Evaluation of the Evidence on the Effectiveness of Well Child Care Services for Children

Charles J. Homer, M.D., M.P.H.
Division of General and Ambulatory Pediatrics
Massachusetts General Hospital
Boston, Massachusetts

July 1988

Contractor Document
Health Program, Office of Technology Assessment
U.S. Congress, Washington, DC 20510

This paper was prepared by an outside contractor for the OTA assessment Healthy Children: Investing in the Future. The paper does not necessarily reflect the analytical findings of OTA, the assessment's advisory panel, or the Technology Assessment Board.
TABLE OF CONTENTS

I. Documentation of Recommended Well Child Interventions for Children From 1 month through 11 years of Age 1-5

II. Review and Critique of Studies Evaluating the Effectiveness of Well Child Care as A Whole
 Introduction 6
 Literature Review 11
 Conclusions 28

III. The Effectiveness of 5 Well-Child Services 28
 Physical Assessment 29
 Overview 29
 Literature Review 31
 Conclusion 35
 Denver Developmental Screening Test 36
 Overview 36
 Background, Reliability, and Concurrent Validity 37
 Predictive Validity and Utility 39
 Conclusion 43
 Anticipatory Guidance for Injury Prevention in the Clinical Setting 44
 Overview 44
 Literature Review 45
 Conclusions 47
 Iron Deficiency (Anemia) 47
 Auditory Screening in the Preschool Child 53
 Overview and Introduction 53
 Burden of Suffering and Effectiveness of Therapy 54
 Screening Tests 56
 Conclusions 60

IV. Cost Effectiveness Studies 60

V. Tables 66

VI. References 82
LIST OF TABLES

Table 1. Recommended Number of Well Child Visits 63
Table 2. General Summary of Physical and Developmental Evaluations Recommended for Child Health Supervision 64
Table 3. Recommended Performance of Specified Screening Tests 65
Table 4. EPSDT Screening Recommendations for Selected States 66
Table 5. Summary of Literature Evaluation Effectiveness of Well Child Care as a Whole 67-73
Table 6. Effectiveness of the Physical Examination in Well Child Care 74-75
Table 7. Predictive Validity of the Denver Developmental Screening Test 76
Table 8. Effectiveness of Anticipatory Guidance on Infant Car Restraint Use 77-78
Table 9. Iron Deficiency, Cognitive, Development and Behavior 79-81
I. Documentation of Recommended Well Child Interventions for Children from 1 month through 11 years of Age

The frequency and timing of recommended well child visits, and the frequency and timing of recommended screening tests or procedures in well child care, vary substantially among Western nations, among states within the United States, and even across time from any particular recommending organization. (American Academy of Pediatrics, 1974; Strain, 1983; Canadian Pediatric Society, 1983; Great Britain, 1976; General Medical Services Committee, 1984; David Hall, 1987; Aidan Macfarlane, 1987; Canadian Task Force, 1979.)

The specific recommendations of a number of supervisory bodies for certain well child care components are presented in Tables 1 through 4. These recommendations apply to children aged one month to eleven years. In general these guidelines demonstrate the following characteristics:

1. A trend in recommendations from the American Academy of Pediatrics towards increasing the number of visits over the past fifteen years;

2. A greater number of visits recommended in the United States than in Great Britain, although fewer than commonly provided in other Western European nations;

1. The American Academy of Pediatrics, Canadian Pediatric Society, Canadian Task Force on the Periodic Health Exam, three British groups (see text), and various state Early and Periodic Screening, Diagnosis, and Treatment (EPSDT) programs.
3. Recommendations for a more focussed physical examination than in the past;

4. Increased concern with identification of behavioral and developmental problems, coupled recently, especially in Great Britain, with increased recognition of the difficulties in reliably and validly identifying such problems;

5. Lack of consensus, especially apparent among the states, concerning the appropriate populations for screening procedures, the optimal age, and the frequency of use;

Several caveats must be borne in mind in making comparisons between American and British schedules. Infants and children in the United Kingdom do not routinely receive immunizations from their physician; therefore, immunization visits are not included in these guidelines. In England, from the time of the creation of the National Health Service until the mid 1970's, children were served by a "tripartite" service. Preventive child care services were provided through a network of child health clinics, staffed primarily by health visitors--nurses trained in child oriented community medicine--and by clinical medical officers (specially trained physicians). Health visitors also undertook home visiting; the extent to which this is still done is not clearly documented. Ill children were seen by general practitioners in their offices, although child health clinics provided some ill care as well. Hospitalized children and children with chronic diseases were taken care of by pediatricians.

Beginning with the report of a special committee convened in the mid-1970's and chaired by Sir S.D.M. Court, general practitioners were
encouraged to perform an increasing amount of child health supervision activities, and health visitors were increasingly attached to general practitioner's practices rather than district health authorities. General practitioners were also encouraged to develop some expertise in child health supervision. The Handbook of Preventive Care by The Royal College of General Practitioners was written to address this need.

(General Medical Services Committee, 1984)

At the present time, the actual delivery of child health services seems to vary dramatically across different regions of England and Wales. The current Working Party on Developmental Surveillance in Childhood was specifically established "to review and comment upon current practice in Child Health Surveillance in the United Kingdom and to make recommendations for future practice." The guidelines noted in this report are the separate but largely concurring opinions of the Chair--Dr. David Hall--and Vice-Chair--Dr. Aidan Macfarlane--on what this group is likely to recommend.

In comparing recommendations within the North American continent, one must also consider the dramatically differing perspectives of the recommending bodies.

Concerning the varying state Early Periodic Screening, Diagnosis, and Treatment (EPSDT) recommendations, understanding the nature of the EPSDT program is crucial. Rosenbaum recently reviewed the strengths and limitations of EPSDT (Rosenbaum, 1986) In brief, EPSDT is a federally mandated but state administered program to provide early detection and treatment for medicaid eligible children. Because the expenses of the program are in some measure borne by the states, recommendations for frequency of visits and mandated screening measures
reflect not simply medical judgement but political and economic
judgments of what each state is willing to spend for child health
services for the poor.

While the tendency of the state EPSDT administrators might be to
restrict services, the tendency of the Academy of Pediatrics is likely
to be expansive. The American Academy of Pediatrics is an organization
of pediatricians; while first and foremost seeking to advance the
health of children, this body also represents the professional needs of
its members. The Academy has several times sought to compile
documentation for the efficacy of well child care and its schedule of
care; failing this, the Academy has relied on expert judgement to
formulate its recommendations. The Academy forthrightly admits the
relatively arbitrary nature of its schedule, although its primary
caveat is that the recommendations constitute a minimum standard for
intact and functional families. Even within the pediatric community,
these recommendations have stirred controversy. (Hoekelman, 1983) The
Canadian Pediatric Society was strongly influenced by the AAP recommen-
dations; (Marchessault, 1987) it also considered the Task Force's
recommendations when formulating its standards.

The Canadian Task Force on the Periodic Health Examination
represents an entirely different perspective on the provision of
preventive care. This body, convened in 1976, was charged with the
task of making recommendations for periodic health examination by the
Deputy Ministers of Health of Canada. Although a broad variety of
disciplines were represented on the Task Force, its membership
consisted primarily of academic physicians committed to the field of
clinical epidemiology.
In its major report, the Task Force reviewed 78 potentially preventable conditions, graded the evidence regarding the effectiveness of interventions for these conditions, and made recommendations with varying degrees of strength about including these interventions in periodic health exams. The Task Force then formulated these recommendations into a series of age-specific "health protection packages." Many of the recommendations made by the Task Force, especially concerning anticipatory guidance and developmental evaluation, were classified as level "C", i.e., "There is poor evidence regarding the inclusion of the condition in a periodic health examination, and recommendations may be made on other grounds."

Immunizations and dental examinations were the only recommended child health interventions beyond the neonatal period receiving an "A" level recommendation, i.e., good evidence to support inclusion.

The existence of these wide variations in recommended well child services, although understandable in light of the differing health care systems and of the varied organizational perspectives, nonetheless bespeaks a paucity of good information supporting any one program of care over another when considered in light of child health outcomes. The information which exists is reviewed in the sections which follow.
II. Review and Critique of Studies Evaluating the Effectiveness of Well Child Care as A Whole

A. Introduction

1. General

The literature on the effectiveness of well child care has been reviewed repeatedly over the past thirty years. (Lewis, 1971; Yankauer, 1973; Casey, 1979; Shadish, 1982; Roughmann, 1985; Charney, 1986; Korsch, 1985) Although the body of literature on which these reviews have been based has not dramatically changed, these reviews have drawn dramatically different conclusions, ranging from profound doubts to ringing endorsements. This variation in inference most likely reflects more the political context of each review than the considered body of knowledge.

This review will focus primarily on the methodology of those studies that seek to evaluate the effectiveness of well child care, or, better stated, of "child health supervision." We will focus on studies of child health supervision as practiced primarily in the United States, although a few studies with some relevance from other nations will be cited. We will consider only studies that specifically examine a health services intervention or delivery program; studies examining changes in morbidity and mortality over time or locale alone will not be examined.

In addition to considering the methodology of these studies, we will also consider the reasonableness of the hypotheses considered and the completeness of the outcome measures. Well done studies with non-
plausible hypotheses or studies with restricted outcomes under consideration, no matter how well executed, will be of limited value.

Effectiveness studies evaluate how well programs that function in the "real world" achieve their goals; efficacy studies consider how well programs achieve their goals when performed in an optimal situation and manner. An efficacy study asks whether an intervention is conceivably worthwhile; an effectiveness study asks whether such an intervention will indeed work. This review will consider both, but will try to indicate into which category the study falls.

2. Goals of Child Health Supervision

In order to measure the effectiveness of child health supervision, we must first identify what the goals are for this activity. Perhaps surprisingly, little unanimity exists in answering this issue. Indeed, the most recent Academy of Pediatrics publication providing Guidelines for Child Health Supervision does not even include any mention of the overall goals for this activity. (American Academy of Pediatrics, 1985) Despite this lack of agreement, we will for this review consider three goals for child health supervision against which to measure effectiveness:

1. The prevention of premature mortality—death in infancy, childhood, adolescence, and early or middle adulthood.

2. The prevention or reduction of morbidity, defined as functional limitation due to physical or mental illness.

3. The promotion of the ability of the child eventually
to fulfill his or her societally determined adult role; in Western society this means at least the ability to live independently and be self-supporting, and more broadly to participate in the full range of adult social interaction. Short-term indices for this outcome might include measures of maternal-infant interaction or developmental testing. Intermediate range criteria could include school performance and behavior problems. Long-term measures would involve job history, income, marital status, or criminal records.

Other goals for child health supervision have been proposed. These include the provision of support and reassurance to a family and the provision of a "medical home" for each child in the event that illness develops. Further empiric work is needed to assess the utility of these aspects of child health supervision to children and families before they can be considered goals or standards for outcome evaluation.

Although child health supervision visits occur throughout childhood, the great majority take place during the preschool period. This period will be emphasized in this report.

3. Role of Social Factors

Although improvement in health status, as broadly defined, is the appropriate goal for child health supervision, positing such goals presents a substantial risk of failure in judging the effectiveness of such a program. Health status of the population in general, and of
children in particular, is far more strongly determined by social and economic factors than by the nature of medical care. (Black, 1980; Brenner, 1984) This relationship between socioeconomic conditions and health outcomes is true in nations with health care delivery systems that provide service without respect to family income as well as in nations such as our own where income has traditionally determined health care resource utilization. Moreover, this relationship holds not only for the developmental outcomes indicated in goals three, but in physical health outcomes as well. Roghmann recently emphasized that resources expended to improve the health of children would have the greatest impact if directed at housing, income, and education. (Roughmann, 1985)

4. Summary

The results of this review can be briefly summarized.

1. No evidence exists to support an overall effect of child health supervision as now performed on childhood mortality or morbidity. On the other hand, the sample sizes used in prior studies have all been inadequate to identify even a large change in the frequency of mortality. Moreover, the measures of morbidity in most, if not all studies, have been poorly suited to the pediatric population.

2. Some evidence supports the contention that participation in comprehensive child health care can reduce the frequency of hospitalization for acute medical illnesses. However, the inferences that can
be drawn from this observation are limited. From a
cost perspective, the decreased frequency of acute
hospitalization is balanced by an increase in
surgical admissions for "corrective" procedures.
From a morbidity perspective, hospitalization rates
in children vary so dramatically across geographic
regions that hospitalization most likely reflects
practice style rather than morbidity per se.

3. Few studies have adequately considered
developmental/social functioning outcomes. The
evidence that exists suggests that child health
supervision as performed exerts little influence in
this arena. Some studies with substantial
limitations in generalizability or internal validity
imply that modifications in the practice of child
health supervision may allow this practice to exert a
positive effect on some proximate measures of social
functioning outcomes.

Studies examining the effectiveness of child health supervision
were drawn from several overlapping areas of health services research.
These included: examinations of the impact of varying schedules of
well child care; studies of the effect of the then newly developed
comprehensive care programs in the 1960's and early 1970's;
evaluations of the federally mandated child health supervision
program--EPSDT (Early and Periodic Screening, Diagnosis and
Treatment); considerations of different modes of health service
delivery or insurance programs; impact studies of health program
cutbacks in the 1980's; and, finally, evaluations of child health service activities specifically directed at improving developmental outcomes. Although none of these categories directly address the question of the overall effectiveness of well child care, each provides some insight into this area.

A detailed summary of each study is contained in Table 5. This table outlines the locale and years considered by the study, the characteristics of the study population, the study design, the sample size, the nature of the intervention examined, the outcome measures used, the results obtained, and comments concerning the threats to validity and limitations of generalizability. The text will in most instances highlight the conclusions and limitations from each body of literature, rather than repeat the information available in the table.

B. Literature Review

1. Evaluation of Periodicity

Two studies exist which specifically considered the impact of reducing the frequency of recommended visits for low risk children. (Gilbert, 1984; Hoekelman, 1975;) The more recent study is both methodologically and conceptually more advanced than the prior report, in that it more accurately reflects the population base, had a larger sample size, used blinded outcome assessment, and included important indicators of social functioning as well as physical outcome measures. Nonetheless, both studies failed to identify any ill health effects associated with a decrease in the frequency of scheduled well child visits.

The major caveat in interpreting both studies is that in both
reports, the group randomized to the lower number of scheduled visits nonetheless obtained an almost comparable number of visits during the first years of life. In the Hoekelman study, infants scheduled for fewer visits were seen three additional times by the office nurses for immunizations; informal advice and consultation was often obtained at that time. In the Gilbert report, primiparous women randomized to the lower frequency group made an average of 1.25 unscheduled well child visits in the first two years of life; at the same time, families randomized to the 10 visit group averaged only 7.63 visits. Thus, the average number of well child visits in the first two years of life was 6.19 for the low-frequency group and 7.89 for the high frequency group. Although one can reasonably argue that little harm in low risk women is likely to occur from reducing the recommended frequency of visits for low risk infants, one cannot infer that dramatic changes in actual utilization will occur! Moreover, neither study allows generalization to infants at higher social or biologic risk.

2. Evaluation of Comprehensive Care

The 1960's witnessed a dramatic expansion in health services provided to the poor, as well as ferment in the conceptualization of the optimal delivery of personal health services. These processes found concrete expression in the creation of a variety of "comprehensive care" programs for low income children. The precise character of these programs varied, but in most instances consisted of personal health services provided by a pediatrician in concert with a social worker and nurse; additional aspects often included availability of after hours consultation and continuity in provider
over time. Some programs additionally included augmented outreach activities, such as home visiting and case management. The payment required for use of these services is not documented in most of the evaluation reports; however, most were probably free.

Evaluations that examine the effectiveness of comprehensive care programs are not exactly congruent with the evaluation of child health supervision. Such programs certainly provided diagnosis and treatment of acute and chronic illness as well. Several of the evaluation studies did indicate that utilization of well child services increased with participation in comprehensive care programs; therefore, evaluations of the effectiveness of such programs have some bearing on the overall issue of child health supervision. However attributing any positive effect specifically to the child health supervision component, as opposed to, for example, continuity of providers, is simply not possible.

Unlike the evaluations of periodicity, these studies deal almost exclusively with populations at substantially higher risk of mortal, morbid, and adverse developmental outcomes than the general population. Failure to show improvements in outcomes may be due to factors outside the purview of child health supervision (such as housing). At the same time, the more frequent adverse outcomes in such populations make detection of any improvement statistically more likely with small sample sizes.

Comprehensive care program evaluations utilized ecologic, cross-sectional, and clinical trial (randomized and non-randomized) methods. These will be reviewed sequentially.

The two ecologic studies, (that is, those studies considering a
geographically defined population rather than an individual as the unit of observation) used dramatically different outcomes. Gordis's well known study examined the frequency of rheumatic fever in census tracts where comprehensive care programs were introduced; he found significantly fewer cases of rheumatic fever among residents of these tracts, when compared to the frequency of this condition in comparable tracts in the city. (Gordis, 1973) He strengthened this observation by medical review of cases of rheumatic fever, and attributed the decline to those cases preceded by symptomatic respiratory infection, a category likely to be sensitive to medical care. This study--like all others of its type--is subject to the ecologic fallacy, which is that the individual members of the community may not have in fact experienced the exposure attributed to them (use of comprehensive health services) simply by their residence. Moreover, this study may have little implication for child health supervision, in that it deals with services for ill children--those with pharyngitis--rather than with well child services.

A similar census tract based study in Rochester, using hospitalization rates as the outcome measure, did not find an overall effect of residence in the identified tract on lowered hospitalization rates; indeed, the rates were lower in the control region throughout the study period. (Klein, 1973) Although the investigators did find lower hospitalization rates among users of the comprehensive care program services, this outcome could easily be explained the selection bias of who chose to use services. Indeed, the authors comment "It appears that the low risk population of the target area became the initial health center users."
Two studies creatively sought to use school attendance as a marker for functional status as an outcome measure for gauging the effectiveness of participation in comprehensive care services. A study in Pittsburgh compared school attendance for enrollees in a Children's and Youth (C&Y) Project with non-enrollees, controlling for socioeconomic status by residence in a housing project. (Kaplan, 1972) The investigators found a small but statistically significant improvement in school attendance—3.2 days, 95% Confidence Interval of .94-5.5. If those who were motivated and oriented towards healthy behaviors preferentially enrolled for care in the C&Y Project, this selection bias of who chose to use the health center could explain this difference in outcome. A before-after study in Charlestown (Boston), also examined the effect of participation (measured by number of visits) in the then newly developed Bunker Hill Health Center or school attendance. (Moore, 1973) The investigators found no statistically significant effect of the level of health center utilization on school attendance, although there was a trend towards increased absenteeism with increased use. The relationship between health center use and absenteeism, however, is most likely confounded by prior health status; this is, sicker children necessarily used the health center more, and were also more likely to miss school. Moreover, a trend towards increased absenteeism existed during the course of the study for all school children.

Two non-randomized prospective studies examined enhanced outreach together with comprehensive care. One, based in Appalachia, prospectively followed matched pairs of infants from two comparable but geographically distinct communities. (Briscoe, 1980) The
intervention consisted of 7 nurse home visits to provide counselling, support, health education, and advocacy. This study is included because the home visiting program was integrally linked to well child services. Other studies of home visiting are not reviewed here. (See, for example, Olds, 1986) No differences existed in any measure of health status, although the measures of health status were crude; no social function outcomes were measured. No significant differences existed between the groups in health services utilization either; although a trend towards fewer outpatient visits was noted, the authors did not include the home visits with the total number of outpatient contacts.

The other prospective study compared the impact of intensive follow-up and home visits in the experimental group with "usual care" in the control group. (Rogers, 1974) This study used a quasi-randomization scheme by including alternate babies born at the Fort Defiance Indian reservation Hospital in the experimental and control groups. This study likewise showed no significant difference in mortality or morbidity, the latter including both illness experience and physical health measures. Developmental outcomes were not reported. No significant differences existed in utilization as well. The sample size, however, was inadequate to demonstrate even a 50% impact on mortality; sample size was adequate for detecting 25 to 50% differences in some of the morbidity measures. The lack of effect on utilization could be due to the opposing effects of outreach of improving case finding on the one hand and improving management on the other.

Two properly performed randomized clinical trials of
comprehensive care were reviewed. The evidence here is likewise equivocal. Gordis undertook an randomized clinical trial of comprehensive versus usual care in high social risk mothers in Baltimore. (Gordis, 1971) No differences were found in infant mortality, hospitalization or other utilization rates, height for weight standards, or immunization completeness. However, the sample size was inadequate, the morbidity measures extremely constricted, and no measures of social competence were included. Finally, all the services provided were free in both groups. Alpert and colleagues, in the most widely reported study of the effectiveness of comprehensive care for children, evaluated the Comprehensive Care Medical Program at Children's Hospital in Boston. (Alpert, 1976) No significant differences in any measure of morbidity (not detailed in the report) were identified. The overall frequency of outpatient visits and of hospitalizations were similar between experimental and control groups; different patterns of use were noted. Experimental group children made more health supervision visits and control children made more ill visits. Experimental group children underwent more surgery early in the study period, had fewer hospitalizations in year two and experienced comparable rates in year three. Mothers of participants in the comprehensive care program did report improved satisfaction in some areas. Even with these very limited findings, some questions about the generalizability and internal validity of the study exist (see Table 5).

Thus, although two studies of comprehensive care found some improvement in health outcomes (Gondis, 1973: Kaplan, 1972), and
although no study found harm from such programs, none conclusively demonstrated that comprehensive care in general, or child health supervision in particular, results in improvements in major mortality or morbidity outcomes for children. None of these studies examined the realm of development or social function.

3. EPSDT

The Early and Periodic Screening, Diagnosis and Treatment Program is a federally funded, state administered program which mandates screening of medicaid eligible infants and children and referral for definitive treatment. (Rosenbaum, 1986) Although not formally child health supervision, EPSDT programs in most cases follow guidelines similar to the American Academy of Pediatrics 1981 Guidelines for Health Supervision. Thus, evaluations of the effectiveness of EPSDT in improving the health of poor children should in large measure reflect on the effectiveness of child health supervision at large.

Unfortunately, the outcome measures used in the evaluation of EPSDT are difficult to interpret. (Irwin, 1982; Keller, 1983) The primary outcome used in these evaluations is the number of "abnormalities" detected in a screening, or the number of "referrals" made, i.e., the number of abnormalities which are deemed to merit a referral for treatment. The effectiveness of the program is then judged by the change in the number of referrals/abnormalities with either time in the program or number of repeat screens. Both studies do report a decline in abnormalities with time in the program; in Irwin's report this decline became apparent only after adjusting for a general trend towards increased case finding. Because no specific
information is provided about the precise nature of these abnormalities, their importance or remediability, or the eventual improvement with therapy, the importance of reduction in abnormalities/referrals is difficult to interpret.

Additional caveats in interpreting the effectiveness of EPSDT are brought to light by Reis's review of unpublished Department of Maternal and Child Health evaluation projects. (Reis, 1984) These projects demonstrate great variability in the proportion of the eligible population which is indeed screened and in the proportion of those screened who are identified as having a problem. Moreover, a recent article examining prior use of EPSDT by developmentally disabled children found EPSDT use did not result in earlier diagnosis or treatment for these children. (Meisels, 1988)

Thus, although two studies demonstrated a decrease in the frequency of referrals/abnormalities with repeat screening, the interpretation of these findings is uncertain and the relevance to child health supervision limited at best.

4. Alternative Health Service Delivery Systems and Insurance Programs

One possible approach to the evaluation of the effectiveness of child health supervision is to examine health outcomes for children in different systems of care—such as solo or group practice, fee for service or pre-paid, HMO type programs—and consider any differences in outcome in light of different patterns of care. Thus, if health outcomes are improved for children who use systems that provide more child health supervision, we could infer—within limits—that child health supervision is effective.
Two major studies--one of which was reanalyzed in a separate report--bear directly on this approach. The first was undertaken by Kessner and colleagues in the early 1970's in Washington, D.C. (Kessner, 1974) Kessner developed and then used a "tracer" system of measures to assess the quality of care. These tracers were intended to reflect short term outcomes that both had intrinsic health significance and were amenable to medical intervention. The outcomes used were iron deficiency anemia, visual disorders, middle ear infection (acute and chronic) and hearing loss. Kessner found that after controlling for social class differences in who used the different types of providers, there were no differences in any measure of "health status."

Dutton reanalyzed the Kessner data, asserting that the prior analysis was inadequate. (Dutton, 1980) She argued that the means for controlling for social class differences used by Kessner were insufficient. Moreover, she noted that in comparing prepaid care to all other care, Kessner inflated the value of "all other care" by lumping poor performers (solo practice) with better performers (hospital outpatient departments). After more carefully adjusting for social class differences, Dutton found that users of both prepaid programs and OPD clinics tended to have better health status measures than users of solo-practitioners. Statistically significant differences were observed when all measures were considered together and the OPD and prepaid groups combined and contrasted with the solo practice group.

If true, do these findings have any relevance to the assessment of the effectiveness of child health supervision? The answer to this
is uncertain. Kessner did observe that participants in the prepaid plans were far more likely to have well child checks than users of other services. However, the validity of this observation may be limited, in that for this analysis he lumped emergency room users and outpatient clinic users together, did not review private practice records, and reviewed only a very small number of charts. Dutton attributes the differences in outcome more to the characteristics of the practitioners themselves (more training), their means of reimbursement (salary versus fee-for-service), their specialization (pediatricians rather than general practitioners), and their functioning in group settings (with formal and informal peer review) than to the performance of well child care. Even so, the differences in outcomes that she identified were small.

Major limitations also exist in the generalizability of the results of this study. The study was not nationally representative, but was done in one city. Almost all the participants in the study were black; the solo practitioners were also disproportionately black.

Although the use of "tracer" conditions represented a major step forward in outcome evaluation in health services research, the appropriateness of these tracers and their amenability to medical intervention—particularly relating to ear disease—remains an open question. Moreover, as in so many other studies, no effort was made to examine developmental outcomes.

The other major study in this area which bears on child health issues is the Rand report on "The Effects of Cost Sharing in the Health of Children." (Valdez, 1986) In this study, 1844 children in
956 families, representing a random sample—with certain limitations—of the population of 6 geographically disparate communities, were randomly assigned to one of several health insurance plans that offered varying percentages of cost-sharing. Despite the many different plans offered, the authors of the report group together all the cost sharing plans and contrast them with free care for most analyses. Study subjects were followed for three to five years. The study used a wide variety of health outcome measures. In particular, they considered measures of physiologic health—anemia, hay fever, middle ear fluid, hearing loss, and visual acuity; limitations in daily activities; mental health perceptions; and general health perceptions. Although growth and developmental outcomes were also assessed, they have not been reported. No statistically significant differences were observed overall for any outcome. The only potentially clinically significant difference noted between those in the free care and those in the cost sharing group was the prevalence of anemia among poor children who were anemic at the start of the study.

As with Kessner's study, the relevance of these findings to the evaluation of child health supervision depends on whether the different groups experienced varying levels of well child care. Only partial results of the utilization data for children have been presented. (Leibowitz, 1985) These data were drawn primarily from one site—Dayton; the poorest site, South Carolina, was not analyzed. In general, the study results suggested that although children in cost sharing plans reduced use of well child services somewhat less than they reduced acute and chronic illness episodes (76% as many well-care
episodes, 72% as many acute care episodes, and 63% as many chronic care episodes in cost sharing compared to free care children), they nonetheless did lower use of well child services substantially.

Haggerty and Starfield separately and extensively critiqued the Rand study. (Haggerty, 1985; Starfield, 1985) These authors criticized both the substantial attrition (40%) of the initial study group and the small sample size—especially concerning the issue of functional limitations and concerning sub-groups such as the poor. The choice of outcome measures, while an advance over prior studies, still appeared inappropriate in the pediatric context. The functional limitations measure demonstrated too little variability to be useful. The physiologic outcome measures—with the exception of anemia—may not be responsive to medical therapy. Haggerty specifically noted the lack of consideration of social functioning ("new morbidity") outcomes.

Both authors, and indeed the authors of the original report, noted that the nature of the cost sharing plans protected all families—and poor families in particular—from excessive health care cost burdens. Finally, Starfield noted that, although differences between outcomes for free care versus cost sharing among the poor were not statistically significant, "those in cost sharing plans were in worse health at the end of the experiment than those in the free plan on six of the eight health measures...."

Considering both the original reports and the critiques together, one can reasonably conclude that cost sharing reduces utilization of both preventive and illness related services and that this reduction is unlikely to affect adversely the physical/physiologic health of low risk populations. The data are consistent with the hypothesis that
cost sharing adversely affects some measures of health status among the poor, although this is far from definitive. The specific impact of reducing health services use on developmental/social functioning remains unexamined.

5. Impact of Service Cutbacks

In contrast to the expansion in services in the 1960's and early 1970's, the 1980's have witnessed reductions in programs providing services to populations in need. One study specifically examined the health impact of the reduction in services offered by a public, well child clinic in a rural county in Maryland. (Alexander, 1986)

Specifically, the clinic no longer offered physical health assessments and exams, and reduced the frequency of offering immunizations. The study was cross sectional, comparing health status and utilization in the county which had reduced its services to these measures in another demographically matched county. No significant differences existed between the study and comparison county in maternal ratings of child health status. Care for those children previously followed in the public health clinic was apparently provided by private practitioners—one in particular. Therefore, although a particular program was discontinued, child health supervision activities in all likelihood continued.

6. Development/Social Functioning and Child Health Supervision

The studies that examined the global effectiveness of child health supervision or child health care at large, reviewed above, do
not consider behavioral and developmental outcomes to any significant extent. We did identify one study, however, which specifically examined how different styles of child health supervision—as practiced in clinical settings—influence these outcomes; likewise we identified a variety of studies that examined how special types of child health supervision might affect such outcomes.

Chamberlin conducted the effectiveness study in this arena, comparing the influence of pediatricians using different degrees of "teaching effort" in their well child care on a variety of maternal and child behavioral and developmental outcomes (Chamberlin, 1980). In support of the effectiveness of the teaching effort, he did find a strong correlation between teaching effort (i.e., pediatrician involvement in parent education) and maternal knowledge and a small but significant correlation between teaching effort and the mother's self-reported use of positive interaction with her child. On the other hand, he found that increased teaching also correlated with increased reported behavior problems; no correlation existed between teaching effort and formally measured developmental test results.

Several weaknesses in this study, unfortunately, limit any inferences which may be drawn. The sample was drawn from one city, and primarily represents middle class children. The class limitation of the study became more pronounced as the study progressed, with selective attrition of lower socioeconomic status subjects. The non-random allocation of families to practices and practitioners raises the possibility that those differences which were observed were more due to who chose the practitioner than to the practitioner's impact. On the other hand, the average characteristics of all the physicians
in a practice were inferred for all patients using any physician in
the practice; this non-systematic inaccuracy would reduce the
likelihood of finding any differences. Also, including both the
intervention and the positive interaction with child together in
regression models to predict developmental testing results may have
unfairly minimized the impact of the intervention if its effect is
mediated through improving this interaction.

The other studies examining the effect of well child care on
developmental and behavioral outcomes are more appropriately
considered efficacy studies. The most methodologically sophisticated
of these studies was performed by Casey. (Casey, 1980) In this study,
Casey personally used counselling oriented towards improving the
affective interaction of mothers and infants during well child visits;
the control group received "usual care" from the same
pediatrician/investigator. After six months, the intervention group
ranked higher on scales of maternal-infant interaction; no difference
in Bayley developmental tests were noted. Like Chamberlin's study,
Casey's work implies that well child care as usually performed does
not substantially affect outcome in the realm of development of
socially important competences. The longevity of the detected effect
in the experimental group, its uniqueness to this particular
investigator, and its long term importance, remain unclear.

Two other studies also present randomized trials of behavioral
intervention, albeit less standardized. (Gutelius, 1977; Cullen, 1976)
Both sets of investigators offered somewhat idiosyncratic behavior
counselling to a random sample of the eligible population; Gutelius
and colleagues additionally provided extensive social support (18, 12,
and 8 visits in the first three years of life), a "cognitive stimulation program," group counselling, and dietary counselling (including prolonged iron supplementation and daily meat intake). Cullen found fewer fears in the intervention group, little difference in developmental test results, and significant worsening among the intervention boys in their school performance and behavior. Gutelius's results were more positive, although in most cases not blindly assessed. Early IQ tests showed differences, although these differences diminished over time. Fewer behavior problems were noted after age five, although sample attrition may have biased these findings. A variety of measures of self-confidence also showed improved results in the experimental group. Unfortunately, even aside from the methodologic limitations of the Gutelius study, the extensive nature of the intervention--far broader than the current conceptualization of child health supervision--makes it incorrect to generalize from these results to gauging the effectiveness of child health supervision.

Thus, as noted in the summary, little evidence exists to support the notion that child health supervision as now practiced substantially influences the development of social competence; on the other hand, this arena has not been well examined. Both Casey's and, to a lesser extent, Gutelius's studies suggest that some impact is possible through modification of well child care. The particular importance of the measures thus far examined, and their duration of impact, has not been evaluated.
7. Conclusions

The literature evaluating the effectiveness of child health supervision is perhaps more remarkable for its limitations than for its findings. No evidence supports the contention that child health supervision as performed significantly influences mortality or morbidity or that the development of the child’s social competence is enhanced through his or her participation in this endeavor. On the other hand, methodologically, sample sizes have been uniformly too small, and follow-up too brief, to identify mortality changes; the conceptualization of childhood morbidity until recently—and perhaps still—has been inadequate to examine health care effects, and most investigators have not even looked at developmentally oriented outcomes. For these reasons, we remain constrained by the need to use expert opinion and good intentions rather than scientific data to guide the nature of child health supervision. Given that participation in child health supervision does seem to provide substantial satisfaction to both parents and providers, the value of such opinion should not be overlooked.

III. The Effectiveness of Five Well-Child Care Services

Observational studies of ambulatory care reveal that a typical well-child visit takes approximately 10-12 minutes. (Reisinger, 1980) According to guidelines for the child health supervision visit, the health care provider should include in this encounter an initial or an interval medical history, a physical assessment, developmental and behavioral assessment, and the provision of anticipatory
guidance. (American Academy of Pediatrics, 1985) Following the visit with the health care provider a number of preventive screening measures may be undertaken.

We will review here the evidence for the effectiveness of several aspects of the well child visit. These include: 1) the physical assessment, 2) the most widely used formal instrument for developmental assessment—the Denver Developmental Screening Test, 3) anticipatory guidance for injury prevention, and two specific health screening endeavors—4) the detection of iron deficiency anemia and 5) the detection of hearing deficits.

The criteria used here for assessing the effectiveness of these services mirror those used by the Canadian Task Force on the Periodic Health Examination. (Canadian Task Force, 1979) Specifically, a prevention-oriented service can be recommended if a) the condition under consideration is important, that is, presents a substantial individual or societal burden of illness; b) the condition can be effectively treated, and c) the diagnostic maneuver is good, that is, the maneuver is sensitive, specific, safe, simple, cheap and acceptable. Compliance with recommended interventions by both the patient and other providers is also important in assessing large scale screening measures.

A. Physical Assessment

1. Overview

The physical examination may be considered a non-automated multi-phasic screening test. The physical examination is a series of diagnostic tests intended to detect a variety of medical conditions.
Given that the physical examination is indeed a diagnostic test, studies examining its effectiveness should be assessed by the same criteria used for judging reports on other diagnostic tests, specifically: a) is there an independent blind comparison to a gold standard, b) does the sample in the study represent a spectrum of the conditions under consideration, c) is the setting for the study well described, d) is the reproducability of the test determined, e) is normal and abnormal sensibly defined, f) is the individual contribution of a part of the test to the overall cluster of tests clearly determined, g) are the tactics for carrying out the tests well described, and last, h) is the utility of the test determined, that is, are patients better off for having undergone it. (Sackett, 1985)

The literature that evaluates the physical examination in well child care fails completely in meeting these criteria. The studies considered here do not specify in advance the conditions which are being sought by the exam. None presents data concerning the validity of either positive or negative findings obtained on examination. Although the study settings are usually well described, the settings in most cases are schools rather than physicians' offices. Most studies do not consider the reproducability of the physical examination undertaken. (Sackett has recently summarized the literature which examines the reliability of the clinical exam and notes that many of the procedures in the examination are of poor reliability). (Sackett, 1985) Normality and abnormality are not specifically defined in most of these studies; a few studies arbitrarily classify findings as to their severity. The specific contribution of the physical examination to overall detection of disease is not usually considered; when it has
been, however, the physical examination often identifies conditions already known to the parents and thus adds little to what can be identified by history alone. Finally, no study truly considers whether the patient is better off for having been examined.

2. Literature Review

The specifics of the studies evaluated in the physical examination of childhood are listed in Table 6. Only one study directs its attention to the examination of the first year of life, when most physical exams take place. (Anderson, 1970) In this study, Anderson asked Connecticut pediatricians—of whom fewer than half agreed to participate—to record their well-child exams and to indicate how many of these exams resulted in the detection of abnormalities. Anderson found that only 1.9% of exams resulted in "significant" abnormalities, and over one-half of these abnormalities were already known to the parent. Although Anderson concludes that this low yield did not justify frequent exams, the data presented are insufficient to draw this conclusion. No confirmation of either the positive or negative findings found in these examinations took place. No measure of the utility of the exam to the patient (or the family) took place.

Two studies consider the effectiveness of the preschool physical examination—examination by the physician of a child age 4-1/2 prior to school entrance. O'Connell reviewed the charts of those infants entering kindergarten in Rochester, Minnesota, who were born and followed at the Mayo Clinic, and evaluated at the Clinic before entering school. (O'Connell, 1976) The generalizability of the study therefore is limited and selection and migration bias may have
influenced the findings. Nonetheless these investigators found that only 3.1% of the preschool examinations as recorded detected a previously unknown abnormality. The authors did not determine whether more abnormalities existed and were not detected, whether those detected had false positive findings, and whether these detections influenced the health of the children.

The study by Welch raises the question of the validity of the limited yield of physicians' examinations. (Welch, 1982) In this study of all children entering kindergarten in a community, investigators compared the results for height, weight, hearing, vision, blood pressure, and dentistry screening as performed by technicians and nurses in the school with written reports filled out by the students' private physicians as part of their preschool examination. Although the investigators did not report checking of the validity of the negative results, they did at least establish that the testers underwent training and that positive test results were "verified." The school-based screening program identified 33% of those screened as having some abnormality; only 30% of those identified with an abnormality had been previously identified by the physicians. Although this suggests that the use of a screening test is a better means for problem identification among preschoolers than the physician's examination, this inference is not fully justified. First, physicians often defer doing tests if they know the tests will be performed in school. Second, Welch's comparison is between the screening results and the physician's written school record, which may or may not reflect the physician's judgment and findings. Third, reports of abnormalities detected by the physician but not noted on screening were not included.
in this report. Most importantly, the utility of establishing these diagnoses was not considered.

The next series of studies considers the usefulness of the routine physical examination for the school aged child by a school physician. Yankauer and colleagues examined a representative sample of Rochester, N.Y., first graders--excluding hearing, vision, and dental screening--and then subsequently re-examined these students over the ensuing four years. In the initial screening year, the authors found that 21% of the children had an "abnormality," but most (78%) of these conditions were already known and under care. (Yankauer, 1985) The likelihood that a condition was indeed under care was greater for those children who were examined before school by a private physician (OR=2.2, p=.03). Follow up exams were of even less obvious use; only 1 in every 251 exams resulted in a condition being diagnosed that was not already under care. (Yankauer, 1956) Finally, they noted that of the 163 conditions initially identified (in the cohort remaining at four years), 99 of the abnormalities remained four years later. (Yankauer, 1957) Only in the categories at ENT (ear, nose, and throat) and emotional problems did more than half of the originally noted problems resolve by ninth grade. Yankauer also examined whether abnormalities present in fourth grade and also present one or more years prior to fourth grade were "under care". He found that for both ENT and emotional conditions, more than half (50%) were not under care. The authors argue that the low frequency of treatment reflects the relatively recent onset these conditions. An equally plausible hypothesis is that parents recognize the self-resolving nature of many of these problems.
Despite their widespread citation in the child care literature, these studies have serious limitations. Like their colleagues studying preschoolers, this team did not assess the validity or the reliability of their exams. Also, they failed to consider any potential adverse effect from problem identification ("labelling"). Perhaps the most crucial caveat in making inferences about these studies to apply to the physical exam in well child care is that these investigators assumed that the children under study had a physician outside of school and were "under care." In the absence of well child services, it is possible that many of the conditions Yankauer noted as "under care" would indeed not have been previously identified or treated.

Grant reviewed his and his colleagues' experience in screening school aged children in El Paso, Texas, and compared the "yield" of screening tests administered by "paramedical" personnel with that of the physician performed physical exams. (Grant, 1973) He specifically excluded diagnoses of emotional problems, rashes, and acute illnesses from his report. In his sample—which spreads across the full age spectrum of students—13.4% of those screened had an abnormality; 71% of these were detected by screening measures. Again, the examinations were not validated nor was their precision determined. The overall usefulness of the identification was also not established.

Kohler screened all children in a given community in Sweden at age 7 with a physical examination, following hearing and vision testing. (Kohler, 1977) His results were quite similar to those of Grant, with roughly 15% of those screened being identified with a problem, and almost half of these problems related to visual acuity. The methodologic limitations of Grant's study remained in this study as
well---no validity testing, unknown reliability, and no utility measure.

DeAngelis reported a similar study with somewhat different results. (DeAngelis, 1983) Comparing physical exams by nurse practitioners with screening tests performed by trained aides, she found that screening measures identified more problems and used time more efficiently than did physical exams. However, the physical exam was more likely to reveal an abnormality per child contact with health provider, and little overlap existed between the diagnoses established by physical exam and those established by screening measures. The same methodological limitations remain in this study (i.e., lack of determining validity of findings, test reliability and test utility). Moreover, DeAngelis includes a variety of minor or self-limited conditions as "abnormalities"; these diagnoses were specifically excluded by other authors.

3. Conclusion

This report reviews those studies examining the effectiveness of the general physical examination, with or without screening measures for hearing or vision defects. Although these studies, except for one, concluded the exam has little merit, they nonetheless did not meet established criteria for studies evaluating diagnostic tests. The most glaring weaknesses of these studies are a) their failure to establish the validity or the reliability of their findings, and b) their failure to examine the usefulness of the identification of physical abnormalities.

This report did not consider studies that examine the effectiveness of specific physical diagnosis procedures, such as the Ortalani maneuver for identification of congenital dysplasia of the hip, forward bending for
detection of scoliosis, patch testing for discovery of strabismus, or abdominal palpation for detection of tumors. Given the more focused nature of these examinations, their effectiveness should be easier to clarify.

B. The Denver Developmental Screening Test
1. Overview

Unlike the literature examining either the effectiveness of well-child care or the effectiveness of the physical examination, the studies which examine developmental screening demonstrate careful attention to issues of methodology. Even so, this literature only recently began to assess the impact of developmental screening in terms of its long-term affect on developmental outcome. This area will be the focus of this section.

Pediatricians and educators agree that school and behavior problems and learning disabilities constitute a major source of morbidity for contemporary youth. (Nader, 1975) Diagnostic and therapeutic measures for these youth consume a major portion of total societal expenditures for children. (Nader, 1981)

Given that these problems are a major source of morbidity and functional limitation, as well as expense, are there efficacious means of primary and secondary prevention? A variety of comprehensive "early intervention" programs, ranging from elaborate, complex programs such as the Perry Preschool Project and the Frank Porter Graham Abecedarian Project to more straightforward programs such as Head Start, have shown substantial positive effects in social competence outcomes such as school performance and job stability. (Chamberlin, 1987; Ramey, 1982) Other
programs, including home visiting, have also shown some positive
effect. (Larson, 1980; Olds, 1986)

Thus, the conditions encompassed within the "new morbidity" present a
burden of suffering and efficacious interventions apparently exist.
Major additional prerequisites for recommending a preventive intervention
program include the availability of an acceptable diagnostic or screening
instrument and, given that the intervention here is not provided by the
physician, the likely compliance of the client and the service provider
with the recommendation to obtain services.

2. The DDST—Background, Reliability, and Concurrent Validity

The most widely used and recommended developmental screening tool for
use by child health personnel is the Denver Developmental Screening Test
or one of its adaptations—the DDST-S or the Parents' Developmental
Questionnaire (PDQ). (Casey, 1986; Frankenburg, 1983) These latter two
tests allow more rapid developmental screening, and thus increase the
acceptability of the test to both patient and provider; nonetheless as
they have been validated primarily against the full Denver Developmental
Screening Test, consideration here will be restricted to the full test.

Perhaps the first question in considering the DDST is whether any
formal developmental testing is truly necessary? Stated differently, are
either parental observations or intuitive judgments by pediatricians
sufficiently predictive of subsequent problems so that formal testing is
not required?

The answer to the second part of the question is clear—physicians
are probably poor judges of development. In studies over two decades ago,
Bierman and Korsch noted that pediatricians diagnosed only one third of
"mentally retarded" two-year-olds and consistently overestimated the IQs of retarded children. (Bierman, 1964; Korsch, 1961)

The validity of parent observations remains an open question. Nonetheless, the delay until school entrance of the diagnosis of many learning and behavioral problems suggests that parental observation alone is also inadequate.

The DDST was developed in 1967, and initially standardized on a presumably normal, non-randomly selected group of children from Denver, Colorado. (Frankenburg, 1967) The scoring system for the Denver test was revised in 1971. (Frankenburg, 1971) The great majority of the validation studies for the DDST examine concurrent validity; that is, these studies compare the DDST to a more established test of developmental or psychological function. The most commonly used criterion tests for comparison are the Bayley Scales of Infant Development or the Stanford Binet Intelligence Tests.¹

The initial concurrent validation studies of the Denver showed a sensitivity of 68% and a specificity of 92%, comparing abnormal results on the DDST with IQ or developmental quotient of less than 70 on the other criterion tests. (Frankenburg, 1971) A careful evaluation of the DDST more recently in a rural North Carolina county showed comparable results, with

¹. The Bayley Scales of Infant Development were published by Nancy Bayley and the Psychological Corporation in 1969. These scales are the most widely used and extensively standardized measures of infant development. The instrument consists of two scales, a 163-item mental development scale and an 81-item motor scale. Kessen (in Levine MD, Carey WB, Crocker, AC, and Gross RT, Developmental and Behavioral Pediatrics, Saunders, Philadelphia, 1983) notes that the predictive validity of the BSID are "quite modest" in the general population, but work better in "high risk" groups. Extreme values are also more meaningful than variations within the range of normal "... infants with unusually low BSID indices are more likely to become children with low IQs or motor dysfunction...."
a sensitivity of 68%, and a specificity of 95%, comparing the DDST to the
Stanford Binet. (Sturner, 1985) Other studies have found lower
sensitivities more in the range of 36% to 40%, but with comparably high
specificity. (Harper, 1983; Appelbaum, 1978)

The reliability of the Denver—when administered by trained
individuals under constant supervision—is quite good. (Pediatricians are
usually not formally trained in the administration of the Denver and
supervision is in most cases non-existent). Short-term test-retest
reliability was 97% in the initial reliability study. Inter-observer
agreement was also 97%. (Frankenburg, 1971) Although other reports have
not been quite so glowing, the results are still acceptable. In a recent
study, a kappa coefficient of .72 was obtained in comparing the results of
different observers, indicating very good agreement. (Cadman, 1984)

Given these acceptable test characteristics, many authorities have
recommended incorporating the DDST in some form into child health
supervision. (American Academy of Pediatrics, 1974; Casey, 1986;
Frankenburg, 1983) The primary purpose in doing so would be to identify
children likely to have later problems, so that interventions could occur
to prevent these problems. Additional reasons for administering the test
include providing assurance to the parent concerning the normalcy of
development and to identify and reinforce the strengths of the child in
the parents' eyes. These additional reasons, while perhaps salutary, seem
nonetheless secondary in importance.

3. The DDST—Predictive Validity and Utility

Three studies have been performed to evaluate the usefulness of the
Denver in predicting global school performance (Table 7). The later two
are of excellent methodologic merit (Sturner, 1985; Cadman, 1987), the earliest is substantially flawed (Camp, 1977).

The first study examining the ability of the Denver to predict subsequent school performance was performed by Camp and colleagues, using one of the original Denver validation populations (Camp, 1977). This population consisted of some users of a neighborhood health center in Denver; these users were initially administered the DDST. If the test was abnormal, they were invited back for testing with the Stanford Binet; if abnormal, a certain proportion (not specified) was asked to return. Age criteria were then applied to this group who took both the DDST and the Stanford-Binet. Finally, school records were obtained for those members of this study group who were enrolled in the Denver public schools in 1972. School failure was determined by the child's placement in a special or below age level class, by achievement test scores more than 1.5 years behind grade level, by teacher report of significant behavior problem, or by IQ less than 80. The information concerning outcomes was gathered by individuals with no knowledge of screening test results; whether school teachers were ignorant of the screening test results was not indicated.

These authors found that the presence of an abnormal or questionable test result had a sensitivity of 78% and a specificity of 60% of detection of school failure. The prevalence of school failure in their final study population was 57%; this, however, was certainly not a representative sample of any population.

The drawbacks to the study are readily apparent. The representative nature of the initial population is not clear; certainly after the selective inclusions and exclusions, the study population is far from representative. The substantial drop out rate also presents a potential
bias. These biases may influence the validity of the estimates of the test's sensitivity and specificity; they necessarily influence the estimates of the test's predictive value, simply by increasing the prevalence of school problems. The high positive predictive value (80%) for the DDST vis-a-vis school performance in this study is therefore meaningless in most clinical settings.

Sturner and colleagues reported a more sound investigation of the predictive validity of the Denver, initially screening all children registering for kindergarten in Person County, North Carolina. (Sturner, 1985) Although these investigators again preferentially included those with abnormal Denver screening results in their follow-up group, the preferences were allotted with known probabilities, and therefore the investigators could weight their final results to come up with inferences about the county as a whole. School failure for this investigation was defined as either being in a special class or achieving less than the twentieth percentile for second grade on the California Achievement Test.

The North Carolina group found that 57% of those with school failure were previously scored abnormal or questionable on the Denver, while 87% of children not failing by second grade had a normal DDST result. When these investigators considered a two-stage Denver test, i.e., prescreening with a shortened Denver instrument, the sensitivity decreased to 26%, while the specificity improved to 94%.

Cadman and colleagues not only sought to clarify the predictive validity of the Denver in a community setting, but uniquely sought to determine the utility of a community based screening and referral program. (Cadman, 1987) All children registering for kindergarten, excluding those "children already known to have problems of development severe enough to
preclude their attendance in a regular classroom..." were randomized to receive either the DDST with counselling and referral, the DDST alone, or no developmental test. The excluded group was estimated to be roughly 3-5% of all children starting school. In Cadman's study, trained public health nurses administered the full Denver as the initial screening test. Children with abnormal, questionable, or untestable results (AOU) were re-tested two weeks later at home, again by trained nurses. Children with two AOU results were considered "positive." A broad array of follow-up measures were obtained, including special class placement, teacher ratings of learning or behavior problems, parent ratings of child well being, intelligence (WISC-R) and achievement (Wide Range Achievement Test of arithmetic, spelling and reading). Potentially significant attrition and refusal to participate in the study did occur. Cadman's group found that a "positive" DDST, administered in two stages at the time of kindergarten registration, detected only 6% of those children who would not be in regular second grade class; over 99% of those who were in the regular 2nd grade class had received a normal screening result. Only 9% of students overall were classified as "school failures" by Cadman's criteria.

When those children who obtained a "positive" test result and received counselling and referral were compared with those children with

\[1\] 11.5% of those with AOU Denver results on the second test were lost to follow-up, with equal amounts from the counselling and noncounselling groups. Of the random sample of those with normal tests invited to take detailed psychologic testing, 32% refused. Of the sample of those not undergoing Denver tests who were invited to undergo psychologic testing, 41% refused. Those who dropped out from the control groups appeared to have more teacher-judged learning problems than those who underwent testing. These characteristics might cause the study to exaggerate the true differences between those with normal and abnormal Denver results, but should not bias the estimate of the impact of counselling and referral.
similar results but who did not receive counselling and referral, no differences in any measure of school performance were noted. Parents of children who had received counselling reported significantly more parental worry about their children’s school work than those without counselling. Children in the counselling group did receive more community based services. Even so, only 10 of the 28 children in the counselling group were actually seen by their community physician and referred for more definitive evaluation. Due to the low frequency of AQU results (1.3%), relatively few children—25 and 21—were included in the study and control groups respectively.

The major weakness of the Cadman study, aside from the small final sample size, is the brief period of time between the screening test and school entrance. This short lag time did not leave much time for pre-school intervention programs, and, once school began, the control group rapidly received school-based services. Earlier screening may have also allowed earlier identification of some of those excluded from the study group on the basis of “known problems of development,” and potentially some of these problems may have benefited from intervention.

4. Conclusion

The Denver Developmental Screening test, when administered before school, has fair predictive ability. Assuming a 25% rate of school failure, the clinician can predict that a positive preschool screenee will fail in early school between 60 and 70% of the time; a negative screenee will avoid failure 76 to 89% of the time. If the prevalence of school failure is only 10%, however, a positive screenee will fail only one-third to one half of the time, while a negative screenee will be in a normal
program with a probability of 95%. Less encouraging to the prospect of reducing school failure, however, is the finding that from 50 to 95% of those who will experience school failure will be missed in a preschool screen. Moreover, the very limited evidence presented to date does not support the assumption that detection of a problem will result in improvement; indeed, the parents of these children seem to worry more with no improvement in outcome!

Administration of the Denver Developmental Screening Test at the immediate pre-school period therefore cannot be recommended at this point as a component of an effective means of reducing school failure. This report does not review whether earlier identification of developmental delay through the use of the DDST is a useful effort. No specific studies on this question were identified. Although the early intervention literature, noted above, is encouraging, eligibility for participation in such programs is in most cases determined by family socioeconomic and demographic characteristics, rather than by child developmental scores. If the use of the Denver, or comparable tests, is to be recommended in the context of child health supervision, this recommendation must come on intuitive or philosophic rather than scientific grounds.

III. C. Anticipatory Guidance for Injury Prevention in the Clinical Setting

1. Overview

As noted above, the well child visit in pediatric practice consists of an initial or interval history, the physical examination, behavioral and developmental assessment, anticipatory guidance, and, at
times, additional tests. Anticipatory guidance involves providing health education, information, or counselling in order to influence the parents' or child's behavior and thus favorably influence the child's health. Subjects considered in anticipatory guidance range from traditional medical guidance (such as avoidance of contact with children with certain communicable diseases) and nutritional advice, to suggestions for appropriate behavioral management at specific developmental ages and information concerning health behaviors such as smoking and alcohol use.

Medical practitioners traditionally spend relatively little time in such activities. Reisinger and Bires found that pediatricians spent 0.4% of the time of a well visit on anticipatory guidance activities, and that the proportion of time spent on such guidance diminished with increasing patient age. (Reisinger, 1980)

The provision of anticipatory guidance on injury prevention in general and on use of child restraints in particular offers an excellent opportunity to evaluate the effectiveness of this aspect of well child care. First, the outcome measure—proper use of child restraints—is objective. Second, the scientific underpinnings of the recommendation are clear—proper use of an approved child safety restraint will almost certainly reduce the child's likelihood of death or injury due to motor vehicle accident. The same degree of certainty does not exist regarding the value of advice about the precise timing and order of introduction of solid foods for infants or about means for preventing or modifying behavioral problems.

2. Literature Review

The studies evaluating the effectiveness of anticipatory guidance
in increasing infant and child restraint use are listed in table 7. Most of these studies have been reviewed by Bergman, Pless and Christopherson. (Christophersen, 1986; Bergman, 1982; Pless, 1978) As these reviews indicate, the early studies suffer from severe methodologic limitations. (Bass, 1964; Kanthor, 1976; Allen, 1976; Scherz, 1976) These limitations consist primarily of non-random assignment of experimental and control groups and use of parental self-report in the assessment of outcome (restraint use). Even if the results of these studies were valid, they may not be easily generalized to the population in that these studies rely in most cases on either military samples or white, middle class populations.

The more methodologically sophisticated studies failed to demonstrate a substantial effect due to educational interventions. (Miller, 1977; Reisenger, 1978; Reisinger, 1981) The most sophisticated study, and the one most relevant to the process of well child care as usually practiced, was performed by Reisinger and Williams. (Reisinger, 1981) These investigators offered an educational program, with written materials, verbal reinforcement, and direct demonstration performed by the physician, to parents using a pediatric practice during certain time periods. A comparison group, using the same practice at different periods, were not offered the intervention. Use of restraint was assessed by direct observation on entrance to the practice parking lot. Reisinger and Williams did find a significant increase in proper restraint use at two months; by four months, however, no treatment effect was identified, primarily due to increased use of restraints in the control group. Thus, the findings indicate that pediatricians can accelerate use of infant restraints in those
likely to use such restraints eventually.

3. Conclusions

Whether the limited efficacy of physician counselling in increasing proper use of infant restraints can be generalized to all of anticipatory guidance as usually performed is not certain. On the one hand, use of infant restraints requires initial expenditure of funds and requires repeated individual action. Moreover, as the recent repeal of seat belt laws in Massachusetts indicates, Americans maintain strong emotions about how to travel in an automobile. Furthermore, the health care provider may not be viewed as an authority in the area of child automobile safety. On the other hand, strong feelings often exist in families about most aspects of child rearing, such as disciplining and diet, and in these areas, physician expertise rests on a much more narrow body of evidence. Thus, the impact of infant restraint advice on restraint use may accurately reflect the generally limited impact of medically provided anticipatory guidance.

The limited efficacy of such guidance has stimulated the development of alternative approaches to traditional well child care. Osborne has proposed and piloted the use of group well child care. (Osborne, 1981) One evaluation of the impact of such care on safety behaviors—in particular concerning adjusting maximum hot water temperature in a home—showed a significant positive effect from this style of care. (Thomas, 1984)

III. 4. Iron Deficiency (Anemia)

The prevalence of anemia in a population has long been used as a measure of that population's health status, socioeconomic status, and quality of medical care. (Foxman, 1983; Kessner, 1973) The complexity
of the issues concerning screening for anemia, however, requires that the effectiveness of screening for this "condition" be reviewed. As before, criteria for judging the need for a screening intervention are the burden of illness presented by the condition, the effectiveness of intervention, and the quality of the test. Ideally, the assessment of the quality of the test should include an assessment of the test's overall utility. For the case of screening for iron deficiency, none of these criteria are now satisfied.

Anemia, itself, is not a disease. Rather, anemia is a laboratory defined entity characterized by a level of hemoglobin (Hgb--the chemical in the blood which carries oxygen) below an established cutoff. Although a wide variety of medical illnesses and nutritional deficiencies can cause anemia, in unselected populations of children, iron deficiency is the overwhelmingly predominant etiology. (Foxman, 1983) Indeed, screening for anemia in infancy and childhood is recommended, in large measure, as a screen for iron deficiency.

Does iron deficiency in childhood present a sufficient burden of illness to recommend a screening program? Using the currently accepted criterion for definition of anemia in infants 12-24 months old of 11 gm Hgb/dl (grams of hemoglobin per deciliter, or 10 milliliters) whole blood, from 10 to 40% of infants in this age group--depending on race and socioeconomic status--are anemic. (Hutton, 1985) Thus, the condition--at least in a mild form--is certainly prevalent. Severe anemia on the basis of iron deficiency, however, is now thought to be uncommon; a recent survey of children enrolled in a nutritional supplementation program in inner city New Haven found only 1.0 percent of children had a Hgb below 9.8 gm Hgb/dl. (Vazquez-Sloane, 1987)
Less well established, however, is the harm—the disease, disability, discomfort, and cost—caused by being iron deficient. The anemia, per se, is not thought to cause overt symptoms until the level of hemoglobin drops below 8 gm/dl. (Foxman, 1983) Moreover, two studies in children with hemoglobin disorders failed to identify a significant relationship between level of anemia and IQ. (Pollitt, 1976)

A large number of studies have sought to clarify the issue of whether "sideropenia" (i.e., iron deficiency itself) may adversely influence childhood behavior and performance. (Pollitt, 1976; Webb, 1983; Oski, 1978; Lozoff, 1982; Deinard, 1981; Lozoff, 1982; Walter, 1983; Deinard, 1986; Soemantri, 1985;) These studies are summarized in Table 9. Although a great deal of convincing evidence exists concerning the biochemical impact of iron deficiency, the results of these "clinical" studies are highly contradictory—in part due to different geographic settings, different age groups, different classifications of iron deficiency, different outcome measures, different duration of follow-up, varying attention to potential confounding factors, and inadequate analytic techniques. Although none of these studies show children with iron deficiency to be advantaged, an adverse effect of iron deficiency on learning and behavior remains "unproven."

Thus, concerning "burden of illness," mild iron deficiency is prevalent. Whether the condition is serious, however, remains uncertain. How effective is therapy for iron deficiency? No doubt exists as to the effectiveness of iron therapy in rapidly correcting the hematologic manifestations—i.e., the anemia—and the biochemical markers of iron deficiency. For many children these manifestations
would also resolve without therapy, although resolution would occur more slowly. (Deinard, 1986)

As indicated in the table, three studies found that relative deficiencies in mental performance among iron deficient children did not improve with iron therapy (Lozoff, 1982; Deinard, 1986, Lozoff, 1987), while other studies did detect improvement with treatment (Pollitt, 1976; Oski, 1983; Walter, 1983). The negative studies attributed their failure to demonstrate improvement with therapy to inadequate duration of treatment, insufficient duration of exposure to iron deficiency to affect learning, or irreparable effect of iron deficiency at crucial periods on learning (Lozatt, 1987). An equally plausible reason is that iron deficiency is not the cause of the poorer performance. Whatever the true reason, these findings leave open the question of the efficacy of iron therapy for ameliorating the greatest potential burden of this condition.

Even assuming the seriousness of the condition, and the effectiveness of treatment, problems exist in establishing a screening criterion for iron deficiency. The first issue confronted in trying to establish a criteria for diagnosis of iron deficiency is defining the "gold standard" for diagnosis. The presently accepted standard for diagnosis of iron deficiency is a response of 1 gm/dl of hemoglobin to a therapeutic regimen of iron! (Soemantri, 1985; Reeves, 1984)

A large number of additional tests exist for identification of iron deficiency. Anemia itself is felt to be a late effect of iron deficiency. The earliest marker is the serum ferritin level, which is the storage form of iron. This test requires a venous blood sample (difficult for routine screening in children), and is expensive (charge
at Massachusetts General Hospital = $23.75). Another early marker is
the serum iron level itself. This must be measured together with the
transport protein for iron (transferrin) and is reported as the
transferrin saturation level (proportion of transferrin used by the
iron). Again, this requires venous blood, is expensive (MGH charge
iron = $13.50, transferrin = $17.50), and is also variable depending on
the time of day and the presence of either acute or chronic illness. A
somewhat later marker—but still prior to anemia—is the erythrocyte
protoporphyrin (EP). This is a measure of the precursor of hemoglobin,
and is mildly increased in iron deficiency; this test is routinely done
as a screen for lead poisoning, in which case it is markedly elevated.
The EP can be done via fingerstick and is inexpensive and rapid.
Although within laboratory reliability is good, inter-laboratory
variability can be up to 15%.

The sensitivities and specificities of the different screening
tests for iron deficiency have not been described in an unselected
American population using the accepted "gold standard" for iron
deficiency of response to a therapeutic trial. In a military sample of
children with hemoglobin levels less than 11.5 Gm/dl, the lower (more
commonly used) cutoff of 11 Gm demonstrated a sensitivity of 52% and a
specificity of 66% when measured against this standard. (Driggers, 1981)
Stated otherwise, the most commonly used criterion for iron deficiency
anemia identified only half of those in this sample who in fact would
respond to a therapeutic trial of iron, and incorrectly identified as
iron deficient one-third of those who would not respond. Indeed, in
this study, no single commonly used cutoff identified much more than
50% of those who responded to iron therapy. (Reeves, 1984) Kim and
colleagues described an elegant approach to choosing both a screening test and cut off values through the use of receiver operator curves; unfortunately, their study design resulted in over-representation of children with low (<10.5 Gm) hemoglobin levels, making generalization difficult. (Kim, 1984) In their sample, nonetheless, pre-treatment Hgb level per se was the best indicator (highest sensitivity and specificity) of subsequent response to iron; the EP also performed well, especially as a screening test for more severe iron deficiency (i.e., identifying those who respond to iron therapy with an increase in Hemoglobin of 2 Gm/dl).

Thus, although iron deficiency is both prevalent and easily treated, ongoing questions remain about the seriousness of the condition, about the response of the alleged complications of iron deficiency to iron therapy, and about the best means for detection. It is on this somewhat uncertain basis that recommendations exist for pursuing the diagnosis of iron deficiency. Reeves recently stated the dilemma:

To date there have been no evidences of physiologic advantage from the common iron deficiency seen in childhood...On the other hand, since the deficit is small and may correct itself, saddling the healthy child with a protracted, perhaps difficult therapeutic course may not be justified. (Reeves, 1984)

Given the potential seriousness of the defects induced by iron deficiency and the ease of addressing the hematologic manifestations, continued early identification of high risk (low socioeconomic status, minority) infants
with either a capillary hemoglobin, hematocrit, or EP, appears reasonable, with a liberal threshold (e.g., Hgb <11.5, or EP> 35 micrograms/dl whole blood) for institution of a therapeutic trial of iron. Additional screening beyond infancy does not appear indicated based on current information. This entire field merits large scale studies of (a) screening tests and (b) impact of iron deficiency and therapy on intelligence, performance, and behavior, using representative populations and careful epidemiologic design and analysis.

III. E. Auditory Screening in the Preschool Child

1. Introduction and Overview

The American Academy of Pediatrics and other bodies concerned with hearing impaired children recommend a threefold approach to the early detection of children with hearing problems. (Committee on Standards of Child Health Care, 1977) This approach consists of identification of high risk newborns and infants through application of risk criteria\(^1\) of infants and toddlers through monitoring of speech and language development (possibly including use of formal speech and language screening instruments), and of preschoolers through the use of some form of formal hearing screening test. This critique will focus on the effectiveness of hearing screening in preschoolers.

Understanding the rationale behind the threefold approach and its limitations requires some understanding of the process of hearing. In brief, sound waves are transmitted from the environment to the tympanic

\(^1\) High risk infants are those with 1) Family history of childhood hearing impairment, 2) Congenital perinatal infection 3) Anatomic malformations of the head or neck 4) Birth weight <1500gm 5) Hyperbilirubinemia 6) Bacterial meningitis or 7) Severe asphyxia. (Joint Committee on Infant Hearing, 1982)
membrane (ear drum). The sound waves cause vibrations of the ear drum, which are transmitted via a series of fine bones through an air filled space, called the middle ear, to the inner ear. In the inner ear, a specialized structure called the cochlea converts these mechanical impulses to electrical impulses, which are then transmitted to the brain and interpreted as sounds.

Impairment at any step in this process will interfere with normal hearing. Thus, excess ear wax blocking the ear canal leading to the ear drum will diminish hearing. Fluid in the middle ear, either concurrent with or residual from an acute ear infection, may cause a "conductive" hearing loss. Damage to the inner ear structures, either as a result of congenital malformation, prenatal or postnatal infection, or the toxic effect of drugs or other chemicals (bilirubin) results in "sensorineural" hearing loss. Brain injury also may result in problems processing sound input. In general, sensorineural hearing deficits are more severe, bilateral, and permanent, while conductive loss is less severe, unilateral or bilateral, and transient.

B. Burden of Suffering and Effectiveness of Therapy

Severe sensorineural hearing loss probably occurs at a frequency of 1 to 2 per 1000 live births, resulting in 2000 to 4000 profoundly deaf babies being born each year. (Coplan, 1987; Black, 1975) Additional sensorineural loss results from postnatal infections such as meningitis or encephalitis, from certain medications often used in neonatal intensive care, and from elevated bilirubin levels which also occur most frequently in premature infants. This early and severe loss clearly results in impairment in both general learning and speech and language development.

Treatment for such severely impaired children includes use of hearing
amplification and a variety of special educational techniques. In addition, family counselling is often provided. Although the effectiveness of these interventions were not reviewed, the value of providing some therapy for such children and their families appears self-evident.

The frequency of conductive hearing loss is less clear cut. Again, the overwhelmingly dominant cause of conductive hearing loss in children is fluid in the middle ear (middle ear effusion), with or without acute infection. (Kohler, 1972) Middle ear dysfunction rates exhibit marked seasonality, with increased rates during winter months. Approximately 10-30% of preschool and early school age children will have detectable abnormalities of their middle ears; roughly half of these (5-10%) will have hearing impairment as a result of the presence of this middle ear fluid (i.e., half of those children with detectable middle ear fluid will not have detectable hearing impairment). (Kohler, 1972; Feldman, 1980; Fisch, 1981; Northern, 1984) Whether children with middle ear effusion experience long term problems in speech and language skills or are at increased risk for subsequent learning and behavioral disorders remains an open question. More severe, bilateral conductive losses, particularly at earlier stages of language development, most likely do cause short term speech and language delays. (Paradise, 1981; Ventry, 1980)

Most cases of middle ear effusion resolve spontaneously over a period of weeks to months. (Paradise, 1981) Antibiotics increase the rate of resolution, while decongestants do not. (Mandel, 1987; Cantekin, 1983) Surgical drainage, with or without the insertion of tubes, also resolves the effusion and any resultant hearing loss, although the duration hearing improvement may be brief. (Brown, 1978) Unfortunately, surgical
intervention also involves risk and expense, as well as uncertainty about the long term implications of tube placement.

The burden of disease caused by sensorineural impairment (1 or 2/1000 versus the estimated incidence of PKU of 1/10,000) and the likely effectiveness of therapy makes newborn screening an attractive possibility. Screening in the preschool period offers less attraction on a number of grounds: 1) age three to four is too late for optimal identification of congenital severe sensorineural deficits, in that critical language and learning periods are missed; 2) a great number of positive screens will likely be due to mild conductive hearing loss, with little attendant impairment or disability; and 3) the effectiveness of therapy is uncertain.

C. Screening Tests

Unfortunately, assessment of hearing on a screening basis is difficult in the newborn period and relatively easy in the preschool age group. As noted above, the AAP and the Joint Committee on Infant Hearing Screening—which includes representatives of the American Academy of Ophthalmology and Otolaryngology and the American Speech and Hearing Association as well as the AAP—recommend use of high risk screening criteria. Infants meeting one of these criteria are then referred for more extensive diagnostic audiologic evaluation. Alternative or complementary newborn screening tests measure the infant's behavioral (movement), physiologic (e.g., increased heart rate), or brain wave response to specific sound stimuli. The precise sensitivity and specificity of these tests, and their optimal combination for early identification of hearing deficits remain controversial. (Alberti, 1985; Pettigrew, 1986)

Preschoolers are in most cases screened through the use of pure-tone
audiometry. For this test, children are presented with sounds across a range of frequencies at a sound intensity (loudness) somewhat above the young adult normal level (i.e., 20 to 25dB). Older children may simply raise a finger or hand when they hear the sound; younger children may be conditioned to perform a more appealing task (e.g., put a peg in a hole) when they hear the sound. (Northern, 1975)

A variety of technical factors can interfere with the performance of pure tone audiometry. In particular, care must be exercised to maintain the machine in proper calibration (many newer machines are self-calibrating). Also, the testing environment must be relatively quiet, although complete soundproofing, necessary for complete diagnostic testing, is not required. Furthermore, other distractions to the child should be kept at a minimum. The extent to which practitioners observe these technical requirements has not been examined. Controversy also exists concerning the precise frequencies which should be tested, and the number of failures (one or two frequencies) which define test passage/failure.

The criterion test against which screening audiometry is judged is termed threshold audiometry. For this test, sounds across a range of frequencies are presented at either increasing or decreasing intensity to determine the "threshold" or minimum intensity which the individual perceives.

FitzZaland and Zink recently examined the sensitivity and specificity of pure tone audiometry in kindergarten and first grade students in a region of British Columbia. (FitzZaland, 1984) These investigators compared results of pure tone audiometry (and other screening tests) with a "complete audiolologic evaluation" which included threshold testing. The
authors did not indicate whether the audiologic assessment was performed blind to the screening results. These authors found a sensitivity of 93% and a specificity of 99%, with an overall prevalence of hearing impairment of 3.9%. Of the 137 children with hearing impairment, 10 had sensorineural defects and 4 had mixed conductive and sensorineural impairment; the remainder had pure conductive deficits.

Thus, pure-tone audiometry, properly performed, appears to be an excellent screening test for the detection of hearing impairment when judged against threshold audiometry. Whether this is the appropriate criterion has also been a subject of controversy. Some have argued that detecting deficits in speech perception, rather than sound perception, should be the goal of hearing screening. This perspective led to the development of the Verbal Auditory Screening Test for Children (VASC); unfortunately, validation of this test has been inadequate. (Northern, 1975)

An alternative perspective, popular in the audiologic and otologic communities, holds that pure tone audiometry is not sensitive enough for the detection of middle ear disease. Proponents of this perspective advocate use of impedance audiometry, which measures the mobility of the ear drum and assesses the level of pressure (positive, neutral, or negative) in the middle ear. Indeed, impedance audiometry is a sensitive, specific, and reliable measure of middle ear dysfunction, and pure tone audiometry detects only approximately 50% of cases of middle ear effusion. (Northern, 1984) However, the importance of the detection of middle ear fluid, in the absence of hearing impairment, remains entirely speculative.

As noted in the section on the Denver Developmental Screening Test,
optimal assessment of a screening test includes not only gauging the burden of disease, the characteristics of the test, and the effectiveness of treatment, but also judging the overall utility of screening—i.e., does offering screening improve the well-being of the individuals and the community screened? Again, a Canadian group tried to assess the utility of preschool community screening. (Feldman, 1980) In this study, the authors compared the results of kindergarten hearing and vision screening in two communities, one of which had instituted pre-school screening. In the pre-school screened community, all children were tested 6 to 12 months prior to the kindergarten assessment. The pre-school screen had been performed with the VASC; the kindergarten screen was performed with pure tone audiometry. The study demonstrated little difference in the prevalence of abnormal audiometry test results at kindergarten (16.8% versus 14.1%) between the previously non-screened and screened communities. This finding was in marked contrast to the results for vision screening, which was associated with fifty per cent decrease in frequency in the pre-school screened community. Given the sample size (approximately 750 in each group) the study could have easily detected a 25% difference at the .05 level.

This study does exhibit several limitations. First, the authors do not indicate whether the kindergarten screener was blind to the results of the preschool screen. Also, although the authors tried to make the communities comparable through selection of relevant census tracts, unknown differences may have existed between the communities. Also, the investigators did not examine whether further ear evaluation or therapy was sought by those identified in the preschool screening, and whether the parents viewed these children differently as a result. Finally, the
actual outcomes for those individuals initially screened as abnormal were not examined. Nonetheless, the findings suggest that community preschool screening is not associated with a significant decrease in the prevalence of hearing deficits. The authors ascribe the failure of the screening program to the limited effectiveness of interventions for the treatment of conductive hearing disorders (middle ear effusion).

D. Conclusions

Issues surrounding the early identification of hearing deficits through screening in early childhood are surprisingly complex. Sensorineural deafness in infancy presents a significant burden of illness, particularly in terms of its developmental and social impact; unfortunately, infants are difficult to screen. Infants meeting the risk criteria outlined by the Joint Committee on Infant Hearing (roughly 7% of all infants (Lobavits, 1984)) should probably be referred for detailed audiologic testing. Conductive hearing deficits, while more prevalent, are in most cases less serious. Moreover, the efficacy of therapy is tentative. Pure tone audiometry, when properly performed, is a sensitive and specific means for detecting hearing deficits as measured by hearing threshold testing. Given the uncertain impact of most of these deficits, and the questionable efficacy of treatment whether pre-school children are better off for having been tested also remains unknown.

IV. Cost-Effectiveness Studies:

Few of the studies reviewed in the sections above have demonstrated significant effectiveness of the interventions under consideration. In light of this, measures of the costs associated with the effectiveness are
understandably few! No concerted effort was made to identify studies specifically considering the costs associated with well child care.

Within the comprehensive care literature, Alpert considered cost. (Alpert, 1976) He and his colleagues noted that charges generated per illness were fewer for children in comprehensive care, largely due to lower rate of test ordering, compared to children using the emergency clinic.

Keller considered the cost-effectiveness of EPSDT in Michigan. (Keller, 1983) He did not find any decrease in unit cost with progressive number of screenings for an individual. He did note that costs for EPSDT participants were 7% lower than costs for non-participants, even accounting for administrative costs. Note, though, that non-participating EPSDT eligible children may be eligible for Medicaid due to large medical costs; thus, these may be non-comparable groups.

The Rand study, of course, contains substantial cost data. (Valdez, 1986; Starfield, 1985) Costs indeed were less for those who were assigned to the cost-sharing plans. Among younger children these lowered costs were largely due to decreased hospitalization rates; among older children, ambulatory services were more responsive to the cost sharing.

The costs associated with developmental screening were not characterized in the studies of the Denver Developmental Screening Test. One study did examine the cost of a paraprofessional administered screening program in a housing project. (Dawson, 1976) In this program, the cost was $16 per child screened, $32 per problem referred for diagnosis, and $67 per problem requiring treatment.

Studies specifically examining the cost-effectiveness of screening
for iron deficiency were not identified. Berwick and Komaroff presented a
detailed cost effectiveness analysis of lead screening. (Berwick, 1982)
They concluded that above a prevalence of 7%, and assuming both that mild
elevations of body lead resulted in learning problems and that early	
treatment of elevated lead levels was effective, offering free erythrocyte
porphyrin testing to three year old children averts morbidity and results
in savings. Note that although the ability of the FEP to diagnose both
lead elevation and iron deficiency is often touted as a reason for its
use, the optimum time of screening for lead intoxication is three (when
children are up and running), while the maximum risk period for iron
deficiency is at approximately one year.

No further studies considering the costs associated with well child
services were encountered.
<table>
<thead>
<tr>
<th>Age:</th>
<th>1-6mos</th>
<th>7-12mos</th>
<th>1-4yrs</th>
<th>5-11yrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Academy of Pediatrics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1974</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>1981</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>1985</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Canadian Pediatrics Society</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Canadian Task Force</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1979*</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Court Committee, U.K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1976</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>not included</td>
</tr>
<tr>
<td>Royal College of General Practitioners, U.K.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>not included</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>not included</td>
</tr>
<tr>
<td>Sweden, 1976</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4/7</td>
<td>4</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Israel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16 (5 MD, 11 nurse)</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>---</td>
</tr>
<tr>
<td>Finland</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3(Yr 2)</td>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

*visit numbers are for those recommended for the general population with A, B, or C level of recommendation

**Personal communications Drs. David Hall, Chair, and Aidan MacFarlane, Vice-Chair

***Full physical evaluation recommended at age 3 1/2; home assessment of walking and language use at 2 by nurse also recommended; screening tests for hearing and vision recommended before school entrance, with physical examination only if not performed at earlier time.

@3-4 home visits also occur in the first year of life; at age 4, a major "health control"—i.e., comprehensive physical, developmental/behavioral exam, is provided (Kohler, 1973)

+Palti, 1982
++Harris, 1974
+++Gilbert, 1984
<table>
<thead>
<tr>
<th>Organization</th>
<th>Physical Evaluation</th>
<th>Developmental Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>American Academy of Pediatrics</td>
<td>"At each visit a complete physical examination is essential"</td>
<td>"By history and appropriate physical examination. If suspicious, by specific objective developmental testing"</td>
</tr>
<tr>
<td>1981</td>
<td>Specific evaluations recommended at each age. No mention of exam at 9, 12, and 15 month visits other than growth measurements.</td>
<td>Detailed developmental and behavioral guidelines provided at each age, with note of specific items for concern.</td>
</tr>
<tr>
<td>Canadian Pediatric Society</td>
<td>Complete physical exam recommended at each visit. Specific items emphasized at particular times.</td>
<td>Behavioral history each exam. Language screening 7 times. School performance evaluation yearly beginning age 5</td>
</tr>
<tr>
<td>Canadian Task Force</td>
<td>Specific physical exam measures recommended for most visits. Complete exams not recommended.</td>
<td>PDQ or DDST recommended most visits before age 2 1/2*; Review history of behavior problems ages 2 1/2, 4, 5, 10. Assess parent-child interaction 18 months to 2 1/2.</td>
</tr>
<tr>
<td>Court Committee</td>
<td>Full examination at 6 weeks and pre-school; focussed exams at other times.</td>
<td>Review Development age 7 months, 18 months, 2 1/2, 4 1/2.</td>
</tr>
<tr>
<td>RC General Practitioners</td>
<td>Complete physical exam at first visit; brief exam thereafter. Specific points at each visit.</td>
<td>Milestone oriented developmental exam included in each visit.</td>
</tr>
<tr>
<td>Working Group</td>
<td>Complete exam at 6 weeks, 8 months, and 3 1/2 years. Focussed measures at other times.</td>
<td>Brief developmental assessment at 8 months. Home visit at 2 years with brief gross motor and verbal developmental evaluation. "grave doubts about the value of the neurodevelopmental exam"**</td>
</tr>
</tbody>
</table>

*Condition not reviewed by Task Force
**personal communication, Dr. David Hall
<table>
<thead>
<tr>
<th>Group</th>
<th>Hearing Screening</th>
<th>Vision Screening</th>
<th>Hgb/Hct</th>
<th>Tb Testing</th>
<th>Urinalysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAP</td>
<td>1981</td>
<td>4,5 yrs^</td>
<td>3-6,8 yrs.#</td>
<td>once ea. infancy, preschool, school</td>
<td>12 mos., then q. 1-2 yrs.</td>
</tr>
<tr>
<td></td>
<td>1985</td>
<td>5 yrs^</td>
<td>3,6,8 yrs#</td>
<td>optional 9 mos.</td>
<td>high risk 9 mos.</td>
</tr>
<tr>
<td>CPS</td>
<td>4,5 mos*</td>
<td>6 mos., 3-6 yrs.</td>
<td>high risk 9 mos.</td>
<td>high risk 9 mos. not 5 yrs.</td>
<td>not recommended</td>
</tr>
<tr>
<td>Task Force</td>
<td>2 1/2,5, 10 yrs.**</td>
<td>2-5 yrs.</td>
<td>low SES 9 mos.</td>
<td>high risk 5 yrs. not (A), BCG age 5</td>
<td>recommended</td>
</tr>
<tr>
<td>Court</td>
<td>7 mos. 1/2 yrs.</td>
<td>7 mos., 2 1/2 yrs.</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
<tr>
<td>RCSP</td>
<td>7 mos. 1/2 yrs.</td>
<td>7 mos.</td>
<td>not mentioned</td>
<td>"BCG when appropriate"</td>
<td>not mentioned</td>
</tr>
<tr>
<td>Working Group</td>
<td>8 mos. 1/2 yrs.</td>
<td>4 1/2 yrs.</td>
<td>not mentioned</td>
<td>not mentioned</td>
<td>not mentioned</td>
</tr>
</tbody>
</table>

^subjective hearing assessment at all visits and hearing evaluation suggested with speech delay.

#subjective assessment at all visits.

*method not specified

**"clinical exam for hearing"—not clearly specified

@ STYCAR 5 toy test
<table>
<thead>
<tr>
<th>STATE</th>
<th># VISITS</th>
<th>Tb Test</th>
<th>Hgb/Hct</th>
<th>FEP/Pb</th>
<th>U/A</th>
<th>Hearing</th>
<th>Vision</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALASKA</td>
<td>7</td>
<td>10m/5**</td>
<td>6m/6</td>
<td>5y/3</td>
<td>33m/3</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>CALIFORNIA</td>
<td>13</td>
<td>11m/2</td>
<td>7m/6</td>
<td>**</td>
<td>4y/3</td>
<td>3y/4</td>
<td>3y/4</td>
</tr>
<tr>
<td>COLORADO</td>
<td>15</td>
<td>9m/6</td>
<td>9m/3</td>
<td>12m/4</td>
<td>6m/9</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>CONNECTICUT</td>
<td>11</td>
<td>opt.</td>
<td>10m/2</td>
<td>opt.</td>
<td>opt.</td>
<td>6y/1</td>
<td>6y/1</td>
</tr>
<tr>
<td>D.C.</td>
<td>10</td>
<td>9m/5</td>
<td>12m/5</td>
<td>12m/1</td>
<td>2y/4#</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>GEORGIA</td>
<td>10</td>
<td>12m/7</td>
<td>6m/8</td>
<td>12m/5</td>
<td>1m/10</td>
<td>3y(HR)</td>
<td>*</td>
</tr>
<tr>
<td>ILLINOIS</td>
<td>11</td>
<td>10m/2</td>
<td>10m/5</td>
<td>15m/2*</td>
<td>15m/5</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>
| INDIANA | 18 | 16m/2 | 9m/2 | 4m/10(HR) | 20m/2 | 5y/1 | "inspection"
| IOWA | 11 | ** | 4m/7 | (HR) | 30m/5| * | 42m/4 |
| KANSAS* | 10 | 15m/1 | 9m/4 | -- | 30m/5| 3y/4 | 3y/4 |
| MASSACHUSETTS| 17 | 1y/2 | 1y/3 | 1y/4 | 4y/2 | 5y/1 | 5y/4 |
| MARYLAND | 10 | 15m/1 | 9m/3 | 15m/2 | 2y/2#| 9m/3 | 5y/2 |
| MINNESOTA | 9 | 13m/1 | 6m/4 | ** | 2y/1#| * | * |
| NEW HAMPSHIRE| 12 | 12m/2 | 9m/2 | 12m/2 | 12m/5#| * | * |
| NEW JERSEY | 11 | 7m/3 | 7m/3 | -- | 20m/2#| * | * |
| OREGON* | 9 | -- | 9m/6 | -- | -- | -- | 4y/3 |
| PENNSYLVANIA | 17 | ** | ** | ** | 19m/--| 19m/-- | |
| TEXAS | 9 | 13m/3 | 6m/2 | 6m/1 | opt. | -- | 2.5y/4 |
| WEST VIRGINIA| 18 | 12m/2 | 12m/11 | ** | 2m/17| 4y/8 | * |

+states are included on basis of having sent periodicity schedule to OTA; sample is neither representative nor systematic
^age at first screening/total number of tests recommended through age 11.
*screening recommended at each visit. Test not specified; formal and informal screening not differentiated.
**"if indicated"
HR indicates for high risk groups only
also recommends urine cultures
$ also recommends use of Denver Development Screening Test or Parent's Developmental Questionnaire.
<table>
<thead>
<tr>
<th>Author</th>
<th>Years Data Collected</th>
<th>Study Design</th>
<th>Study Sample Size</th>
<th>Intervention</th>
<th>Outcome Measures</th>
<th>Results</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of Child Health Supervision Visits</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gilbert</td>
<td>1979-80</td>
<td>RCT</td>
<td>214 exp.</td>
<td>Decrease # well child visits from 10 to 3 in first 2 years</td>
<td># Physical Abnormalities, # Undetected Abnormalities</td>
<td>No Differences Detected</td>
<td>Small difference in actual number of well child visits—6.19 in exp. group and 7.89 in control</td>
</tr>
<tr>
<td>Hoekelman</td>
<td>1971-72</td>
<td>RCT</td>
<td>125 exp.</td>
<td>Decrease # well child visits from 6 to 3 in first year</td>
<td>Knowledge of visit compliance, # utilization, # undetected Abnormalities</td>
<td>No Differences</td>
<td>1. Extra visits occurred due to contact with nurses for immunizations. Extra visits scheduled for by staff for clinic patients randomized to low decreased visit schedule. 2. Inadequate measures of developmental/behavioral outcomes 3. Inadequate power to detect large differences in the frequency of physical abnormalities 4. Outcome assessment not blinded to study group</td>
</tr>
<tr>
<td>Author</td>
<td>Years</td>
<td>Data Collected</td>
<td>Study Design</td>
<td>Sample Size</td>
<td>Intervention</td>
<td>Outcome Measures</td>
<td>Results</td>
</tr>
<tr>
<td>--------</td>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Bordis</td>
<td>1967-70</td>
<td>Baltimore Primiparous (18 Years)</td>
<td>RCT</td>
<td>120 exp 117 control</td>
<td>Comprehensive care (MD, RN, MSW--free) vs. usual care</td>
<td>Infant Mortality Hospitalization Clinic/EM visits Height/weight/10% Immuniz</td>
<td>No differences</td>
</tr>
<tr>
<td>Kaplan</td>
<td>1969-70</td>
<td>Pittsburgh Attendees 2 Schools in Low Income Neighborhood</td>
<td>Cross Sectional</td>
<td>525 exp 700 control</td>
<td>Enrollment in Cty Health Project--daytime program, peds, sm, pn, public health</td>
<td>School Attendance</td>
<td>Small, statistically significant difference with + effect of enrollment status (3.2 days)</td>
</tr>
<tr>
<td>Moore</td>
<td>1968-71</td>
<td>Charlestown school-children undergoing complete PE</td>
<td>Cross sectional</td>
<td>991 total 3 groups</td>
<td>Degree of participation in health center--multidiscp., comprehensive, free PE</td>
<td>Change in Absenteeism</td>
<td>No significant change in absenteeism with participation. Trend to increased absence.</td>
</tr>
<tr>
<td>Alpert</td>
<td>1964-68</td>
<td>Boston, Children's Hospital--poor, no other MD, 1/2 near hospital</td>
<td>RCT</td>
<td>173 exp 189 control</td>
<td>Comprehensive Medical Care Program--MD, RN, MSW vs. usual care</td>
<td>Child Health Index Utilization Sickness and Drug Days Satisfaction Cost Process Use of Preventive Services and Immunizations</td>
<td>No sig. difference any morbidity measure; similar frequency outpatient visit with more preventive visits; no sig. difference overall hospitalization--more surgical, fewer acute; improved satisfaction with wait and professional relationship; improved process measures.</td>
</tr>
<tr>
<td>Author</td>
<td>Years Collected</td>
<td>Study Population</td>
<td>Study Design</td>
<td>Sample Size</td>
<td>Intervention</td>
<td>Outcome Measures</td>
<td>Results</td>
</tr>
<tr>
<td>----------</td>
<td>-----------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Rogers</td>
<td>1970-2</td>
<td>Fort Defiance, AZ-Live born infants</td>
<td>Quasi-randomized trial</td>
<td>116 exp., 119 control</td>
<td>Intensive follow-up and home visits vs. usual care</td>
<td>Infant Mortality; Health Appraisal age; Uncorrected abnormalities, global health assessment, Hct, BOSI (not reported); Hospitalizations, and outpatient visits</td>
<td>No significant differences</td>
</tr>
<tr>
<td>Augustin</td>
<td>1970-1</td>
<td>NYC children enrolled in Montefiore- Montefiore- Moroni and Montefiore- Moroni and CV Project</td>
<td>Hybrid Design- first year enrollees compared to End year</td>
<td>40 total</td>
<td>Not Described</td>
<td>number of illnesses visits to clinic during End year of program participation compared to age matched first year enrollees Hospital Days per registrant</td>
<td>35% decrease in outpatient visits; decrease in hospitalization rates from .36 to .102</td>
</tr>
<tr>
<td>Bordin</td>
<td>1960-70</td>
<td>Baltimore Residents</td>
<td>Ecologic (census tract as unit of analysis)</td>
<td>33,068 eligible</td>
<td>Not relevant</td>
<td>Existence of Comprehensive Care Program in Tract</td>
<td>Rheumatic Fever Incidence (Rates) 60% decline (p<.005) in rheumatic fever rates in eligible census tracts</td>
</tr>
<tr>
<td>Klein</td>
<td>1960-70</td>
<td>Rochester 1. Catchment area residents 2. Health center users</td>
<td>Ecologic E. Cross sectional</td>
<td>1.8000 exp., 7000 control 2. 3300 users; 6000 to 4750 non-users</td>
<td>Comprehensive, multispeciality group practice 1. in Tract vs. not in Tract 2. users vs. non-users</td>
<td>Hospitalization rates and length of stay</td>
<td>1. Lower hospital admission rates and LOS in control tracts throughout study 2. Users had lower hospitalization rates than non-users and lower LOS than non-users or control group. 1. Limitations in value of hospitalization rates as outcome. 2. Selection bias in use of health center</td>
</tr>
<tr>
<td>Briscoe</td>
<td>1975,1977</td>
<td>Hazard, KY. Sample of children born at ARH hospital, matched to children born at comparable facility</td>
<td>Cohort study— exp. and control groups geographically separate</td>
<td>65 pairs from 177 pairs in original groups; 79 pairs in new study group</td>
<td>Home visits (7) for counselling, support, education, and advocacy, plus well child care</td>
<td>Health status: Physical exam, Otitis Media, Hct, iron deficiency; utilization—admissions and outpatient/EHC visits</td>
<td>No difference in health status measures; non-significant trend to decreased utilization in experimental group but home visits not included.</td>
</tr>
<tr>
<td>Author</td>
<td>Years Data Collected</td>
<td>Study Design</td>
<td>Study Population</td>
<td>Sample Size</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Irwin</td>
<td>1973-80</td>
<td>Before/After with separate controls for ea. time.</td>
<td>S.E. Penn. EPSDT eligible children</td>
<td>1831</td>
<td>Participation in EPSDT program</td>
<td>1. Identification of an abnormal condition requiring treatment; 2. 0 treatable conditions identified standardized for number of conditions tested.</td>
<td>1. No difference in crude rates 2. When adjusted for secular trend of increased identification rates, rescreening was associated with a 26% decrease.</td>
</tr>
<tr>
<td>Keller</td>
<td>1979</td>
<td>1. Repeated prevalence pop. 2. cross-section users vs. non-users</td>
<td>Michigan--random sample eligible sample for EPSDT users; 6000 non-users</td>
<td>2. 10000 users vs. 6000 non-users</td>
<td>Participation in EPSDT Program</td>
<td>1. Referral Rates for participants vs. non-participants with and without administrative costs. 2. Costs for numbers of screenings 3. Participants costs less than non-participants</td>
<td>1. Decreased referral rates with increased screening. 2. No consistent change in costs with increased numbers of screenings 3. Participants cost less than non-participants</td>
</tr>
<tr>
<td>Reis</td>
<td>NR</td>
<td>Review of unpublished MC funded EPSDT evaluations</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>1. Great variability in proportion of eligible population screened (14-85%). 2. Variation in case finding rates (6-18%) 3. Although 50-90% of those identified with problems were treated, only 7-18% were judged to achieve maximum benefit. 4. Large proportion of those diagnosed were not previously identified</td>
</tr>
<tr>
<td>Author</td>
<td>Years Data</td>
<td>Study Design</td>
<td>Study Setting</td>
<td>Sample Size</td>
<td>Intervention</td>
<td>Outcome Measures</td>
<td>Results</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>---</td>
</tr>
<tr>
<td>Valdez</td>
<td>1974-82</td>
<td>RCT</td>
<td>Random sample</td>
<td>18% children</td>
<td>Differing</td>
<td>Physiologic Function: Anemia, middle ear fluid, hearing loss, visual acuity</td>
<td>1. Overall no significant difference in health measures with differing levels of insurance 2. Decreased utilization associated with cost sharing—Preventive services decreased by comparable amount to other services 3. For poor children—if anemic at outset of study, 8% of those in free care anemic at end, while 22% of those in cost sharing were.</td>
</tr>
<tr>
<td>Kessner</td>
<td>1970-1</td>
<td>Cross-Sectional</td>
<td>Washington, D.C.</td>
<td>1436 families—sample from 2780 specific children—neighborhoods. Predominantly Black. 6mos-11yrs.</td>
<td>Different types of providers: solo practice, FFS group, prepaid group, hospital OPD, Emergency Re, public clinic</td>
<td>"tracer" conditions--1. middle ear infection/hearing loss 2. Fe deficiency anemia 3. Visual Disorders</td>
<td>Provider type had no significant influence on health status measures after controlling for SES Generally poor performance of preventive measures by providers—tests not done, abnormalities not followed-up</td>
</tr>
<tr>
<td>Dutton</td>
<td>1970-1</td>
<td>Re-analysis of Kessner data</td>
<td>Same as Kessner</td>
<td>same as Kessner</td>
<td>same as Kessner</td>
<td>same as Kessner</td>
<td>trend toward lower health status for users of solo practitioners relative to users of prepaid or OPD care. Lower satisfaction with OPD use.</td>
</tr>
<tr>
<td>Author</td>
<td>Years Data Collected</td>
<td>Study Population</td>
<td>Study Design</td>
<td>Sample Size</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
</tr>
<tr>
<td>------------</td>
<td>----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Alexander</td>
<td>1963</td>
<td>Rural Md. Children born 1981 index and control counties cross sectional</td>
<td>322 index 242 control</td>
<td>Discontinued physical health assessment at public health clinic</td>
<td>Maternal Ratings of Health Status--global, growth, development, acute and chronic illness; use of well child services</td>
<td>No significant differences in health status Fewer incomplete immunizations in county where services stopped</td>
<td>1. Many services remained available both through clinic and privately 2. Cross sectional analysis 3. Based on maternal report 4. Sufficient power to detect 30% differences in most conditions; borderline for 25%.</td>
</tr>
<tr>
<td>Author</td>
<td>Years Data Collected</td>
<td>Study Population</td>
<td>Study Design</td>
<td>Sample Size</td>
<td>Intervention</td>
<td>Outcomes</td>
<td>Results</td>
</tr>
<tr>
<td>--------</td>
<td>----------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Cullen</td>
<td>1964-73</td>
<td>Rural W. Australia, other criteria not stated</td>
<td>Stratified, randomized</td>
<td>101 families, 122 children ea. group</td>
<td>20-30 min. interview every 3 mos. in 1st year; then every 6 mos for 4 years. emphasis on gentility, positive outlook.</td>
<td>1. Behavior symptoms 2. Family relations 3. Readiness for work 4. Basic Learning Ability 5. Early School Personality 6. Stan-Binet vocab 7. Describe a picture 8. Spontaneous speech 9. Draw A Man</td>
<td>Fewer fears, more school lateness; many behaviors with no differences; intervention boys worse in school related outcomes; no effect for girls.</td>
</tr>
<tr>
<td>Butelius</td>
<td>1965-76 (enrolled 43-9 with 6 year follow-up)</td>
<td>Urban Washington, D.C. primiparous mothers with early prenatal care, ID70; no neonatal problems</td>
<td>RCT</td>
<td>47 exp. 48 control</td>
<td>Pediatrician and nurse well child visits in motor coach, 1 hour ea. additional nurse visits - total 18/12/8 Ist 3 yrs. Group counselling, medical Fe, cognitive stimulation program</td>
<td>Bayley Stanford-Binet WISC-R Behavior Profile School Readiness</td>
<td>Cognitive: Decreasing differences after age 3. Behavioral: Improved social and self-confidence scores at age 3; fewer behavior problems age 5 on. Improved school completion by exp. mothers as program evolved.</td>
</tr>
<tr>
<td>Chamberlin</td>
<td>1974-9</td>
<td>Rochester, priaparous mothers recruited from pediatrics.</td>
<td>Cohort</td>
<td>371 total</td>
<td>Maternal knowledge, attitudes, child-rearing style Child: Behavior, development</td>
<td>Increased knowledge with increased teaching; no effect on development; increased reported behavior problems; small but sig. correlation teaching and positive interaction</td>
<td>Middle class population; All programs in one practice given average rating (measurement error). Attrition to lower SES families. Regression technique may have masked study effect by including intervening variable. TSelection bias. Short follow-up; outcome measures of uncertain significance. Power limited. Generalizability limited by population and perhaps nature of intervention (unique to provider?).</td>
</tr>
</tbody>
</table>
Table 6. Effectiveness of the Physical Examination in Well Child Care

<table>
<thead>
<tr>
<th>Author</th>
<th>Years Data Collected</th>
<th>Sample</th>
<th>Method Data Collection</th>
<th>Validation</th>
<th>Reliability Assessment</th>
<th>Utility Assessment</th>
<th>Yield</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anderson</td>
<td>1969</td>
<td>44% Practicing CT pediatricians; 100 consecutive well child exams</td>
<td>Physician Report of Abnormality</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>11.4% exams resulted in abnormality; 1.9% in significant abnormality; 80% discovered by 6 mos.</td>
<td>Parents unaware of abnormalities needing rx 62% of time. Study of limited value</td>
</tr>
<tr>
<td>Pre-School</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O’Connell</td>
<td>1970</td>
<td>382 born Mayo clinic, underwent preschool exam and entered KG 1970</td>
<td>Chart Review</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>3.1% exams resulted in previously undetected abnormalities (serous OM, astigmatism, color blind, speech disorder)</td>
<td>Biases in sample selection</td>
</tr>
<tr>
<td>Welch</td>
<td>1978</td>
<td>1150 entering KG, Roanoke, VA 1977</td>
<td>Comparison of School screening program with written physician preschool report</td>
<td>Study in one sense in validation of prior physician exam; positive findings of screening were "confirmed"</td>
<td>Not clearly specified; screeners underwent training.</td>
<td>None</td>
<td>33% of children had abnormalities; 91% of these detected by screening; 30% detected by physician exam.</td>
<td>Abnormalities detected by exam and not screened for are not discussed.</td>
</tr>
<tr>
<td>Author</td>
<td>Years Data Collected</td>
<td>Sample</td>
<td>Method Data Collection</td>
<td>Validation</td>
<td>Reliability Assessment</td>
<td>Utility Assessment</td>
<td>Yield</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>--------</td>
<td>------------------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Yankauer (A)</td>
<td>1958-6</td>
<td>1056 1st grade children from representative sample of schools</td>
<td>Examined by 1 MD: vision, hearing and dental problems not included</td>
<td>Limited—if in doubt, a second opinion was sought</td>
<td>None</td>
<td>See (C)</td>
<td>81% children had abnormality; 78% under care and 12% more known if preschool family MD exam, condition more likely under care. 14% develop new condition, primarily emotional and ENT; 50% under care before school exam.</td>
<td>relies on adequacy of care by an outside (family) physician</td>
</tr>
<tr>
<td>Yankauer (B)</td>
<td>1958-6</td>
<td>617 of above remaining for 3 years and 29% remaining one or two years</td>
<td>same as (A)</td>
<td>same as (A)</td>
<td>None</td>
<td>See (C)</td>
<td>1/3 of children initially identified, 99% still present in grade 4. Most new conditions also present grade 4. ENT and emotional problems most likely to improve if active, these problems least likely to be in SAD.</td>
<td>1/3 of children initially identified, 99% still present in grade 4. Most new conditions also present grade 4. ENT and emotional problems most likely to improve if active, these problems least likely to be in SAD.</td>
</tr>
<tr>
<td>Yankauer (C)</td>
<td>1958-6</td>
<td>same as (B)</td>
<td>same as (A)</td>
<td>same as (A)</td>
<td>None</td>
<td>See (C)</td>
<td>13.4% had abnormality detected; 4.3% by screening; 1.7% by exam.</td>
<td>see Utility assessment</td>
</tr>
<tr>
<td>Grant</td>
<td>1967-70</td>
<td>6058 students in El Paso schools undergoing ophthalmic screening, age 5-10 yrs.</td>
<td>paramedic screening tests; physician physical exam; rashes, acute illnesses, emotional problems excluded</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None (authors judged a detected condition worthwhile even if referral resulted in a "diagnosis" of no significance, such as functional amblyopia)</td>
<td>5.3% untreated defects were problems of visual acuity</td>
</tr>
<tr>
<td>Kjeller</td>
<td>1969-72</td>
<td>549 children age 7 in one town in Sweden</td>
<td>Author examined all students.</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>15% had abnormality detected; half were vision problems; half previously known. PE had relatively important abnormality in 8.5%. 907 of 2691 students undergoing PE had a problem identified; only 15% previously known.</td>
</tr>
<tr>
<td>DeAngelis</td>
<td>1980-1</td>
<td>12,997 rural students; little access to medical care; nurse practitioners administered screening tests.</td>
<td>Nurse practitioner did physical exam</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>Little overlap in conditions: acute, self limited problems included. No utility measure.</td>
</tr>
<tr>
<td>Author</td>
<td>Years Data Collected</td>
<td>Sample Characteristics</td>
<td>Outcome Measures</td>
<td>Prevalence of School Failure</td>
<td>Sensitivity Abn+Quest</td>
<td>Specificity Abn+Quest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>--</td>
<td>---</td>
<td>-----------------------------</td>
<td>-----------------------</td>
<td>----------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camp</td>
<td>1967-72</td>
<td>Low income Denver residents using a Neighborhood Health Center; took DST; if abnormal, asked back; if normal, went back. Of those, those over 6 years old before 1/72 and still living in Denver Int at Public Schools were included. 493 initially came back; 92 met age criteria; follow-up on 63 of 493.</td>
<td>Special Class or Repeat Achievement test 11.3 years behind Significant teacher rated behavior problem Diagnosis of hyperactivity (10 < 80)</td>
<td>57% with either 10 below 80 or learning problem</td>
<td>78%</td>
<td>60%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cadean</td>
<td>1980-84</td>
<td>All children registering for normal kindergarten in 3 or 4 regions of Niagara, Ontario. Children randomized to receive DST with counseling; DST without counseling, and no DST. All abnormal and random sample of others underwent further testing.</td>
<td>Teacher and parent reported learning problems Child not in regular class Parental worry WISC-R Child Well Being Questionnaire</td>
<td>9% not in regular 2nd grade class</td>
<td>6%</td>
<td>99%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sturner</td>
<td>1978-80</td>
<td>All children registering for kindergarten in Person County, NC, screened with DST-E. Follow-up testing on differing proportions of abnormal (10%), questionable (30%), and normal (60%).</td>
<td>Special class or repeat CAT-N < 20%</td>
<td></td>
<td>27% not in regular class or (<)20% on CAT-N</td>
<td>57% Stage</td>
<td>87% Stage</td>
<td></td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Site/Practice Style</td>
<td>Sample Size</td>
<td>Allocation Method</td>
<td>Intervention</td>
<td>Outcome Assessment</td>
<td>Results</td>
<td>Comments</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>---------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>Bess</td>
<td>1968-3</td>
<td>Pittsburgh/private practice</td>
<td>1423</td>
<td>1) control group users one practice 2) different experimental group users another practice at different times</td>
<td>1) letter by MD 2) letter by MD + counselling 3) letter by safety organization</td>
<td>external report of seat belt installation, by phone.</td>
<td>19.4% no info 19.1% org. letter 15.2% MD letter 42% MD letter + counselling</td>
<td>concerns re: biases in allocation and assessment</td>
</tr>
<tr>
<td>Kanther</td>
<td>1974-5</td>
<td>Rochester/prepaid health plan</td>
<td>16 env. 19 control</td>
<td>Quasi-random (every other infant born)</td>
<td>1) counselling by MD + pamphlet at prenatal visit. Central = no education.</td>
<td>external report, occasionally verified</td>
<td>42% use no info 65% MD info (p<.01)</td>
<td>small sample size bias in assessment no sig. difference</td>
</tr>
<tr>
<td>Allen</td>
<td>1974-5</td>
<td>Seattle/prepaid health plan</td>
<td>200 of 500 eligible</td>
<td>volunteers for non-concurrent intervention groups</td>
<td>1) informational material only 2) informational material + file presentation 3) informational material, file presentation, and rehearsal of car seat use. centres info (postpartum)</td>
<td>external report--questionnaire</td>
<td>15% use no info 21% MD info only 31% MD info + file only 41% MD info + file + rehearsal</td>
<td>selection bias assessment bias not necessarily relevant to office practice</td>
</tr>
<tr>
<td>Schecter</td>
<td>1970-4</td>
<td>Tacoma/military well child care</td>
<td>500</td>
<td>random allocation</td>
<td>1) information 2) display 3) display + pamphlet 4) (3) nurse counselling 5) (3) MD counselling</td>
<td>external report--questionnaire at 8 weeks and 9-12 mos.</td>
<td>at 8-12 mos. 36a 1) 9/77 2) 12/74 3) 8/75 4) 21/81 5) 13/88</td>
<td>bias in assessment due to military population.</td>
</tr>
<tr>
<td>Author</td>
<td>Year</td>
<td>Site/Practice Style</td>
<td>Sample Size</td>
<td>Allocation</td>
<td>Intervention</td>
<td>Outcome Assessment</td>
<td>Results</td>
<td>Comments</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------</td>
<td>---------------------</td>
<td>-------------</td>
<td>------------</td>
<td>---</td>
<td>------------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Miller and Piers</td>
<td>1975-611</td>
<td>Rochester/ Pediatric group practice</td>
<td>654</td>
<td>Randomized</td>
<td>pamphlet+verbal int. pamphlet=verbal +slide+tape control=mo education</td>
<td>maternal questionnaire, rough validation with direct observation</td>
<td>no significant differences between control either intervention group</td>
<td>powers</td>
</tr>
<tr>
<td>Reisinger and Williams</td>
<td>1976-7</td>
<td>Pittsburgh/ in hospital program</td>
<td>1107</td>
<td>consecutive time intervals (non-concurrent controls)</td>
<td>control=mo educ. Illiterature only Illiterature=health educator Illiterature=free car seat</td>
<td>direct observation at hospital discharge and 2 mos. follow-up</td>
<td>very low use at time of hospital discharge, no study effect gradient from control to free seat with use at 2 mos., i.e., 25%/31%/36%/41%. Only free group statistically significant different from control.</td>
<td>rates may be inflated compared to general population in that more educated parents both more likely to use seat belts and to come for follow-up.</td>
</tr>
<tr>
<td>Reisinger and Williams</td>
<td>1976-9</td>
<td>Pittsburgh/ private practice</td>
<td>869</td>
<td>non-concurrent intervention adn control periods</td>
<td>control=mo info. study+education by pediatrician with discussion, pamphlet, and demonstration</td>
<td>direct observation at 1, 2, 4, 9, 15 mos.</td>
<td>Significant difference at 2 mos. (30% vs. 29%); no difference from 4 mos. thereafter.</td>
<td>attrition ranged from 19-23%.</td>
</tr>
<tr>
<td>Kelly, Sein, McCarthy</td>
<td>1981-2</td>
<td>Haver/Hospital primary care center</td>
<td>107 (6 mos. old)</td>
<td>randomized</td>
<td>3 part developmental orientation course, safe home pictures</td>
<td>parental knowledge, home safety assessment (direct), reported auto practices and accidents</td>
<td>refined knowledge, bifower home hazards, cino change in restraint use decreased sitting in front, also change in auto accidents</td>
<td>primarily parental report of outcomes.</td>
</tr>
<tr>
<td>Author</td>
<td>Sample Population</td>
<td>Age</td>
<td>Study Design</td>
<td>Classification of Iron Deficiency</td>
<td>Outcome Measures</td>
<td>Results</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>-----</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>------------------</td>
<td>---------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Webb/Oski</td>
<td>Inner city Philadelphia Jr. High school; Black: VE study/101 control</td>
<td>12-14 yrs.</td>
<td>Cross-sectional</td>
<td>Hgb < 11.5 vs. Hgb > 14</td>
<td>Iowa Basic Skills Achievement tests</td>
<td>poorer performance if anemic; increased risk among older anemic males.</td>
<td>no control for SES no measure of Fe status sex-age interaction implausible</td>
<td></td>
</tr>
<tr>
<td>Oski/Henig</td>
<td>Syracuse outpatient clinic; Fe deficient infants</td>
<td>9-26 months</td>
<td>RCT of intramuscular iron therapy</td>
<td>Hgb < 10.5 and MCV (red cell size) < 73 cu. micron and Fe < 20 and transferrin sat < 10%</td>
<td>Bayley Scales Infant Development (BSID) at baseline and 8 d after ra.</td>
<td>significant increase in Mental Development Index (MDI) in deficient group, inversely proportional to initial Hgb; deficient children became more "reactive" with iron</td>
<td>initial MDI values not included in ANOVA model examining study effect</td>
<td></td>
</tr>
<tr>
<td>Lesaff</td>
<td>Guatemala: community based; 24 experimental and 40 control</td>
<td>6-24 months</td>
<td>RCT of oral iron</td>
<td>Hgb > 12.0 control vs. Hgb < 10.5 and 2 of following 3: transferrin sat < 10%; EP > 100/dl; RBC's < 3.5 x10(^6) whole blood; and ferritin < 12.</td>
<td>BSID</td>
<td>al pre-treatment MDI lower in anemic children; only significant in 19-24 mos. group; MDI for non-anemic group=120. bicorrelation (Pearson) between pre-treatment MDI and increasing levels of iron sufficiency=.72. cme significant improvement in MDI scores with 7 d oral iron therapy</td>
<td>al pre-treatment MDI lower in anemic children; only significant in 19-24 mos. group; MDI for non-anemic group=120. bicorrelation (Pearson) between pre-treatment MDI and increasing levels of iron sufficiency=.72. cme significant improvement in MDI scores with 7 d oral iron therapy</td>
<td></td>
</tr>
<tr>
<td>Oski/Henig</td>
<td>Syracuse outpatient clinic; non-anemic with differing levels of iron deficiency; total n=38</td>
<td>9-12 mos.</td>
<td>Before/After Intramuscular iron; RCT not approved by IRB</td>
<td>All Hgb >11.0; Depilated; Ferritin (12); Deficient (a); Deficient (b); Deficient (c); MCV < 70</td>
<td>BSID</td>
<td>al iron depleted group comparable (low ferritin only) comparable to sufficient group on all outcomes. b) when aggregated by sufficient/depleted vs. deficient sub groups, deficient group had lower pre-treatment MDI (93.7 vs. 94.4, p<.05) and greater response to ra (13.9 vs. 21.6 pts, p<.01); ending with higher MDI scores (99.6 vs. 106, p<.2)</td>
<td>al iron depleted group comparable (low ferritin only) comparable to sufficient group on all outcomes. b) when aggregated by sufficient/depleted vs. deficient sub groups, deficient group had lower pre-treatment MDI (93.7 vs. 94.4, p<.05) and greater response to ra (13.9 vs. 21.6 pts, p<.01); ending with higher MDI scores (99.6 vs. 106, p<.2)</td>
<td></td>
</tr>
</tbody>
</table>
Deinard
Minneapolis
and Duluth
public clinic
users:
non-anemic
with differing
levels of iron
deficiency;
n=30 (several),
Elited, 127
(control)

11-13 mos.
Cross-
sectional
All Hct > 34;
several
ferritin < 9;
moderate:
ferritin 10-19
normal:
ferritin >19.

Be10
visual "habituation"
Urquide and Hunt Ordinal
Scales of Psychologic
Development I, II, V (mea-
sures visual pursuit,
means of obtaining ends,
and construction of object
relations in space)
No differences between
groups on any measures
no separate SES control,
although relatively
homogeneous group
no physiologic measures of
iron deficiency (e.g., EP)

Walter
Santiago,Chile:
Infants in
infant feeding
study: normal
birthweight
and growth.
Iron
sufficient vs.
iron deficient
without anemia
vs. iron
deficient with
anemia; total
n=37.

15 mos.
Before/After
oral iron for
15 d.
Anemia: Hgb<11
Iron
deficiency/An-
emia: Hgb<11
and 2 abnormal
tests
(transferrin
<105, EP;100,
ferritin
<10; iron
deficiency/
non-anemic:
Hgb<11 and one
of above
criteria

Be10
(including behavioral
questionnaire)
a) Pretreatment mean MBI
lower in anemic vs. other
groups; no difference
between non-anemic
deficient and sufficient
(98 vs. 108, p=0.025; vs.
113, NS)
b) Significant improvement
in MBI of anemic children
with iron therapy (98 to
108, p=0.01), no change in
other groups except post-
hoc observation that non-
anemic with two findings
of iron deficiency (n=6)
increased from 108 to 118.
c) Improvement in measures
of cooperativeness and
attentiveness in iron
deficient/anemic group.

Deinard
Minneapolis
public
clinics:
normal
birthweight
and growth;
anemia/iron
deficient vs.
non-anemic
iron deficient
vs. iron
sufficient;
total n=70

18-60 mos.
Iron if
anemic; RCT of
iron vs.
placebo if
non-
anemic/deficit;
placebo
if sufficient.
Anemia Hct
<25; iron
deficient EP
>35.

Be10
Stanford-Binet
a) no pretreatment
differences any measures
b) non-anemic group showed
significant improvement in
outcome measures at 3 and
6 mos.; both anemic and
non-anemic iron deficient
groups did not show
improvement regardless of
iron therapy), leading to
differences at 3 and 6
months
c) control group showed
greater responsiveness on
behavior measures at 3 and
6 months

a) awkward analysis and
presentation--insufficient
number of controls,
inadequate matching and
failure to use alternative
means of analysis (e.g.,
regression)
b) interpretation of
results speculative
<table>
<thead>
<tr>
<th>Study</th>
<th>Country</th>
<th>Population</th>
<th>Mean Age</th>
<th>Study Design</th>
<th>Intervention</th>
<th>Outcome Measures</th>
<th>Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somantri</td>
<td>Indonesia; rural province</td>
<td>Students (n=78) vs. placebo (n=41)</td>
<td>10 yrs</td>
<td>RCT oral iron for 3 mos.</td>
<td>Deficient: Hgb < 11, sufficient: Hgb > 12</td>
<td>Achievement Test (standardized for use in Indonesia)</td>
<td>a) No baseline differences in ID (not tested post-treatment) or concentration; non-anemic children had higher achievement test results at baseline; b) Anemic children treated with iron had significant improvement in concentration and in achievement test scores; non-anemic children did not significantly benefit from iron therapy.</td>
</tr>
<tr>
<td>Lesaff</td>
<td>Costa Rica, middle class</td>
<td>12-23 months</td>
<td>RCT</td>
<td>Iron vs. placebo</td>
<td>Non-anemic (Hgb 10.5-11.9) anemic (Hgb < 10)</td>
<td>BSID at 1 wk and 3 months</td>
<td>a) At baseline: MBD lower in anemic group only if Hgb < 10. b) At baseline, psychomotor index lower in anemic vs. non-anemic group. c) No effect any therapy at one week. d) No overall effect of iron on MBD in anemic group at 3 mos., and severely anemic group (Hgb < 10) overall remained lower than non-anemic group at end of therapy. These in severe anemic group who had biochemical evidence of iron repletion were not significantly different from non-anemic group at end of therapy, but this resulted from declining performance of non-anemic group rather than improvement in anemic group.</td>
</tr>
</tbody>
</table>

a) Results were not presented for the groups as randomized—authors don't directly answer question of whether providing therapy to anemic iron deficient children (as would be done in a clinical setting) influences developmental outcome. b) SES differences well controlled—e.g., differences existed between anemic and non-anemic children in adequacy of home environment (using HOME inventory), but controlling for these differences did not affect results.
REFERENCES

Dutton, DB, Silber, RS, "Children's Health Outcomes in Six Different Ambulatory Care Delivery Systems", Medical Care 1980; 18:693-714.

Great Britain, Committee on Child Health Services (Court, SDM, chair), Fit for the Future HMSQ, London, 1976.

Hall, Dr. David, Personal Communication, February 9, 1987.

Reeves, JD, Bicinisky, E, Addiego, J, Lubin, BH, "Iron Deficiency in Health and Disease," Advances in Pediatrics 1984; 281-319.

The General Medical Services Committee of the British Medical Association and the Royal College of General Practitioners, Handbook of Preventive Care for Pre-school Children London, 1984.

