Analyze and Rebuild an Apparatus to Gauge Evaporative Cooling Effectiveness of Micro-Porous Barriers.

PDF Version Also Available for Download.

Description

The sample used for evaporative cooling system is Fabric defender 750 with Shelltite finish. From the experimental data and equations we have diffusion coefficient of 20.9 ± 3.71 x 10-6 m2/s for fabric with one layer with 17%-20% fluctuations from the theory, 27.8 ± 4.5 x 10-6 m2/s for fabric with two layers with 6%-14% fluctuations from the theory and 24.9 ± 4.1 x 10-6 m2/s for fabric with three layers with 13%-16% fluctuations from the theory. Since the thickness of the fabric increases so the mass transport rate decreases so the mass transport resistance should be increases. The intrinsic ... continued below

Creation Information

Mohiti Asli, Ali December 2008.

Context

This thesis is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 247 times . More information about this thesis can be viewed below.

Who

People and organizations associated with either the creation of this thesis or its content.

Chair

Committee Members

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Mohiti Asli, Ali

Provided By

UNT Libraries

The UNT Libraries serve the university and community by providing access to physical and online collections, fostering information literacy, supporting academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this thesis. Follow the links below to find similar items on the Digital Library.

Description

The sample used for evaporative cooling system is Fabric defender 750 with Shelltite finish. From the experimental data and equations we have diffusion coefficient of 20.9 ± 3.71 x 10-6 m2/s for fabric with one layer with 17%-20% fluctuations from the theory, 27.8 ± 4.5 x 10-6 m2/s for fabric with two layers with 6%-14% fluctuations from the theory and 24.9 ± 4.1 x 10-6 m2/s for fabric with three layers with 13%-16% fluctuations from the theory. Since the thickness of the fabric increases so the mass transport rate decreases so the mass transport resistance should be increases. The intrinsic mass resistances of Fabri-1L, Fabri-2L and Fabri-3L are respectively 104 ± 10.2 s/m, 154 ± 23 s/m and 206 ± 26 s/m from the experiment.

Subjects

Language

Identifier

Unique identifying numbers for this thesis in the Digital Library or other systems.

Collections

This thesis is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this thesis?

When

Dates and time periods associated with this thesis.

Creation Date

  • December 2008

Added to The UNT Digital Library

  • Sept. 9, 2009, 2:31 p.m.

Description Last Updated

  • June 24, 2015, 2:22 p.m.

Usage Statistics

When was this thesis last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 247

Interact With This Thesis

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Mohiti Asli, Ali. Analyze and Rebuild an Apparatus to Gauge Evaporative Cooling Effectiveness of Micro-Porous Barriers., thesis, December 2008; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc9750/: accessed September 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .