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CHAPTER I
INTRODUCTION

The Stleltjes integration was first introduced by
Thomas Jan Stieltjes in & memolr of 1894 on the subject of
oontinued fractions.! He defined the integration of a con-
tinuous function with respeet tc a mopotone non-decreasing
function, the integration beling performed cover an entire
interval,?

It is the purpose of this paper to define a Lebesgue
integral over a measurable set, the integration being perw
formed with respect to & monotone non-decreasing funotion
as in the Stieltjes integral, and to develop a few of the
fundamental properties of such an integral. HMuchk of the
development and generalization of such an integral is orede
ited to J. Radon, for whom the integral is often called the
Redon or Lebesgue-Radon integrel.® The definition of the

integral given in this paper appears to be equivalent to

1 17esse Douglas s gm_z of the Theory of g‘&mggation,
P» D

%7, H, Hildebrandt, "On Integrals Related to and Exten-
sions of the Lebesgue Integrals", American Mathematlcal
Soolety Bulletin, pp. 177-178.

3 o ooy
Stanislew Saks, Theory Integra
lated by L. C. Young. o

ion, p. 67, Transe



that given by Hobson', 3o that we sball, as he does, refer
to\the integral as a Lebesgue-Stleltjes integral.

Ail functions used 1n this paper willl be assumed to be
single-valued and defined on some set E., By a set we ghall
in all cases mean a linear set of points. For sonvenience,

we list now the majority of definitions to be employed.

Defigitiog 1:d. If S, and S, are any two sets, then
31 + 8 will mean the get of all polnts whieh are in either

81 or S {or both),

ﬁeginitgeg ;&&‘ Ir Sl and 3 are any two sets, then

will mean the set of all pcints whioh are 1u both 8

88 1

ﬂnﬂ Bal

Definition 1.3, 1If Sl and Sa are any two sets, then
$1~ 33 will mean the set of all points which are in sl but
Definition 1.4, An open interval (a,b) is the set of
all points x such that & < x < b, A olosed interval {a,b]

is the set of all points x such that a < x = b,

Definition 1.,5. A point set 5 will be oconsidered
bounded if thers exists an open intervael (a,b) such thaet
every element of 8 is a polnt in (a,b).

1&*. W. Hobson gggm mg; na of g Real
! ﬂgb&ﬁ’ P. 663, ' m 2&



Definition 1,6, A function f(x) will be considered
bounded on the set E if there exists s gonstant M > 0 sueh
that |£{x)| = ¥ for every x in E.

Definition 1.7. A covering of a set S i3 a set K of
open intervels sush thet every point of 8 is in at least one
of the intervaels of K.

Definition 1.8. A set E is of Lebesgue measure zero
if for every € > 0 there exists a covering of E with length

gunm < €.

Definition 1.8, The greatest lower bound (g.1.b.) ot»
a set B is the number L such that for every x in E
x>L
and sueh that for every € > 0 there exists an x' in E such
that |

X< L +&,

Definition 1,10. The least upper bound (l.,u,b,) of a
set E is the number U such that for every x in E
Xl |
end such that for every € > 0 there exists an x' in E such
that

X‘>U""€'c

Definition 1,11. The g.l.b. of a function f£(x) on a
get E ig the number L such that for every x in E
f{x) =1L



ard such that for every € > 0 there exists en x' in E such
that
f{x') < L 4c.

Definition 1,12, The l.u,b, of a function £(x) on &
get E is the number U such that for every x in E
L rix)= U
and such i;hét for every ¢ > 0 there exists an x' in E such
that ‘
_t(x') >U«¢€,

Definition 1,18, Let S be any bounded set contained
in {a,b), Let {I,} be any covering of S and denote by 1{I_}
the lemgth of the interval L. Then the g.l.b. of Z_1(1)
for all finite or denumerable coverings of S ls defined %o
be the gxterior measure of S and 1s dencted by ma(s,l%, De=
noting 8 = {a,b) - 8, we let the interior measure of S be
represented by the symbol m‘{{s) and define

m(8) b ~a- m (8).

Ir miﬁs} = my {s), then we shall say that 8 is measurable
and denote its measure by m(S) = m,(8) = m'_a(s}s,’“

Definition 1l.l4. Let 5 be an unbounded point set,
Then we shell define S to be measurable 1f, for every posi~

tive integer n, the set S, = (=n,n)+8 is measurable. If B

mlﬁ. P, Thielman, Lectures on the Theory of Funstions,
Pe e
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is measurable, we {define

n(g8) = 1im m{S ),
i oo n

Definition 1,15, A funotion f{x) 1e said to be measur-
able if, for every real number k, the set E = %[ﬂx) > k.]

is measurable,

Definition 1,16, A function g(x) is momotone non~

deoreasing over E ir, for every two points X, > X, in E,

@(xli > glx,).

Definition 1,17, A funotion 1s of pounded varietion if

it can be represented as the difference of two bounded mono=

tone none-degressing funotions.

Definition 1,18. A funotion g(x) defined on & set E
is said to be a Lipsohitzian funstiop or to satisfy a Lip-
sohitz gondition if there exists s oconstent M such that

r{x ) - glx M| < ¥lx. - : ) _ B It 4
‘g{xli g(za)l < m‘xl :xz\ for all x, and x, in E.* It is
noted that if g{x) is monotone non-decreasing, the absolute

value signs may be removed, provided xl > XB'

Definition 1,18, 1Irf g{x) is & monotone nma.-de@masmg
funotion on the set B and if for every measurable subset E*
of B the ordinate set Y* = %[}r = glx), x in E*] is measur-
able, then we shall say that g{x) is Y-measurable.

lgaward James MeShane s iD

ggration, p. 50,



Definition 1.20. A funection g(x) is absolutely ocon-
tinuous on E if for every €>0 there exists a o > 0 such
that & |elfy) - el4 )| < € for ell finite or denumerable
sets of non-overlapping (exeept on the end-points) intervals
{Inz - [o‘n,(gn] whose length sum 2—_1(11) < S end such that
for every i, 4; and 3, are points of R

We shall assume the truth of the following theorems,

_ If 8y and S, are any two measurable sets
whose o'mrlapping ig a set of measure Zero ’ then 8 = 83_4\- 8g
is measuradble and m(8) = m(sli % m(,ﬁgl.

Theorem 1.,28. If 5y and 8Sp are any two measurable sets,
then 8 = 8,8, is messurable.

Theorem 1,3, ZEvery nmull, finite, or denumerable set

is of measure zero.

Theorem 1,4, If 5, and S; are any two measurable sets,
then 8 & Sy~ S is measurable. If S; contalms Sp, 1.e., ir
Sp is a subset of 87, then m(8) = m(S;) ~ m(8,),

Theorem 1.5, If £ (x) and f,(x) are any two measurable
funetions, then
(1) ¥(x) = £y(x) + £5(x) 1s measurable,
(11) Fi(x) = fy(x) - £g(x) is measurable,
(3.3.1) F(x) = :tltx) * fp(x) is measurable,

laazapare 1bm.. pp. 4748,



Theorem 1.8, Let g(x) be a bounded monotone none
decreasing function on the measurable set E, A negessary
and sufficient condition that g(x) be Yemeasurable is that
for every subset E¥ of E with measure zero, the ordinate

gset Y* = g[y s glx), x in E*] be of measure zai«:o.l

Theorem 1,7. If £{x} is any measurable function, the
set E = g y! < £{x) < y"] is measurable for every y'< y".

I‘%‘bmn, P m., pe 341,



CHAPTER II
SOME PROPERTIES OF A LEBESGUE-STIELTJES INTEGRAL

We are now in a position to meke our initiel definition
of the integral,

Definition 2,1. Let f(x) be measurable and bounded on
the measurable set E, Let g{x) be a bounded, monotone non-
deoreasing, Y-measurable function over E. Let U denote an
upper bound of £{x) over E and let L denote a lower bound,
not the g.l.b., of £{x) on E. Let

G‘:L=ya< yl<?*2< . . ‘<yn-*1.<yn="u
be any subdivision of [1,U]. Denmote by E, the set of points
; : < - - ;
x at which Vi1 < £{x) £ vy and let Yi ?[y g(x), x in Ei]’
Then

QO

Z m(Y )

A
‘-_

S gin
; 5. ‘Yi) ’

IV Bulebe OF S_—_@ for all possible G,

Pl
e

and

S iv: l.u.b, of E__ ¢ Tor all possible (W
B =

& o g = g , then their common value will be defined to be
E JE



the Lebesgue~Stieltjes integral of f(x) with respect to g(x)
over E and is denoted by

S Lix)dg(x).
E

Theorem 2,1. The L-S lntegral is independent of the
choice of an upper hound U and a lower bound, not the g.l.b.,L.

Proof: let f£{x) be any single«valued funotion defined,
measurable and bounded on the measurable set E, Let g(x)
be any bounded s monotone non~deoreasing, Y-measurable funetion
over E, Choose any upper bound U of f(x) on E and let L be
any lower bound which is not the g.l.b, of f£(x) on E. Dsnote
by U* and 1* respectively the l,u.b, and the g.1.b., of £(x)
on . Then U 2 U*, L < L*,

Using the notation of the definition let ¢ be any sub-
division of [L ,U]. Choose the positive integer M 80 that

£
Y1 -1

: = 1.% = v . - : . » ¥ - - U7,
Let ;f"é L » Yi g“’ ?“fa‘ &*1' . e ¥ y;""l yV“l, y; u*
Then

= L* < y, end a positive integer v so tha < W< e

B, 3w g[yi~l< fix) < ydv
B} i §[y‘§‘__l < £{x) ¢ y‘i],

Y, v g:,[y = glx), x in 31]'

and

Y‘; e %[y = gl{x), xin E‘i]-

Thus
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Ml

oF ml¥y) + v v ry gulY _q) ¢ ymlL) + 5 ﬂmt‘gwll'
'("non“'yP]ﬂ(Y)“‘y\)*lm( l)‘\'oc u"! nm(Yn)'

H\’l

= you{%y) + o o s 4y _omi¥ ,1) * YT+ g (T )
*...*yvlm[Y)+ypm( *1)+..o+ynlm(Y).

Demote by Y5 the set of points & |r = elx), x in E** | where

* 3 ﬂr(x) = 1*]. Let

MI
il

yim(¥s) + >_ yin(v}),

HVI

! |
c':&
aé
,Tfk.
i

3
B
3

‘Since and y“; bound the funetion f(x) cver E, we have

%

Z@*?ﬁm(Y"’*Y*)*y*gm(Y*)*. » w‘\'ypm( )
s ym(Yg) + yim(Y]) + ygm(y3) + . . .
+ ypu(Tg) + (v~ yEin(¥p).

But y,- y; > 0, Henoe i—pe iq\t: Since ¢ was an arbitrary
subdivision of [L,B], it follows that for every subdivision
¢ of [L,U] there exista a subdivision ¢* of [_L*,I)"‘] so that
() S.x 2 .
Next, let ¢* be any subdivision of [_L*.U*] and let
Yo * Ly ¥y = Yg = 1%, Yo * ?in SEIEIEIR " y§ and 1f
U>T*, let y , = U [If‘ U T, gy, E:]. Then

i@ yymiY, ) ym(Y) 4. ..k ymém(Y

kej'* Ve
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where J = 1 or 2, and

2 o= vim(¥s) & yim(r) + . . . 4 yimlT)
* yimiTg) - 07 - yg)m(Yﬁ).t.iiv )
RPN AR A SN

i.e.,, for eny subdivision ¢* of [L*,U*], there exists a
subdivision ¢ of [I.,U] such that

(2’) Eqka z q"
Now

SE ® g.l.b. for all posslble ¢ of E_@.
Then from (1) it follows that
SE > g.1.b. for all possible ¢* of Z@*,

and from (2) we have

(; € &+1+b+ for all possible o* of 2ok

It follows that

SE = g.1.b. for all possible e* of Z_S*,

which is independent of the cholce of L and U, In a similar
fashion, it can be shown that '

SE = 1.u.b. for all possible ¢* of ;Gk,

-—

80 that S is also independent of the cholce of L and U,

E



Thus the theorem follows,

Let £{x) be any bounded, measurable function on the
measurable set E and let g(x) be any bounded, monotone nonw
decreasing, Ye~measurable funotion defined on ¥, Referring
to the notation of Definition 8.1, we state the following
four theorems,

Theorem £,8. If ¢ and G, are two subdivisions of _

[_L,I’I] such that every point of Gl is in G‘a, then > Qs E .
, 3 ‘
— N .
and 2_ G = - <,

First let ¢ be a subdivision of [L,H] and denote by ¢*
the subdivision of [&,U] aansista_.ng of all the points of ¢
plus one extra point, say y*. Then we shall denote

®3L=VO< Yl< « s o &7 <y#l<' . ¢<Yn“1<yn’=‘ur

»
o* =L=yg<yl< ‘ ..<yp<y*<yp*1< PSS TS

Lot B, = Ely, ; < £(x) £ v}, and let B* = gy < £(x) < y*],

*
BX §[Y* < f{x) ¢ yp*l] Let Yi be the set of funetional

values for g{x) over E, and let Y* and Y** be the set of

i
funetional values for g(x) over E* and E*¥, respectively.

Then

g‘l—_@kz ylm(Yl) e o0 o» ¥ Y m(? ) + y"‘m{‘f*} + ‘yp*lm(Y“}

+y m(Y

p*zl*...«‘»ym(?)

22+ vmlr*) « - m(Y**) - *lm(Yp*l)

‘Z_ peaB(T) 4 7 m(r*) - BT )

= U.
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-

=S . YREY .
Z‘:u‘- ywlm(ﬁ* B I yp«-lmwp«»l

ML

‘ ¢
Hence Z_q;k < Z ¢
that ;c‘\ > Z_ »

— ¢

Hext, let & and Ty be any two subdivisions of [L-.H]

sueh that G‘g oontains every point of 6"14. Let ¢ denote the

number of polnts in Gfl and let g +i denote the numbery of

points in @3«. I£41=0, thé ‘theorem 1s obvious and 12 1 = 1,

. In a similar fashion, it ean be shown

it has been proved in the preceding parsgraph. Let X demote
the set of pas‘itivg integers, 1, for which the theorem 1is

true. Then K contains 1. Suppose K contains k. Let 6‘3

mmist.bf all the points of 6‘1 plus k 4+ 1 additional points,

Choose one of the k + 1 additional points, say ) and
'denot;e, by «‘3 the subdivision consisting _éaf &)}l the polnts

o —
——

of 6‘2 exgept x. Sinee K contains k, Z"“s < 2 o and
{

Z__@ > Z@' But K also contains 1, Hence Z@zéZQ
= ¢, =g

—— ’ T— —_— > —
andk____@z_é;%. Thus Z_@zﬁg—_aand ZGZ'L-'f('
Therefore X contains k + 1. By induetion, K contains every

positive Integer and the theorem follows,
Theorem 2.3. If ¢ is any subdivision of (L,U], then
_F

; ¢ - LC.

For, let ¢ be any subdivision of [L,U]. Then
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[
M

> 0.

Theorem 2,4, If €, and G, are any two subdivisions of

ol Z 4 ¢ Z_@;

Let 6‘1 and @, be eny two subdivisions of [L,U]. Denote
by 6‘5 the subdivision consisting of all the points used in

6‘1 and 6‘2. Then by Theorem 2,2,

¢
> ¢
By the preceding theorem, S . € Z . Hence

Theorem 2.5, ( > »
Tmeorem 2.5 § x>,

For suppose otherwlise, i.e., suppose SE < Sﬁ. From
the definition of the upper and lower integrala, there exists

a G‘l and a 6‘2 sueh that

Choose € = %( SE - gE). Then



#

k1
W —

> 0.

But from Theoren 2.4, Z_ - LC__. “< 0., Therefore the
=X 0

supposition was falge and the theorem follows.

Henceforth we shall say [L,Er] is admipsible if L is &
lower bound, not the g.l.b., and if U is an upper bound of
f£(x) on E,

Theorem 2,8, Every function bounded, single-valued and
measurable over the measureble set E is L-8 integrable over
E with respeoct to a function bounded, monotone non~decressing

and Y-measurable over E,

Let €> 0 be arbitrarily chosen and using the notation

of the definitlon 2,1, let
=y <
¢:L Yo y1<y&<...<yl<y i
be a subdivision of eny admissible [L,U] such that for every
1€ 41€n,
<
1" Na<am 1’

where Y = §[y = g(x), x in B|, Them

Oézc‘“ E———ez

4
yulx,) « £ vy ymlTy)

C2f

‘[\”IF

[
1
—

c

-
\\f(z
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h

€ .
R it

=1

< A
| m;ﬁ*lm(ﬁ

<€,
But

Thus §

Since € >0 was arbitrarily chosen, this imequallity must
hold for every €>0. It follows thet

Z@é Sﬁé SE{: ZG‘*
0 = E*SE<C’Q

om 2,7. Let £(x) be a bounded, single-valued,
measurable funstion over the measurable set B, Let g(x) be
- a bounded, monotone non-deoreasing, Y-measurable function
over ¥, Then a necessary snd sufficlient condition that f£(x)
ve 1-8 integrable with respeet to g(x) over E is that for
every ¢ >0 and for every admuissible [L,‘s‘;'z’] there exists &
subdivision ¢ of [_L .II] sueh that

——

T . <o

¢ =
Sufficieney: See Theorem 2.6,

NHesessity: OSuppose that for every ¢ >0 and for every
admissivle [L,U] there exists a subdivision ¢ of (L,U]
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such that

2po b a<tn

& = ‘

Choose an arbitrary € > 0 and any admlssible [L,E]. Then
there exists a subdivision ¢ of [I.,U] such that

zc” ;c< €

_S-é—_vgg_e_ @,wd-%;&.

But

™M

Thus it follows thatl

—S*S_<e.»

Since this result can be obtained for every preessigned
€ > 0, it must follow that

Therefore SEf {x)dg(x) exists. It bas previously been shmm\

that the L1-S integral is independent of the cholice of admise
sible [L ,U]. The truth of the theorem follows.

Theorem 2,8, If f{x) is bounded, single-valued, and
measurable over the measurable set E, if g(x) is a bounded,
monotone nos-decressing funotion defined over X, end 1f g(x)

is Y~measurable over E, them

Lem(Y) = Sgﬂx)ﬁa(x) € vn(Y).



Let & be any subdivision of [L,U], Then

S ypaly) < & walry) = U3 m(y,) = miv,

and

2"
Lo® 27y, m-me)wz_m( ) = La(¥).

J!\’i

o= st = 5

Therefors,

) <t = mm,

heorem 2.8+ If £(x) 1s bounded, single-velued, and
meagurable over the measurable set Ky, 4 gi{x) 1s bounded,
monotone non-decreasing, and Yemeagurable over E, then £(x)
iz 1~5 integrable with respest to gix) over any measuravle
gubset of E.

Let ¥ be any measurable subset of X, Sinos f(x) is
bounded cver E, it is bounded over M. Beonuse £{x) is
measurable cver E, the set of points of E where f(x) > k,
for any real k, is measurable., Sinve the set of polnts of
¥ where £{x} > k is the product of M aund the set of points
of & where £{x) > k, it follows that 3[f(x) > k, x in ],
for any real Xk, is measurable, Hence f(x) 1s measurable
over M, Olearly, £{x) retains its boundedness and is monow
tone nonede¢reasing over M. Hence by Theorem 8.0,
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S lﬁr {x)dg{x) exista.

Theorem 2,10, If £(x) 1s bounded, measurable, and
single~valued over the measurable set E, if gl(x) is bwnded,
monotone non-decreasing, and Yemeasurable cover E, and if El
and E. are non-overlapping measurable subsets of E suceh that

2

E = E + E,, then

S f{xjdg(x) and S £{x)dg(x)
) %
both exist and

( rmiceto = §_ et + s,
B E b3
1 3
By the previous theorem S £(x)ag(x) and S t(x)agix)
Eﬁt
both exiast.
Let €>0 be arbitrarily chosen and choose an upper
bound U and a lower bound L, not the greatest lower bound,
of £{x) on B, By Theorsm 2,7, there exiasts a subdivision &

of'[L,U] sueh that‘zg_@ - %@<e, where %@ and %@

are the upper and lower sums over E. Thus

stz m{Y)v&-ym(Y)*..o-\vym(Y)

where E, E[yé y ¢ flx) < yé]m and ¥, %[y 5 glx), x in E]
- Using similar notation,

——

Zﬁ@ yyR(E ) 4 TAlT) 4 o o o 4 ymlT)
1
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and _
ZE; s ylm('fal) * ygm(Y%) L PR ynm(Yan)
where
E“ = §[Yj-1< £lx) < yﬂ.Ei
and

Yy =By e, xmy,],
i=1,2, Clearly, for J 1,8, «+ «+ « 4 1,
E, = ‘
37 Byt By
end El 5 Ea P are non-overlapping. Then it is celear theat for
1% 142, + o ¢y 1y
Y, =Y, .+Y_,.
§T T Ty
By Theorem 1.6, YJ-J overliaps Yg j on at most a set of measure
zero. Therefore, by Theorem l.l, for J 1,2, . . » , 1,
m{Y,) & n{Y,,) + n{Y,_,).
(¥,) = m{¥},) + m(¥,).
It follows that

S o= v+ > ..
ES B E,

S S
E El Eg
Also,
> < £{x)dglx) = >__,
(O EG‘
E 1 1
and

M
9
N
)
L
X
&
2
[
M
3



81

Adding inequalities gives

<. — —
2ov g el tmaem » ( rmagm = 5+ S,
E E, le gxa | E,; E,
oxr

%@ = gmlt(x)dg{x) * gx:m%‘x) = %@.

But %p < gEﬂx)dg(xi = LE‘"’ It follows that

‘ g fi{x)dag(x) - [S tix)ag(x) + g f(x)ds{x)]
E E, B,
i 2

S8inoe € >0 was arblitrarily chosen, it follows that

(rmdet = § rxicem » ( rxas,
£ E, E,

Deti n 2,8, Let £(x) be bounded and measurable
over the measurable set E. Let G(x) be a funcoition of bdounded

variation over E. Then G{x) = gllx} - 63(1) where both gl(x)
and ga(x) are monotone non~desreasing funetions, If gli(x) :

and g, (x) are both Yemeasurable over I then we define
2

SEf(x)dG(x) = gmr(x)ﬂal(x) ) gmt(x}dga(x).

Theorem 2,11, Let g(x) be a bounded, monotone non=
decreasing functlon over the measurable set E. A suffieient
condition that, for every subset of maasum zero, E*, of E,
the ordinate set Y* = ?‘;[y = g{x), x in Eﬂ be;a set of measure
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zero, is that g{x) be a Lipschitzlan funetion over E,

Let g{x) be a bounded, monotone mon-deereasing Lipsechitzien
funetion over the measurable gset E, and suppose E* is a sube
set of E with measure zero. If E* is null, finite, or de~
numerable, then Y* = EEy = gl{x), x 1n.ﬁ*] is at most a dew
numerable set, and hages iz of measure gerc. 3Suppose E* is
non-denumerable, Lot <> 0 be arbltrarily ochosen. Then there
exists a sequence of intervals {1&} sovering E* and such
that 5 1{I ) < 3 where M is the constant suoh that

8lxg) - glx)) < Mlx, - )

for every x, < x, in K. Consider the interval Ip~= {£5p)

1 2

of this sequence and denote E*xp by Ep. Suppose first that

Ep is a non-denumerable set, Sinece glx) is bounded on E,
g(x) is bounded on Ep. Denote k, the g.l.b. of gi{x) on
ﬁpvand by k, the l.u.b. of glx) on EPQ If k, ® k,, then
the set Y = g{? = gl{x), x in sp] is & single point and
gertainly may be sovered by an interval Jp such that 1(3»)&
BM{f - 4) = amltlp)» Suppose then that k, > ki‘ Then for
every x in Eg,

k, glx) < ky
end there exista an x; and an xﬁvin £ sueh that
glzl} < k; +5; elxg) > k, = 5

Me (S =~ Ko ~ kol
where S & min ‘f; 4?, 2 T %& It is clear that g(x;)

< g(x§)¢ Thus x§»4 xg, We have
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glxg) - g(x) = M(x, - x,
But lmg - 1' <f@=d4. Hence
glx3) - glx]) < Mg =),

*

Then ‘

(ky = &) ~ (&) +8) < HM{g=~4),

&y = k) = 88 <M(f =),
and
k, = K < H(I@wo() + 8BS,
< 2Ulg - a),

Let 7= (k) -5, k, 4+ 5), Then it follows that 13) =
M(ij.a But f‘fp sovers the ordinate set YP‘ Since 3:13 was
an arbitrarily chosen interval in the sequence {In s it
follows that for every interval I, in this sequence, the
ordinate set Y_= %3[_:; = g(x), x in Ea]’ where E_ 15 the set
1,+E, may be covered with an interval J  sueh that (T 5} <
2M1(I ), Thus there exists a covering {3’2;& of the ordinate
st Y* = X [¥ = elx), x in B with length sun X such that

A<y LT ),
_ - &
But Z_l(zn) < - Henoe .
' - T Cy
AL B o i

Sinee ¢> 0 was axrbitrary, the theorsem follows,

Theorem £,18., If k is any real number, if £{(x) is
bounded and measurable over the measurable set E, end if
g{x) is a bounded monotone non-decreasing, Y~measuyeble
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funcetion over E, then ggkr(x)dg(x} exists and
gmkz?(x)ds(x) =k gEt(x)&g(x).

Let k be eny real number, let £(x) be bounded and
measurable over the measurable set E, and let g(x) be bounded,
monotone non-deorsasing and Y-measurable over B, If F(x) =

kr(x), them by previous theorems F(x) is bounded and measure

able over E. By Theorem 2,6, SEF(xidg(x) exists,

If k = 0, then obvicusly Sgkf(x)ég(x) = kgﬁt‘(x)dg(x)‘

Suppose k > 0, Choose some admlssible [L,U| for the funotion
£{x) over B, Then kL < F{x]) = kU for every x in & and
[10,k0] 1o an aduissible bounding interval of F(x) om E.

Onoose n > ZE(U = L)AL, where ¥ = 5@ = g(x), x in E|, Con~

sider the two subdivisions
ot (LU sL<L+dU-N<L+EU-TI<. .,

<1+8ve-1) =u,
o* of [k,ku] + 4 <1+ 300 - 1) < K+ Ew - )

Coo s <K & S(XU - KL) = KU,
Let Y, = g[y= glx), x mmij where

Ei % g[x, * i—-gmitu « L)< Pf{x)=1L + ;’g(v* L)]



end let Y% = E(y = g{x), x in E*ﬂ whepe
ELZL + 00 - ) < Fa) £ 4o+ S - k.‘i-)]
Using the notation previously employed, we have |

‘"iw Lin(Y,) = 2U - Lam < 5,

¢
I~

"4
Yae 2 x® S kv wim(y) =E@-1mm< §.,

Then it follows that

) ng(x)dgfx) - Z@

€

<‘§E’*

and
S

2

‘ggh’(x)dgtx) - Z‘o‘* <

Now for every 1 <1 < n, Ei s E;. Henoe for every 1 < 4 = n,

I = ‘Yz, and we have

2p® 2l s A - ) miry)

XL+ lﬁw L}m(x’ }

(ol
-

"
P o
r""n

n

ki[x. * %m - L)] m(‘fi)

)]
w
M

Then
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‘g}g:ﬁ‘(x)&g(x) - kgEf(x)ﬁe;(X)‘ < ‘ gﬁﬁ‘{xld@m - Zf* ‘
¥ ‘Z‘G"‘ k2 g (
<. "
+ \ka kgﬁt(x)&sm‘

¢ |5 »
<S+04k \Z@* ggr(x)és(x}

< £ ..
A
- &,

Since <> 0 was arbitrary, it follows that

g F(xz)dglx) = kg £ix)aglx).
B E

Suppose k < 0, Then we may choose a lower bound L and
an upper bound U of £(x) over E and further specily that L
is not the g.l.,b., and U is not the l,u,b,, of £(x) on E,
Then [1,U] is an admissible bounding interval of £(x) on E
end [kU,kL]| 1s en aduissible bounding intervel of F(x) = kf(x)
on E, With the obvious modifications, the proof of the pre-
geding paragraph will suffice for the omse where k < 0.

yrem £,13. If g{x) is e bounded, monotone non-
decreasing, absclutely continuous funoction over the measur~

able get E, then g(x) 1s Y-measurable over E.
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Let z(x) be eny bounded, mcnotone non-decreasing, absoe
lutely continuous funetion on the measurable set E., BSuppose
E* ia any subset of E with memsure zsrc. Ohooge ¢ > O, Then
there exists & O > 0 such that Z\S(ﬂi) - g(a(i)k % for all
finite or denumersble sets of non-overlapping (except on the
end-points) intervals {13 = [4 ,4 | whose length sum S 1)

< o and where for each i, 4, and gy are points of E*, Since

E* is of measure zero, theraiaxists & set of open intervals
{12] covering &* and such that & 1(I¥)< S. Now the point
got sum F # Z I’; is an open set, Then F + Za"h wherye {Jn&

is a sequence of non-overlepping open intervals, Clearly,

{an} covers E* ant 5 1(7 )< S, Let us make sach of the

{31175 olosed, he‘.f it vefore J = (4,4 ), we now have J =
E‘n' F'n]a We now have a sequense of closed intervals i:n\gf
whioh overlep et most on the end-points, and sueh that {A' ::3
covers E* and > 1(3‘3) < S. Let us first remove from {a‘n}

all intervals which contain nc point of E* and consider the
remaining intervals denoted by {7*{, Let us remove from the
sequence {Jzz all intervals 3‘; such that the g.l.b. of glx)

on 3‘3 = the l.u.b, of g(x) on .T;, Call this sequence of inter-
vals %?»R and let the remaining intervsls of {agz be denoted
by S\Rn‘i’" Then the set of points Y* 5 ?@ = glx), x in 2% 5 En]
is at most denumerable, Consequently Y* 1s of messure zerc
may be govered with s sequence of intervals { Q’; { gueh that

s 1{}) < 3. Next consider the sequenoe {Rx;ﬁ » Let L, be the



geleb, Of glx) on Rt: ané L?t be the l.u.be of gi{x) on Rt‘ Then

Lt Ut end there exists an Xy and an X, in ¥ « Rﬁ sueh

that x1t< x‘% and

Blx ) < Ly * Dy
elxgy) > Uy = Do
- € [ ’ , = ¥ , .
where >\1.‘- mn‘;bm&w§ ’ %(Ut' ; L‘b’]‘ Let Zt‘ Lxltt#gtla In

exactly the pame menner, gongtruet an interval Z for svery
R, Then S 1z )<S. Let @tr = (glxy,) nx, glx, ) =5 )
From the property of absolute continulty, we have

Z\s(xg - 8lx) )(< T
and from the definition of N we see that
| S ey <=3,
Then E__ 1{@?} < §f¢ But RQ;*QS govers the sel
* s ?[y = glx), x 1n E*?:Rn].

Furthermore, the set Y = iEEy = g{x), x in Kﬂ is the sum of
Y* and Y**, Then the intervals {Q,;E and {Q;*z gonstitute a
eovering of ¥ of length sum < €, 5Sinee this result may be
obtained for every preassgigned € >0, it follows that Y is
of measure zero. Since E* was an arbitrary subset of E with
measure zerc, it follows from Theorem 1.6 that glx) is

Y-measurable over E.
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