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CHAPTER I
IHTRODUCTION

&1, Prelininary Remarks

1.1, Infinite seriles were first omployed in the seven~
teenth century but little theught was given them concorning
sonvergence or divergence, It was gensrally held, forx ax&mpla
by Lagrange, thad 1f the nth term of a series apppoached
zero a8 n inoreased, the series wes convergent even though
Bernoulll had given an exemplse which disproved this. UThe
Pipst mathemabicien to glve a necessary and sufflclent cons
dition for convergence was Bolzano, bub since his work re«
mained eclmoat undmown for a long perioed of time, our modern
theoriea of conversencs have come from the work of Caucshy
and Abel.t

1.2, By an infinite geguence of real nuwubers, in no~
tation fa,}, we mesn an ordered set of numbers which may be
mated blunuquely with the set of positive integers and which
are ordered like the nabural opder of tho set of positive
integers, i.8.,

81s 82y B3y ses 5 Bpp vee

such that each value of n, n = 1, 2, 3, +s. , determines a

1z, w, Hobson, [he Theory of Functiona of a Real Variable,
Vol, II, second edition revised, pp. B,
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unique term. When we say that a sequence gonverges to some
numbor a, we mean that for n large encugh, a, is arbibtrarily
close to a, A preclse, mathematlical definition of conver-
gence of a sequence of numbers ls listed below,.

1.3, 1If for every positive number €, no matter how

small, there axists an inteser N such that for n > N
'an - al < €,

the sequence fa,] 1s sald to converge bo &, in notation

ian}—»a¢2 That fa,} converges to a may also be written
lm%ma.

n—»
lupe A {formal) series of numbers is a (formal) ex~
presalon of term by berm addlition of a s@quenée. In other
words, & serlies may be obtained from a smequence by'reylacing
the eommas with plus signs., We will use the symbol Za, to
represent an Infinite series, i.e.,
fan = ag + ap + aB toees ¥ 8 F owee

When we say bthat a geries converpes to some number A, we

mean that if we take n large enough, the sum of the first
n terms iz arblirarily close to A. A precise, mathematleal
definition of conversence of & series of numbers is listed
bolow,

1.5, If for every positive number ¢ therec exists an

integer N auch that for n > H

2

Cf. ibid., p. L.



the series %a, 1s sald to converpe to 4, in notation 3a, = A
or zan—+‘A.3 |
1.0 It is interssting to note that for every serles

there iz a cerresgending, closely related sequence, ror
example, we will define ianjvin terms of Za  as follows.
Let

 51 = al, Sy = 8y + 8y eee y Sy = 8y cee Bps see o
Thua, we have a sequence §8, } waich for every n is the sum
of the fifat n terms of Zg n? ~and s 13 called the nth partial
sum of Za,« If we wiah to construct a serles whasg nth
partial sum is agual to the nth term of @ given sequence
{a,,}, we m define it as follows:

Ean = 81 - (gg - sl) * eus F (gn ) * ese s

Bn=1
Thus, for every serles 3a , there 15 assoclated the ssquence
{sn; of nth partial sums of JXa,, and for every sequence
{anx, théra is an asscociated series whose nth partial sums
are the torms of the sequence §s.}. Furthermore, 1f f{s,}

is the seguence thus uniquely assoclated with Ja,, fani is
convergent if and only if Ean is convergent, and in casse the

two are convergent,

Ean = lim 3,

n—vmn

1.7+« In reality sequences and series of numbers arse




speclal cases of asequences and series of functlons where
the functlons are constants. For a sequence or a series

of fumetions, we must gpeak of a domain of definition, i.e.,

tho values of x for which £, (x) ia defined for n =1, 2, +4s ,

and & domeln of convergence, i.e., the values of x for which

ffnixli or Efn(x) converge. In this paper, we wlll be con~
cerned primarily with series of functions and & particular
type of convergence which 1s described below, The purpose
of this paper is to familiarize the reoader with the concapt
of uniform convergence, In the main it is & compilation of
material found in vardous references and revised to confomm

to atandard notation.

$2, Definitions
1.8, In this paper the symbol :=: siznifies "ia defined

to be", "means that", or "moans™.. A domain of definition

(of a function, series, etc.) =i a sot of real numbers (or
points). We will, without loas of generaligation, state the
theorens and definitions of this paper in terms of intervals A

instead of a general domaln of definition., A glosed interval,

in notation [a, b], consists of the set of points z such that

a<x<bs An gpen interval, in notation {(a, b), conslists

of the set ol points x such that a <« % < b. The function
f{x) is bounded on [a, b] 3=! there exists a Cinite mumber K
such that|f(x)| < X on [a, b]; similarly, £(x) is bounded

from above on [a, b] :=: there exlsts a finite K such that




Uy

f{x) <« K on [a, bl. U is an upper bound of £{x) on [a, b]
means that £,{x) < U on [a, b]. A sequence (sories) has

a limit (sum) £(x) t=: the sequence (series) “converges".

to f(x);

1.9« Fp{x) is the nth partial sum of Ifp(x) :=:

Folx) = 3f,(x), n= 1, 2, .vs 0, L.04, |
Fr(x) = £9(x) + £(x) + «es + £ (x).

Unless otherwise stated, F,(x) wlll be the nth partisl sum
of 3f (x}, and Gn(x} will be the nth pertial sum of 3g,{x).

1,10, The nth remainder of 3fy{x), denoted by R (x),
i y

Bo(x) = fppq(x) + £ 5(x) + weu s
flence,
2L, (%) = Fn{x) * Rn(x). ‘

Unless otherwlse stabted, B,(x) will denote the nth remainder
of 3L, (x). | |

1411, Efﬁ(x) converges to £(x), in notation Efn(x)‘*f(x),
on [a, b] i=: for every ¢ > 0 and for every x in [a, b] there
exists an ¥ such that, for n » N,

\Fn(x) - £(x)l < e

af,(x) converges absolutely :=: Z|f (x)| converges,

1.12, =2f,(x) converges uniformly to £(x), in notation

AL (z) = £(x), on [a, b] i1=: for every & > C theve exists
an ¥ such that, for n » ¥ and for every x in [a, bl,
|7, (=) ~ £(x)] < e,

1.13. Although we ar@‘rastricting our discussion to



series, the concept of uniform convergence eof a segquence
1s of cqual imporianco., Specifically, the deflinition is
as follows: {Fn(xjgraanv@rgeﬁ to P(x) uniformly {in nobation
iFn(x}3?9 P{x))i=: for every £ » C thorc exlats #n ¥ such
that, for n > I and for every x in (a,'b},
¥ (x) - Fx)l < e

We may extend our disousslon in 1,6 by the statement:
The merics 2fa{x)=ﬁ £{x) on ia;vbj if and only if the sequence
of nth partisl sums of Efn(x) aonverges wmiformly to f{x)

on {a, bl.

§3, Uniform Convergence

1.1.. The main difference between convergence and
uniform convergence is that converrence is a point property
while wnifornm conversencs is an inbterval proverty. In other
wordas, if a series 1s convergent on [a, bl, it is merely
gonvergent for eash point of the interval, If it is uniformly
converzent on [a, b], it converses "in a wniform manner' over
the entire intorval,

1.15. Uniform convergence 1z a "stronger" type of
convergence than ordinary converpence,., Obvieusly, il a
gerles ls wiformly convergent on an interval, 1%t is cer~
tainly convergent ab every point of the interval, On the
other hand, convergense on an interval {a, b] does not neces-
sarily imply uwniform converzence on [a, bl., For, let

2f,(x) = 1/x - 1/2z « 1/6x - oo = Vnln - 1)x = ...
on (0, 1}, Since Fo(x) = 1/nx we have ifrmedimtely thab



Efn(x)-* 0 on (0, 1), but 3, (x) does not converge wniformly
to gere on (0, 1). For let € = 1/2 and choose any N. For
n > N let x = 1/nj then,

an(K) - fx) = B/ox - 0l =1 > e
Thus all of ﬁh@‘senﬁiti@ns~cf the denial of wniform converw
gence are net,

1.16, Az 13 sugpesbed in 1,15, it may be of interest
to give explicitly the fﬁllawing-positIVQ definition that.
3£, (x) does not converge uniformly to the funectlon f{x) on
[a,!b] {in notation &3 indlcated)t

Eﬂn(xlaé £{x) on [a, bl :=: there exists an & > O such
that, for every I ﬁhevé gxists ann > N and a peint x, in
{a, b] sueh that,

[Falx) = £(x)] 2 e

8}, Assumptions

1.17. It will be assumed in this paper that the reader
knows the fundamentals of elementary analyals and a Tew
elementary set propertles. For example, it will be assumed
that the reader is famllliar with the concepta of continulty,
dlfferentlability,; Lebesgue measure zero, and Riémann intew
gration in the third chaptor. Also some knowledge of seriles
of nunbers ond ordinary convergence of series of functlons
is assumed. Listed below are soms theorams wlthout proofs
that will be roferrod to in ﬁhis paper.

1.18. A nocesgary and sufficlont condition that




Sfplx)— £(x), on la, b], fee., 1im F {x) = £l{x), 1z thab

noe

for every & > O and for x in i&; b) there exists an ¥ such
that, for n > N and m > N,
. Py(x) - Fu(x)] < e
1.19. If %ey— a and If for overy n,
lenl < an,
hen b, converzos.

1.20. Zapy sonvergos if snd only if for every € > O

there exlsts an ¥ guch that for n > N,
’Rnl = £y

where Rp is the nth remainder of Ia,.

§5, Sumnary of Chapters

1.21. As we have seen, the purposse of Chapter I 1is
two-folds The first bein: to sequaint the reader with the
conca@t cf uniform convergence, and the second, a stét@mént
of assumptions. Now, in studying the property of uniform
gonvargence, it misht not be convenient or practical to
always use the definition given in Chapter I. Further,
it might not be possidle to tell 1f a serdes is uwniformly
convergont without 6&5@@ definitlions and tesits. Thig ia
the reason for Chapter II. In 1t the reader willl find other
definiticns of uniform convergenas and stabtements of some
of the more important tests listed in & systhtematic manner,
Chapter I1I 1s an investigation of the behavior of uniform

sonvergence, In it several fundamental theorems (concerning



algebralc caleulations, continuity, differentlebliliby, and
integrability) are stated along wlth their contra-poaltlives
and somes relsted theorems. In Chapter IV we have a brief

discusaslon of various generalizations of uniform CONVOrgonGe.



CHAPTER 11
PESTS POR UNIFORM CONVERGEHCE

§6, Definition Toests

2.,1. There are definitlons feor uniform convergence
other than 1,12, and these definltions can be used for tests
just ar well sa the theorems we normally think of ag toabs.
Stateod immediately below (2.2 and 2,3) are two such defini-
" tions, and it will be noted that in each, the conditions of
the hypothesis are both necessary and sufficlent for unlform
gonvergence. This is not the sase with any of the other

tests heolow.

2.2. A negessary snd sufficlent condition that

2L (x)=> r{x) on [a, b] is that for gvery ¢ > O there exista

an integer N guch that, for every x in [s, bl and for n > N

and m = H,
[P (x) - Flx)] < e

Proof of necesgsity. Chooss ¢ > O arbitrarily. Th@r@‘

exists en N such that, for n > W and for every % in [a, b],
[F (=) - £{x)] < /2,

Alsp, Tor m » ¥ and for every x in [a, b,
[Pmlx) - £(x)] < ef2.

Pick m > ¥ and n » N, Then, for every x in [a, bl,

[Palx) = Pulx)| = |F(x) = £{z) + £(x) - Fylx)]

16



1l

< P (x) = (x| | Fplx) - flx)]
ﬂﬁ/@*a/g
= e

Therefors, the conditlion is necessary,

Proof of gufficiency. ,Ghnoaa t » O arbitrarily., There
axiﬂﬁﬁ_an H such that for n » H; m > N, and for every x in
{a, bl,

|7, () ~ BulxM < e,
From 1,17 wo see that Eﬁ(x) has 8 limit, say £{x). Choose
n > 1 and consider it Zlxed, Then,

im |[Palz) = Pplx)| = \F (x) -~ £ix}| < e

M a

Therefore, the condition 1s sufficilent,

2,3. A necesgary snd sufficiont gondition that

Efn(x)=> £(x) on [a, »] is that for every ¢ = C thove exists

an ¥ such that, for n » ¥ and for every x in [a, b],
1

!Rﬂcx)‘ < £q

Proof of necessity. Choose ¢ > O arbltrarily, There

exlats an ¥ sueh that, for n » ¥ and for every x in [a, bl,
|Falx) ~ £(x)] < ¢,
Choose n > N. Then, for svery x in [a, b],
l&n(xﬂ = |Rn(1{} + Fn(x) - Fn(x)l

= (2f,(x) - 7, ()]

lgr. R, Courant, Bgf*ar@ntial and Xnkafrawkﬂalculua,
Vol. 1, translated by ¥ EJG AENG , 1‘6?15@\, P



= | £(x) - Flx) |
< €4
| Therefore, the condition ls necessary.

Proof of sufficiency. Ohoose ¢ » O arbitrarily. There

exists an integer N such that, for n > ¥ and for svery =z in
fa, bl, .
|R,(x)] < e.
Choose n > N, Then for every x in [a, bl,
Efn{x) - gn(x) = Bﬂ(g).
H@nﬁ@;
(22, (x) = Fy(x) | = [R (=) ],
Therefors,
[2en(x) = Foix) | < &

The theorem follows.

87. The Welerstrasas M-test

2Jis  The Welerstrass li~test, commonly called the
li=test, has the adventage of being appliceble to many of
the series in everyday uwse. Its disadvantage lles in tho
fact that 1t is somebimes excsedingly difficult to find a
convergent series of positive terms Yo use in the comparison,
The I~test 1s stated below.

2.5. 1If for every x in [a, bl,

| lfn(x)f < ¥n,

where M, 1s a positive constant independent of =, and if




2, is gomvergent, then Z1e,(x)| is uniformly convergent on
fa, bl.?
Procf, UDenote by RY(x) snd K, the nth remainders of

2lf,(x)| end 2l reapoctively, and choose € > 0 arbitrarily.
By 1.1 there exiats an ¥ such that for n > N
K, < €.
dince, for evary n and for every x in [a, b]
(£a(x)] < s
we have thatb
Ri(x) 2 K. |
How pick n > W, Then, for every x in [a, b,
Ry = Rp(x)
= Kn
< €
2,0, The series, |

2,{x) = 1 =~ /2 4+ 1/3 « 400 ¢ (~1)2%3/n + o0
1g kmovn to canvarge iniformly in eny interval [a, bl, but
the M-test falls %o show 1t In this case. For,

Blen(x) =1+ 3/2+ 1/3+ L+ is Vnt aen
which is lmown to be divergent. Henece, any series ol con~
stant terms, 2L, say, sueh thab

ENE 'S

would be divergent.

ET. Je Bromwleh, An Inbroduction o the Theory of In-
finlte Series, second 6dition rovised, Pe L1te
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2:7« The followlng test is a corollary of the li-test,

Let T, dencte the upper boundary of [f,(x)| on the

interval la, bl. If 5u, is gonvargent, then 30 (x) is uni-

formly convergent on [a, b] and is sbsolutely sonvergent

for sach point x in [a, bl, Further, 3(f (x)| is wnifermly

convergent on [a, bl,”

Prool. 3, 1s only a spoclal serles of constants such

that for every n and for every x in [a, bl,
[£a(x}] < T,

Wo have immediately from 2.5 that B|fn(x)l is wiformly con~
vergent on [a, bl, and hence 2f,(x) iz wniformly convergent
and sbgolutely eonvergent on [a, bl. (Gf. 2.17).

2.8. A tost which is wmore general and, in some ocasos,
more useful than the M-tesgt is as f{ollows:

1f the series Zu, (x) iz uniformly convergent on [a, bl,

and if for overy n and for every x in {a, b]

tfn(x}l < u,(x},

5 §
then 28,(x} is uniformly comvergont on [a, blst

Remark., The prool of this test is anelogous to the

proof of 2.5 and will not be given heve.

58. Abelts Teat

2¢9« In order to pﬂﬁv&lﬁbél‘ﬁ best for wniforn

3
11&%)3011, _qacv Qitti pt 115.

TCf. T, C. Titchmarsh, The Theory of “unctions, p. 3.




v
conversonce, we msb use a lemma developed by him.” It is

as follows:

Lemma. If {Vm} is a non-incressing fequenco of poaitive

tovmz, the sun of the first p berms of Fa v, in notation

Spy iies botween Uvy and Lvy, wheve U and I gre respectively

tho upper and lower iilmits of tho sums

lef &1 + ﬁag PRI &3 + &2 + see F %lv
Froof. Denote by A, the nth partial sun of fay. Then,
a.l = Al, &2 = A? - Al’ cwu ¥ ap = ‘%p - Apﬁl'
Using this notation we may wrile,
= Aylvy = vp) + ﬂg("g - v3) + ese
+ 1 (Vpey = V) ¥ Ap¥pe
By hypothesis the fmetors (vy =~ vp), {vp - v3), isv ¥
(Vpa1 - vp), vy, are not nezative, BSince U and L are res-
pectively the upper and lower limits of
ﬂ.l, An,y A}a vev 3 Ap’
the aum 5319 lies between
Ulvy = vy} + Ulv, = v3) toeee + Ulvyg = vp) + Uvy = Uvy
and »
L{vy = ¥p) + Llvp = v3) + weo + Llvpog = vp) + Lvg = 1vy.
Thoreforey

The lerma follows,

E”Bmmiia}'x, ops cibe, Ps 57
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‘E.IQ. If we denote by K the mazirmm of lil and |Ul we
ray wrlte further that
[5,1 < Ky,
2411, Abolts ﬁ@sﬁ Tor unifornm COBVeTsInes is as follows:

ir ?, (=} is wifeormly convergent (nat necegsarily

absolub ely aonverw@nt“) on [a, b], i for any particular

value of x in [a, b] £,(x) is positive, non-increasing with

n, god 4f £1(z) is bounded from gbove for all x in [a, bl,

Yhen 3g, (x)f (x) is wniformly gconverpent on Ia, bl.7 ‘

Procf, Let K be a positive, upper baunu of fl(x),'
Denote by F,(x) and 8, (x) reapectively, the nth partial
sums of Zg,{(x) and zfn(x)gn(x) on [a, b], end choose ¢ > QO
arbltrarilys By 2.2 we have that there existz an N such
that for n » ¥ and n > N

|#a(x) - F(x)l < e/K,
Choose m > I and a positive integer p. Hence, for any x in
[a, B],
max [ (%) 15 gy (x) + gwa(ﬁ)la esh y
|Ba (=) + ere # g (x) 1] < o/K

From 2,10 we hava that

|Sm#p(x) - Sm(m}l < efm(x)/K.

6If Zg,(x) were abselutely convergent on [a, b] and if
2. wore ind@p@ndemt of x, the l«test would apply. PFurthermors,
1% len(x) were uniformly convergent, then the generalized
H-test 2,8 would lwply Zg,(x)f, (KT is wniformly convergent,

Ter. Bromvich; ops git«, P+ 125,
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tat, £.(x) = = £ {x} = K, Ionco,
x) - & {x)] <« e¥/% = &,
8p () = Sl | < ol/E = e
The btheorem follows,
2.12. Dirichlot pives the following thoorem a3 & test
for the sonvergonce of a sorles of numbers.

1 {b3 1s a monotone, non-increasing sequence of

gzitive nunbersy w}f\iah tend to gero as n incresses without

_15.:&1% and e, iz a converrent sories, thon Zepnb, is gonver~

zen ;...«..8 Fpom this we can determine an anelogous test for
wniform convorgence whieh la somewhat similar to Abel's btesti,

2,13, Zapfnix) is wilormly convergent on {a, bl, if
Tty

a, ia 2 positive funchlon of n vhich bonds monotonicully to

zoro &3 n inereases without limdt and if thero exists & com-

atant X such that

'Fn(x),

for all values of n and for every x in [a, 1.9

Proof. Ohoose & > O arbitrarily. There exists an N
gugh that for n » H
a, < &/{2x+l),
Choose m » n = N, Since for every n and for every X in
[a, b], |Pax) < %, |
[Ea(=) ]y (e (=) + £ =) [ LE () + wee + £50x)

are sash less than 2K, By 2.10 we have thatb

r‘ﬂ
\},.‘
ol L. Tardy, A Sourse of Pupe Hathematics, sixzth
2 » :
@ditiﬁng pq ,,.J’éﬁ.w ‘ »
0

"Pitehmarch, op. eilb., Pe b



'ﬁnfn(ﬁ:) 4 an llfnﬁ'l(y) 3 s 4 E’mf%}.(}:)‘
< Wef{2K+1) = €,

By 2,2 eyl {x) is uwifornly sonvergent on [a, bl.

Y
Lt

w1, Dirichlet's test for uniform convorvence is &

N

generallzetion of 3,13, It is as follows:

Egﬁix)fh(x) gg’umiferh'y-eﬂnvergeﬂ& on [a, b] LT the

seples ﬁfn(x) is such thet for all x in [e, b) ard for every
iy ‘
an(K)l < K}

if for pvery % in {a, Bl, gu(x) is positive and nevor in-

crenses with np and as n inoreases without 1imib, Bpix)
1.0

tends wniformiy to zerc for overy % in [a,

2,15, The obvicus disadventage of the tests in this
soction i that they oan not be used to test all functlons
which are uniformly econvergent., NHots, for insbtance, the

following example., For every n and every X in [a, D] let

& = 0

and | |
p(x) = 1/2 + 3/2(2%) + coc + V/n(@) 4 ooy

Then, |

Za,f (x) = 3(n)1/n(2) = 31/2% = 1,
Hence, Sapfn(x) is uniformly convergent on any Interval
{a, b], but these gonditions do not satlsfy all of the

conditions for any of the tests in this sectlon,

1OBramwiah, ope Citey Do 125
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§9. Other Tests

2416, Ir Efn(x) is uniformiy sonvergent on [a, b]

and ig»f {x) » O for gvery n and for every X in [a, bl,

any series 3g,(x) formed by rearrangine the order of the
| 11

torms of 5f,(x) i3 slso uniformly convorgent on {a, vl

Proof, ‘Donote by 7 (x) and G (x) respectively the nth
partial sums of If, (x) &nﬁyﬁgn(x), and by Ry(x), Tnﬁx) thelr
nth remainders. Choose ¢ > 0 arbitrarily. From 2.3 we have
that bheré existas an N auﬁh that for n » N and for every X
in [a, bl

By (x)| < e

Let Egm(x) be sny reasrrangement of Efn(x) and choose n > N.
Denote by p an integer for whiah.ﬁp(x) gontaina the bterms
of F,(x)} then R,(x) contains all of the terms of'Tp(x), and
hence |
| 2,(x)] < [By(x)] < e
The test follows from 2.3.

2,17, If % fp(x) gconverges uniformly on {a, b], then

i, (x) alsc converzes wifeormly on {a, pl. Purther, any

rearpengomsnt of Efﬁ(x) is uniformly convergent,. -

Proof. Choose € > 0 arblirarily. From 2.2 we have that
thers exists an I such that for n > m > N and for every X in

{B., bi,

gz, tobson, op. glbe, Pe 115

12 ,
Cfa, ibido’ P 116,



()l + [ L () [+ cer + L 8(x) ] < &,
Choose n » m > N, Then for every x in {a; bl
JEmlz) + foq(®) + ooy + £o(x)|
< 1) U+ 1 2 () |+ aee + L2 ()]
< |
Hence, by 2.2 Ef#(x) is uniformly convergent on {a, bl. Let
Zgn(x) be any rearrangewent of If, (x), Since by 2.16 any
rearrangement of I|fy(x)] is wnifermly convergent on [a, b},
then Elgn(m)l sonverses unifafmly on [a, bl, and, hence by
the first part of 2.17, ¥g,(x) converges uniformly on [a, bl.
The theorem follows.
2,18, Due to the work of Birkhoff a converse of 2,17

has been established. It 1s as follows.

If 38y (x) is wniformly conversent on [a, b] however its

berms may be reerranged, then Z|fp{x)| is uniformly conver-
gent on [a, bl,13

Proof. Suppose othorwise that under the conditions of
the hypothesis 3|fy(x)] 1s not uniformly convergent. Then
from the denial of 2,2, there oxists gn & » O such that, for
every N, there exlsts an x in [a, b) and an n > m » N such
that °

[T+ | g () [+ wu + | £4(x) ] 2 2e.

Let P = the gﬁm of tho posltlve bterms in

136ﬁ D. Birkhoff, YA Theorem Joncerning Uniform Convopr-
gonce", Annals of Mathematies, Vel, VI, (190h~1005), p, 90,




and let Q = the sum of the nesative bterms. Then,

i

P+1Ql> 2e.

I we let U = mox [P,1Q]], then

2> e, | ‘
Choose N, = O, As above, there exists an %, in [a, b] and
an ng > m, > N, such that,

| Uy 2 &s .

Choose My = nye There exists an %y in {a, bl and an
o> > Hl auch that

Uy 2 %
Choose Hp = nys There exists an xp in [a, b] and an
ng > m, > N, such that

Us > €.
In goneral choose W, = np.ys There exists an xy in [a, b]
and an ny > m, > § such that
| Up 2 E»
Denote by Up{x) the swn of the terms which are in the section
n=1t%0n=mn,of 3f,(x) and also in Ugs Le0e, Up(x) 48 the
finite sum@ﬁhieu congisting of the terms whose subscripis
gre the same as the subscripts of tho bterms of Uyj then
denoto by Volx) the sum of the terms which are in the above
section but not in Up. In genersl, denote U,{(x) the sum of
the. terms which are in both the sectlon n = np.y + 1 %o n,
of Zfy(x) and Upj then, denvte by V,(x) the sum of the termas
which arve in the sestion but not in Upa Rearrange 3f,(x) in

such & way as to have all of the torms of each of the Tinite
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sumas Ug(x), Uy(x), ees 5 Uplx), wen and Volx), Vi(x)y e s
Vh(x)s »es grouped together as follows!
B, (x) = Uplx) + Vilx) + Tylx) + Vy(x) + woe
| + Uplx) & Vu(x) + ooe
Now éﬁhans@ any integor N. There exlsia two Integers
p>q.> N and an %, in [a, b] auch that,
I£(xp) + Lpq(xa) + woe + Iplagdl = U
But U, was so constructed that
Up > &
This contradicts the ilypﬁtlrxas;isz that every rearransement .
of Efn(ﬁ:} is mifornly convergent. Ience the i;hewé;n follows,
2,19, The ratlo test for ordinary convergence 1s ga
followat |

The serlies Efn‘_(x) is convergent on {a, b] if for every

x in [a, b] thers sxists an r, o < » < 1, guch that for

QV@I’}{ 1,
fml(x)]
D < e
fn(K}

A very similor teat for uniform convergence is llsted below,

2.20. The serles % fy(x) is uniformly convergent on

[a, b] if £,(x) is bounded on [a, b] and if there exists an

r, © < r» < 1, such that for every x in [a, b] and for gvery n

fpey (%)

fn(x)

=1
< P . .Li?.
R d

Vige, Pitonmarsh, op. oifi., pe s
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Proof. Since for every x in [a, bl and for every n,

£rix)

rlty ()l 2 Jrper ()]

< Ty

b d

Similarly

P\ ()] 2 p )L (x) ],
and finally we have r®|£y(x)| > r|fy(x)]
or

e (x) | = £ )15 (x) |
Let I > G be an upper bound of £3(x} on [a, b]. Then,
[£a(x) | < w2t |
But, singe r < 1, el 1g cony@rgﬁmﬁ, Hence, by 2.5
A fp(x)| is wniformly convergent on [a, bl |
2.21., Remark, The ratlo tests falls when r = 1.

For take the divergent sories 21/n, Clsarly,

= =
£n(x) n+l

for all n., Now bake the convergent sories I{= 1)%1/n,

Then
Lopp(x)l  m
£, (=) n+l

From this we see that 1f » = 1 the series may either cons

verge unlformly or not,



CHAPTER IIT
SOWE PUHDAMENTAL THEOREMS

§10. Calculations with Uniformly Convergent 3ories
3.1, If 3f(x)=>f(x) en (a, b] and if gy(x) = glx)
on la, bl, then |
Bleylx) + g,(x) 1= £z} + glx)
Qﬁ[ﬁ‘«; ble
Proof. Let Fn(x), &n(x), Bn(x) denote raapmativaiy
the nth partial sum of Sfy(x), 3gulx), Blfy(x) + gu(x) 1.
Lot & > O be chomen avbitrarily., %Then tharé exiataian ins
toger Ny such that for n » Ny and for eﬁary % in [a, bl
[F(x) - £z} < ¢/2,
There exists an integer N, such that for n > W, and for
overy x‘in'[a,‘b]
(Gn(x) - g(x)] < ¢/2.
Lot ¥ = max[¥y, ¥,] and choose n > ¥. Then for every X in
[8, b]
8alx) = [£(x) + g(x)] = [P (x) + & (x) - £(x) - glx)
< [Fulx) = £(x) )+ Lag(x) - gl=)l
< &/2 + &/2
& g,

Phe theorem follows,

2l



3.2 If 3f,(x) = £(z) on [a, bl gnd if 2g,(x) = glx)
on [a, b, then |
2le,(x) - g ()1 £x) - glx)
on [a, bl.
For a proof, sce 3.5,
3.3. If 32u(x) = £{x) on [a, ] and 1L ulx) s defined

and bounded en [e, bl, then Zu(x)f,(x) = w(z)£(x) on la, bl.}

Proof. Since ulx) is bounded on fa,fb},‘t&erc exista
a positive mumber X such thet for every % in [a, b]
u (=)l = K.'f
Let F,(x) be the nth partial QQM~@5 Efn(x) and let Sn(x)
be the nith partial sum ai" ﬁu(x)fn(x), ‘E“ifcﬁf'
Splx) = wlx)fy(x) + wlx)fylx) + .., +,u(x)fn(x)
= u(x)[fl(x) + fz(x) + ges * fn(x)l
= u(x)?n(x); |
et & » O be chosen arbitrarily., There exists an N such
that for n > W and for every x in {éa,, bl
[Fo(x) - £lx)] < o/K,
Choose n » N, Then for every x in [a, b]
(8(x) = u(x)edx)| = lulx)Fy{x) ~ ulx)o(x)l
= lul(x)| [Fy(x) ~ £{x)]
= K{F, (=) - £(=x)l

< K¢/ = ¢,

11{;‘ ¥nopp, Theory and Application of Infinlie Seriea,
second German edition translated DY Re Gs TOUNTs De 337,




The theorem Tollows,

3.ie . Covollary of 3.1 and 3.3. If the p series

Efﬂl(x)’ zfna(x}; .*.';.2fnp(x)
are such that

Efnl(x} % fl(:{)' Bfng(x)_:? f‘?(x)! “sw @ anzﬁ(x) % fp(x)

each on [a, bl and 1L the funetions,

u1QX), ua(x)y “rs y QP(X)

are ecach definod and bounded on [a, b, fhen the series

33, {x) where for svery n,

gn(ﬁ = u (x)fnl(x) + u? %)f (x) t sen * up(x} {x},

is wniformly gonvergent on (8, b] and

3g,(x)= ul(?)f (x) + u, (ﬁ)f (x) + co0 + uyl x)f (x)‘
Proof. From 3.3 we hava that
Sy (x) £, (x), 2w, (x}f‘ (x)y oen s Buy (=), (x)
each converge uniformly to _ |
up (2)£(x), uy(x)0,0x), wee 5 vplx)fpla)
respectively on [a, bl. Then by ropeated uss ol 3.1 we
have that
By (x) = uy (x) 0y (x) + uy (0], () + wue 4 wp(x}Ep(x)
on [z, bl
3.5, Remark. An intevestins special case of 3.0 1s
obtained when each of the functions ul(x), ua(x}, .;. » up(x)
are constants, Thls immediately givasvus a proaf of 3.2,
For let w(x) = 1 and u,(x) = «1, then we have
| BlEp(x) + (=L)g,(x)] =2 0{x) + (~1}glx)
= £(x) - gix).

This is all that 3.2 atatesa.
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3e6. If uf, (F) converres uniformly on [a, b], then

there exlsts an I guch that, for n > H, fn(x) iz bounded

on [a, bl and §fn(x)}.convera@a uniformly to zere.?
Proof. Let £ » O be chosen erbltrarily. By 2.3 there
exists an N such that for n > N,
IB (x)| = &/2. |
Chooss n - 1 > N, Then for every x in [a, b},
(£, = [Bo.y(x) = R ()
2 IRpap () + IR ()
< ¢/2 + e/2 |
= g, &
Hence, {rn(x)} converzes uniformly to zero, and, for n > W,
fy(x) is bounded on [a, bls |

3.7« IL Egn(x)‘gg uniformly convergent on [a, v] and

ir E(fn(xﬂlgg unifornly convergent on [a, b] then
SIfn(x)gn(x)l, n = l, 2y voe s

is uniformly convergent on [a, bJ.

Proof. Let Ri(x) be the remainder of Ilfn(x)| and let
Tp{x) be the remainder of 5lfn{x)g,(x)l s Choose & > O arbi-
trarily. By 2.3 there oxists an I, such thet for nn > Hl and
for every x in [a, bl

ﬂﬁ(x) < €.
From 3.6 there exists an W, such that for n > N, and for

every x in [a, b]

gﬁf; ibide, p. 338,



g, (= < L,
Let W = max[MNy, N,] and choose n > N. Then for every % in
[a, b]
Tnlx) = (£puq (Xap,q (2 + [£p0(x)g, o=} + 0.
< [fpay(x)] + [Lheplx} ] + ... |
< €, |
fhe theorem follows by 2,3e | |
3.8, Assume If,(x)= £(x), Zg (x) = glx) en [e, bl;

and £(x)} and g{x) &ra bagnd@d e¢n =, bls Then if

Sn(x) = Zﬁfn(x)gm(x), By Wy = 1y 2y wes 3 By

iv ﬂall&wa ;h&%

| {3,(x)3 = 2(x)g(x)
on [a, bl.. |
Remark. The finite summation,
Sn{x) = 30 (x)g,(x)e n =15 25 «es , 1,
iz often ealled the "nth sguare" of the infinibe matrix
gcomsisting of the tsxms ol the formal proeduct
[32, () 1 {2y () 1.
The theorom then proves thal the sequenece of nth sguares
of this Iinfinite matrix converges uniformly to f(x)g(x)-
froof of 2.8+ Denote respectively by Fn(x) and G,(x)
the nth partial sums of i£,(x) and 3g {z). Let X > 0 and
L/2 » O be respectively bounds of \glx)land (£(x)| on [a, b].
Cheose € > © arbitrarily. There exists an Ny such that,
for n > Ny end for every x in [a, b],

Py (=) < 1,
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There exlsts an N, auch thaib, for n > N, and for every x
in (#, bl,
|7 (x) - £lx)l < efex,
There exiats an N such that for n » ﬁB and for avery x in
(e, b] | |
[G,(x) - glx)] < e/2K. |
Let N = max[ily, N,, N3] and choose n > N. Thon, fov every
x in [a,.él |
[s,(x) ~ s(x)g(x)] = [Fplx)Cy(x) ~ £{x)g(x)l
| [Fu(x)Gg(x) = Fylx)glx)
+ Fpixig(=) - lf(x)g(x)f
< [Batx)l [o (=) - gl=x)
+lg(x)llﬁﬁ(x) - £{x)l
< Le/2L + Kef2K

4

il

Ee

#

The theorem Collows.

8§11, Un Continulby

349. If urp(x) = f£ix) on [s, b], and if for svery n,

£.{x) is continuous at x,in [a, b], then r(x) is continuous

at xgog | |
Proof. Sinaé the sum of any finite numbsr of continuous

functions iz eentinugugy we have that Pu{x) 1s continucus

at x = X,, Choose ¢ » 0O arbitrarily. There exists an N

such that, for n > ¥ and for every x in [a, b],

30f. ibide, P 330.



IP,(x) = £(x) < /3,

Henee,
r(x,) - £lx ) < 6/3
From continuity, we have that there exists a 0> 0 sueh
that for ix - xg1 < O ,
S ENCINEE EIN R4 IO
Choose n > H and an x such that [x - %,/ < &, Then
(£1x) = flxg)l = (£lx) = Fylx) + Fplx) - Tzl
< 12(x) - Fnixll‘*rlyncx) - £{x0)]
= (£ (x) = F(x) + [ Fplx) = Falxy)
¥ Pylxg) - £lxg)l
< (£ %) - Bl + [Fo(x) = Fylxg)l
+ [Fplx) = £z}
« ¢/3 + &/3 + ¢/3
= €.
The theorem fellows.
3.10. An interesting cerellary of 3.9 comes from
letbing £,(x), for ovecy n, bu continuous for every X in
[a, b], (L.c., for overy n, fn{x) 13 continucus on [a, bl},

™e result ls as {ollowal

If 3r (x)= £(x) on [a, b], and if for svery n, Ify(x)

is continuous on [a, b], then £(x) is continuous on la, b1k

Remark, The condlilon of ordinary convergence in place

of uniform convergence in 3,10 is net enough bo assure .

Nibid., pe 339,

o ———
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continulty of the limit funcilon. For, look at tho following
example. Lot fﬂ;i’n(:ﬁ) be a serles whose nth partial sum is
dofined as follows on bthe intorval [G, 1]:
o 1 - nx for ¢ < x< 1/n
Falx) wé{} for I/n =< x < 1
Then, the limit function £{x) = 1 for x = 0 and zero for
x £ C. . 4 - |
3.11_. "i‘}:;ea thewrém of 3.0 hag two useful gontra~poslbtives,
They are stated Immediately b’@low. o
(e) If nfulx)= £{x) on l[a, b] Q,‘&%}.i £{x) is discon-

tinuous for gome point x, in {2, bl, then for svery N theore

exists an n > N such that £,(x) is discontinuous ak %,

(o) If s (x) 2 £{x) on [a, bl; i fox every n, L lx)

is continuous at %, in [a, blj and i £{x) is discontinuous

8t Xg,

3.12. By using the limlt soncept of contlnulty, ve

then 2f,(x) # £{x) en [s, b1,

may stabe the theorem of 3.10 in the follewing alternatlve
forms

If 3£ (x) = £(x) on [&, b] and if for every n, fn(‘:ﬁ is
continuous on [a, bl, then for svery x, in la, bl

1im [32,(x)] = 2 Lim £p(x) 1.0
X, X%y

3.13. UWe atabe two converses of 3,10 neither of which
is true. They are stated below and exemples are given which

dlaprove them.

‘r' . . .
)Ibido F ] }3 [ ] 339 *
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(2) If 3£,(x)=> £(x) on [a, b] and if £(x) i3 con-

tinuwous on [a, b], then therc exlsts an W such that for

n > N, fn(x) 1s contimuous on [a, bl. |

An example which disproves this theorem 1s as Tellows:
Lot 3f,{x) be a serles such that for x in [0, 1]

. (0for 0 x< /2
fﬁ<ﬁ ) g.l/n for1/2 ¢ x< 1

Obviously 3fn(x)=> ¢ on [0,1], buk fﬁ(x) is discontinuous
at x = 1/2 for every n. HNence, thoe theoren 15 false,

(v) If 3fu(x)—> £(x) on [a, bl; if for every n, I, (x)
is continucus on [a, bl; and 1f £(x) 4s continuous on [a, bl,

then 28,(x) = I(x) en [a, bl.

An ex&mpia whieh diaproves this theorem ls sz follows:
Let Efn(x)lbe a series such that F, (x) = nx/(1 + n?xa) on
[0, 3]s Obvicusly, 2f,(x) converges to zero on [0, 1] and,
therefore, we have fn(x} continuous for overy n and x in
[0y 1] and also its limit fucctlon £(z) = O is centinnauab
on [0, 1], But choose ¢ = 1/& and then pick ¥ arbi%rarilya
There exists an n > ¥ end an % in [0, 1] such that nx = 1,
f.0., n = 3%, Then

[Fo(x) = £(x)| = [nx/(1 + nx?) - o
| = 1/(1+1) =1/25 e,

Hence an(x)#g £{x) on [0, 17, |

$12. On Intezration

)

3411, In order o prove the main theorem on integration
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of wniformly convergent series (see 3.15), we will first
asgume the two theorems stabed irmediately balow,

(a) If y = f£ix) is bounded on [a, ], then & negessary

and sufficient gonditlon for f£(x) te bo R=intesrable is that

the set of points of discontinuity gg'f(x) on [a, b] be of

Lebegrue MOASUIrs ROYC.

(b) If both £(x) and glx) are R-integrable on [e, bl,
and 1f, fcr'&v@rﬁyx in [=, bl, £{x) g glx), then
VR JEOTEP ./'abg(x} ax.

3,18, If 2f (x)=>f{x) on {a, ] and if for every n,

= "'n
fn(x)';g R-integrable on [a, b), then £(x) is also R-intesrable

on [a, bl, and
B B roy e B ..
fa f(ﬁ)dx = f&. fl(-ﬂ:)&x + fa f:}(ﬂ)ﬁx * ove
i-.ab,
/.Pagp, (x)ax = 21/ "8, (x)ax]
&unx - i a nX AW
Procf. Let Z,dencte the set of points x of [a, b] at
wihieh £,(x) 1s dlscontinucus, Then let
ZMZ1+Z?_+ cee ¥,
If x, is not a point of Z, then each of the funotions fn(x)
are continuous at X, and by 349, £{x) is continuous abt % .
Then, since the functions £ (x) are all continuous on
[a, b] -~ 2, £(x} 1s continuous on {2, b] - 7. But %, being
the swm of a denumerable number of sets of measure zero, 1s
also of measure zero, Therslore, £{x) is discontinuous on
ab most a seb of measure zero. Hence by (a) of 3.1, £{x)

is H=integrable on [a, bl.



Lot & » O be chomsen arbitrarily. There exists an "
such that, for n > N and for every x in l&, bl,
- &/(bma) < P lx) = £x) < ¢/(b-a),
By (b) of 3.1 we have that » » .
A b b ‘
- 7P/ (oma)ax < £ CR (x)an -/ Celx)ax < / e/ (bma)axe
Heanc:a, | | [
™ b by s o
- g{b-a}/(b-a) < ,/'& Foix)ax - fa fx)dx < e(b-a)/{b-a),
and ,
| - g be {(x)dx = fbf(:;‘-)cm < €.
< & n ' a K ; ‘q
Therefors,
5/.Pr (x)ax = / °f(x)ax.
4, a n ' a ;- e @

3.16, In the above theorem, the condition of uniform
CONVETZence is necessary. ror, consider tho fqllmwing oX=-
emple: Let 3f,(x) be a gerios such that on [0, 1]

n®x for 0 < x < 1/2n
Fplx) =4¢ = hn?x + In for 1/2n < x < 1/n.
O for /n<x<l
3ince fan} 1s eontinuous on [0, 1] 1t is Reintegrable and
we sec at once that Afp(x)— 0 on [a, bl But, for every
n we sce that / Gan(x)aix = 1, Hence, we have thal
1 ,
Bf@ fn(x)dx = 1,
and
1
Hence,

nglfn(x)dx # _/'Olﬁi’n(x)d:{..



§13., On Diffeventiability
3,17. We shall firat prove an auxiliary theorem on &n
interchange of limlts neoded for the main theorem (soe 3.18)
in this sectlon.
1r §r (0} = £(x) on ap interval (2, b) contalning X,

and 1f for every n, 1im fp(x) = ay then fa,} converges and

X Zg
1m [ m £(x)] = lim [lim fn(m].'
n-e XX, XX, DH®

Proof. First comsider the sequence fa,3. Choose € > Os
since {f, (x)}= £(x), there exists an W > O such that for
n>Ml, m>» 1‘5, and for every x in (a, b) B A

lentx) - £4(x)] < &/3.

Since lim £,(x} = a,, there exists a §; > 0 such that for
XXy

0<lx~ x5l < 8y
la, = £{x) < &/3.
Likewise, there exlsts a 8, > O such that for 0 < (x ~ %5l < 8y
(2, = fm(x} < €/3.
Let & = min [8y, 8,1, Then if m>H, n>N, and
0<|x~-x,(=<b | |
(o = 8yl = |8y ~ fu(x) + £(x) - i‘n(:si) + fﬁ(ﬁ) = 8yl
< |a, = f(=) + 1L (x) - fplx) [+ [ Lp(x) - a
< e/3+¢/3+ /3 =c¢.
Hence, by 1,18, §2,3 converges. Call its limit a. We have

thus proved that lim [ lim fp{x)] = a.
n?e XFxy

Again choose & > O, There exists an Wy such that for



s
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> Ty
la = a,l < /3.
There exlsts an N, such that for n > N, and for every X in
(2, b)
12, (%) ~ o)l < e/3.
There oxists a A > O such that for 0 < | X ~ xﬁl < &
[ag = fa(x)l < &/3.
Choose M = max [Ny, Wpl. Then for n » i and for
O<|x = x|l = A S :
|a = £(x)] = la = ap + ap ~ fu(x) + Lpl=) - £ix) !
< |a - apl+|a, - Lz} L+ Ey(x) - £(x)\
< &/3+ ¢/3+ ¢/3 =&, |

Hence 1im f{x) = a, and the theorem followa.
X—?KQ

3.18. Asaume Tn(x), n = 1, 2, wee 3 i3 differantiabla

on (&, b); and Al lx) = £(xz) an and 2 sfv(x)> glx) on (=, b),
tﬁan;f(x) is differentiable on {a, b) and
£ (x) = glx),

fe0vy Tz} = B04(x).

Proof. Leb Fn(x), ?A(x} denote respectively the nth
partial swa of 5L,(x), Efﬁ(x). In sequence notation, we
have given that fFu(xji—* f{x) and Fﬁ(x)=¢ g(z) on (a, b),
and we are to prove that £{x) is differentiable and

fi{x) = Lim JFh (x)

for z in {(a, D).

Congider the function
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7 4 Y o &
ln{xe + h) Fn(KO)

D(n, h) =
h

where x, is a fixed pelnt in (gy b)e We shall exaiine the

caimm@ 1imits 1im [1im D(n, h)] and 1im [1im D(n, h)l;we may *
h=20 n=e n+e h-+0

apply 3.17 if wo can show thet D{n, h)] converges uniformly
as n— «, How | -
D(p, h) = D{g, b}

F (x, + h) ‘AFﬁ(xQ)

'i A % A - F‘Pa
% bﬂ(xa + h) q(”e + h)

-

h h

-~ f L - } ]
_ [Fy(x, + h) Fq(xa + n)] - [Fp(x,) iyq(xgﬂ
h .
= Eﬁ(x0~+ &h) f Pa(x@ + @h);
where (€1 < 1. (Te last squality is obtained frem the
theorom of the mean for differentiation), Choose ¢ > O,
Then, since ?ﬁ{x) i3 uniformly convernment, there sxlats an
N guch that for p » N, q > N, and, (x, + 6h) in (a, b),
lFb(xQ + 8h) = Féixo + 8n)l <« €,
Hence, by 2.2, D{n, h) converges uniformly as n—? =, and, of
gcourse,
£(xy + h) - £{x)

D{n, h)= .
h

Also, by assumption, for every x, in (a, D)

in Fplxg + n) = F(x)
1im D{n, h) = h->0 '
h—- 0O h

= Fﬁ(xg)’



and

1im ?'(x } o= (xiﬂ
nae "

Henco,

lim [1im D(n, n)] = g(}’:g).
n=+eha0

¥Wow by 3,17, 1im [linm D(n, h)] exists and equais g(xa).
h=20 n+e

But since x, was an arbltrary point in (a5, b), for every x
in (a, b}, we thus have

£r(x) = 1im [£{x + h) - £(x)] = a(x).
3 -0 ‘ h ‘

The theorem follpws.

3.19, In the above theorern, tho condliion that the
derivatives converge uniformly In the Intervel is necessary ’
even though bthe series may converge uniformly In the inberval,
For, consider the series If, (x) whose nth pertial sums equal
(1/n)sin{nx) for every n. It i3 quito evident that the
serioes cénvergas uniformly on [0, ], and further, f&(x)
exists for every n and for every x In [O,TT]. Upon dAiffep-
entiating term by term, we obtain tho series 3f)(x) whose nth
partial aums equal cos{nx). But it is easily shown that
Bfﬁ(x) is not even conversent on an everyvhere densce subsetb

Of’ t(},‘n’]n

§1l, On Power Series

3420, Among all classes of serles of functions ar,(x),

the clags of series called power gserles is usually considered
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the mest iwmportant. DBy definition, a power series iz of the
form |
Dopxl = A, + AgE + oees b oapxt 4 e
In connection with our present paper, it is. of apecial
impcrtanee that wnlform convergence exist aubomatically for
power series., The following theorem states more precisely
the prnpérty to which wo have just alluded:

(a) If B is the radius of convergence of Za,, R, then

the seri@s‘z xh 3unvergg§,ab$alutély gnd uniforml in ever
B A8y LA 03 AnG Wng WL D every

interval which lies strictly inside [~ R, R], i.e.,, for aay

inbterval [o, b] sueh that "R < a < b 4 Re

Another theorem wo shall neeod below 13 the following:

{(b) The serioes Lnanxn"l = g8y b 28K+ ..

+ nanxn“l + +es has the zame Interval of converzence ag

Eanxﬁ Hence, the series obtained from ?amxn by *ermwiaa

differantiatian is uniformly convergent in avery intarval

wiich llos strictly insida {- B, BRI,

3+21s If bhe interval of convergence of Za,x" ig

[~ By BR] gnd if [a, b] lles strictly inside this interv&i,

thon

- b b & SV b‘ﬂ 1 |

&fé B, X dx = /; [ZayxPldx,
Proof. The theorem follows directly from 3,15 and {a)
of 3.20, | |

3+22. If Zapx™ 15 o ziven power serles and if X, is

any point in (- R, R), the Interval of sonvergence of the

sories, then f(x} = Sapx™ is differentiable &t X4, and




£ 5 n-1
f'(}:.o) = Zna_x""%,
Froof. The theorem follows at once from 3.15 and (b)

of 3 ¢20o



CHAPTER IV
GENBRALIZATIONS OF UNIFORE COHVERGHENCE
815, 4 Family of Functions With a
‘ Gontinuous Parameter ¥
hele The conecept of uniform convergence of series and
sequences of functlons may be generalised in several dlree~
tiong. One such generalization may be made in terms of the
function £{x, v) of btwo varisbles,.
.2, For conveniense, assume f(x, y) 1s defined in the
closcd rectangle iun two-space, s&y In Bt a < X < b,
¢ <y < d Let y, be a point in [e, 4], end lot g{x) be
a given function defined on [a, bl.

f{x, y) converges uniformly to gz{x) on [a, bl as y—y,

(in notation, f£{x, y) = gl{x) a8 y—> y,) =3 for every ¢ > 0
there exists a 6§ > 0 gsuch that, for O < |y = y,/ < § and for
every x in [a, bl, [ £{x, ¥v) = gz} « &,

It is to be noted that £{x, y) need not be defined for
¥ = Yoo In partloular, y, may be equal to ¢ or ¢, In which
¢.3e the approach will be from only one side of the line
T F Vo |

.e3. Apropos the concept of l..2 we prove the following
generslization of 3.17:

If f{x, y), dofined In Rt O <x < b, O <y < d, 13 such

h1



o=
2

that lim £{x, 7) ex;sta and equals g(x) en (0, b},
v->0

1im £(x, y) oxiats and equals hiy) on (0, d), the conver-
%= 0 ' '

gence of £(x, y) to glx) is uwniform ag y— O and limbg{x)

exiats and squals c, then the 1im h(y) exists and eguals
¥ 0

{::" i‘al’

1im z(x) = lin hiy)
x>0 v 0

or, in other words,

1im [lim O{x, v)1 = lim [1im £{x, y)}.
x>0y 0 yﬁ02+0

Proof. Choose & » O, Sinee flx, v) 2 elx) as y— 0,
there exists a 6 > O such that for svery 0 < y < & and for
evory x in (0, b)

(£(x, ¥) = glx)] < &/3,

3ince 1im p(x) = ¢, there exists a ao > 0 such that for
x>0

C<«x=A
lz(x) =~ ¢l < &/3.
How chooso ¥q such that C <« ¥y < 8, Since, for every y of

this bype, 1im f(x, y) = hiy), there oxlsts an x; with
270

0 < %y < A for which
[£(x3, v1) = hlyy) ] < ¢/3.
lience, '
[B{yy) = o) = |nlyy) ~ £lxg, 7y) + £lxg, ¥;) - slx)
+ ﬁ(xl) - & ‘



? .
13
i1

i ‘ 23(33) - f(}:lg ‘5‘1) \ + ‘ f{xlg ‘3‘1)" g(xl)l
+| glxy) - el
< &/3 e/3 + e/3 = €.

Thus, 1im hiy) oxists and eguals ¢. The theorem follows.
¥+ 0

Ramark¢‘ In connection witﬁ the last proofl, 1atA(x,'y)
be an arbitrary point in the rectangle Hi C < x < B,
0wy < A¢ Then |
l£{xy 7) = o) = [ £(x, ¥y) ~ gl{z) + g(x) - ¢l
<2z, ¥) - glx) L+ [ gx) - ol
< g/3 + 8/3 < €.
Hence, under the hypotheses ol the 1ast theorsm, we may
conclude that as (x, 7) goes iaﬁégandeatly to gero
1im £(x, 7)

exists and aquals c.

$16, Uniform Convergence on an Avbitrary Seb
huie Up to this point, we have restricted our demain
of definition of the functicns fnlx) of 2fn(x) to an interval.
It is readily seon that cur deflinitlon of 1,12 may be ox-
tended to the case when the domaln of definition of the
functions f,(x) is an arbitrary (linear) sot. This gen-
eralized definition may be stated as feollowst

ifp(x) converges umiformly on S (in notation

B8n(x) = £(x)) t=: for every ¢ > O there exists an ¥ sugh
that, for n > ¥ and for every x In 3,

[Fplx) - £(x)| < e.
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o5, If the set 5 is a single point or even .a {inlte
set of poinka, it 13 readily seen that ordinary convergence
Efn(x) on 3 implies uniform conversence on S.

he6. 3L (x) i3 uniformly convergent in a nelghborhood

of %, i=t there exists an open interval (a, b) containing
%, such that an(x)‘is wnifernly convergent on (a, b).

Lo 2, (x) gonverges wniformly bo £{x) in an Infini~

tesimal neighborhood of x, =t for every £ » 0 there axiatg

an open interval (a, b) contalning x, ani an N such that,
for n > § and for évery % in {a, b)),
|7 (x) ~ £z} < &

Romark. It i3 to be noted that in this deflinltion the

™

naighborhood (a2, b) of X, as well as the intezoer W depends
upon E,
helle W, H. Young has proved the lollowing theorem:

If 2f,(x) converges uniformly to £{x) in sn infinitesimal

neighborhoed of every point x in [a, bl, then %f,(x) converges
uniformly to £(x) in [(a, bl.1

Proof. Choose € > C. ?ﬂrvevary.point % in [a, b]
therse oxists an epen interval, ﬁay‘Iﬂ, andAan integer, say
W, sauch that for n > N, and for svery x which 1s in I, {and
in {a, b])

[2,(=) - £{=x)] < e

By the Borel covering theorem, bthere exists a finite nuber

lﬁramwich,,gg- gits, Do 139;

p————————
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of these jntervals I, which also covor la, b}, Suppose
there are ¥ of these lutervals. Corresponding to tho H
subseripts x of theso Intervals, there are M positive in-
togers N ., sey H{1), .o , N{M)s DLet W be the maximm of
these M positive integers, Then for n > ¥ and for every
% in [z, bl

-|F!’1(E:} - #(x)] < e,

The theorem follows,

§ 17, Quasi-uniform Convergence
.9+ Therse has been conasidersd in the mathematical
literature a number of btypes of convergence which are less
stringent then uniform converzence. The words "gimple,”
"approximate,” and "guasi® are often used in naming such
tyres of conversence.

.10, 32, (%) converpes semi-quasi-uniformly to f(x)

in [ay bl i=: for svery ¢ » 0 and for every N there exlats
sn n > § sueh that, for every x in [a, bl,
[P, (x) = £(x)] < e,
The following theorem may be readily proved:

if 2£,(x) converges semi-quasi~uniformly to f(x) on

[a, b], then there exlsts a sub-sequence of {Fn(x)},whiﬁh

converzes wniformly to £(x) on [a, b], i.e., Eﬁn(x) son=~

vorges wiformly to £(x) if brackets are inserted at appro-

priaste places.

Lell, Even though semi~quasi-uniform convergence may

be consldered as an approximate of uniform convergence, and
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in particular is not implied from ordinary convergence {on
an interval), it does not necessarily lmply ordinary con-
vergence. An example to show this is o
B (x) =1+ 1+ 2412+ e vmnt+l/nd e
For this reason, the following notion would seem to be
more lmportant in the epplicationsi

5L (x) converges guasi-uniformly to f(x) on [a, b] =2

2f,(x) is both convergent and semi-quasi-uniformly conver=

sont on [a, bl.
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