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METRIC CONVERSION TABLE

For those readers who prefer to use inch-pound rather than metric units,

conversion factors for the terms used in this report are listed below:

Metric unit Multiply by To obtain inch-pound unit
centimeter (cm) 3.937 x 10_l inch
millimeter (mm) 3,937 x 1077 inch
kilometer (km) 6.214 x'lO_l mile
meter (m) 3.281 foot
degree Celsius (°C) 1.8°C + 32 degree Fahrenheit
meter per day (m/d) 3.281 foot per day
meter squared per day (mz/d) 1.076 x lOl foot squared per day
milligram per liter (mg/L) 11.0 part per million
microgram per liter (ug/L) 11.0 part per billion
liter per second (L/s) 1.585 x 10l gallon per minute
liter (L) 2,642 x 107+ gallon
gram pey cubic centimeter 6.243 x 101 pound per cubic foot
(g/cm™)
meter per second (m/s) 3.281 foot per second
cubic meter (m3) 3.531 x lOl cubic feet
1Approximate.

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic
datum derived from a general adjustment of the first-order level nets of
both the United States and Canada, formerly called mean sea level. NGVD of

1929 will be referred to as sea level in this report.

vi



GEOHYDROLOGIC DATA AND TEST RESULTS FROM WELL J-13,

NEVADA TEST SITE, NYE COUNTY, NEVADA

By William Thordarson

ABSTRACT

Well J-13 was drilled to a depth of 1,063.1 meters by using air-
hydraulic-rotary drilling equipment. The well penetrated 135.6 meters of
alluvium of Quaternary and Tertiary (?) age and 927.5 meters of tuff of
Tertiary age.

The Topopah Spring Member of the Paintbrush Tuff, the principal aqui-
fer, was penetrated from depths of 207.3 to 449.6 meters; a pumping test
indicated its transmissivity is 120 meters squared per day, and its hydraulic
conductivity is 1.0 meters per day. Below the Topopah Spring Member, tuff
units are confining beds; transmissivities range from 0.10 to 4.5 meters
squared per day, and hydraulic conductivities range from 0.0026 to 0.15
meter per day. Confining beds penetrated below a depth of 719.3 meters had
the smallest transmissivities (0.10 to 0.63 meter squared per day) and
hydraulic conductivities (0.0026 to 0.0056 meter per day).

A static water level of approximately 282.2 meters was measured for the
various water-bearing tuff units above a depth of 645.6 meters. Below a
depth of 772.7 meters, the static water level was slightly deeper, 283.3 to
283.6 meters.

Ground water sampled from well J-13 is a sodium bicarbonate water con-
taining small concentrations of calcium, magnesium, silica, and sulfate,
which is a typical analysis of water from tuff. Apparent age of the ground

water, derived from carbon-14 age dating, is 9,900 years.

INTRODUCTION

Purpose and Scope

The U.S. Geological Survey is conducting investigations, funded by the

U.S. Department of Energy under Interagency Agreement DE-ATQ08-ET44802,



related to the isolation of radioactive wastes. These investigations have
included test drilling and geologic, geophysical, and hydrologic studies to
locate suitable environments for waste storage and to develop new techniques
for site exploration and evaluation. As part of the Nevada Nuclear Waste
Storage Investigations, one of the areas being evaluated as a proposed site
for a nuclear~waste repository is the Yucca Mountain area in southeastern
Nevada. To augment the information obtained by drilling new test wells,
data from pre-existing wells and test holes are being reevaluated and re-
analyzed with new techniques. This report presents the analytical results
and data for well J-13.

Well J-13, drilled in 1962, was part of a test-drilling program of 10
test holes that were intended to provide an understanding of the regional
flow of ground water within Paleozoic carbonate rocks of Jackass Flats, on
behalf of the U.S. Atomic Energy Commission. However, in well J-13, depth
to carbonate rocks of Paleozoic age was deeper than expected, and the well
was completed in tuffaceous rocks of Tertiary age, with the expectation, not
yet achieved, of later deepening the well into carbonate rocks of Paleozoic
age. The tuffaceous rocks were studied; many swabbing, injection, and
pumping tests were made; geophysical logs were obtained; and hydrochemistry
of the ground water was analyzed.

Following the initial work in well J-13, a few pumping tests, static
water levels, and chemical analyses of water were obtained from 1963 to the
present time (1983). Some of the results of work in well J-13 were given
in several reports (Young, 1972; Claassen, 1973; and Winograd and Thordarson,
1975). 1In 1963, well J-13 was connected by a pipeline to well J-12; later a
water pipeline was constructed from well J-13 to the Nuclear Rocket Develop-
ment Station.

The purpose of this report is to present all the previously collected
hydrogeologic, geophysical, and hydrochemical data on well J-13, and to
reanalyze these data, using newly developed methods of analysis. The U.S.
Geological Survey has been drilling test wells recently in areas west of well
J-13, on behalf of the U.S. Department of Energy. Tuffaceous rocks in these
test wells are similar to tuffaceous rocks in well J-13, so a comparison of
the geological, geophysical, and hydrogeologic studies in the test wells

with similar studies in well J-13 will help locate suitable environments for



waste storage and develop new techniques for site exploration and evaluation
in the southwestern part of the Nevada Test Site. Data in this report will
help define hydrogeology and hydrochemistry of the tuff, which will be use-

ful in determining acceptability of the tuff for storing nuclear wastes.

Location of Study Area

Well J-13 is in the southwestern part of the Nevada Test Site, about
130 km northwest of Las Vegas, Nev., and about 19 km north of Lathrop Wells
(fig. 1). The well is in western Jackass Flats near the east side of Forty-
mile Wash between well J-12, 4.7 km to the south, and test well USW H-~1 in
the Yucca Mountain area, 8.3 km to the northwest (fig. 2). The Nevada State
Central Zone Coordinates of well J-13 are N 749, 209, E 579, 651. Altitude

of the land surface at the well site is 1,011.3 m above sea level.

DRILLING PROCEDURES AND WELL CONSTRUCTION

Well J-13, originally designated U.S. Geological Survey test well 6,
was drilled to a depth of 1,063.1 m, beginning in September 1962 and ending
in January 1963. Because of drilling difficulties, such as a caving hole, a
bridging hole, and a stuck drill pipe during drilling, four sizes of casing
were needed to construct the well. Casing, perforation, and cementing rec-
ords for well J-13 are presented in table 1. Well construction and litho-
logic units are presented in figure 3. Sizes of the drill bits used in

drilling were:

Depth interval Bit diameter
(meters) (centimeters)
0 - 132.9 66.04
132.9 - 402.0 43.82
402.0 - 471.2 38.10
471.2 - 612.6 22.86
612.6 - 1,063.1 19.37
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Casing diameter
(centimeters)

45.7
34.0
20.8
14 Depth below
I l land surface
Stratigraphic unit Vm Major lithology (meters)
Alluvium Lo Sand and gravel
132.5
Tiva Canyon Member Ash flow tuff, partly welded,
of Paintbrush Tuff partly zeolitized
207.3
Topopah Spring Member Ash flow tuff, welded,
of Paintbrush Tuff |ithophysae common
449.6
Tuffaceous beds Bedded and reworked
of Calico Hills : tuff, zeolitized
530.4
Prow Pass Member ! Ash flow tuff, partly
of Crater Flat Tuff welded, partly zeolitized
596.2
::"“f'og Member of Ash flow tuff, partly welded,
rater Flat Tuff zeolitized and clayey
707.1
Tram unit of Crater Flat Tuff , Ash flow tuff, partly welded,
g partly zeolitized
975.4
o Ash flow tuff,
Tuft of Lithic Ridge argillized and zeolitized
1063.1

Figure 3.--Well-construction diagram and lithologic units
penetrated by well J-13.



Drilling was done by air-hydraulic-rotary equiphent; air and detergent
foam was the preferred circulation medium. However, stuck drill pipe at
depths of 304.2 and 350.2 m necessitated the use of mud or aerated mud as
the circulation medium. Diesel fuel, 14,364 L, was used to free the drill
pipe. A summary of the recorded use of mud and diesel fuel in the well is
presented in table 2., Mud was last used at a depth of 410.6 m, with only a
partial return of the mud to the surface; aerated mud was last used between
depths of 410.6 and 471.2 m.

The depths at which bridges and cave-ins occurred in the hole and
depths at which drill pipe stuck are shown in table 3. Hole-deviation
surveys that were run as single-shot surveys using Totcol! instruments

during drilling indicate that the well is approximately vertical, as shown

below:
Depth Hole deviation
(meters) (degrees)

56 1.25

91 1.0

109 1.0
123 .75
472 1.75

518 1.08

PHYSICAL SETTING

Geology
Rocks exposed in the Nevada Test Site consist of varied sedimentary
rocks of Precambrian and Paleozoic age, volcanic and sedimentary rocks of
Tertiary age, and alluvial and playa deposits of Quaternary age (Winograd
and Thordarson, 1975; Byers and others, 1976). Sedimentary and metamorphic
rocks of Precambrian and Paleozoic age have a total thickness of approxi-

mately 11,300 m; they are predominantly limestone and dolomite, but they

1Any use of trade names is for descriptive purposes only and does not

constitute endorsement by the U.S, Geological Survey.



also include some marble, quartzite, argillite, shale, and conglomerate.
Rocks of Paleozoic age have been intruded at a few places by granitic stocks
of Mesozoic and Tertiary age, and by basalt dikes of Tertiary and Quaternary
age. Overlying rocks of Tertiary age consist principally of tuffs and rhyo-
lite flows of Miocene and Pliocene age that were extruded from the Timber
Mountain-Oasis Valley caldera complex, a few miles north of the test well.
The alluvium of Tertiary and Quaternary age consists principally of detritus

deposited in the intermontane basins.

Table 2.--Mud and diesel fuel used during drilling

[cm, centimeter; m, meter; L, liter]

Depth! Mud and diesel fuel used
(meters)
0 - 27.1 Mud used to drill 66.04-cm diameter hole.
27.1 - 132.9 Aerated mud used to drill 66.04-cm diameter hole.
132.9 - 304.2 Mud used to drill 43.82-cm diameter hole,
144.5 - 288.0 Widened hole to 22,86-cm diameter using aerated mud.
Recovered drill collars.
301.1 - 410.6 Mud used to drill 38.1-cm diameter hole; only partial
return of drilling mud.
304.2 6,037 L of diesel fuel added to loosen stuck drill
pipe. Shot off drill pipe. Recovered drill pipe.
350.2 - 357.5 8,327 L of diesel fuel added to loosen stuck drill
pipe. Shot off drill pipe leaving drill collars and
bit in hole. Pumped in mud; recovered 0.76 m of
drill pipe.
410.6 - 471.2 Aerated mud, air, and air-foam used to drill 38.1-cm

diameter hole.

llisted by increasing depth; not necessarily in chronological order.



Table 3.--Bridges, cave-ins, and stuck drill pipe during drilling

Depth Bridge Cave-in
(meters) in hole during drilling Drill pipe stuck

93.6 - X _—
141.7 X _— _—
160.6 — X —_—
208.8 X S —_—
304.2 — _— X
317.0 X —_— —_—
317.6 X —— —_—
350.2 — —_— X
405,4 X _— —
472.1 X — —_—
542.8 _— —_— X
728.5 X —_ —_
893.9 X _— —_—
972.3- 993.6 X — —_—
993.6 —_— —_— X
996.1-1,063.1 X _— —_—
1,039.4 X - _—

Lithology of Strata Penetrated

Well J-13 penetrated alluvium of Quaternary and Tertiary (?) age at
depths from O to 132,5 m, and tuff of Tertiary age at depths from 132.5 to
1,063.1 m. The Topopah Spring Member of the Paintbrush Tuff, the predomi-
nant aquifer, was penetrated at depths from 207.3 to 449.6 m. A generalized
lithologic log of the well is presented in table 4 from data provided by
Byers and Warren (1983) and in written communications by personnel of the
U.S. Geological Survey (A. C., Doyle and G, L. Meyer, 1963; and W. J. Carr,
1981). Units in the tuff are similar to units in the tuff penetrated by
other test wells in the Yucca Mountain area. Both cores and cuttings were

used to log this well; 49.3 m of cores from 30 cored intervals were

10
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obtained (table 5). Core recovery in most cored intervals was 100 percent;

total core recovery was 86.4 percent.

Geophysical Logs

Geophysical logs made in well J-13 were caliper, electrical, laterolog,
induction, sonic, acoustic-spontaneous potential, gamma ray-neutron, density,
and perforation logs (table 6). The shallowest depth logged was just above
the top of the principal aquifer (132.3 m).

Physical Properties

Physical properties, including density, total porosity, water content,
percent saturation, and sonic velocities from 24 core samples of tuffaceous
rocks in well J-13 are presented in table 7., Total porosity is a measure,
in percent, of the ratio of total void spaces in a rock to the total volume
of a rock. The welded tuffs have the least total porosity, generally rang-
ing from approximately 4 to 17 percent; total porosity of the partly welded
tuffs generally ranges from 20 to 30 percent. The zeolitized tuffs have the
greatest total porosity, generally ranging from 26 to 33 percent.

Laboratory values of effective porosity and hydraulic conductivity for
eight core samples from the Tiva Canyon Member and Topopah Spring Member of
the Paintbrush Tuff are presented in table 8. Effective porosity is a meas-
ure, in percent, of the ratio of the interconnected void spaces in the rock
matrix to the total volume of a rock. This effective porosity of the rock
matrix is differentiated from natural effective porosity that includes both
fractures and matrix, Effective porosities in these samples of welded tuff,
vitrophyre, and zeolitized clayey pumiceous tuff range from 2.7 to 8.7 per-
cent, Hydraulic conductivities of these samples range from 3 x lO_7 to
4 x 10_.3 m/d. A comparison of the effective porosity (5.2 and 3.7 percent)
in the two zeolitized clayey pumiceous tuffs at depths of 205.7 and 207.3 m
(table 8) with the porosities of the two zeolitized tuff units (54.4 and
31.9 percent) at nearby depths of 203.1 and 203.9 m (table 7) indicates
that, although zeolitized tuff has high porosity, effective porosity and

hydraulic conductivity are low.
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Table 5.~-Cored intervals

Depth interval below

Core Recovery
number land surface (percent)
(meters)
1 57.9 - 59.4 100
2 93.7 - 95.0 100
3 144.3 - 145.8 100
4 160.7 - 161.9 100
5 202.7 - 204.2 100
6 229.4 - 230.9 100
7 240.3 - 241.7 100
8 263.7 -  268.2 13
9 278.5 - 279.1 100
10 310.0 - 311.5 60
11 331.7 - 334.1 100
12 359.7 - 361.5 100
13 390.6 - 392.2 100
14A 405.5 -  406.1 15
14B 406.1 -  407.3 100
15 428.5 -  430.4 100
16 438.9 -  441.3 100
17 458.1 - 460.6 100
18 476.3 -  478.7 69
19 570.9 - 571.2 100
20 607.8 - 610.2 100
21 646.2 — 648.6 100
22 691.9 - 694.3 100
23 722.4 - 724.8 100
24 768.1 - 770.5 100
25 814.4 -  816.9 100
26 862.6 - 864.4 100
27 906.5 - 908.9 6
28 910.4 - 912.9 100
29 985.7 - 988.2 100
30 1,060.7 - 1,063.1 100

14



Table 6.--Geophysical logs

Depth interval

Geophysical log below land surface

(meters)
Caliper 132.3 - 536.8
Do. 471.2 - 905.9
Do. 471.2 - 1,046.7
Electrical 202.7 -  248.4
Do. 471.2 - 905.3
Do. 838.2 - 1,050.3
Laterolog 207.3 -  454.2
Induction ' 132.3 - 454.2
Sonic 187.1 - 535.2
Acoustic-spontaneous potential 471.2 - 904.3
Do. 471.,2 - 1,046.7
Gamma ray-neutron 118.9 - 537.1
Do. 471.2 - 905.3
Do. 873.3 - 1,019.9
Density 132,3 - 537.4
Perforation 303.6 - 422.5
Magnetic perforations 303.6 - 422.5
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Table 8.--Laboratory analysis of effective porosity and hydraulic
conductivity from the Tiva Canyon Member and the Topopah Spring Member
of the Paintbrush Tuff

[Effective porosity determined by water-saturation method; hydraulic
conductivity determined using Denver, Colo., tap water.

Analyses by U.S. Geological Survey, Denver, Colo.]

Effective Hydraulic
Depth Lithology porosity conductivity

Formation (meters) (percent) (meters per day)
Tiva Canyon

Member ———mmmmmm 164.3 Welded tuff 2.8 3 x 107
DO\~ e 205.7 Zeolitized tuff 5.2 4 x 1073
DO~ e 207.3 do. - 3.7 2 x 107°
Topopah Spring

Member-——=——=— 2441 Welded tuff 2.7 3 x 107°
DO, ~mmm e e 335.3 do. 8.7 2 x 107
DO, ——mm e 363.6 do. 6.8 8 x 107°
DO, == mmmm e 409.0 Vitrophyre 5.4 8 x 107
DO —=—mmmmm 431.6 Partly welded tuff 3.3 3 x 1077

Estimates of porosity in the uncaved and little-fractured parts of the
well are shown in table 9. Estimates were made from sonic logs by plotting
sonic velocities for the cored intervals listed in table 7 against the
porosity values determined in the laboratory, and then using relationships
from these plots to derive porosity from sonic velocities on the well logs.
Values of porosity are similar to those for similar lithologies shown in

table 7.

GROUND-WATER HYDROLOGY

Ground water in rocks penetrated by well J-13 occurs in densely to

partly welded ash-flow tuffs, and in zeolitic and clayey bedded tuffs,
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Table 9.--Estimated porosities from sonic logs

Formation interval Lithology (microseconds porosity
(meters) (percent)
per meter)
Topopah Spring
Member-—--—=———- 296 - 302 Welded tuff 246 - 312 12 - 25
Do, =—=—m 333 - 341 do. 312 - 377 25 - 30
DO, =mmmm e 399 - 425 Vitrophyre 190 - 230 3- 9
Tuff of Calico
Hills===mmmmmmm— 485 ~ 511 Zeolitized tuff 312 - 377 24 - 28
Bullfrog Member--- 640 - 652 Zeolitized partly 262 - 328 24 ~ 28
welded tuff
Do.mmmm e e 652 - 689 Clayey zeolitized 230 - 262 23 - 27
tuff
Do, - e 689 - 704 Zeolitized welded 246 - 279 16 - 22
tuff
Tram unit-———me——v 750 - 809 Zeolitized 246 - 328 15 - 28
nonwelded to
partly welded
tuff
Do, —mmmmm e e 809 - 869 Partly welded 230 - 279 12 - 20
tuff
Do mmmm e e 869 - 902 Nonwelded to 256 - 302 16 - 23
partly welded
tuff
Do ——m e e e 902 - 975 do. 262 - 328 17 - 28
Bedded tuff-———=— 975 - 981 Bedded tuff 262 ~ 312 24 - 25
Tuff of Lithic
Ridge-——=————-— 981 - 1,045 Zeolitized tuff 256 - 305 24 - 25

and breccia
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tuffaceous sandstone, and tuffaceous breccia. The predominant aquifer is the
welded tuff of the Topopah Spring Member of the Paintbrush Tuff, in which
water occurs principally in fractures. The other tuff units are confining
units, with hydraulic conductivities less than 0.15 m/d. Ground-water inves-
tigations associated with this well consisted of water-level monitoring,

swabbing tests, injection tests, and pumping tests.

Water-Level Monitoring

During drilling, well J-13 was monitored for perched water in the
unsaturated zone, and for static water levels in the saturated zome. 1In
the unsaturated zone, little water was observed. The initial static water
level was 282.2 m below land surface, after the hole had reached a depth of
334.1 m in the welded tuff of the Topopah Spring Member of the Paintbrush
Tuff, the principal aquifer. Results of monitoring static water level during
hydraulic testing and well construction are presented in table 10. These
data indicate that static water levels to a well depth of 645.6 m are approx-
imately that of the initial static water level of 282.2 m. However, in
swabbing test 11, a lower static water level was measured in the Tram unit of
the Crater Flat Tuff for the depth interval from 772.7 to 803.1 m, which had
an approximate static water level of 283.6 m. 1In swabbing test 20, in the
depth interval 819.9 to 1,063.1 m at the bottom of the well, the depth to
static water level was 283.3 m. Accuracy of these static water levels de-
pends on the seal of the packers during testing, if there was no bypassing
of the packers along fractures, and if recovery of water level was complete
in a relatively short time for hydraulic testing. These conditions were not
evaluated. A deep-well water-level measuring device, the "iron horse"
(Weir and Nelson, 1976), was used to monitor water levels in this well.

Altitude of the original static water level was 729.1 m above sea level,
which is approximately the altitude of the regional water table in carbonate
rocks of Paleozoic age in nearby areas.

After construction of the well, static water levels were monitored in
the Topopah Spring Member and in the underlying confining beds (table 11).
These static water levels probably are those in the Topopah Spring Member.

Between 1962 and 1969, static water level declined from 282.5 to 283.3 m,

20



Table 10.--Static water levels during hydraulic testing

and construction

Interval Depth to
Type of test tested static Geologic unit tested
and No. (meters) water level
(meters)

————————————— 282.2 - 334.1 282.2 Topopah Spring Member

Pumping 1 282.5 - 451.1 282.5 Do.

Pumping 2 282.7 - 451.1 282.7 Do.

Injection 19 471.2 -~ 502.0 282.5 Tuffaceous beds of Calico
Hills

Swabbing 19 471.2 -~  502.0 282.3 Do.

Injection 16 501.1 ~ 562.1 282.4 Tuffaceous beds of Calico
Hills and Prow Pass Member

Swabbing 18 501.1 - 562.1 282.2 Do.

Swabbing 2 471.2 - 612.6 282.0 Tuffaceous beds of Calico
Hills, Prow Pass Member,
and tuffaceous sandstone

Swabbing 3 471.2 - 612.6 282.4 Do.

Swabbing 6 471.2 ~ 661.4 282.1 Tuffaceous beds of Calico
Hills, Prow Pass Member,
tuffaceous sandstone, and
Bullfrog Member

Injection 15 584.6 - 645.6 282.4 Prow Pass Member, tuffaceous
sandstone, and Bullfrog
Member

Swabbing 11 772.7 - 803.1 l283.6-|_-2 Tram unit

Swabbing 20 819.9 -~ 1,063.1 283.3 Tram unit, bedded tuff,

and Tuff of Lithic Ridge

lNearl}; recovered to static water level after 270 minutes.

21



Table 11.--Static water levels after completion

Depth to water level

Date below land surface

(meters)
12~30-62 282.5
01~01-63 282.5
02~04-63 282.8
11-27-63 282.9
12-17-63 282.8
12-19-63 283.1
02-04-64 28?.7
02-07-64 282.9
03-11~-67 283.1
04-21-69 283.3
08-20-80 282.4

possibly because the well was pumped nearly continuously for many years.
However, by 1980, the static water level had recovered to 282.4 m, because

of decreased pumping of the well.

Methods of Hydraulic Testing and Analysis

To determine the transmissivity and hydraulic conductivity of the ma-
terials penetrated by the well, 22 hydraulic tests were made at various
depths. Depth intervals, types of hydraulic tests, and transmissivity and
hydraulic-conductivity values developed from the test data are shown in
table 12. Two pumping tests, nine swabbing tests, and seven injection tests
provided usable data. Some swabbing and injection tests failed because
packers failed or because, as in the case of the Topopah Spring Member, the
hole was caving so much that packers could not be set securely.

Pumping tests were analyzed using both the straight-line solution and
Stallman's method for unconfined anisotropic aquifers that account for

vertical-flow components (Lohman, 1979; Stallman, 1965). A conceptual
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model is desirable to explain the applicability of Stallman's method to the

pumping tests. This conceptual model is described by an unconfined highly

fractured aquifer in which both the hydraulic conductivity and the effective
storage capacity are predominantly within interconnecting fractures.
The evidence that supports the conceptual model is:

1. The highly fractured aquifer tested by pumping tests is the moderate-to-
densely welded tuff of the Topopah Springs Member of the Paintbrush
Tuff; the high density of fractures is 42 fractures per unit meter
cubed in the Yucca Mountain area (R. B. Scott, U.S. Geological Survey,
written commun., 1982).

2. Fractures intersect in at least two sets of steeply dipping fractures;
some fractures dip at low angles (R. B. Scott, U.S. Geological Survey,
written commun., 1982).

3. The total porosity in the welded tuff aquifer averages 14.3 percent
(table 7); the effective porosity averages 5.4 percent (table 8); the
hydraulic conductivity averages 4.2 x 10"5 m/d; and the porosity aver-
ages 82.9 percent in water saturation (table 8).

4, Unconfined water-table conditions probably occur in the highly fractured
welded tuff because the water table is 76.5 m below the top of the

aquifer, indicating that there is no confining bed.

These data indicate that Stallman's method probably is applicable to
the conceptual model of a highly fractured welded tuff in which fracture-
hydraulic conductivity is predominant, and in which vertical fractures allow
instantaneous release of water from storage as the water table is lowered.
The low effective porosity and low hydraulic conductivity of the matrix in-
dicates that only a minor part of the water is from storage in the matrix.
Applicability of Stallman's method to the pumping tests results from the
principal flow conditions in the conceptual model being the same as those
assumed by Stallman, namely: (1) All storage comes from movement of the
free surface; (2) vertical-flow components are accounted for; and (3) aniso-
tropy is considered (Stallman, 1965).

An alternative conceptual model based on boundaries also was considered
for pumping tests for this report, because of the possibility that bounda-

ries may have been intercepted shortly after pumping began. This conceptual
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model considers the early-time straight-line portion of the drawdown curve
during pumping test 3 as representing the aquifer conditions; the later-time
steepening of the drawdown curve might then be attributed to discharge bound-
aries. This alternate conceptual model is considered to be less likely than
the model proposed for the application of Stallman's method, although the
results for both are included under results. A known but concealed fault
located approximately 330 m northwest of well J-13 may or may not be a hydro-
logic boundary. The fault displaces other older tuffaceous beds against the
aquifer, the Topopah Spring Member (Lipman and McKay, 1965).

Pumping tests 1 and 2 were run as step-drawdown tests to determine head
losses in the well from turbulent flow at the wellbore and in the aquifer.
These pumping tests were analyzed using both Jacob's method (1947) and the
Jacob-Rorabaugh equation (Rorabaugh, 1953; Lewis Howells, U.S. Geological
Survey, written commun., 1982); results provided anomalous numbers that are
not presented. The effects of vertical-flow components, delayed yield, or
boundaries probably prevented determination of the well-loss constants.

Swabbing tests consisted of either single-swabbing tests or multiple-
swabbing tests, conducted in the open uncased hole, or in intervals that were
between two straddle packers or below the straddle packers. Swabbing tests
consisted of lowering two swabs on the end of steel rods below the water
level in the drill stem, and then raising the swabs that expand to fit the
drill stem, resulting in raising the column of water above the swabs out of
the hole. Single-swabbing tests were analyzed as slug tests using a method
of Cooper and others (1967), and Papadopulos and others (1973). However, in
these single-swabbing tests, maximum drawdown had to be estimated from the
first measured rate of rise of water level, because 4 or 5 minutes elapsed
between swab removal and water-level measurements; therefore, the first water
levels during swabbing indicate less than maximum drawdown. Multiple~
swabbing tests were analyzed using the Theis recovery method (Ferris and
others, 1962). Discharges during the multiple-swabbing tests were measured
accurately; discharges during the single-swabbing tests were not measured
accurately.

Injection tests consisted of slug tests of a full column of water within

a tubing with 8.890-cm outside diameter and 7.793-cm inside diameter; water
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was injected as a slug into depth intervals between or below two straddle
packers or below a single packer. These injection tests were analyzed as
slug tests (Cooper and others, 1967; Papadopulos and others, 1973).

The effects of wellbore storage that were prominent during early parts
of the swabbing and injection tests were minimized by drawing a unit-slope
straight line on a log-log plot of Ap and At (Earlougher, 1977). This plot
showed the dominance of wellbore-storage effects during early parts of the
swabbing and injection tests. The first point to depart from the unit-slope
straight line is marked on the analyses of the swabbing and injection tests;
only data after this point are analyzable for transmissivity and hydraulic
conductivity. Using late-time recovery data is effective in eliminating
wellbore storage and skin effects that are less pronounced near the ends of

the tests.

Results of Hydraulic Testing

Values of transmissivity and hydraulic conductivity for each of the two
pumping tests, seven injection tests, and nine swabbing tests are given in
table 12. Graphical data plots and analysis of pumping, slug injection, and
swabbing tests are shown in figures 4 through 24. 1In general, pumping tests
indicate that the predominant aquifer, the Topopah Spring Member of the
Paintbrush Tuff, has an estimated transmissivity of 120 m2/d and an esti-
mated hydraulic conductivity of 1.0 m/d. Swabbing and injection tests
indicate that the welded tuffs and bedded or reworked tuffs beneath the
Topopah Spring Member are confining beds with transmissivities of 0.088 to
4.5 mz/d, and hydraulic conductivities of 0,0026 to 0.15 m/d. Although
these values are small for the confining beds, the values obtained for any
given depth interval contain some uncertainty because the analysis was not
fully diagnostic. TFor this reason, and because the packers may have leaked
in some tests and because of possible leakage to or from the annulus at the
base of the casing, the transmissivities and hydraulic conductivities are
given as estimated values in table 12,

Results of pumping test 1 using Stallman's method indicate that the
aquifer in the Topopah Spring Member of the Paintbrush Tuff in the depth
interval from 303.6 to 422.5 m has a transmissivity of 120 m2/d and an

average hydraulic conductivity of 1.0 m/d (fig. 5, table 2). Using the
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Figure 13.,--Recovery and analysis of water-level recovery during

multiple-swabbing test 18.
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straight-line method in pumping test 1, transmissivity is 110 mz/d, and aver-
age hydraulic conductivity is 0.9 m/d (fig. 4). Pumping test 2 was not
analyzed because the test was too short to use with Stallman's method or

the straight-line method; only the drawdown is presented (fig. 6).

Results of pumping test 3 using Stallman's method indicate that the
unconfined aquifer in the depth interval from 303.6 to 422.5 m plus the con-
fined depth interval from 819.9 to 1,009.5 m has a transmissivity of
140 mz/d (fig. 8, table 12). Using the straight-line method in pumping
test 3 and using the late slope, transmissivity is 210 m2/d (fig. 7).
Hydraulic conductivity was not calculated from this test because there were
two diverse depth intervals of unequal transmissivities that yielded water
to the well. However, hydraulic conductivity of the lower zone is much
lower than hydraulic conductivity of the upper zone, so transmissivities
calculated from pumping tests 1 and 3 are similar.

Results of pumping test 3, using the alternate conceptual model of
boundaries and the early slope for the straight-line method, indicate that
transmissivity of the Topopah Spring Member is 850 mz/d (Young, 1972;
fig., 7). In this report, the transmissivity of 120 mz/d, based on later-
time data, is considered more representative of actual aquifer conditions;
850 mz/d probably is a reasonable maximum value for transmissivity.

Results of the swabbing and injection tests indicate that the tuffaceous
beds penetrated in the lower part of the well, from depths of 719.3 to
1,063 m, have estimated values of hydraulic conductivity from 0.0026 to
0.0056 m/d and estimated values of transmissivity from 0.10 to 0.63 mz/d.
Beds between the Topopah Spring Member and the beds penetrated in the lower
part of the well, from depths of 471.2 to 699.2 m, have estimated values of
hydraulic conductivity from 0.0029 to 0.15 m/d, and estimated values of

transmissivity from 0.088 to 4.5 m2/d. H. was obtained by difference of

0
head between static water level and water level at time tO’ either immedi-
ately after injection started or after swabbing stopped. Recovery and

analysis of recovery of water level during each test are presented in fig-

ures 9 through 24,
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TESTS FOR HYDRAULIC CONNECTION BETWEEN WELL J-12 AND WELL J-13

Two attempts were made to determine the hydraulic connection between
well J-12 (which was pumped) and well J-13 (which was used as an observation
well). Well J-12 is 4.7 km south of well J-13 (fig. 1). The purposes of
these pumping tests were to determine interference between the wells and to
reevaluate aquifer characteristics. The first pumping test was conducted on
February 15-18, 1964, by continously pumping well J-12 for 3 days at an aver-
age discharge rate of 22.7 L/s. Apparent drawdown in well J-13, due to pump-
ing well J-12, was 0.37 m even after correction for barometric-pressure
effects was made, At the time of this test, well J-12 was 270.4 m deep and
only partly penetrated the aquifer, the Topopah Spring Member of the Paint-
brush Tuff. Before the second pumping test, the well was deepened in August
1968 to a depth of 347.2 m to the bottom of the Topopah Spring Member, in
order to screen the full thickness of the aquifer.

During the second pumping test, made on June 6, 1970, well J-12 was
pumped for 420 minutes at an average discharge rate of 5.68 L/s. No apparent
drawdown of water level occurred in well J-13, possibly because the test was

too short for the effects of well interference to reach well J-13.

CHEMICAL QUALITY OF THE WATER

Water samples were collected during pumping or pumping tests (Claassen,
1973); the chemical analyses generally represent the chemical character of
water in the aquifer, the Topopah Spring Member (table 13). The water sample
collected on January 1, 1963, during pumping test 2 represents water from the
Topopah Spring Member, between depths of 282.7 and 422.5 m, because a bridge
plug at a depth of 451.6 m in the casing blocked out water from below. The
remainder of the water samples represent water in both the Topopah Spring
Member, from depths of 282.7 to 422.5 m, and in the tuff beds, from depths
of 819.9 to 1,009.5 m; probably less than 5 percent of the water is derived
from the lower tuff beds.

Water sampled from well J-13 is typical of water derived from tuffa-
ceous rocks, The water is predominantly a sodium bicarbonate water contain-
ing small concentrations of silica, calcium, magnesium, and sulfate (Win-

ograd and Thordarson, 1975). Chemical analyses of the water samples are
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similar to each other and similar to water samples obtained from tuffs pene-
trated by well USW H-1, 8.3 km to the northwest on Yucca Mountain (fig. 1).
The uniformly low and invariant concentrations of calcium and magnesium
between 1963 and 1971 indicate that the mud and diesel fuel, added briefly
during drilling operations, have been flushed out of the aquifer.

Radiochemical analyses of dissolved gross alpha activity reported as
natural uranium equivalent in micrograms per liter (ug/L) ranges from less
than 2.8 to 6.1 pug/L. Dissolved gross beta activity reported as strontium-—
90-yttrium-90 ranges from 4.9 to 9.2 pCi/L (picocuries per liter). Tritium
values range from 21 to less than 220 pCi/L.

Ratios of the chief isotopes in water 180/160, -13.0 parts per thousand
referred to Standard Mean Ocean Water (O/oo SMOW) , 2H/lH, -97.5 /oo SMOW,
and the apparent age of the ground water derived from carbon-l4 age dating,
9,900 years before present, were provided by H. C. Claassen (U.S. Geological
Survey, written commun., 1982). These isotopic data indicate that the ground

water was derived originally from precipitation.

SUMMARY

Well J-13 yields water from tuffs of Tertiary age. The Topopah Spring
Member of the Paintbrush Tuff, the predominant aquifer, is underlain by
confining beds with hydraulic conductivities less than 0.15 m/d. The trans-
missivity of the Topopah Spring Member, as estimated from pumping tests,
is 120 mz/d, and the hydraulic conductivity is 1.0 m/d. Results of nine
swabbing tests and seven injection tests indicate that the tuff units be-
neath the Topopah Spring Member from depths of 471.2 to 1,063.1 m are con-
fining beds with estimated transmissivities ranging from 0.088 to 4.5 m2/d,
and hydraulic conductivities ranging from 0.0026 to 0.15 m/d. Confining beds
penetrated in the lower part of the well, below a depth of 719.3 m, have
estimated transmissivities that range from 0.10 to 0.63 m2/d, and hydraulic
conductivities that range from 0.0026 to 0.0056 m/d.

Static water level was at a depth of approximately 282.2 m in all units
down to a depth of 645.6 m. Below a depth of 772.7 m, static water level,
based on short periods of measurement, was slightly deeper, 283.3 to
283,6 m.
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Ground water sampled from well J-13 is typical of tuff; it is a sodium
bicarbonate water containing small concentrations of silica, calcium, magne-
sium, and sulfate. Apparent age of the ground water, derived from carbon-14

age dating, is 9,900 years.
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