Design, Modeling, and Experiment of a Piezoelectric Pressure Sensor based on a Thickness-Shear Mode Crystal Resonator

PDF Version Also Available for Download.

Description

This thesis presents the design, modeling, and experiment of a novel pressure sensor using a dual-mode AT-cut quartz crystal resonator with beat frequency analysis based temperature compensation technique. The proposed sensor can measure pressure and temperature simultaneously by a single AT-cut quartz resonator. Apart from AT-cut quartz crystal, a newly developed Langasite (LGS) crystal resonator is also considered in the proposed pressure sensor design, since LGS can operate in a higher temperature environment than AT-cut quartz crystal. The pressure sensor is designed using CAD (computer aided design) software and CAE software - COMSOL Multiphysics. Finite element analysis (FEA) of the ... continued below

Creation Information

Pham, Thanh Tuong May 2017.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 87 times , with 9 in the last month . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Pham, Thanh Tuong

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

This thesis presents the design, modeling, and experiment of a novel pressure sensor using a dual-mode AT-cut quartz crystal resonator with beat frequency analysis based temperature compensation technique. The proposed sensor can measure pressure and temperature simultaneously by a single AT-cut quartz resonator. Apart from AT-cut quartz crystal, a newly developed Langasite (LGS) crystal resonator is also considered in the proposed pressure sensor design, since LGS can operate in a higher temperature environment than AT-cut quartz crystal. The pressure sensor is designed using CAD (computer aided design) software and CAE software - COMSOL Multiphysics. Finite element analysis (FEA) of the pressure sensor is performed to analyze the stress- strain of the sensor's mechanical structure. A 3D printing prototype of the sensor is fabricated and the proposed sensing principle is verified using a force-frequency analysis apparatus. Next to the 3D printing model verification, the pressure sensor with stainless steel housing has been fabricated with inbuilt crystal oscillator circuit. The oscillator circuit is used to excite the piezo crystal resonator at its fundamental vibrational mode and give the frequency as an output signal. Based on the FEA and experimental results, it has been concluded that the maximum pressure that the sensor can measure is 45 (psi). The pressure test results performed on the stainless steel product shows a highly linear relationship between the input (pressure) and the output (frequency).

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • May 2017

Added to The UNT Digital Library

  • July 12, 2017, 3:17 a.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 9
Total Uses: 87

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Pham, Thanh Tuong. Design, Modeling, and Experiment of a Piezoelectric Pressure Sensor based on a Thickness-Shear Mode Crystal Resonator, thesis, May 2017; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc984155/: accessed October 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .