THE ANALYTICAL DEVELOPMENT OF TEHE
TRIGOROMETRIC FPUNCTIONS

APPROVED:

Wajor Professor

o 0. T4

Winor Prolcssor

el

Tirootor of the Dapartment of Wathematlss




THE AMALYTICAIL DEVELOPHENT OF THE
TRICONCHMETRIC FUNCTIORS

THESTS

Presented to the Graduate Council of the
Horth Texas State College in Partial
Fulfillment of the Regquirements

Por the Degree of

MASTER OF SCIENCE

by
193351

Pearl Cherringbton Mackey, B, 5.

Denton, Texas

August, 1951



133351

TABLE OF CCORTENTS

Chapter Page
I I:’}TRO oy CTION . . $ & & & * & % B ¥ 5 € # B A 1
IT. THE ZHTEGHﬁﬁ oF i”%“ﬁ? e s b % s o x w6 a o w 7

III. CERTAIN RELATED PUNCTIONS + o « v v v o o o 16

IV. ‘PHE TRIGONOMETRIC FUNCTIONS OF A REAL
VﬂﬁxﬁB&E [T N T T T T N T T T L 32

Bfﬂ}:&xg{}gﬁ»?wut_cn’#-i_vioﬁdnl!!tiﬁl# }4—6

111



CHAPTER I
INTRODUCTION

Geometry 1s the source from which we first draw our
knowledge of the trigonometric functions, The foundations
of trigonometry are not quite as simple as & beginner might
suppose, and the ordinary presentation of the theory rests
on certain assumptions which need careful analysis., The
most natural method is to follow as closely as we can the
proceduré of the ordinary textbooks, translating the geo-
metriéal language which they use into the langusge of
snalysis. Another method is to define the trigonometrical
functions by infinite series, 1In this study, we will bew
gin by defining the function A(x) as the intagrallfgf%maz
and arrive at the trigonometrie functions by inVerékan‘

By this process the definitions of the trigonometrlic fune-
tions are separated from geonstry, and we will develop
their propertles also independently of geometry.

In this study, we will assume known the definitions
of continuity, differentisbility, limlts, upper and lower
bounds, and monotonic functions,

We will now define the Riemann integral. TLet f(x)
be a function defined and bounded on ‘é,b]. Let

g-t &= X, = X, < X_,=" sesess==X_= Db be a subdivision



of [a,b]. Then we define Z o to be Zu (x;- x,_)

and we defline Z o= to be lZ; 1,{x;- x,_,) where, for

each 1, u; and 1, are respectively the least upper bound
and the greatest lower bound of £{x) on [x i 1 X ,:J. Fuar-
thermore we deline / f{x) to be the .@;rfatast lower bour:ﬁ'
for all o— of z g— » 8nd we define jr(x) to be t_‘liws least
upper bound for all T of i o— . If __[ f{x) = f}f(x),
then £(x) is seid to Riemann integrable on [a,b] and their

common value will be called the Rlemann definlte integral
from & to b of ‘f(x} and will be dencted by ths symbol

b
ff(x)_

O

Remerk: For any o=, 2. 0~ = 2 o

Extension of the Riemann integral: We will define
jf(m) to be zero, If &8 << b, [f(x) is defined to be
r(x)»

o

We shall now state certain theorems without proof which

will be referred to in the following chapters,

Thecrem 1.1t A necessary and sufficient condition that
g8 bounded function £(Xx) be integrable on [a,b] is that for

avery e 76 there exists a g— such that Z o - Z_ T=<e.t

‘5. W, Hobson, The 'rhsogx of Punctions of a Real
Variab&@, Vols. Iy Po



Theorem l.,2: If £{x) is continuous on [a,b] then £{x)

s integrable on |a,b].2

Theorem 1.3t If f(x) 1s bounded and integrable on

[a,b], then
b b
/ak f{x)= k[f{x),

where k 18 = cenat&nt.B

Theorem l.is If £{x) is bounded and integrable on

[a,b] and 1f <, 6, ¥ are any thres points in [a,b] s then

¥ -8 ¥
fftx) = jf{x) + [r(x),h
3 4 (-4

Theorem 1.5t If £{x) and g{x) are both integrable in
[a,b] 2nd £(z) = g(x) at every point of [a,b], then

b b
If('x) = [g(x)ﬂ'

Theorem 1,61 If f{x) is continuous on [a,b] » then at

every point in [a,b], F(x) = Ir(x) possesses & derivative
which 1s the function 'f(x).

2g, §. Phillips, A Course of Analysis, p. 173.
31bid., pe 176, Lrbid., p. 176.
Smidpy Pe 177 6; bidgp P 180.
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Theorem 1.7t If £{x) is contlnuous on [a,b], then
£{x) 1s bounded on [a,b] .7

Theorem 1,0: 1P f{x} is contlinuous on Eé,%], and ¥

gnd m ere its least upper bound and its greatest lower
bound respectively, then f{x) assumes each of the values

¥ and m at least once in the 1nﬁerva1a8

Theorem 1.9: The sum, difference, and product of twe
continuous functions are thamselves continuous. The quo-
tient of two continuous [unetlions ls continuous, provided

that the denominator remeins different from zero.’

Theorem 1.10: If f(x) is continuous on [é.;b] and k&
is any number between f{a) and f{b}, then f{x} assumes

the velue k at least once in the Interval (a,b).0

Thoorem 1.11: If the funection f(x) is single valued,
conbinuous, and monotonle on [a,b] and f{a) = =< , £(b)
=g, then I‘(x) has an inverse functlon g{y) which is sin-

gle valued, continucus, and monotonle on [oc,ﬁ] .1}‘

TGs He Hardy, A Courss in in Pur @athemati&s. sixth
sdition, p. 182,

S1bid., p. 183.

9}?. Coursnt, Differentl
I, new revised edition, p.

10:{b1d'l Pe 67' 1llb1doy e 680

al and Integral Calculus, Vol.

-




Theorem 1,12: If at every point of [a,b], the func-

tion f{x) 1s differentiable and f'(x) 5 0, then the inverse
function g(y) also has a deriative at every point of ita

interval of definition and (x) = g'{y)= 1 for corres-

ponding values of x and y‘12

Theorem 1.13: If f(x) 1s differentisble on [_a,b] and
“There :
continuous at a and at b, then thelr exists a point ¢ of
£({b) - £(a) 13
b~-a °*

(a,b) such that ' (c) =

Theorem 1.1h: If £(x) is differentiable at x = ¢,

then 1t is continuous at x = c.m’

Theorem 1.15: If £{(x) and g{x) are both differentiable,

then
(1.) F(x) = £{x) + g(x) is differentiable
and F'(x) = £1(x) + g'{x);
(2,) P({x) = £{x) = g{x) 1s differentiable
and Ft{x) = £'(x) ~ g'(x);
{3.,) F(x) = f(x) » g(x) 18 differentiable
and F' (x) = £{x)g' (x) + g(x)f'(x);
(4e) F(x) = % is differentiable, provided
g({x) = 0, and F' (x) = alxir (ﬁ:%;{;)_]g;(x)f{x).15
12;_@_;@1., p. 1h5. 13&%” p. 103,

lh‘Ibid., Pa 97 151‘91&., pp. 137-139.
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Thaorem 1.16: I f1(x) = g'{x) on [é,ﬁ], then there

exists a constant k suel that f{x) = g{x) + k on [&,6].16

Theorem 1.17: Bvery monotone function f£{x) on [ﬁ,b]
1s bounded on la,b] .17

Theorem 1.188 A necessary and suffielent condition
that £{x) be continuous at x = ¢ is that both £(x) end

}i@ £f{x) exist and the two are equal;lg
—)

The number p used in this paper may be evaluated to
any desired degree of acecuracy from 1té definition, and
the number v, winlch cccurs so frequently in mathematical

analysis, may be defined to be 2p.

, léh‘ S+ Buringbton and ¢. C. Torrance, Higher Mathematics,
first edition, p. 279 '

1710144, pe 2794
18

Courant, op. eite, p. 61,



CHAPTER II

THE INTEGRAL OF 73—t

*
Definition 2.1: A(X) = JT“'}:“H‘;‘ . ‘

Theorem 2.1t The function r}”ﬁ"" 18 continuous

for every real number u.

Since 1 + u* 3z 0 for any rsal number u, ‘f"ji"ﬁ“i is

continuous for every real number u from Theorem 1.9,

o
1 +a*

defined for every resl number x; furthermore A{x) is dif-

)
Theorem 2,2: The function A(x) = f is

ferentiable and A! {x) = *i-%w{; for every real number Xx.

8ince 1--%—-?; is continuous on [b,x] for x = 0, A{x)
exists for all positive x, A{0) exlsts amnd 18 equa% to O
If x <0, 'imh;: 1s continuous on [x,0] and the fxw
exists., But [m';; = —[M .

Let & be any real nuwber and [r,s] an interval contain-
ing O and &, Since Tw-}'_wﬁ-: is integrable on [r,s] and con-
tinuous at a, A'{(a) exists and equals *f*};«-fé-r + The theo-

rem follows,

Theorem 2.3: A{x) is continuous and monotone incrsas-

ing for every rsal number X,



Since A(x) 1s differentiable and every differentiable

function is continuous, A{(x) is continuous.

Let x, and x, be any two real numbers with x, > x,

Then

xt
: e 1
A{x ) Il""ﬁ"
2 1Y '
- [r= + [
/ 1 +ut 1 + u*
¥
1
=A(x,) +jm.

Let m = maximun Ix | |x,t\] Then m > 0 and for

every X, S u=x

Hence

:.’l.‘.ul——-l,*mi.‘

x& xl'

f 1 = 1
=~ R

x1+a L tm

¥ t

i
-
+{r
8
»
PN
-

:M'?o‘
1+ m*

Therefore A{x,) > &(x,) and A(x) is monotone increasing.

Theorem 2.1 For every real number x =0,

Alex) = «A(x).,

Let [r,a] be any closed interval wlth »r >0, Since

1 | : » . !
T W’ the set of all helghts assumed by T

in [r,s] 1s the same set of numbers as the set of all

heights assumed by v'i""%“"ﬁ"{ in [ns,-r]. Hence the least



-fm%«aq on fr,s] equals the leagt upper

bound of T—-%m:a: on [ua‘,w], and the greatest lower bound

upper bound of

of i—ui—‘_—-'ﬁ-; on [r,a] equals the greatest lower bound of

1 _
1+ u*
<X, =X = x' be any subdlvision of [(},x'] such that

on Feyer]. Letot 0=x, =2 < X, <iv1.renens

2. o - Z o < e, e =0 having been erbitrarily chosen

in advance, Then

1 +u*

. X' —
ZO‘“‘:E[ 1 =2 o (1)

Corresponding to g~ we have the subdivision O %3 -x' = .x

~”m

< eX T seesann<l=X << «x, = 0 of [-x',()] . Also for

1
TF 5% on

1
THgs o

(% » -x,._,,] » and the greatest lower bound of

every 0<<1 = n, the least upper bound of
R x):} equals the lesst upper bound of
T on
[x‘-__\ N x,;] equals the greatest lower bound of ‘i"""%_"""{;’":_ on
[~z , -x;}» It follows that 2 ¢* = 2 o , and

Zo-“*'-: ZO". Since

N

1 .
x
ZO— éjmml \ Z g— ¥ »
then

M
9
I

\f—\
A

Subtracting (2) from (1), we will have
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x' R
j 1 - f 1
/1 + u” /a1 +u”
But & was arblitrarily chosen} therefore

X -0 :
1 - j 1.
I 1+ ot J, 1 +u”

The 'tha@rem follows.

2.

Theorem 2.5: There exists a positive real number p

such that p and «p are respsctively the least upper bound
end the greatest lower bound of A{x) on the cantinuum.'

Purthsrmore }gyﬁﬁ{x) = p, and }_}z_:imx) = =P

Let x > 0 be arbitrarily chosen and choose an integer
, = 1
n=—>x, Let B8 be the sum of the convergent series, Z i

mal

and set ¥ = 1t 8, Then

T il +}1i +l; srressconran ¥t (n }—15)
. ] : 1
ZaAE S A IR LAEL S oy e u

=2 a,

where g— ¢{ 0 <1 =<2 << 3 << suvesses=<n ~ 1l=mn 18 & sub~

division of [O,n].

#e have

__ -
2 Z!l L =) = Ax).

But A(D) = O and for every x =0, A(x)= 0. Thus ¥ is an
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upper bound of A{x) on the continuum. Let p equal the
least upper bound of A{x) on the continuum,. Suppose, if
possible, that A{x )= -p for some vslus of x,, Then
A(-x,) = -al{x,) > p. This contradicts the fact that p is
the lsast upper bound, Hence -p 1s a lower bound. Suppose
next that «p is not the greatest lower bound. Then there
exists a d> 0 so that -p + 4 18 & lower bound, 1. e., for
every x that 18 a real number A(x) = «p + 4. Hence for
every x, Af{«x) =~ A{x})=p - 4 which would make p ~ 4 &
lower bound contrary to fact. Thus -p is the greatest
lowsr bound of A{x) on the continuum,

Let & = 0 be arbitrarily chosen. Since p is the
least upper bound of A{x) on the continuwum, there exlsats =
real number & such that A{(a)>p - e. We have for every
%, A{x)= p. Also for every x =>a, A{x) >A(a)., Thus, for
every x = 8a, p - 8 <4{x) =p=<2yp + e, Hence for every x =a,
Ip - A(x)l < @4 Therefors }%E%Mx) = De  Similarly,
1im A(x)} = =pe

X -

Theorem 2.5: For svery x =0, A{1/x) = 2A(1) - A(x),

and for every x—= 0, A{1/x) = -2A(1) - A(x).

Let F(x) = ~A{1/x). Then for every ¢ % 0,

1 -1

F\t(c):—_ ' oo:'--— X
4 1+1;G" e* 1 te*’
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Let x> 0 be arbitrarily chosen., Choose & =0 and b>0
go that a =X, <b and e=<=1-<"Db. 8ince F(x) and A(x) have
the same derlivabtive at esch point in Ea,.b] y bthers exists a
real number k such that A{x) + A({1/x) =k for every x in
[a,5] + Therefore A(l) + A{l) = k and k = 24(1). Then for
every x in [a,b], A(x) + A(1/x) = 2&(1)‘ Thafefom,‘
A(x.) * A(1/x,) = 24(1) snd A{L/x,) = 2A(1) — A(x,).
Since X, = O was arbltrarily chosen, A{1/x) = 2A{1) - A{x)
for every x =0,

Let x, < 0 be erbltrarily chogen. Choose r =0 and
8 =0 so that r<x, <8 and r <-1 =<3, There exists a
resl number h such that A(x) + 4{1/x) = h for every x in
[r,8]. Therefore A(-1) + A{-1) = h sad h = 28{-1) = «2A{1).
Then for every x in [r,s], A(x) + A(1/x) = -24(1). There~
fore, A(x,) * A(l/x,) = =<28(1) and A(1/%,) = -2A{1) — A(x,).
8ince x,< O was srbitrarily chosen, A{1/x) = ~2&(1) =~ A{x)

for every x =< 0,

Theorem 2,7t A{(l) = p/2.

Let e > 0 be arbitrarily chosen., Since Al(x) is con-
tinuous for X = 0, there exlsts a rsal number 4 >0 such
that, for every x whers |x - 0| = 4, |A{x) - M(})l = @,

But A{0) = 03 therefore there exists a d > 0 such that, for
every x where |x| =4, |&{x)| < e, There exists a real
number M > 0 such that, for every x=M, |p - Mx)\< 8.

Choose 0 <x < minimum {d,1/¥). Then O <A{x)<<e. Also
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x<<1/M, ¥ix <1, 1/x >k, and [p - A{l/x)l << &, }’Phen

p - e <A(1l/x) <’p. For every x =0, A{1/%) = 28(1) - A(x).
hus 2 (1) > A{1/x) and p -~ e <2A{1) = A(x) + A{L/x) |
<p + e, Therefore, for every e =0, [2A(1) - p|=e.

Hence 2A{1) = p and A{l) = p/2.

Theorem 2,8: If x,> 0 and x,=1/x, or if x, =0

end x,>1/x,, A(M\=A(x,) + A{x,); if x, > 0 and
A X v 4
x1>1/x\, A(‘fﬂ"’?‘\):iﬂxl) + Alx,) - 2p; 1f x, = 0 and
. X X :
x,= /x5 A2 = alx) + Alxu) + 2p.
Let G{x) = a(W) . O{x) is not defined and hence

not differentisble et x = 1/x, . For every ¢ # 1/x,,

- 1 .3+ x”
1 -x¢
1+ x,t

T - x,6)° * (x, + ¢)°

2 ¥

— 1+ x* - _1
+

(L+x*)(1+c*) 1+te

¥or every ¢ =¢1/x,, G'(c) = A*{ec). Suppose a <0 and b >0
are chosen in such & way that [:é.,b] does not include 1/;.:, .

Then there exists 2 real number k such that, for every X

in [a ,b] 3

+ , .
A (- =k

Thersfore when x = 0, A{x,) = 0 = k. Then, for every X



in. [&,b] »

b (EE) - 2 = acm),
x

Case I, Let z =0 and x,< 1/% . We may choose

a <0 and b >0 such that a<x,<b <1/x,, Then, for

X = Xq,
X, + x,.) Y - ;
A ("M ) - atxy) = Alx,)
and

A (M} = A{x ) + A{x,).

Case II. Let x,<<0 and x,>=1/x,, Now choose a =<0

and b =0 such that 1/x, — e <x,<Db. Then, for x = X,,

A (W} - Alx,) =4 (x,)

and

X, + Xa
s (P55 = a0+ .

Case III. Let x, >0 and x,>1/%x,. Choose a=<20
sand b > 0 such izhat a<-l/xl< b <l/:s:, + Then, using
= -Vx,,
n (2R 4 a/m —ai)
But

q(x,x! -1 =p~A<x,y+ X.
Tlx + x. ’ X K, = 1



and

Also A(1/x,)= p - A&(x,). Hence

. :
P+ A(M)Jr P~ A(x,) = A(x))

and

X, + X
A (M - x}J{;): A(xl}' + Af};‘:) - ‘QP‘

Case IV, Let x, =<0 end x,=1/%x,. Chooss 2= 0 end

b > 0 such that 1/x, < s <<-1/x,~<1b. Then, for x = -1/%,,

X, Xz~ 1 — ¥ ,
A(M)—Ml/x,} + A(X ).
But
X Raz L) _ (x. + x;)
ﬁ'(xl + Kz) - p A xgxa“" l
and

Also A(l/x,) = -p - A(x,). Hence

w

-p + A (1 . x‘x;) - p -~ Alx,) = Alx)

and

8 (W = A(x,) + A(x.) + 2p.
- .K‘Kz



CHAPTER ITX
CORTAIN RELATED FUNCTIONS

Theorem 3.1: A(x) has s single-valued inverse
function T(x) defined, conbtinuous, monotone increasing,
and differentiable on (~p,pl)s PFurthermors, for every x

in {-p,p)s TH(x) =1 + T*(x).

Let s be any polut in (~p,p). Since }%%;A(?)== Ps
there sxists s ¥y, sucn that A(y,) = e; since the
}i{a%ﬁx(y)= ~p, there exists & y, such that A{y,)< a.

Since A{y) 13 continuous, there exists a point b between
¥, &nd y, such that A(b} = a. Furthermors becausec A(y)

is monotone lnereasing, b 1s unique. We define T{a) to be
b. Since a was an arbiirary polnt in {-p,p)s T(x) may be
defined in this mamnner on {-p,p). Thus T{x) = y, where
Ay} = x, 80 that TEiz(y)] = y and AET(xﬂ = X.

Let x = x, be any two points in (-p,p). Consider [»r,s]
guch that «p <r =%, =<x,=<8 <p, L&t ¢ = T(r) and
d="T{s). 3ince My) ori E:z,d] is continuoue, monotone in-
creasing, diffefentiabi@, and A' (y) ¥ 03 T{x) is continuous,
monotone inecreasing, and differentisble on [r,s]. Since
the points x, and x, were arbitrarily chosen in‘ (-pyp)s T(x)

is continuous, monotone inereasing, and differentisble on

16
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{-pyp)s e know that AV (b)) ezists and ls not zero. Thus
TH{a) = o (‘Eﬁ =1+ 7%ea), Since a was arbitrarily
chogen, thls completes the pmoi‘.

Theorem 3.2¢ The lim T(x) = + o0 § 1lim T{x) = — oo
. Rp- X-»~P+

Let ¥ =0 be arbiirarily chossn, Let d=p - A{M).
Then 0<p - 4 <p. Choose any X such that p - d=2x <:p‘.
Since T{p = ﬂ:) =, ™x)>M¥., Thus }%!;ETQKJ = + o0 . B8lm=-

1larly we may show that }im T{x) = = oco.
»>-p*

(=) .
. N1+ TH(x)
(~p,p); S(x) =1 at x = p3 8(x) = -1 at x = ~-p.

for every X% in

Definitlon 3,1: 38({x)}<

pefinition 3,21 Cl{x}= for every x in

1
il )
gt

o+

N 1
)::

{~psp)s C{x) =0 at x = p3 Ci{x = ~Pa

Theorem 3.3: S(x) is continuous and monotone inerease

mg on E“?:P] g

Sines T{x) is continuous on (~p,p) and '\} 1 +9%x)+# 0,
then it follows from Theorem 1,9 that S{x) is continuous
on {=p,p)., Let x,< x, be any twe pointe in {(-p,p). Then

v{x, )= T{x,). There exists a point a such that X, =<8 =X,

S (x 3‘9."; ‘*lc Since St {a} = >0

AN 1+ T*s)

and x, - %, > 0, then 8(x,) - 8(x ) =0, Hence S$(x,) = S{x,)

and 8t{a) =

and S{x) must be monotuue lnereasing on (~-p,p). Obviously,

Tor every X in {-p,pl,
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T{x)

< 1=28(p).
A1+ T(x)

8{-p)= -1 <

Hence 3{x) 1s monotone increasing in :,p,p] . Now

lim 3({x} = 1lim i =1= 85{p);
X->p- X"’P',\J 1 s
T2x) 3
1im 8(x) = 1lim =1 = .1 = 8¢p).-
L—=>-pt A->-p 1
, «J Ta(x) 1

Hence 3({x) 18 continuous on the left st x = p and eontine

uous on the right at x = -p. The theorem follows.

Theorem ,2,& : C{x) is continuous on [‘P»p]: g{x) is mon~-

otone inecreasing on [‘*9;0] and monotone decreasing on [Q,p}.

Since T(x) is continuocus on {~-p,p) and ’\lm * Oy
then it follows from Theorem 1,9 thet C{x) is continuous
on {+p,p)s Let %, < x, be é.nsr two points in («p,0]. Then
T{x,) <T(x,) and T(x,) < 0, T{x,) = 0. There exlsts a
polnt & such that x, < & < x, and C'{8) = ch;;"} : giﬂh ).
N 1‘?_(;3“}' and T(a) =< 0, tm; C“(.z:t) > 0
in f--;;,!)] « B8ince x, - x, > 0, then ctx,_}.‘ - G{x,) > 0. Hence

Since Ct(a)= ~-

Clx,) < C"'(xl) end C{x) must be monotone increasing on {-p,(ﬂ .
4.0hvioursely,. for every z in {«p ,.0] s

1 “ A
/\[ T + Ta{x)

Hence C{x) iz monotons increasing on Ep,@] .

Cl-p)= 0=



ot
N7

(3

Let x3<< X, be any two poiubs in ED,p}. Then T(x3)

= T{x,) and T(x;)== 0, T{x,) > 0. There vxlsts a point b
"3(3’7&4} ~ C{x5)

such that x;<b==x, and ¢ (b} = . Since
T{h o~ %3
CH{b) = = — T +”£""(b)‘ and T{b) > 0, then ¢'(b)<<0 in [0,p).

Since %, - x3 7 0, then C(x,) = G{'zs)cﬂ. Hence C(xy)
>C¢{x,) and C{x) must be monotone decressing on [0..?);

Obviously for every x ih EG;p)s

1
N 1+ PH(x)

Henca C(x) is monotone decreasing on [b,y] How

1

limG(’t—}im =0 =0C{p);

o ) oL ,\’ 1 forg) {p); _
1

lim Cix) = lim =0 = C{=p)s

X-7-p* /\] 1+ ‘I”“(:x:)
Hence C(x) 1s continuous on the left at x = p and contin-

nous on the right at x = «p. The theorem follows,

Thecrem 3.5: 8(x) is differentisble on [~p,p].and

8t {x) = ¢(x) for every x in [-p,p].

Since T(x) is differentiable on (-p,p) and'\, L+ 7*x)
X 0, then it follows from Theovem 1,15 that S(x) is dif=
. i V l
AL+ Tix)

Since C(x)} 1s continuous st x = p, then for every e > o,

ferentiable on (~p,p) and 3t (x) =

= Cl{x}.

there exists a d > 0 such that, for every |x - p| < d,

Icfx) - C{p)|= e. Choose x such that p - d <X <yp. Then
P
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glnce x 43 conbinuous ab x and atv p and differentliable on
' 8tx) = 3(p)
& - p *

{x,p), there exists sn a in {(x,p) and 5 (a) =

Since 3'{a) = C{aj, then

otp) - HELTRRL = loe) - 310

= letp) - Cla)| = e

Hence S{x) is differentiable at x = p and 8'{p) = C{p).

Similarly we may show that the theorem holds for x = -p.

Theorem 3.0t ¢{x) is differentiable on [-p,p] and

Ct{x) = =-8({x) for every x in [*p;p]»’

Sinee T{x) Ls differentiable on (=p,p) and ’\I 1+ T*{x}

A 0, then it follows Irom Theorem 1,15 that C{x) is dif-
Tlx)
N 1 + Tax)

3ince S{x) is continuous at x = p, then for eveaery e = U,

ferentiable on {=p,p) and ¢'{x) = - = -8(x).

there exists a 4 =0 such that, for every |x - pl= 4,
'8(}1) - 55{*9)! << @, (hoose x guch that p - d <x <p. Then

since C{x) is continuous at x and at p snd differentiable

c{x) = Clp)
X-p °

on (x,p)s there exists an & in {x,p) and C¢'{a)=

aince C'{a) = -3{a), then

-8(p) - W' = |-8(p) - G'{all

= |-8(p) + 8(a)| = e.

Hence C{x) 18 differentisble at x = p and C'(p) = ~5(p}.

Similarly we may show that the theorem holds Tor X = -p.
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Theorem 3.7t For every x in (-p,p), T(«x)= -T(x).

Let ¥ = T{x), then A(y) = x. A(»y) = «~A(y) = =x,
then T(-x) = «y. Therefore T(~x) = ~T(x).

Corollary 3.7.1:t T(0)= 0,

Theorem 3.3: For every x in =psp)s S{=x) = =8{(x),
Let x be any point in (<p,p). Then

?f»x) - ~P(x) . T
AL +T*-x) AN1+Tx)

If x = p, then -8(x) = ~3(p) = -1 = 8(«p). If x= ~p,

8(-x) =

then ~8{x) = =8{«p) = 1 = 8(p).

Theorem 3,93 For every X in [-p,p] s C{wx}) = C(x).

Let x be any point in {~p,p). Then

_1 - b
N1 +T«x) 4 1+ T*x)

Cl{=x)=

= 0{x).

If x= p, then ¢{x) = C(p) = 0 =C{~p). If x = ~p,
then C(x) = C(-p)} = 0 = C{p).

Theorsm 3,10t For every x=> 0 in (-p.p), T(p~x)

="i‘%§73 end for every x =0 in {-p.p), T(-p - x)

N S
-*T-*T,x)‘

Let x = A(y), Then TM(x) =7y ond Ffzy == « If
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x >0, then A{y) > 0 and y = 0. Henca A{1l/y) = p - Aly),
1y =1[p - &(Yﬂ » snd qi%‘;gy = Mp - x).
If x< 0, then A({y)<<0 end y< 0. Hence A{1l/y)

——

= «p - Aly), 1/y = T|-p ~"A(3*ﬂ » end 13!%'5{;': T{-p - %},

Theorem 3,11t For every x =0 in [-p,p]s S(p - x)

=¢{x); for every x =0 in [-p,p], 8(-p ~ z) = -C(x).

Let 0<x<p. Then

T{p - %
8(p - x) = e =) ,
N 1+ 7%p -~ x)
1
= e LX) )
= e
N 2 Bl
But T(x) = 0j therefore
14 x)= 2 = ¢{x)
d N 1+ THx) h
If x = 0, then 3(p - x) =8(p)=1=c¢{0)s If x=p, then

8{p - x})=8{0)= 0 =C(p). Hence the theorem holds for
any x = 0 in Ep,pj., ’

HNow let «p~x<<(0,: Then

T{~p - x)}

'\‘ 1+ P*{=p ~ x)
1l

ol

I

$(-p - %)

i
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But T{x) << 0; thesreafors

S${vp =~ x) =~ = = = ~G(x).

AN F T *(x)

If = = 0, then 8{~p ~ x) = 8{-p) = =1 = =C(0). If X = ~p,
then 8(~p = x) = 8(0) = 0 = «C(=p)+ . Hence the theorsm
holds for any x =0 1in [:psp] .

Theorem 3,12: For every x =0 in [-p,p], C{p ~ x)

= $(x); for svery x=0 in [-p,p], C(-p = Xx) = ~8(x).

Let 0 = x<p, Then

1
N1+ T(p - x)

= 1
'\ll + [?:'x):):’

But T{x) > 0, therelfore

IT(x)
A 1+ (=)

c{p -~ x} <

=8(x).

If x = 0, then C{p -~ x) = ¢{p) = 0 =8(0), If x=p, then
C(p -~ x)=¢{0) = 1= 8(p)s Hence the theorem holds for
any x = 0 in Ep,p].‘

How let -p<<x<= 0. Then

1
Al 1+ Tr(-p -x)

Cl{-p - X} =
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But T{x) < 03 therefore

T{x)
N1+ 7x)

If x = O, then Cl=p ~ %) = C{=p) = 0 = «8{0)e If x = =p,

C{ep ~ x) = = ~8({x).

then ¢{-p -~ ) = C(0) = 1= ~3(~p)» Hence the theorem
holds for any x =0 in [-p,p].

Theorem 3,13t For every X in E-y,p"j, 85¥=zx) + ¢¥x) =

Let X be any point in {«p,p). Then

e P T
N1+mm) (Wirrm)|

8¥x) + ¢H(x) =

If x= p or -p, it is obvious that S*{x) + C*(x) = 1.

Theorem 3.1l: For every x &nd x,in (;p,p),

T{x,) + T{x.) _ -
TR T({x, + x.), T{x, + x,_ 2p), or

T{x, + x, + 2p) according as -'p<x, + X,< P, X, + X, > Py

or X, + X, =< =D

Let y.= x), y.= T(x,)s Then A{y )= % ,

‘f(x ) + Texa) ¥, + Ya
- P{x )T(x,) 1 -y¥.’"

Aly,) = %, and

tase I. Let «p=2x + X, =p, Then -p '<M'5"|) + &{y,)
-~ p and -p - Ay, )<Aly )=7p ~ A(y'). We may have y = 0,



7, < 0, ory = 0. Ify > 0, Al/y, y=1p - &ly). Then
A{1/y ) > aly,) and 1/y, > Y.+ 1f y,=< Oy A(L/y )= -p = aly, ).
‘l’h‘aix M,l/y. ) < aly, ) and 1/§, < Y.+ Hence |

('i’m:“‘i“‘?“) = Aly,) + Aly.);

T@ (*'**Y. Sf:ﬂ = raty) + &)

T{=x, ) + T(x.) _ P(x, + x,).
1 - Tx, )T(xz)

If y, = 0, then Aly,) = 0 and the same equation obviously

holds.

case II, Let x,+ x,> pe Then Aly,) + aly,} =P
and Aly,) >7p - Aly,). Also y = 0 and a(1/fy )= p - Aly,).

Thus Aly,) > A(1/y ) and y, = 1/y, . Hence

A (%\- aly,) + Aly,) - 2p3

e (] - o s - o

=T€x‘+ XL‘Q?)’

¢ase III, Let x, + x%,=< -p. Then AMy,) + Aly, )< -p
and Aly,) <-p - Aly,). Alsoy, < 0 and A{L/y, )= -p = A{y, ).

Thus Af{y,) =<A(1l/y,) and 7, ~ 1/y . Hence

b () = Ar,) + Ay + 20;

TEX(’::Y. YU = T[aly,) + Al3.) + 2]5
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Ttxx) + T{Kz)..
1 - T(x )T{x ) T(K‘ + x,_'*' 2p)¢

Theorem 3,15: For every x, and x, in [-p,p],

s{x,)C{x,) + 8{x,)C(x,)= 8(x, + x,), -8(x + x,~ 2p), or
-3{x, + x, + 2p) sccording as -p=x + X, =P, X, + X, > D,

or X, + X, << =D.

¢ase I, Let -p<=x + X,=p., First we will consider

-p< X, + X,<<pes Then
U Ix, + X))
/\j 1+ 7T%x, + x,)

T(x,) + T :x:
— 1 « Plx,

T oy

Referring to Theorem 3.1lli, we see that for -p=x, + X,<<p,

A(Y/y,) >aly,) if 3, >0, A(1/y ) < Aly,) if y,< 0, and

8{x, + x,)} =

A(y,)=014fy, =0, Ify,>0, /3> 7.+ Thenl -7y,7>0
and 1 ~ T{x )P(x,) =0, If y, <0, 1/y,< ¥.. Then 1>7y,7,,
l-357.>0,edl -~ T{x, )P(x,)> 0, If y, = O, then
1-7579 =0aeandl - T(x)T{x,) >0, Hence '

T{x,} + T{x.)
’\j f1- T(x.}’f(xlﬂl v o T(Xa)—r

Sx, + x,) <




— Tix,) ) !
AL+ Txx,) N1+ T(x,)
+ ;T{X&) . 1

AL T N1 T(x,)

= 8(x )C(x,) + 3(xy)c(x,).

We will now conslder X, + x,; = p, Then x,= p and
X,=p ~X,» Thus p - x, = p and x, = 0, For x, = 0,
S(x,) = 8(p -~ x,) =0C(x,) and C(x,) = C(p - x,) =5(x,).
Hence 8(x,)C(x,) + S(x,)c{x ) = 8%*x,) *+ ¢™{x,) = U= s(p)
= 8{x, + X,). )

i’icw gonslder x + x, = -p, Then «p = x, and

X,= =p - X,» Thus -p=-p - x, and X, = 0, PFor x = 0,

2
S{x,) = 8(~p ~x,) = ~C(x,) &and C{x,) =C{-p ~ 2 ) = -3{x ).
Hence 3{x )C{x,) + 8(x,)C(x )= ~3%x ) - Cl(xj):’— «1

= 8(~p) = 8{x, + x.),

Case II. Let x, + x,>p, If x, and x, are in (-p,p),
then

o T(x v xa - 2p)
N1+ [Tx, + x. - 2p))*

T(x,) + T{x.)
1__ - T(-Xl }T(XK)

. PR
T(Ki) + T{Xal
1t [1 - T(mwm]

Referring to Theorem 3.1l, we see that If x, + X, = p,

-3({x, + %, - 2p)=

>
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y, = 0 and A(1/y ) <<&(y,). Then Vy, < 5,5 1~ ¥,7,<0,
and 1 - T{x,)T(x,) < 0, Hence

-5{x, t+ X, - 2p) = Tx,) £ T(x.)

AR TER N S EREE TR

= 8{x,)c(x,) ¢+ S(xl)c(x,).

We will now consider x = p and X, in (O,p] +« Then
s{x,)o{x,) + 8{x.)C(x )= ¢{x,.) and -8(x, + x, - 2p)
= 8(-p = x,) = 8{p - x,) = C{x,).

Case III. Let x + X,<~p, If x and x, are in
(-psp), then

T(x, + x,+ 2p)
[r{x, + x, + 2p]*

-5{x,+ X, + 2p)= -
N Lo+

P(x,) + T(x.)
- 1,“‘ T{xl}g(xl)

Al Enx) s Tz
“ - sz.)'rcx;)]

Referring to Theorsm 3.1, we see that if x, + X,= -p,

y,=< 0 and A(1/y,) =Aly,)s Then 1/y, > ¥,, 7,7, = 1,

1-y979,<0, and 1 - T(x,)T(x,) =0, Hence

T{x, ) + T(Xs)
N - T )0, s 0%, ) ¢ T(m, T

S(x )c{x,) + 8(x)C(x,).

-8{x + x,+ 2p) =

i

We will now comsider x, = ~p and X, in Ep,O). Then
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s{x,)c{x,) + 8(x,)c(x,)= ~ ¢{x,) and -S(x, + x, + 2p)
= -8{p + x.) = 8{-p - x,) = ~C(x,).

Theorem 3,16t Por every x, and x, in [-psp],

C(X‘)G{KJ - S(X‘)?;(x_\)‘ = C(x, + X.)s ~G(X, t X, - 2p),
or =C{x, + x, + 2p) according as -p =X, + X,=p, X + X,

= Py O X, t+ X, << ~Ps
Case I. Let -p==x + X,= p. PFlrst we will consider
-p=<x, + X, < p+ Then

1
clx, + x,)= : e
‘ R EREITEN

_ B! _
T{x,) + T(x.)]*
'\‘1 + [ T(x‘}mtxfﬂ

Referring to Theorem 3.15, we see that 1f ~-p< X + X,= P,

then 1 - T{x )T{x,) =0. Hence

1l - T{X }T{xa)

Clx, + %) =" ,\\ - Tlx)T(x)]" t [Mx,) P (X, }]
-1 S
N1 +Tx,) N1+ T
T{xz,) . T(xs)

ATty N1 izl
= ¢{x, )C(x,) -~ 8{x, ) 5(x,),

We will now consider x + X, = p. Then x,=p and
Xo=p -~ X,« Thus p - x = p and x,=0. For 3 = 0,

$(x,) = 8(p - x,) =C(x ) and C{x,) =C(p ~ )= 8(x).
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gence C{x, )c(x,) - S(x) 8{x,) = elx,)8(x,) ~ 8(x,)c(x,)
= 0 = ¢({p) = ¢lx, + Xy},

¥ow consider x, + X, = =p. Then -p=2Xx, and X,= =P = X
Thus -p = =p - X, and x, = 0, For x, =0, S{x,) = 8(-p - x,)
= «C{x,) and c(x,)=20C(-p - x,} = -8{x )+ Hence
cix,)c{x,) - 8(x )8(x,)= -C(x)8(x,) + ${x )e{x ) =0
= ¢(~p) = C(x, + X,)s

case IT. Let x + x,=>p, If x and X,k are in {(=psP)s

then

‘C{xl + xz Ld 2?) e

Al + [T(x, + X, -2p}]*
1

T{x, ) + T(x,}]*
’\‘ L |5 Tcx\mm]

Referring to Theorem 3.15, we see that 1f X + X,=>D,

1]
t

1 - T{x, )T(x,)<0. Hence

-Clx, + x, = 2p) = Lo Dx)r(xs)
AT - T, + x0T

= ¢(x,)C(x,) =~ 8(x,)8(x.).

We will now consider x, = p and x, in (0,p]. Then
c{x JCc({x,) - 8({x,)8({x,) = -5{(x,) and -C{x, + x, - 2p)
= "C(“p + xa.) = "C(P - ‘xz) = "'S(xz_)*

Case III. Let x + X, < ~ps If X, and X, are in

{«p,pls then
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i
N1+ [r(x, + xk+2ﬂ-‘

- C{x, + %, + 2p)= -

— 1

1 + {T(x.} + T{x.)]*
1 - T(X,)T(KL)

Referring to Theorem 3,15, we see that if x 6+ xl-%-p,

then 1 - T{x,)T(x,)—0. Hence

1= Mz )T(x)

~C{x, + x,+ 2p)=

AT~ T(x)Tx,J]* + [T(x,) + T(x. )]
= C(x,)c(=x,) ~ 8(x )5(x,).

We will now consider x, = -p and x, in [~p,0). Then

c(x,)clx,) - s(x,) S(x,) =S(x,) end ~G(x, + x, + 2p)
= ¢{p + x,) = =Cl=p =~ x,) = 8(x,),



CHAPTER IV
THE TRIGONOMETRIC FURCTIONS OF A REAL VARIABLE

Definition li,1: Let x be any real number in (-p,p).

Then, for every integer n, tan (x + 2np) is defined to be

T(x). If x is an odd multiple of p, tan x 18 not defined.

Theorem lL,1: The function tan x is differentiable

and continuous for any real value of X octher than an odd
multiple of p, and tan x is discontinuous if X 1s an odd

multiple of p. Furthermore, D, tan xj = 1 + tan® a,

X= a
Let a be any real number not an odd multiple of p.
Then there exists & point k in (-p,p) and an integer n
such that a = k + 2np, Also tan (k + 2np) = P(k) and
(k)= 1+ T*(k)., Let e > 0 be chosen. Than there
exists & d > 0 such that for 0 <|x - kl=<24,

T(x) - T{k)
X -k

1+ 7*k) ~ < @«

Choose any X such that 0 < |x » a|l <= d. Consider the num-
ber x, = x - 2np, Then \x. -~ k| =|x ~ 2np - {a -~ 2np)|

=)x - a|, Thus 0 < |x, - k| <4, We have
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tan X - tan &
X - &8

1 + ten* a ~

T(xgj i T(k}

= ll YTk - (x,+ 2np) - {k + 2np)

=i1 + T k) -

foéz - gfk)l = o,

Hence tan x 1s differentiable for any real value of x

other than an odd multiple of p and D, ten x| = 1 + tan™ =,
X=

Por any real valus of x not an odd multiple of p,

tan x is differsntiable and therefore continuous, Bince

tan x is not defined for odd multiples of p, 1t is discoatinu-

ous at thogse points,

Definition L,21 Let X be any real number in [;p,gﬂa

“Then sin (x + 2np) is deflned to be 8{x) or «8(x) accord~

ing as the integer n ls even or odd.

Definition li.3: Let x be any real number in [~psp] &

Then cos {(x + 2np) 1is defined to be C{x) or -C(x) accord-

ing as the integer n 1is even or odd,

Theorsm .23 For any real value of %, ain x 18 cone

tinuous and differentliable. Furthermore, D, sin x] = ¢OS

X= o
Let & be any real number, Then there exists a polnt

¥ in [;p,p] and an integer n 8uch that a =k + 2nps If n

18 an even lnteger, then sin (k + 2np) = 8(k), 8'(k) = C(k),

and cos (k + 2np) = Clk). There exists a d = 0 such that

»
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for 0 = |x - k| <=4,

oty - L= S|,

Choose any x sueh that 0 <= |x - a| < d. Consider the
number X, = X - 2np. Then |x, - k| = \:x - 2np - {& - an)\

=|x - a], Hence 0 < |x - k| < d. We have

sin x « 8in a
CO8 8 = si1 '

X - &

_ S(xg) = S(k)
‘C(k) T (x, + Zrip)s ~ (k + 2np)

_::’c(k) - 3{2:;3 :im) -0,

Thus sin x is differentlable when n is an sven integer
and D, sin xxl: Co8 a. ﬁimilarly we can show that sin x
is differentiable and D, sin ;c] = ¢08 & when n 18 an odd
integer. T

The funetion sin x 1s continuous for all resl values

of x sinee 1t is differentiable at those points.

Theorem 14.3_‘: For any real value of X, cos X i3 con-

tinuousg and differentiable. Furthermore, D, cos x] = =-3in a.
Y= a

Let a be any resl number. Then there exists a point
k¥ in f—-p,p] and an integer n such that a = k + 2np. If n
is an even integer then cos (k + 2np) = C{k), ¢*{k) = -5(k},

and sin (k + 2np) = 8(k). There exists a 4 = 0 such that



for 0 < |x - x| < 4,

,.‘S(k) _ C(Xi = g(k} — o,

Choose any X sueh that O < |x - 2| < 4, Conaider the
number X, = x - 2np. Then |x, - k| = |x = 2np ~ (& - 2np)|

= |x - a|. Hence 0<|x, - k| = d¢ We have

[ oin e Sz cene)
— Cl{xo) = S(k)
""S(k) " (x.+ 2np) - (k + 2up)
= |-stx) - Bl =Cld)_

Thus cos x is differentiable when n is an even integer
and D, cos x] = -8in a, Similarly we may show that cos x
is differen;:.:i;bls and D, cos x:] = -~gin a when n 1s an
odd integer, N
The function ¢os x 13 continuous for all resl wvalues

of x since it 18 differsntiable at thoss polnts.

Theorem li.lit For all real values of x,

sin>x t+ecogs*x =1,

Let x be any resl number., Then there oxists a point k
in [~p,p] and an integer n such that x = k + 2np., Thus
sin (kX + 2np) = 3(k) or -S(k) snd cos (k + 2np) = c(k) or
-C{k) eccording as the integer n is even or odd. Hence

8inlx + cos* x = 8% (k) + ¢(k) = 1,
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Corollary L.hi.l: For all real velues of x, sin x

==:tAQ 1 +cos™x and cos8 X = + «J 1 + g8in* x,

Theorem li,5: For any real value of x not an odd
gin x
€08 X

multiple of p, = tan X4

Let x be any resl number not an odd multiple of p.
Then there exists g polnt k in (-p,p) and an integer n
such that x =k + 2np. If n 1s an even integer,

sin{k + 2np)= 8(k), cos {k + 2np) =C{k), and tan (k + 2np)

= T(k). Thus
Tk
sin x _ S(k) _ _ N L.+ T(3 wruy |
cos % (k) | 1 T{k) = tan x
A1+ T (k)

Similarly we may suow that the theorem holds 1f n 18 an odd

integer.

Corollary L,5.13 For any real value of X not an odd

multiples of p, 8in x = ¢o8 X tan x.

D&finition iz Por any real value of x not an even

rmaltiple of p, cot x==-§§§w§; for x an even multiple of p,

cot % is not defined,

Theorem 1.0t The function cot x is differentiasble and

continuous for any real value of x nol an even multipls of

ps 8nd cot x 1s discontinuous 1if x is an even multliple of p.

1

’ ; or ' eot ;]=-*~wm*m~
Furthermore, D, ] sinia’
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Since, for any real value of x not an even multiple of Ps
sin x 7 0 and both #in x and ¢os x are differentisble, then

it follows from Theorem 1.l15 what cot x is differentiable,
-sin®e - cos®a _ -(sin*a + cos* a)
sin* a sin®* a

Also Dy, cot x_]=

 X=2a
=-0~m~?-1m »
sin* a

The function cot x is continuocus for all resl values
of X not an even multiple of p since it is differentiable
at those polnts, &ince cot x is not defined for even '

multiples of p, it ls discontinuous at those points,

Definition L.,5: PFor any real value of X not an odd

1

multiple of p, sec X = ooty for x an odd multiple of p,

gec X 1s not defined.

Theorem Li,7¢t The function see¢ x is differentisble and

continuous for any real value of x not an odd multiple of p,
and sec x 18 discontinuous for x an odd multiple of p.

Furthermore, D, 8sc ;] = get¢ & tan a.

X= o
Since, for svery real value of x not an odd multiple
of py, co8 X0 and cos x 1s differentiable, then it follows

from Theorem 1,15 that sec x is differentisble. Also

sin a 1 . 8in a
cos®a cos a ¢co8 8

D, sec x] =

A= on

= sec¢c a tan a.

The function sec x is continuous for all real values of x

not an odd multiple of p since it is differentliable at those



38

points. Since sec x 1s not defined for odd multiples of p,

it is dlscontinuous at those points.

Definition L.6: For any real value of x not an even

multiple of p, cse x;=:g§%w§; for x an even multiple of p,

ese X 1g not defined,

Theorem 4.8t The functlon esc x is differentiable and
continuous for any real value of X not sn even multiple of
py, and csec x is discontinuous if x 1a an even meltiple of p,

Furthermore, D, ¢sc x] = =~c8c 8 ¢c0t a,

X=on
Since, for any real value of X not an even multiple of
ps 8in X # 0 and sin x 1s differentieble, then it follows

from Theorem 1.15 that cse x is differentisble. Also

. .7_ _coma _ 1, cosa _

The function esc x 18 continuous for all real values
of x not an even multiple of p since it is differentiable at
those pointe. B8ince cse x is not dsfined for even multiples

of p, 1t is discontinuous at those points,

Theorem l4,9: For any resl value of x not a multiple

1
tan x °

of p, cot x =

Let i be any real number not a multiple of ps Then

1. = 1 -~ $08 X — ot x.
tan x gin % sin X

co8 X
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Theorem l.,10¢ For any rsal number not an odd multiple
Aof py 86C 'x = tan® x + 1, |
Let x be any real number not an odd multiple of p.

sin"*;c+1__sin’"x+caa’“x= 1
cos~x COB* X cos 2 x

Then tan* x + 1 =

= sgsc? X,

Theorsm k.11t For all real values of X not an even

maltiple of p, esc® x =1 +eot™ x,

Let x be eny real number not an even multiple of

cos*x _sin*x + cos*x 1
sin*x gin* x sin? x

pe Then 1 +cot™ x =1 +

= esc " x.

Theorem .12: Por all real values of x not an odd

multiple of p, tan {~x) = ~-tan X,

Let x be eny real number not an odd multiple of p.
Then there exists a point k in (~p,p) and an integ;e;r n such
that x= k + 2np. Also ten (k + 2np) = T{(k)., From
Theorem 3;7', we have T{=k) = «~T{k). Then tan {~x) = <tan X

Theorem l;,13: For all real values of x,

sin {-x) = «8in x,

Let x be any real number, Then there exists & point k
in [-p,p] &nd an integer n such that x =k + 2nps If n 1s
an even integer, sin (k + 2np) = S{k). From Theorem 3.8,
we have 3({-k) = *S(iﬁ). Therefore sin (=x) = 3(~k) = «3(k)

= - 3in X.
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Simllarly the theorem holds 1f n is an odd integer.

Theorem li,lli: For all real velues of x,

cos (~x) = cos x.

et X be any real number. Then there exists s point k&
in E-p,p] and an integer n such that x = kX + 2np. If n is
an even integer, cos (k + 2np) = C{k)., Prom Theorem 3.9,
we have C{-k) = C{k). Thersfore cos {(~x) = C{«k) = ¢k}
= €08 X,

Similerly we may show that the theorem holds if n is

an odd integer,

Theorem lt,15: For any real value of x not sn even
multiple of p, cot (~x) = « cot x,.
Let X be any real number not an even multiple of p.

cos {-x) _ ._cos x
sin {-x) -8in %

Then cot (-x) = = .gob X.

Theorem l1,16: For any real value of X nobt an even

multiple of p, c8c {~X) = = eS¢ X

Let x be any real number not an even multiple of p.
| N 1
sin («x} ~sin z

Then cse (~x) = = ~G8¢ X,

Theorem L,17: For eny real value of x not an odd

mailtiple of p, seec {-x) = sec x,.

Let X be any real number not an odd multiple of p,

, — 1 1 _
Then sec (=X) = gooSproy = Toi-g = sec X,
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Theorem li,18: For all reel values of x, and x,,

except where x , X,, or x, + x, 1s an odd multiple of p,

tan x, + ten X,
1 « ten x, tan x, °

tan (x, + x.)~

Let x, and x, be any two real numbers not an oda
multiple of p, We may determine two points k, snd k, in
{~p,p) and two integers n, and n, such that x, = k, + Qn‘p,
and x, = k, + zn;p. We may alsc: determine a k; in (-p,p)
and n;= 0, 1, or -1 such that k, + k,= k, + 2n,p accord-
ing -p<<k, + K, < p, k,* k,>p, or k, + k,<-p., Then
for x, + x, not an odd multiple of p, we have x, + X,
=k, * k)t (n, + n)2p=k,+ (n *+ n,+ n;)2p. Also
ten (x,+ x,) = T(k;), tan x, = T(k,), and tan x, = T(k.).
Hence

tan x, + ten x, _ T(k,) + T{k.) .
1~ tan x, tan x, 1 ~ T(k )T(k,)

Prom Theorem 3,1l,

Tlk,) + T{k.) _ .
1l - T(k,}’r(k:%'"‘ Tk, + k,}y ™k, + k, - 2p),

or T(k, + k&, + 2p),

accardmg a8 -p <k, + k,=<p, k t k,=p, or k, + k,<-p,
But Tk, + k,) = T{k,;) for -p <k, 6+ k,~<p, T{k, + k, - 2p)
= T{k;) for k&, + k,>™p, and T{k, + k, + 2p) = T(k,) for

k, + k, <-p. Hence
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tan x, + tamv Xa
1 - tan x,tan x,

= tan (x,+ x,).

Theorem l;,18: For all real values of X, and x,,

sin (x, + x,) = sin x,c08 x, + sin x,co8 X

 Let x, and x, be any two real numbera, We may deter-
mine two points k, and k, in [-p,p| and two integers n, and
n, such that x, = k, ¥ 2n,p, and x, = k, + 2n,p., We may
also determine a k; in [«p,p| and n, = 0, 1, or -1 such that
k, v k, = k; t 2n,;p accordin: as «p=%k, + k.= p, k, + k.
>p, or k, + k,<<-p, Then x, + x, =(k, + k,) +(n, + n,)2p
= k; + (n, + n, + n,;)2p. 4lso sin (x, + x,) = S{k,) or
-8(k,;) secordinz as (n, + n, + n,) 1s an even or odd integer;
sin x, = m(k‘) or -5(k ) and eos x, = C(k ) or -C{k )
according as n, is an even or odd Integeri sin x, = 85({k,) or
~8{k,) and cos x, = C(k,) or ~Clk,) sccording as n, is an

even or odd intepger.

Case I» Let n, and n,be aven Integers, or let n, and

n, be 0dd integers, Then
sin x,cos %, + sin x,co8 x, = 8(k )C(k,) + 8(k, )C{k ).

Also sin (x, + =x,) = 8(k,;) 4if n3; = 0 and »E(R,)v\ ifn;,=1
or -1, From Thsorem 3.15,

5(1’{4 1OEk,) +>S(}IL)C{L{C) = 3’“‘\ LA -S(k, + k. - 2p),
or - 8{k, + k, + 2p},



according as -p <k, + kK, =9p, kK, + kK, = p, or £ t+ k, <<-p,
But 8{k, + k,) = 5{k;3) for -p=%k + k,=p; -3(k, + k, -2p)
= ;5(;;3) for k, + k,=>p; ~8(k, + k, + 2p) = -5(k,)

}for k, + k, << =-p. Hence if n, and n, are oven inbtegers, or

if n, and n, are odd Integers,
sin x,co8 X, + sin x,co8 x, = sln {x + X.),

Case IT. Let n, be an 2ven Integer and n, an odd
integer, or let n, be an odd integer and n, an sven integer,

Then
8in x,co8 X, + &in X,c08 X, = = [3(&«:,){3{1&1) + 3(‘}11)@(%,5} .

Also sin (x, + x,) = -8{k;) if ny;= 0 and 8(k;) If ny;=1 or ~1.

From Theorem 3 15,

- [stx,)00ka) + 8Ge)C(x,)] = =80k, + k,), S(k, + k. -2p),
| or S(k, + k, + 2p),

aceording as ~p=%k, + kK, <=p, k, + kK, > p, or k, + kK,<I-p,
But -8(k, + k,) = -3{k;) for ~-p=k, + k,= p, 8(k, + k, - 2p)
= 8(k;) for k, + ¥k, >p, and 8(k, + k. + 2p) = 3(k;) for

k, + k,< -p., Hence if n, is an even int@gar and n, &n od.d

integer, or 1f n, is an odd integer and n, an even integer,

sin % ,co3 X, + 8ln x,cos x, = ain (%, + x,}.

Theorem 11,192 For all real values of x, and X,, .

cos (x, + X,) = cos % ,co8 X, - 8in X 8in X,.
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‘Let x, and x, be any two real numbers., We may

determine two polnts k, end k, in [~p,p] and two Integers

n, and n, such that x = k + 2np and x, = k, + 2n,p,
We méy also datemime a ky in [‘up,ﬂ and ny; = 0, 1, or -1
guch that k, + k, = k, + 2n;p accordiﬁgg a8 ~p< kK, + K,
=p, bk, t k,>p, or k, + k,=< ~-p. Then x, + x, = (k, + k,)
+ (o, n,)2p =%k, + {n, + n, + n;)2p, Also coz (%, + x%,)
= Clx;) or -C{ky) mceording as {n, + n, + n,) s an even
or odd Integer; sin x, = 8{k,) or -8(k,) and cos x, = C{k,)

or -C{k,) according as n, 18 an even or odd integer; sin x,

S{k,) or -8{k,) and cos x, = C{k,) or ~C{k,) according as

n, 1s an even or odd integer. , .

Case I. Let n, and n, be even integers, or n, and n,

be odd integers., Then
cos x,co8 X, - sin X sin x, = C{k JC(k,) ~ 8(k,)8(k,).

Also cos (x, + X,) = C(k;3) 1f n; = 0 and ~C{k;) if n, =1

or ~1. From Theoren 3.16,

G, )0{k,) = 8(k,)S(k,) = C{Xk, + k,), =-Cl{k, + k, - 2p),

or ~C(k, + k, + 2p),

according @s ~p=k, + kX,=1Dp, k, * k,=>p, or k, + k, =-=p.
But C{k, + k.) = C{k;) for ~p=k 1+ kK, =p, -0k, + &, - 2p)
= ~({k3)} for k', + ¥, >7p, and ~-C{k, + k, + 2p) = ~Clk;)} for

-k, + k,~<-p. Hence if n,  and n, are even integers, or n,
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and n, are odd lubegers,
cos x,co8 X, - sin x sin X, = co8 (%, + %)
Let n, be an sven integer and n, be an odd

Case II,
intezer, or let n, be an odd integer snd n, an even integer,

Then

cos x,cos X, - sln % sin X, = =~ [c(k,}ﬂ{kl) - SEI{‘JSER&)’J v

Alasc cos (x, + X,.) = =C(k;} 1f ny; = 0 and C{k;) if n, =1

or -1, Pron Theorem 3,10,

~C(k, + X,), C{k, + k, -~ 2B),

-[ete ok, - 5(k,)S(1 )] =

or c(k\ + kz_"' gp)’

geccordlng 88 «p=<Xk, + kK, =p, k, + k, =P, OF B, + k,=~pa
But -C(k, + k,)= =C{ks) for -p =k, + k,=p; Olk, + k. - 2p)

= C{ks) for k, + k,>p; C{k + k, + 2p) = C{k;} for k + ki

< -p. Hence 1f n, is an even Integer and n, an odd latsger,

or 1f n, is an odd integer and n, an even inbeger,

cos X,c08 X, = 8in x,8in x, = cos (X + X,).
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