

is added to the same Mesh and Stripe architecture. To further broaden our research for

those architectures, the factors that were taken into consideration were visualization, average

grid size, score, moves and effect of playing a puzzle in particular order. The remaining

paper is organized as follows: Chapter-2 discusses game UNTANGLED, Coarse-Grained

Reconfigurable Architectures and Data Flow Graph Mapping. Chapter 3 covers various

related work. Chapter 4 presents Case Study -1 that reports the results and discusses

player’s strategies in Mesh and Stripe architecture. Chapter 5 discusses Case Study-2 that

shows the analysis of strategy in resource constraint architecture. Chapter 6 covers Case

Study-3 that reports how different visualization of the same problem can affect the quality

of solution. In Chapter 7 we discuss Case Study-4 that analyzes a players strategy when

a game is played multiple times. Correlation of moves and score for Mesh and Resource

Constraint architecture is discussed in Chapter 8 followed by a conclusion.

2

CHAPTER 2

BACKGROUND

2.1. UNTANGLED-The Mapping Game

UNTANGLED is an interactive computer mapping game that has been developed

to discover algorithms by making use of human intuition and their creativity to distinguish

patterns and opportunities even in complex problems. The main purpose of UNTANGLED

is to attract people from different domains and is developed focusing people who do not

belong to any engineering domain or background. The problem is presented with different

visualization in such a way that it is intuitive and challenging at the same time. The graphs

consist of real algorithms and by arranging those blocks players are unknowingly mapping

onto various chip architectures that can be fabricated in silicon. Solving those graphs,

they contribute to the advancement of next-generation portable devices that are critical in

various fields like health, aerospace, portable multimedia etc. An efficient solution to this

problem is to make a grid more compact and consume less energy. UNTANGLED is easily

accessible online and can be implied as a great platform to attract students for engineering

education. With its interactive architecture players can use their intuition and creativity

to discover strategies that yield more compact designs and are exposed to real-world chip

design problems.

2.2. Coarse-Grained Reconfigurable Architectures

One of the fundamental challenges in modern microelectronics industry is the continu-

ous demand for high-performance and high-power efficiency. With an increasing demand for

low cost and low energy implementation, Coarse-Grained Reconfigurable Architectures are

becoming an attractive platform with a promising future because they can be programmed

to execute different instructions with very little power and increased hardware efficiency.

CGRAs typically consist of an array of processing elements (PEs) that are interconnected

by a 2-D grid. A PE consist of a few registers and an arithmetic logic unit and each PE can

be programmed to perform different tasks.

3

2.3. Data Flow Graph Mapping

Data flow graphs are mostly used in hardware design to provide a good description.

Dataflow graph consist of a directed graph where basic operations are represented by the

nodes which needed to be mapped onto the PEs and the dependencies and data movement

among the operations which are basically communication links of the interconnect are rep-

resented by the edges. Every node precisely corresponds to a hardware unit that is assigned

on the chip therefore it is easy to translate those nodes into a hardware circuit.

Figure 2.1. a) Data Flow Graph; b) A 2x2 CGRA

4

CHAPTER 3

RELATED WORK

Our research draws on previous research related to, Coarse-grained reconfigurable

architectures, Data flow graph mapping, human computing, games with a purpose, crowd-

sourcing, visualization and problem-solving. Due to large raw computation capabilities with

low cost/energy implementation, coarse-grained reconfigurable architectures are becoming

promising alternatives between ASICs and FPGAs.Multiple hardware implementations exist

such as [3], [7], [24], [28]. CGRA architecture such as ADRES [23], MorphoSys, [19], and

Silocon Hive [27] etc., have been proposed. Even though the possible performance and power

efficiency of a CGRA is very high, one of the major challenges is mapping and routing in a

compiler. To solve these hard problems, current CGRA compilers use search based heuristic

to map applications to the CGRA, however the quality of mapping is not good [13]. A pre-

cise and general formulation of the application mapping problem on a CGRA is presented in

[13]where a global heuristic called EPIMap is designed to transform the input specification

to an Epimorphic equivalent graph that satisfies the necessary conditions for mapping on to

a CGRA thus increasing the computation time. An architecture- adaptive CGRA mapping

algorithm called SPR (Schedule, Place, Route) is proposed in [11]. Another algorithm called

REGIMap is described in [14] which optimizes the mapping dependencies on the usage of

registers. With CGRAs the challenge of mapping is critical, and that is where we believe

humans are more efficient than computers. In several fields like image recognition, image

tagging, etc., humans have excelled computers. Human-based computing was defined by

Kosorukoff in [18] where human enhanced genetic algorithm is explained. Comparison of

the emerging social-game-based human computation systems based on the game structure

is presented in [8].

There are various games with a purpose that provide a great amount of meaningful

information to their audiences with visualization tools. Game with a purpose emerged from

the human computation technique that depends on the collaboration of game players to solve

5

problems. Several concepts of Game with a Purpose has been well discussed in [30], [33], [15]

which explains about the games that are developed for amusement value but at the same

time are designed in such a way that players contribute intellectually towards a problem.

Human computing approach has been followed in a variety of applications. To harness human

potential an online logic puzzle called FunSAT is developed for SAT solving. It uses visual

pattern recognition skills, abstract perception and intuitive strategy skills of humans to solve

complex SAT instances [8]. Advantages of human computing to index web pages in presented

[32]. The popularity of computer games and how a game with a purpose approach holds some

unexplored potential is explained in [4]. It presents a Game with a Purpose based system

for verification of automatically generated mappings. CAPTCHA is a computer generated

challenge response that differentiates humans from computers using a common sense problem

[31]. Foldit is yet another online puzzle game to fold structure of selected proteins as well as

use tools provided in the game [1]. Trouble hunters is another game where participants make

up commissions of inquiry to analyze the failed cases of software development [12].An external

automatic defibrillator game based learning was developed by providing scenarios of cardiac

arrest where the user is required to apply a CPR and use an AED to save the patient [25].

jLegends another online game is developed to train programming skills. [29]. Since for a game

which is played by all different kinds of people, it allows a crowd of people to collaborate on

solving real-life problems and implement a variety of ideas. Several purposes can be solved by

making use of innovative technology and gathering many knowledge sources with a different

level of experience and expertise. Through Crowdsourcing anyone is allowed to solve a

problem, thus both specialist, as well as the person with no background in that domain,

can participate in solving the problem [17], [16]. Areas like creative design which does not

require a specific answer to a problem, crowdsourcing has proven to be very successful [5].

However one of the main challenges in crowdsourcing is the need to design user interfaces

that can appeal and retain the collaboration of numerous people [26], [10]. Thus to increase

user participation game design techniques are considered to be an excellent platform, as

games have successful strategies to grant enjoyable experience [9]. It is argued in [20] that if

6

games can engage players to solve fictitious problems of a virtual world, these same players

could act together to solve real world problems. Gamification requirement and challenges

to improve user experience in crowdsourcing systems is discussed in [6].Mapping problem in

CGRAs can be solved systematically with a proper problem formulation. In summary the

goal of this paper is to analyze human strategy in different architectures and observe how

humans come up with better mapping architecture. To achieve that a computer mapping

game called UNTANGLED was used as a medium.

7

CHAPTER 4

CASE STUDY-1: ANALYSIS OF STRATEGY IN MESH AND STRIPE

ARCHITECTURE

4.1. Mesh Architecture

CGRAs can be arranged into two categories, linear array/stripe-based and mesh

based, depending on how the functional units are arranged. Linear array/stripe-based cat-

egory comprises one or more linear arrays of elements that are connected with a full or

partial crossbar interconnect between rows. Whereas in mesh category, the arrangement of

functional units are done in a two-dimensional array that has horizontal and vertical inter-

connect which can support a nearest neighbor, a nearest neighbor with hops and hierarchical

connections. The architectures in game UNTANGLED are designed in similar fashion. Each

architecture has difficulty level ranging from easy to challenging. Levels (benchmark) con-

sist of DFG obtained from real algorithms, that are to be placed onto a given architecture.

Easy1, Easy2 and Easy3 benchmarks are obtained from Sobel Edge Detection, Laplace Edge

Detection and GSM Channel Encoder respectively. Medium1 and Medium2 benchmarks are

obtained from Adaptive differential pulse-code modulation (ADPCM) Decoder and Adap-

tive differential pulse-code modulation Encoder respectively. Furthermore Hard1 and Hard2

benchmarks are obtained from MPEG-II Decoder Inverse Discrete Cosine Transform tech-

nique (Row) and MPEG-II Decoder Inverse Discrete Cosine Transform technique (Column)

respectively. This section highlights the collection of six various architectures within the

Mesh and Stripe-based classes in UNTANGLED and different mapping strategies that were

followed by players. Both classes also include architectures with resource constraints. The

architectures are as follows.

(1)8Way. In this mesh architecture nodes can connect to any of their eight neighbors.

(2) 4Way. This architecture is same as 8Way except the diagonal connections are not taken

into consideration. (3) 4Way1Hop. This architecture is interpretation of 4Way, where it

is allowed to skip one node both horizontally and vertically. (4) 4Way2Hop. In a similar

8

fashion as 4Way1Hop, here it is allowed to skip two nodes both horizontally and vertically.

Figure 4.1. Interconnect patterns. Left to right: 8Way, 4Way,

4Way1Hop, 4Way2Hop

When selecting a scope for the case studies described in this work, our primary

goal was to analyze the data to extract different patterns from each player to study their

behavioral patterns and their approach towards the solution. One of the primary motivation

was to identify common player strategies. The following figures shows interesting strategies

followed by successful players to reach their optimum solution in Mesh Architecture.

Figure 4.2. Solving 4Way2Hop, Extreme1

This players strategy was to separate the graph from right to left instead of top to

bottom or bottom to top which serves as one of the most common strategies amongst most

players. Player solved the right half of the graph first thus going towards the left from there,

however, this approach seemed more rigorous as compared to the top to bottom or bottom

to top approach as shown in Fig. 4.2

9

Figure 4.3. Solving 4Way2Hop, Extreme1. Isolating the densest

area to the outside of the graph.

Experienced players would isolate the densest area or the nodes with higher number

of connections to the outside of the graph then bring the solved sub-clusters into a compact

arrangement. Fig.4.3

Figure 4.4. Solving 4Way1Hop, Extreme3. Organizing the nodes in

similar sub-clusters.

Initially, player started by spreading the blocks over the edges of the graph then

organized them in similar clusters. Fig.4.4

10

Figure 4.5. Solving 4Way2Hop, Extreme3.

While analyzing these games we observed that some of the experienced players would

just look at the graph and recognize the pattern. Fig.6. Figuring out the pattern in the

beginning of the game resulted in better graph. Several swapping of clusters and rotate move

was observed all the along the game. Fig. 4.5

11

Figure 4.6. Solving 4Way1Hop, Extreme1. Solving in small sub-clusters.

Some experienced players would divide the whole graph into small sub-clusters and

solve it, then make the connections as small as possible one at a time to make the arrangement

more compact. Fig. 4.6

12

Figure 4.7. Solving 8Way, Extreme1. Identifying hidden sub-cluster.

Some players would also recognize that identifying the small sub-graph that are hidden

in the big graph makes the graph less complicated and easier to solve. Fig. 4.7

Figure 4.8. Solving 4Way2Hop, H2.

Fig.4.8 Shows how player solved the graph in two halves and once most of the vio-

lations were solved, to solve for the remaining violations player added pass through nodes

(yellow). With this strategy player was able to solve for all the violations, however, the

energy consumption was high.

13

Figure 4.9. Solving 4Way, M1.

Some players were able to recognize and isolate the small graph and combine it with

the big graph. Fig.4.9

Figure 4.10. Solving 4Way2Hop, M2.

Fig.4.10 shows the solution process of the game where player solved for the top part

first then decided to move the whole cluster from the bottom to the left of the graph then

solve for the violations. With this strategy the player was able to solve for all the violations,

however, in the end the player made use of several pass gates.

14

Figure 4.11. Solving 4Way2Hop, H1.

We also analyzed players multiple attempts for the same architecture to get more

quantitative understanding of successful players. In the first attempt player started by

working on the bottom blocks and solved them by organizing them in vertical manner.

Player was not able to solve for all the violations and was left with few violations. Fig.

4.11 (a) For the same game, in the second attempt player scored highest when the graph

was solved in a horizontal manner. With this strategy the player was able to solve up to 1

violation. Fig. 4.11 (b)

Figure 4.12. Solving 8Way, E1 Rotating the whole cluster

Another strategy for trying to organize the graph was to rotate the whole cluster then

solve for the violations. Fig. 4.12

15

Figure 4.13. Solving 8Way, E3 Optimizing the solution.

Some experienced players would also focus on optimizing the graph. Fig. 4.13 To

create compact graph player brought an entire cluster of nodes to the bottom of the graph.

With this strategy, the player was able to make the graph more compact and with less energy.

Figure 4.14. Solving 8Way, H1.

Experienced players would identify the nodes with less connectivity, then spread them

on the edges of the graph followed by creating space for them. Fig.4.14

16

Figure 4.15. Solving 8Way, H1. Diamond shape pattern.

Some experienced players would try to organize the graph in a particular manner. An

example of this is shown in Fig.4.15 Where the player tried to make the connections short

by placing the nodes in diamond shape pattern. With this particular strategy the player was

able to solve up to 10 violations, however, the energy level was too high.

17

4.2. Stripe Architecture

(1) Stripe. The stripe version of UNTANGLED simulates the data in one direction

that is from top to bottom and nodes are arranged in a horizontal manner (stripes).That

direction also represents how parent blocks should be oriented with respect to child blocks.

Each of the stripe is connected to the bottom stripe using a full crossbar interconnect. It

is assumed that inputs can be given to any ALU, but outputs must be appointed off chips,

thus all nodes below output nodes are blocked from executing any computation. (2) Stripe

dedicated routes (DR). This architecture follows the same convention as Stripe architecture,

however, it also consists of dedicated routes together with stripe. Dedicated routes are green

columns where only pass-through gates are allowed to be positioned.

Figure 4.16. Interconnect patterns. Left to Right: Stripe, Stripe DR.

18

The following figures shows interesting strategies followed by players to reach their

optimum solution:

Figure 4.17. Solving Stripe, H2.

Experienced players would initiate by removing all the pass gates first. Once all the

pass gates are removed, the player would move an entire cluster of nodes to either the right

side of the graph or the left side of the graph then followed by solving towards the bottom

or top of the graph. Furthermore, bringing the parent nodes from left and right side of the

graph towards the center is also done. Fig.4.17

19

Figure 4.18. Solving Stripe, H2

Players would incorporate the same strategies as performed in mesh architecture

for example here player started at the bottom of the graph and started shifting the nodes

within the row. Then as the game progressed player started making the connections short

by placing the nodes in two sub-clusters. Fig.4.18 In Stripe architecture it was observed

that experienced players would initiate by making all the connections short by performing

frequent swaps and shifting of nodes within a row. Once most of the connections are short,

towards the end of the game the focus was on removing the pass gates. Some players would

also initiate by making the connections short, and while making the connections short the

players also remove the pass-gates in the process. Solving for the graph in sub-clusters

seemed to be the players key strategy. Once most of the violations were solved in sub-

clusters, the player would move the sub-cluster to the top or bottom of the graph, placing

20

the child nodes as close as possible to parents. In Stripe-DR similar strategies were observed

as mentioned above, moreover experienced players would also initiate by placing all the pass

through nodes on the dedicated routes first, then solving the rest of the graph.

21

CHAPTER 5

CASE STUDY 2- ANALYSIS OF STRATEGY IN RESOURCE CONSTRAINT

ARCHITECTURE

Both Mesh architecture and Stripe architecture also include architectures with re-

source constraints where a player has few restrictions that must be taken into account in

order to achieve the optimum solution.

5.1. Input Output (I/O) Constraint

The I/O resource constraints are as follows. (1) 4Way1Hop I/O. This architecture is

the generalized form of 4Way1Hop where a player is restricted to position the input-output

nodes (blue nodes) on the peripheral of the graph thus all nodes outside of input-output

nodes are blocked from executing any computation. (2) 4Way2Hop I/O. This architecture

also imposes similar restrictions as 4Way1Hop. (3) 8Way I/O. Same restrictions are applied

in this architecture as mentioned above.

The following figures show interesting strategies followed by players to reach their

optimum solution when the game is presented with constraints.

Figure 5.1. Solving 4Way1Hop I/O, E1. Focusing on internal violations

Most players would initially focus only on the red nodes and leave all the I/O nodes

22

along the perimeter of the graph. The player would sideline blue nodes till most of the

internal violations were solved while constantly trying to make space for those nodes. Some

experienced players would all along create an interior blank space for the interior nodes and

pivot the nodes to fill those spaces. Fig.5.1 shows the solution process.

Figure 5.2. Solving 4Way1Hop I/O, E2.

In I/O architecture, it was also observed that typically a player always initiates by

engaging on the red nodes. However, some player would place all the input-output nodes to

the top of the graph, then work on the violations, Fig. 5.2 (Normally, all the players placed

those blue nodes at the bottom)

Figure 5.3. Solving 4Way1Hop I/O, H1. Spreading the input-

output nodes to the outside of graph

Some players would also initiate by widening the input, output nodes on the peripheral

of the graph, then placing the red nodes to the bottom of the graph. Fig. 5.3 shows the

approach.

23

Figure 5.4. Solving 4Way1Hop I/O, H1.

Another strategy that was observed was positioning the nodes in a similar manner

on both sides of the graph, i.e. the left and right in the similar manner, then solving for the

nodes in the center of the graph as shown in Fig. 5.4

Figure 5.5. Solving 4Way2Hop I/O, H1. Isolating high-degree nodes.

Players would also isolate the high-degree nodes (second row) to the outside perimeter

and make the connections short towards those nodes. Fig. 5.5

24

Figure 5.6. Solving 4Way2Hop I/O, H1. Rotating the entire graph.

Another strategy that served effective for some players was rotating an entire graph

as shown in Fig. 5.6 . Player initiated with the top to bottom to strategy and later rotated

the entire graph. Rotating the entire graph turned out to be very productive as it made the

graph look less complex and making the connections short was much easier than before as a

player simply made the connections short by taking the nodes from left to right.

25

Figure 5.7. Solving 4Way2Hop I/O, H1

This strategy was observed in a mesh architecture also where the player initiates

by placing the nodes from the top to the bottom of the graph and the focus would be on

untangling the densest part of the graph. The player was seen to be untangling the graph

and placing the nodes in a diamond shape pattern while still making sure that I/O nodes

are on the outside perimeter. Fig. 5.7 .

26

Figure 5.8. Solving 8Way I/O, H1. Separating the graph into fa-

miliar sub-clusters.

Fig. 5.8 .shows how player focused on solving for the graph in sub-clusters then

combined them together at the bottom of the graph. As the game progressed, we observed

that player separates the graph into familiar sub-clusters and positions them in a similar

manner while combining the sub-clusters. Every move that was made on the left side of the

grid, similar move was made on the right side of the grid. With this strategy player was able

to solve for most of the violations.

27

Figure 5.9. Solving 4Way1Hop I/O, H2. Creating space by moving

the graph to the right.

As the game progress, some experienced players would also plant the nodes to the

left and create space all along for the nodes. Fig. 5.9 shows how the player is creating space.

That exact same strategy was followed all along, to solve for most of the violations. The

player would identify the opportunity to fit the cluster from the right in that blank space.

In the end the player used several pass gates to solve for all the violations.

In general, in an I/O architecture player would initially focus only on the red nodes

and leave all the I/O nodes along the perimeter of the graph. Few experienced players would

sideline blue nodes till most of the internal violations are solved while constantly trying to

make space for those nodes. Players would also initially focus on placing the highly connected

nodes to the left or right side of the graph, then making the connections short by bringing

the child nodes closer to them. For some players rotating the entire graph was very effective

as it makes the graph looks less complex thus making it easier to approach.

5.2. Limited Connectivity (LC) Constraint

(1) Stripe LC. This architecture is Stripe with limited connectivity. The data simu-

lates only in top to bottom direction, that direction also represents how parent blocks should

be oriented with respect to child blocks, thus applying LC constraint. Therefore, it follows

the same convention as Stripe, however, is also restricted with a limited connectivity as it is

a violation if a child node is more than two columns away from the parent node. (2) Stripe

28

DR-LC. This version of UNTANGLED is generalized form of Stripe LC with DR where only

pass-through gates are allowed to be placed.

The following figures show interesting strategies followed by players to reach their

optimum solution when the game is presented with constraints.

Figure 5.10. Solving Stripe-LC, H1.

One of the strategies was to initiate from the top of the graph. Once most of the

parent children nodes were as close as possible on top, the player did the same at the bottom

of the graph. Thereafter the player attacked the dense part of the graph. Several swapping

of clusters were done to make the right connections. Fig. 5.10

29

Figure 5.11. Solving Stripe-LC, H1.

Figure 5.12. Solving Stripe-LC, H1.

Another interesting strategy that was observed was once most of the parent and child

nodes were as close as possible Fig. 5.11, player would remove all the pass gates. Fig. 5.12.

30

Figure 5.13. Solving Stripe-LC, H1.

This strategy has been successful in other architectures also, where the player would

organize the nodes to the bottom of the graph in an identical manner. Fig.5.13.

Figure 5.14. Solving Stripe-LC, H1.

Another strategy that was successful was shifting of nodes to one side of the graph

to shorten edge lengths. Fig.5.14.

31

Figure 5.15. Solving Stripe DR-LC, H1.

Moving the nodes within the same row one at a time followed by swapping of clusters

vertically served as a good strategy amongst few experienced players in this architecture.

Fig.5.15.

Figure 5.16. Solving Stripe DR-LC, H2.

Initiating by placing most of the pass gates in DR columns together with bringing the

parent nodes closer to children nodes was yet another successful strategy in this architecture.

Fig.5.16.

32

5.3. Dedicated Multiplier (DM) Constraint

(1) 4Way1Hop DM. This architecture is 4Way1Hop with Dedicated Multiplier which

can only be placed in Dedicated Routes (DR). DR are arranged in vertical columns in

alternate fashion within which only DM can be placed, unlike Stripe-DR which allows only

pass through gates to be placed. (2) 4Way2Hop DM. 4Way2Hop with Dedicated Multiplier

follows the same rule as mentioned above.

The following figures show interesting strategies followed by players to reach their

optimum solution.

Figure 5.17. Solving 4way2hops DM Pattern-1 E1.

Some players would place the red nodes on the graph such that there are dedicated

routes for the connected DM nodes to fit in. For example, observe nodes 5, 6, 9 and 14 which

are connected to each other in Fig.5.17 (Left). So as a player made the connections short,

player positioned the red nodes such that DM nodes are also satisfied on DR.

33

Figure 5.18. Solving 4way2hops DM Pattern-1 E2.

We also observe that some players initial strategy would be to place all the DM nodes

on the dedicated routes, thereafter worked on satisfying the violations of red nodes. Fig.5.15.

The same strategy was also seen for solving big graphs. Fig.5.18.

Figure 5.19. Solving 4way1hops DM Pattern-2 M2.

Few experienced players would initiate by positioning all the DM nodes in dedicated

routes, then worked on positioning the red nodes. As the game progressed several swap

moves were made and player worked on the violations in sub-clusters. Fig.5.19.

34

Figure 5.20. Solving 4way1hops DM Pattern-1 H1

Players would also initiate by placing the nodes from the densest part of the graph

to the right side of the graph then making the connections short. Fig.5.20.

35

CHAPTER 6

CASE STUDY 3- ANALYSIS OF STRATEGY IN VARIOUS REPRESENTATION OF

THE SAME PROBLEM

In this section we studied the effect of visualization by taking into consideration vari-

ous aspects of the game. We observed top 10 players and analyzed how different visualization

of the same graph affects the quality of the solution. For that purpose, we particularly dis-

cussed Mesh architecture: 8Way, 4Way1Hop and 4Way2Hop as its the same graph with

different visualization. To perform our case studies, the factors that were taken into consid-

eration were Average grid size, Score, Strategy and Moves.The score was taken as the first

parameter to calculate the quality of the solution in each visualization. It was observed that

amongst E1, M1 and H1 representation, E1 visualization succeeded in scoring highest for the

first level in all three architectures. Similarly, H2 representation scored the highest in the

second level, H3 representation scored highest in third level and H4 representation scored

the highest in fourth level in all three architectures.

36

Figure 6.1. Different Visualization of the same architecture

Which brought us to the conclusion that players get better scores when the graph is

more spread out. For example, Fig.6.1 shows graphs of E1 M1 and H1, it can be observed

that E1 graph is more scattered and less dense than M1 and H1 thus players scored highest

in E1. Even though H1 is also spread out the area towards the right has densely connected

set of nodes. Thus making E1 visualization as best scorer in first level. For all the other

levels the conclusions were made in similar manner.

37

Table 6.1. Top 10 Player’s Feasible Solution

8Way 4Way1hop 4Way2hop

E1 12 E1 14 E1 26

M1 12 M1 13 M1 24

H1 9 H1 18 H1 23

E2 9 E2 17 E2 26

M2 9 M2 10 M2 22

H2 12 H2 11 H2 27

E3 16 E3 21 E3 28

M3 10 M3 13 M3 20

H3 16 H3 18 H3 28

E4 7 E4 8 E4 18

M4 4 M4 7 M4 12

H4 4 H4 9 H4 20

Feasible Solution- Furthermore, we also looked at the number of feasible solutions

in all three architectures, in all but three, Easy and Hard graph gave more number of feasible

solutions than Medium graph this again bringing us to the conclusion that if a graph is more

spread out, it makes the graph more approachable and easier to solve than the graph that

is more compact. Table I 6.1

38

Table 6.2. Top 10 Player’s Average Grid Size

8Way 4Way1hop 4Way2hop

E1 111.1 E1 88.8 E1 61

M1 121.9 M1 97.3 M1 70

H1 116.7 H1 78.9 H1 72.5

E2 139 E2 90.5 E2 75.1

M2 122.8 M2 113 M2 86.6

H2 131.8 H2 120 H2 77.7

E3 205.4 E3 209.1 E3 168.2

M3 242.7 M3 218.4 M3 183

H3 254.2 H3 217 H3 170.11

E4 250 E4 221.4 E4 137.8

M4 232.1 M4 217.2 M4 154.8

H4 211.3 M4 182.3 H4 127.2

-Area.- Table II 6.2 compares the average grid size of top 10 players in 8Way,

4way1hop and 4Way2hop. For each architecture, we compared the average grid size. For

example, compare E1 of all three architectures. In all cases but one, players were able to cre-

ate most compact graphs in 4Way2hop architectures concluding again, given a substantially

larger grid within which to work, players perform well.

39

-Player Strategies. In this section, results from player moves and mappings in

8Way, 4Way1hop and 4Way2hop are reported.

-Moving nodes from center to outside. Player would move the center nodes on

the peripherals of the graph. This particular strategy was not opted by too many players,

however the ones who followed it were successful in scoring highest in that level.Fig.6.2

Figure 6.2. 8WayH4

40

-Moving nodes from outside to center.: This is the opposite of the strategy that

we mentioned above. Player would make the connections short by placing the nodes towards

the center from the outside of the graph. Fig.6.3

Figure 6.3. 4Way1HopE2

-Initiating with less dense cluster. Successful players would begin by at-

tempting less dense cluster, thereupon moving to the dense one. Fig.6.4

Figure 6.4. 8WayE3

41

-Dividing the graph. Some players recognized that in a more compact level like

medium, it was helpful to divide the graph to better. This move was particularly helpful in

seeing the connections better. Player would then make the connections short by placing the

nodes in the center from either sides.Fig.6.5

Figure 6.5. 8WayM1.

42

-Identifying the pattern. Another strategy that was observed was placing the

nodes in a similar pattern. Fig.6.6. shows how a player initially placed the nodes that were

on the edges in vertical manner then arranged them in a common form. This strategy was

effective in lowering most of the violations.

Figure 6.6. 8WayE4

43

Generally Easy levels were mostly dominated by bottom to top strategy in all three

architectures. Fig.6.7.

Figure 6.7. 4way2Hop E1

In Medium levels successful players would initiate by untangling the dense part of

the graph and solve it in sub-clusters. Fig.6.8.

Figure 6.8. 8Way M2

44

Hard levels were very spread out on the peripherals of the graph. Two successful

common strategies were observed that were opted by many players in this level. First was to

solve less dense area of the graph Fig.6.9. Second strategy was to solve the graph by making

the connections short towards the center of the graph. Fig.6.10.

Figure 6.9. 4Way2Hop H1

Figure 6.10. 4Way1Hop H4

45

-Moves. All three architectures consist of same kind of graph for all levels, only

differing in the way the connections can be made to their neighbors. For example, its

the same graph for E-1 in 8way, 4way1hop and 4way2hops, same for other levels. We

analyzed the moves made by the top 10 players of each architecture to gain more quantitative

understanding of successful player actions. We observed how player position their nodes

when they initiate with the problem. The way the nodes were placed on the graph while

solving for the violations were different in each architecture. In 8Way experienced players

would begin by arranging the nodes in diagonal fashion Fig.6.11. Thereafter work on the

connected violations.

Figure 6.11. Solving 8Way E1.

46

Whereas in 4Way1hop player would position the nodes with 1hop then fill that empty

space in the middle by placing its direct connections. Fig.6.12.Once most of the violations

were solved in that fashion, player would focus on making the graph compact. Similar

arrangement was followed by successful players in 4Way2hop. Nodes were positioned in

both 1hop and 2hop manner followed by making its direct connections short and solving for

violations.

Figure 6.12. Solving 4way1hop H1.

47

Table 6.3. Graph Information (Easy Level)

Player 1 8Way E1 4Way1hop E1 4Way2hop E1

Height 13 10 10

Width 10 10 6

Nodes 59 68 52

ALU 52 52 52

Pass-Gate 7 16 0

ALUNoop 21 22 14

Area 80 90 66

Table 6.4. Graph Information (Medium Level)

Player 2 8Way M1 4Way1hop M1 4Way2hop M1

Height 13 10 10

Width 7 8 7

Nodes 76 60 60

ALU 52 52 52

Pass-Gate 24 8 8

ALUNoop 15 20 10

Area 91 80 70

We also analyzed the top 10 players who played all three architectures: 8Way,

4Way1Hop and 4Way2Hop and observed their quality of the solution. For example, Player 1

who played E1 in 8Way, 4Way1Hop and 4Way2Hop. Table III 6.3 , Table IV 6.4 and Table

V 6.5 shows few examples of players who played all three architectures.

48

Table 6.5. Graph Information (Hard Level)

Player 3 8Way H1 4Way1hop H1 4Way2hop H1

Height 10 8 10

Width 10 10 9

Nodes 75 60 52

ALU 52 52 52

Pass-Gate 23 8 0

ALUNoop 25 20 38

Area 100 80 90

It was found that on an average 4Way2Hop gives more compact solution followed by

4Way1Hop and 8Way. It was also observed that towards the final stages of the game 8Way

used more number of pass gates followed by 4Way1hop and 4Way2hop. Furthermore, overall

4way2hops has high number of feasible solutions followed by 4way1hop and 8way.

49

CHAPTER 7

CASE STUDY 4- ANALYSIS OF STRATEGY FOR A GAME PLAYED MULTIPLE

TIMES.

In most cases player scored better in later attempts. The score would mostly decrease

in the initial phase of the game which was mostly dominated by single moves. In some cases,

the player would try to perform different moves in the later attempts. For example, if a

player added few pass gates in the first half of the game in the first attempt, then in the

second attempt, the player would do the opposite and would add the pass gates in the second

half of the game. Or a player would perform more multimove in the first attempt, however,

in the second attempt player would perform more swap moves. Similarly with the strategy,

experienced players would take the opposite direction in the second attempt. To further gain

more quantitative understanding of the successful players strategies, we also analyzed how

playing a puzzle in particular order can affect the quality of the solution. On an average

Player performs well in all architectures if EMH path is followed. However, it was also

observed that in some cases, player performs better if H level is attempted first as shown in

Fig.7.1, Fig.7.2.

Figure 7.1. 4Way Architecture

50

Figure 7.2. Stripe Architecture

Figure 7.3. 4Way1Hop Architecture

In Fig.7.3. we observe how the performances for attempting H level first are almost

same as EMH combinations. Significant improvement in performance was observed, when a

player attempts H level and goes on to play EM levels, then returns again to attempt the H

level. This trend was observed in all architectures.

51

CHAPTER 8

CASE STUDY 5- CORRELATION BETWEEN MOVE AND SCORE

We also observed the correlation between moves and scores for top 10 players in reg-

ular Mesh architecture and Mesh architecture with constraint to further understand players

strategy.

8.1. Mesh architecture

In most of the cases score decreased in the initial phase of the game which was mostly

dominated by single moves. A drastic increase or decrease in score was mostly observed in

the first half of the game. In the second half of the game, the change in the score was not

very significant. Most of the time a player would come back from a break, an increase in the

score was observed after that break. In some cases, multi-move decreased the score, meaning

player might be solving the graph in cluster, solves for that cluster, which then later resulted

in a drastic rise in the score. Adding pass gates in the initial phase of the game mostly

reduced the score. Adding pass gates in the end, solved for most of the violations, however

it reduced the score in some cases. We also observed the move type and which move type

was performed more often and it was found as following: Single Moves > Multi-Moves>

Swap Moves> Addition of Pass Gates >Removal of Pass Gates > Rotate. (In some Hard

Levels, addition of pass gates was performed more frequently than swap moves).

8.2. I/O architecture

In most of the cases score decreased in the initial phase of the game which is mostly

dominated by single moves. A drastic increase or decrease in score was mostly observed in

the first half of the game. In the second half of the game, the change in the score was not

very significant. Observing the move type and which move type was performed more often,

the trend was found as following: Single moves > Multi-Moves > Swap Moves > Addition

of Pass Gates >Removal of Pass Gates> Rotate.

52

CHAPTER 9

CONCLUSION

Coarse-Grained Reconfigurable Architectures hold a promising future in hardware

platform for high performance, improved flexibility, low cost and power efficiency for vari-

ous application domains. To really exploit the potential of Coarse-Grained Reconfigurable

Architecture, efficient mapping problem in CGRAs is incredibly critical. In this paper, we

conducted various case studies with the goal to learn human strategy to solve mapping

problem for Coarse-Grained Reconfigurable architecture. To perform our experiments we

did data analysis of players of a computer mapping game called UNTANGLED to identify

opportunities for improved automatic mapping algorithms. All the case studies using UN-

TANGLED provides useful feedback from the game players that would be difficult to obtain

from an automatic mapper. These insights can be useful in finding the best architectural

solution for a particular domain. The different case studies show a qualitative evaluation of

difficulty of mapping onto Mesh architecture, Stripe architecture and the architecture with

constraints, thus also showing that crowd-sourcing the game with a purpose has the potential

to have an influence to various other exciting new mapping algorithms.

53

BIBLIOGRAPHY

[1] Foldit.

[2] Untangled.

[3] Mythri Alle, Keshavan Varadarajan, Alexander Fell, Ramesh Reddy C., Nimmy Joseph,

Saptarsi Das, Prasenjit Biswas, Jugantor Chetia, Adarsh Rao, S. K. Nandy, and Ran-

jani Narayan, Redefine: Runtime reconfigurable polymorphic asic, ACM Trans. Embed.

Comput. Syst. 9 (2009), no. 2, 11:1–11:48.

[4] T. Boiski, Game with a purpose for mappings verification, 2016 Federated Conference

on Computer Science and Information Systems (FedCSIS), Sept 2016, pp. 405–409.

[5] Daren C. Brabham, Crowdsourcing as a model for problem solving, Convergence 14

(2008), no. 1, 75–90.

[6] J. Brito, V. Vieira, and A. Duran, Towards a framework for gamification design on

crowdsourcing systems: The g.a.m.e. approach, 2015 12th International Conference on

Information Technology - New Generations, April 2015, pp. 445–450.

[7] Anupam Chattopadhyay, Ingredients of adaptability: A survey of reconfigurable proces-

sors, VLSI Des. 2013 (2013), 10:10–10:10.

[8] Andrew DeOrio and Valeria Bertacco, Human computing for eda, Proceedings of the

46th Annual Design Automation Conference (New York, NY, USA), DAC ’09, ACM,

2009, pp. 621–622.

[9] Sebastian Deterding, Gamification: Designing for motivation, interactions 19 (2012),

no. 4, 14–17.

[10] Anhai Doan, Raghu Ramakrishnan, and Alon Y. Halevy, Crowdsourcing systems on the

world-wide web, Commun. ACM 54 (2011), no. 4, 86–96.

[11] Stephen Friedman, Allan Carroll, Brian Van Essen, Benjamin Ylvisaker, Carl Ebel-

ing, and Scott Hauck, Spr: An architecture-adaptive cgra mapping tool, Proceedings of

the ACM/SIGDA International Symposium on Field Programmable Gate Arrays (New

York, NY, USA), FPGA ’09, ACM, 2009, pp. 191–200.

54

[12] M. C. Gmez-lvarez, R. Snchez-Dams, and A. Barn-Salazar, Trouble hunters: A game for

introductory subjects to computer engineering, 2016 XLII Latin American Computing

Conference (CLEI), Oct 2016, pp. 1–8.

[13] M. Hamzeh, A. Shrivastava, and S. Vrudhula, Epimap: Using epimorphism to map

applications on cgras, DAC Design Automation Conference 2012, June 2012, pp. 1280–

1287.

[14] Mahdi Hamzeh, Aviral Shrivastava, and Sarma Vrudhula, Regimap: Register-aware

application mapping on coarse-grained reconfigurable architectures (cgras), Proceedings

of the 50th Annual Design Automation Conference (New York, NY, USA), DAC ’13,

ACM, 2013, pp. 18:1–18:10.

[15] Chien-Ju Ho, Tao-Hsuan Chang, Jong-Chuan Lee, Jane Yung-jen Hsu, and Kuan-Ta

Chen, Kisskissban: A competitive human computation game for image annotation, Pro-

ceedings of the ACM SIGKDD Workshop on Human Computation (New York, NY,

USA), HCOMP ’09, ACM, 2009, pp. 11–14.

[16] Jeff Howe, Crowdsourcing: Why the power of the crowd is driving the future of business,

1 ed., Crown Publishing Group, New York, NY, USA, 2008.

[17] 27. Howe J, The rise of crowdsourcing, wired.

[18] A. Kosorukoff, Human based genetic algorithm, 2001 IEEE International Conference on

Systems, Man and Cybernetics. e-Systems and e-Man for Cybernetics in Cyberspace

(Cat.No.01CH37236), vol. 5, 2001, pp. 3464–3469 vol.5.

[19] Guangming Lu, Hartej Singh, Ming-hau Lee, Nader Bagherzadeh, Fadi Kurdahi, and

Eliseu M. C. Filho, The morphosys parallel reconfigurable system, pp. 727–734, Springer

Berlin Heidelberg, Berlin, Heidelberg, 1999.

[20] J McGonigal, Reality is broken: Why games make us better and how they can change

the world 2011, penguin group, the.

[21] G. Mehta, X. Luo, N. Parde, K. Patel, B. Rodgers, and A. K. Sistla, Untangled - an in-

teractive mapping game for engineering education, 2013 IEEE International Conference

on Microelectronic Systems Education (MSE), June 2013, pp. 40–43.

55

[22] Gayatri Mehta, Carson Crawford, Xiaozhong Luo, Natalie Parde, Krunalkumar Patel,

Brandon Rodgers, Anil Kumar Sistla, Anil Yadav, and Marc Reisner, Untangled: A

game environment for discovery of creative mapping strategies, ACM Trans. Reconfig-

urable Technol. Syst. 6 (2013), no. 3, 13:1–13:26.

[23] Bingfeng Mei, F. J. Veredas, and B. Masschelein, Mapping an h.264/avc decoder onto

the adres reconfigurable architecture, International Conference on Field Programmable

Logic and Applications, 2005., Aug 2005, pp. 622–625.

[24] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauwereins,

Adres: An architecture with tightly coupled vliw processor and coarse-grained reconfig-

urable matrix, pp. 61–70, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[25] M. A. V. Orjuela, A. Uribe-Quevedo, N. Jaimes, and B. Perez-Gutierrez, External au-

tomatic defibrillator game-based learning app, 2015 IEEE Games Entertainment Media

Conference (GEM), Oct 2015, pp. 1–4.

[26] Y. Pan and E. Blevis, A survey of crowdsourcing as a means of collaboration and the

implications of crowdsourcing for interaction design, 2011 International Conference on

Collaboration Technologies and Systems (CTS), May 2011, pp. 397–403.

[27] Marc Quax, Jos Huisken, and Jef van Meerbergen, A scalable implementation of a re-

configurable wcdma rake receiver, Proceedings of the Conference on Design, Automation

and Test in Europe - Volume 3 (Washington, DC, USA), DATE ’04, IEEE Computer

Society, 2004, pp. 30230–.

[28] Z. E. Rkossy, T. Naphade, and A. Chattopadhyay, Design and analysis of layered coarse-

grained reconfigurable architecture, 2012 International Conference on Reconfigurable

Computing and FPGAs, Dec 2012, pp. 1–6.

[29] K. Tsalikidis and G. Pavlidis, jlegends: Online game to train programming skills, 2016

7th International Conference on Information, Intelligence, Systems Applications (IISA),

July 2016, pp. 1–6.

[30] L. von Ahn, Games with a purpose, Computer 39 (2006), no. 6, 92–94.

[31] Luis von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford, Captcha: Using

56

hard ai problems for security, pp. 294–311, Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2003.

[32] Luis von Ahn and Laura Dabbish, Labeling images with a computer game, Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems (New York, NY,

USA), CHI ’04, ACM, 2004, pp. 319–326.

[33] M. C. Yuen, L. J. Chen, and I. King, A survey of human computation systems, 2009

International Conference on Computational Science and Engineering, vol. 4, Aug 2009,

pp. 723–728.

57

	ACKNOWLEDGMENT
	LIST OF TABLES
	CHAPTER 1. INTRODUCTION
	1.1. Introduction

	CHAPTER 2. BACKGROUND
	2.1. UNTANGLED-The Mapping Game
	2.2. Coarse-Grained Reconfigurable Architectures
	2.3. Data Flow Graph Mapping

	CHAPTER 3. RELATED WORK
	CHAPTER 4. CASE STUDY-1: ANALYSIS OF STRATEGY IN MESH AND STRIPE ARCHITECTURE
	4.1. Mesh Architecture
	4.2. Stripe Architecture

	CHAPTER 5. CASE STUDY 2- ANALYSIS OF STRATEGY IN RESOURCE CONSTRAINT ARCHITECTURE
	5.1. Input Output (I/O) Constraint
	5.2. Limited Connectivity (LC) Constraint
	5.3. Dedicated Multiplier (DM) Constraint

	CHAPTER 6. CASE STUDY 3- ANALYSIS OF STRATEGY IN VARIOUS REPRESENTATION OF THE SAME PROBLEM
	CHAPTER 7. CASE STUDY 4- ANALYSIS OF STRATEGY FOR A GAME PLAYED MULTIPLE TIMES.
	CHAPTER 8. CASE STUDY 5- CORRELATION BETWEEN MOVE AND SCORE
	8.1. Mesh architecture
	8.2. I/O architecture

	CHAPTER 9. CONCLUSION
	BIBLIOGRAPHY

