PRECIPITATION-RUNOFF MODELING SYSTEM: USER'S MANUAL

By G. H. Leavesley, R. W. Lichty, B. M. Troutman, and L. G. Saindon

Water-Resources Investigations Report 83-4238

Denver, Colorado

1983

UNITED STATES DEPARTMENT OF THE INTERIOR

WILLIAM P. CLARK, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For more information write to:

Regional Hydrologist Water Resources Division, Central Region U.S. Geological Survey Box 25046, Mail Stop 406 Denver Federal Center Lakewood, CO 80225 Copies of this report can be purchased from:

Open-File Services Section Western Distribution Branch U.S. Geological Survey Box 25425, Federal Center Denver, CO 80225 [Telephone (303) 234-5888]

CONTENTS

Page

Abstract	1
Introduction	1
System structure	3
Data management	3 3 5 6
System library	5
Output	6
System concepts	6 7
Conceptual watershed system	7
Watershed partitioning	9
Daily and storm modes 1	10
Theoretical development of system library components 1	12
	12
Temperature 1	12
Precipitation 1	13
Solar radiation 1	14
Impervious area	18
Interception 1	18
Soil-moisture accounting 1	19
	20
	24
	25
	25
Storm overland flow	28
Subsurface flow Ground water 3	31
	33 34
Poconvoin nouting	34 36
	30 37
	39
	16
	18
	19
	50
	51
Constraints (prior information)	52
Optimization using volumes and peaks simultaneously	53
Statistical analysis	54
Daily error summaries	54
Storm arror summarias	57
Sensitivity analysis 5	57
Data handling	51
Linkage of system library components f	51
Control and system input specifications	58
	58
lob control carde	71
System input cards 7	75
Card group 1: Parameter and variable initialization 7	77
2: Storm period selection	93
3: Infiltration/upland erosion parameters 9	95
4: Flow and sediment routing specifications	96

	contents contentaed	
	stem input specificationsContinued put cardsContinued	Page
	<pre>group 5: Precipitation form adjustment 6: Snowpack adjustment 7: Optimization or sensitivity analysis data 8: Optimization/sensitivity analysis</pre>	102 103
System output-	continuation	107
System modific	ation	124
References		127
Attachment I.	PRMODEL cataloged procedure	130
II.	Simulation examples	130
III.	DCARDS procedure	
IV.	Definitions of system variables	181
۷.	Instructions for obtaining MAIN and subroutine	
		181
VI.	System labeled COMMON areas	199
VII.	Modifying PRMS data retrieval subroutines	204
VIII.	Instructions for obtaining a copy of PRMS	207

ILLUSTRATIONS

.

Figure 1.	Schematic diagram of the precipitation-runoff modeling	Page
2.	systemSchematic diagram of the conceptual watershed system and its inputs	4 8
3.	Diagram of flow-plane and channel-segment delineation of a basin	8 11
4-9.	Graphs showing:	11
	4. Example of coaxial relationship for estimating short-	
	wave solar radiation from maximum daily air tempera-	
	ture developed for northwestern Colorado	16
	5. The soil-water withdrawal functions for	
	evapotranspiration	23
	The relation that determines the value of the product of capillary drive and moisture deficit (PS) as a	
	function of soil-moisture content	26
	7. The relation that determines rainfall excess (QR) as	20
	a function of maximum infiltration capacity (FR)	
	and supply rate of rainfall (PTN)	26
	8. The relation between contributing area (CAP) and	
	soil-moisture index (SMIDX) for Blue Creek, Ala	29
	9. Diagram of components of the snowpack energy-balance	4.0
10	equations	40
10.	The functional relationships between winter forest-cover density (COVDNW) and the transmission coefficient of the	
	fowert composition and the second sec	44
11.	Flow chart of the MAIN program	62
12.	JCL for running GENDISK with a WATSTORE unit- and daily-	
	values retrieval	69

•

CONTENTS--Continued

13.	JCL for saving unit- and daily-values sequential-output files	70
14.	JCL for running GENDISK with previously stored online-	
		70
15.	JCL for using catalog-procedure PRMODEL	71
16.	JCL modifications to catalog-procedure PRMODEL	73
17.	JCL for region and time modifications to cataloged procedure PRMODEL	75
18.	Diagram showing delineation of hydrograph segments within a storm period	93
19.	Diagram showing delineation of sample watershed	97
20-25.	Sample printouts of:	
20 20.	20. Summary table of predicted versus observed daily	
	mean discharge	109
	21. Annual summary table for basin average and total	
	values	110
	22. Monthly summary table for basin average and total values	110
	23. Daily summary table for basin average and total	
	values	111
	24. Annual summary table for HRU's	113
	25. Monthly summary table for HRU's	113
·	26. Daily summary table for HRU's	113
	27. Storm summary table	116
	28. Inflow and outflow summary tables for a storm	
	event	117
	29. Linear plot of mean daily discharges	118
	30. Semilog plot of mean daily discharges	119
	31. Stormflow hydrograph plot	120
	32 Storm sediment-concentration plot	121
	33. Statistical summary	122
34-36.	Listings of JCL to:	
	34. Compile and replace System subroutines with	
	user subroutines	124
	35. Store modified program as user-defined load	
	module	126
	36. Execute stored user-modified program	126
I-1. List	of cataloged procedure PRMODEL	131
II-1. Topo	graphy and channel network of Cane Branch watershed	132
II-2. Map	showing hydrologic response units and channel segments	
	lineated for Cane Branch watershed	133
	ing of input card deck for daily and stormflow	
	mulation on Cane Branch watershed	134
	4 through II-9. Sample printouts of:	- • ·
II-		
T T .	and stormflow simulation on Cane Branch watershed	137
II-		207
± 1	daily simulation on Cane Branch watershed	142
		_ · _

CONTENTS--Continued

	II-6.	Line printer plot of simulated and observed daily mean flow discharge for Cane Branch watershed, February and March, 1956	144
	II-7.	•	145
	II-8.	Line printer plot of simulated and observed discharge for storm 2 (March 13-14, 1956) on Cane Branch watershed	146
	II-9.	Line printer plot of simulated sediment concentration graph for storm 2 (March 13-14, 1956) on Cane Branch watershed	140
II - 10.	follo	g of input card deck for a Rosenbrock optimization wed by a sensitivity analysis on Cane Branch	147
Figures		chrough II-15. Sample printouts of: Variables, parameters, and initial conditions for Rosenbrock optimization run on Cane Branch watershed	145
	II-12. II-13.	Rosenbrock optimization run on Cane Branch watershed Rosenbrock optimization with correlation analysis run	155
	II-14. II-15.	on Cane Branch watershed Sensitivity analysis run on Cane Branch watershed	157 160
III-1.		One iteration of Gauss-Newton optimization with correlation analysis on Cane Branch watershed of card deck used to run DCARDS procedure	166 175
III-2. III-3.	Sample	printout from DCARDS procedure	179 180

TABLES

Table	1.	1	
	-	radiation values for each slope-aspect combination	15
	2.	Equations for computation of ALPHA and RM from selected overland flow-plane and channel-segment characteristics	30
	3.	Model parameters and the associated values of the array,	
		L0P	47
	4.	Major variables used in sensitivity-analysis components	60
	5.	List of subroutines included in cataloged procedure	
		PRMODEL	64
	6.	Data files developed in subroutine INVIN for stormflow-	
		hydrograph computations	67
	7.	List of input/output units and file structures	72
	8.	Default values for parameters specified on EXEC card	76
	9.	Input data-card groups needed for various model	
		configurations	76
	10.	Parameter codes and statistic codes used for input data	
		types (IDUS)	83
	11.		
		their upstream and lateral inflows	98

Page

CONTENTS--Continued

12. Variable identifiers used in output summary tables for basin averages and totals, and their definitions------ 112 Variable identifiers used in output summary tables for HRU values, and their definitions------ 114 IV-1. Definitions of system variables------ 182 VI-1. System labeled common areas------ 199

CONVERSION FACTORS

For use of readers who prefer to use metric units, conversion factors for terms used in this report are listed below.

Multiply	By	To obtain
<pre>acre acre-inch (ac-in) calorie (cal) degree Fahrenheit (°F) foot (ft) foot per second (ft/s) square foot (ft²) cubic foot per second (ft³/s) inch (in.) inch per day (in./d) inch per hour (in./hr) kilogram per square foot per per second (kg/ft²/s)</pre>	2.54 2.54 2.54 10.76	hectare cubic meters joule degree Celsius meter meter per second square meter cubic meter per second centimeter centimeter per day centimeter per hour kilogram per square meter per second
kilogram per cubic foot (kg/ft ³)	35.31	kilogram per cubic meter
kilogram per cubic foot per second (kg/ft ³ /s) langley (ly)	35.31 4.186	kilogram per cubic meter per second joule per square centimeter

National Geodetic Vertical Datum of 1929 (NGVD of 1929) -- A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called mean sea level. NGVD of 1929 is referred to as sea level in this report.

Page

PRECIPITATION-RUNOFF MODELING SYSTEM: USER'S MANUAL

By G. H. Leavesley, R. W. Lichty, B. M. Troutman, and L. G. Saindon

ABSTRACT

The concepts, structure, theoretical development, and data requirements of the precipitation-runoff modeling system (PRMS) are described. The precipitation-runoff modeling system is a modular-design, deterministic, distributed-parameter modeling system developed to evaluate the impacts of various combinations of precipitation, climate, and land use on streamflow, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated to evaluate changes in waterbalance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and ground-water recharge. Parameter-optimization and sensitivity analysis capabilities are provided to fit selected model parameters and evaluate their individual and joint effects on model output. The modular design provides a flexible framework for continued model-system enhancement and hydrologic-modeling research and development.

INTRODUCTION

The precipitation-runoff modeling system (PRMS) is a modular-design modeling system that has been developed to evaluate the impacts of various combinations of precipitation, climate, and land use on surface-water runoff, sediment yields, and general basin hydrology. Basin response to normal and extreme rainfall and snowmelt can be simulated on various combinations of land use to evaluate changes in water-balance relationships, flow regimes, flood peaks and volumes, soil-water relationships, sediment yields, and ground-water recharge. PRMS is a deterministic physical-process modeling system. To reproduce the physical reality of the hydrologic system as closely as possible, each component of the hydrologic cycle is expressed in the form of known physical laws or empirical relationships that have some physical interpretation based on measurable watershed characteristics.

The modular design of PRMS provides a flexible modeling capability. Each component of the hydrologic system is defined by one or more subroutines that are maintained in a computer-system library. All subroutines are compatible for linkage to each other. Given a specific hydrologic problem and its associated data constraints, the user can select an established model from the library or can design his own model using selected library and user-supplied subroutines. The library also contains subroutines for parameter optimization, sensitivity analysis, and model output handling and analysis. The initial system subroutines were obtained by modularizing an event-type distributed routing rainfall-runoff model (Leavesley and Striffler, 1978), and by writing new algorithms for processes and procedures not available in these

1

models. Additional subroutines will be added and existing subroutines will be modified and improved as experience is gained from model applications in various climatic and physiographic regions.

PRMS is designed to function either as a lumped- or distributed-parameter type model and will simulate both mean daily flows and stormflow hydrographs. PRMS components are designed around the concept of partitioning a watershed into units on the basis of characteristics such as slope, aspect, vegetation type, soil type, and precipitation distribution. Each unit is considered homogeneous with respect to its hydrologic response and is called a hydrologic-response unit (HRU). A water balance and an energy balance are computed daily for each HRU. The sum of the responses of all HRU's, weighted on a unit-area basis, produces the daily system response and streamflow from the watershed. Partitioning provides the ability to impose land-use or climate changes on parts or all of a watershed, and to evaluate resulting hydrologic impacts on each HRU and on the total watershed.

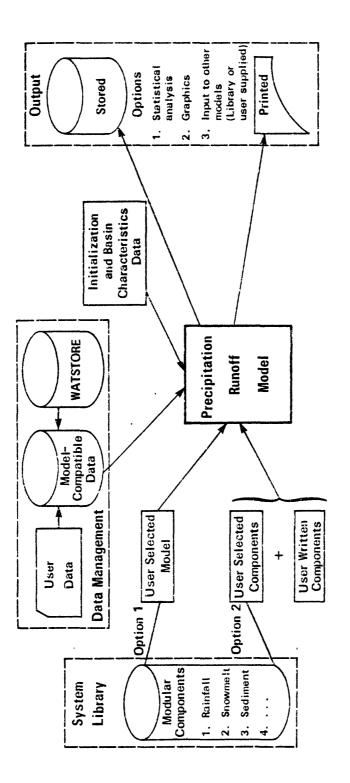
Input variables include descriptive data on the physiography, vegetation, soils, and hydrologic characteristics of each HRU, and on the variation of climate over the watershed. The minimum driving variables required to run in the daily-flow mode are (1) daily precipitation, and (2) maximum and minimum daily air temperatures. Daily pan-evaporation data can be substituted for air temperature for situations where snowmelt simulation is not required; daily solar radiation data are recommended when snowmelt will be simulated. To simulate stormflow hydrographs, rainfall depths for time intervals of 60 minutes or less are required. PRMS is designed to run with data retrieved directly from the U.S. Geological Survey's National Water Data Storage and Retrieval (WATSTORE) system (Hutchinson, 1975). However, PRMS also can use data not stored on the WATSTORE system. Programs are available to read and reformat these data to make them model-compatible.

The modular system approach provides an adaptable modeling system for both management and research applications. For management problems, a model can be tailored to geographic region, data, and problem characteristics. Research applications include development of new model components and the testing and comparison of various approaches to modeling selected components of the hydrologic cycle. New model components proposed as future additions to PRMS include water-quality components and expanded saturated-unsaturated flow and ground-water flow components.

This documentation is designed to provide the user with the basic philosophy and structure of PRMS, instructions for application of established models designed as cataloged procedures, and instructions for interaction with the PRMS library to permit user additions or modifications of model components. The components and subroutines described in this document are those available at the time of publication. However, the library is dynamic and will be enhanced and updated through time. This manual will be updated to reflect major additions and changes through manual inserts or republications.

All components of PRMS except the hydrologic and meteorologic data retrieval subroutines (DVRETR and UVRET) are written in FORTRAN. PRMS data sets are handled using an indexed sequential (ISAM) file structure. Because PRMS has been developed on an AMDAHL computer system, DVRETR and UVRET are written in PL/I programming language. To run PRMS on computer systems that don't have ISAM file or PL/I-FORTRAN interface capabilities will require modifications to DVRETR and UVRET. Descriptions of DVRETR and UVRET are given in attachment VII to facilitate user modifications. Future enhancement of the data management components includes the development of a FORTRAN-based data-management system. This system will permit creation, editing, and limited analysis of a PRMS data set.

SYSTEM STRUCTURE


The PRMS structure has three major components. The first is the datamanagement component. It handles the manipulation and storage of hydrologic and meteorologic data into a model-compatible direct access file. The second is the PRMS library component. This component consists of both a sourcemodule library and a load-module library for the storage of the compatible subroutines used to define and simulate the physical processes of the hydrologic cycle. In addition, it contains the parameter-optimization and sensitivity-analysis subroutines for model fitting and analysis. The third component is the output component that provides the model output handling and analysis capabilities.

The three PRMS components are shown schematically in figure 1. Hvdrologic and meteorologic field data are collected and stored in either user data files or the U.S. Geological Survey's WATSTORE system. Data interface programs accept data from these two sources and convert and store the data in an index-sequential (ISAM) file, which is fully model-compatible. The precipitation-runoff model either is selected as a cataloged procedure from the PRMS library or is created from PRMS library- and user-supplied subrou-The model reads initialization and basin characteristics information tines. from card-deck input and accesses the ISAM data file for hydrologic and meteorologic data required for model operation. Model outputs can be printed and stored for further analysis.

The major components of the PRMS structure are discussed in greater detail in the following sections. Examples of the use of these components are given in attachments II and III.

Data Management

The U.S. Geological Survey WATSTORE system is used for permanent storage of hydrologic and meteorologic data. Field measurements are transmitted to the U.S. Geological Survey Computer Center in Reston, Va., where WATSTORE data reduction and input programs are used to store the data in the "Daily Values" and "Unit Values" files. Data in these files are identified by a unique station number and 5-digit parameter and statistic codes. STORET EPA parameter codes are used to identify the type of data, and the statistic code defines the frequency of measurement or statistical reduction of the data. Lists and explanations of these codes may be found in Appendices D and E, Volume 1 of the WATSTORE user's manual (Hutchinson, 1975). Typically, the daily file will contain, for each day in the period of record, the maximum, minimum, and mean air temperature in degrees Celsius (°C), total solar radiation in langleys per day (1y/d), total precipitation in inches, and mean

ź

discharge in cubic feet per second (ft^3/s) . The unit file is used for storage of data collected at shorter time intervals, such as 5-minute precipitation and discharge. The WATSTORE system also has statistical, plot, and update capabilities that allow users to inspect and edit data.

The data-handling subroutines within the model do not access data directly from the WATSTORE system. The data-set organization required for use in the model is an indexed sequential (ISAM) file containing both daily- and unit-values data. A cataloged procedure, GENDISK, is available to read sequential files containing standard WATSTORE daily- and unit-values records and create the model-compatible ISAM file. Data contained in the WATSTORE system are made available to GENDISK by executing standard daily- and unitvalues retrieval programs. The ISAM file may contain more data than are needed for any particular model run, since the data-handling subroutines within the model will automatically select the years and events requested on the model control cards. However, if more data than are initially included in the ISAM file are required, the file must be recreated, since additions cannot be made to it.

System Library

The system library is the core of the PRMS. It contains all the compatible subroutines that can be used in system-defined or user-defined combinations to simulate the hydrologic cycle. The structure of the library and its subroutines is based on two model-design concepts. The first is that a MAIN program will be used as a central point for time and computational sequence control. Timing control maintains day, month, and year variables and increments them as required. Sequence control establishes the framework in which the sequence of various model functions will be performed. These functions are performed by calls to appropriate library subroutines. The timing and sequence functions are discussed in more detail in subsequent sections. The second concept is that each subroutine represents one component of the hydrologic cycle and is designed to be as independent as possible from other component subroutines. The necessary transfer of information between subroutines is done using COMMON statements.

The PRMS library is composed of both a source-module library and a loadmodule library. The source-module library contains the FORTRAN coded subroutines. The load-module library consists of the compiled subroutines ready for linkage editing into a complete program. Instructions for obtaining a copy of the source-module library are given in attachment V.

The library provides the user several options in model development and application. One option is the use of the cataloged procedure PRMODEL, which is the compilation of the complete model system. A second option would be to compile a new model using the System MAIN program with a combination of library- and user-supplied subroutines. A third option would be for the user to write his own MAIN program and use a combination of library- and user-supplied subroutines. This manual primarily is directed to the first option. However, the last two options are discussed in detail in the System Modification section.

Output

The output component provides the user with several options for analyzing, displaying, and storing model simulation results. Options include various printed summaries, printer plots of observed and predicted streamflow and sediment, and storage of observed and predicted streamflow for use with PRMS library, WATSTORE, Statistical Analysis System (SAS) (SAS Institute Inc., 1982), or user-written analysis programs. Desired outputs are specified in the data input stream.

Printed output options range from a table of predicted and observed streamflow values to annual, monthly, daily, or storm-event streamflow summaries. Annual, monthly, or daily summaries also are available for major climate and water-balance elements. These detailed summaries are available both for the total basin and for each individual HRU.

Predicted mean daily streamflow data can be stored by water year as a permanent file for further processing and analysis. Two record formats are available for data storage. One is the standard WATSTORE daily-value format, which permits the use of WATSTORE and SAS analysis programs. The second format option is designed for PRMS library and user-written analysis programs. It contains only the water-year date and 366 data values.

The output component is discussed in more detail in the System Output section. Examples of the output options are shown in the System Output section and in the sample model runs in attachment II.

SYSTEM CONCEPTS

The objectives established to guide the design and development of PRMS were that PRMS should:

- Simulate mean daily flows and shorter time-interval stormflow hydrographs for any combination of precipitation, climate, and land use.
- 2. Provide model-modification capabilities to permit specific user requirements or limitations to be incorporated.
- 3. Provide capabilities for system enhancement and expansion.
- 4. Provide error and sensitivity-analysis capabilities.
- Provide a data-management capability that is compatible with the U.S. Geological Survey WATSTORE system, but adaptable to other computer systems.

A modular system design was selected to provide the desired flexibility and data-management capabilities, and to allow incorporation of user-specific requirements.

The major component of PRMS is the system library. The use of models or components from the library requires an understanding of the basic concepts used in its design and development. These include the conceptual model of the watershed system, the partitioning scheme used to provide distributedparameter modeling capabilities, the time basis of model operation, and the interface between daily flow and stormflow hydrograph-generation components.

Conceptual Watershed System

The watershed system and its inputs are schematically depicted in figure 2. System inputs are precipitation, air temperature, and solar radiaion. Precipitation in the form of rain, snow, or a mixture of both is reduced by interception and becomes net precipitation delivered to the watershed surface. The energy inputs of temperature and solar radiation drive the proesses of evaporation, transpiration, sublimation, and snowmelt. The watershed system is conceptualized as a series of reservoirs whose outputs combine to produce the total system response.

The impervious-zone reservoir represents an area with no infiltration capacity. The reservoir has a maximum retention storage capacity (RETIP) which must be satisfied before surface runoff (SAS) will occur. Retention storage is depleted by evaporation when the area is snow free.

The soil-zone reservoir represents that part of the soil mantle that can lose water through the processes of evaporation and transpiration. Average rooting depth of the predominant vegetation covering the soil surface defines the depth of this zone. Water storage in the soil zone is increased by infiltration of rainfall and snowmelt and depleted by evapotranspiration. Maximum retention storage occurs at field capacity; minimum storage (assumed to be zero) occurs at wilting point. The soil zone is treated as a twolayered system. The upper layer is termed the recharge zone and is userdefined as to depth and water-storage characteristics. Losses from the recharge zone are assumed to occur from evaporation and transpiration; losses from the lower zone occur only through transpiration.

The computation of infiltration into the soil zone is dependent on whether the input source is rain or snowmelt. All snowmelt is assumed to infiltrate until field capacity is reached. At field capacity, any additional snowmelt is apportioned between infiltration and surface runoff. At field capacity the soil zone is assumed to have a maximum daily snowmelt infiltration capacity, SRX. All snowmelt in excess of SRX contributes to surface runoff. Infiltration in excess of field capacity (EXCS) first is used to satisfy recharge to the ground-water reservoir (SEP). SEP is assumed to have a maximum daily limit. Excess infiltration, available after SEP is satisfied, becomes recharge to the subsurface reservoir. Water available for infiltration as the result of a rain-on-snow event is treated as snowmelt if the snowpack is not depleted, and as rainfall if the snowpack is depleted.

For rainfall with no snowcover, the volume infiltrating the soil zone is computed as a function of soil characteristics, antecedent soil-moisture conditions, and storm size. For daily-flow computations, the volume of rain that becomes surface runoff is computed using a contributing-area concept. Daily infiltration is computed as net precipitation less surface runoff. For stormflow-hydrograph generation, infiltration is computed using a form of the Green and Ampt equation (Philip, 1954). Surface runoff for these events is net precipitation less computed infiltration. Infiltration in excess of field capacity is treated the same as daily infiltration.

Streamflow Ground-water flow (BAS) Surface runoff (SAS) Surface runoff (SAS) Subsurface flow (RAS) Solar radiation Evaporation Impervious zone reservoir Soil zone reservoir Precipitation Subsurface reservoir Subsurface recharge (EXCS-SEP) Interception Throughfall Snowpack INPUTS Snowmelt recharge (SEP) Ground-water | recharge (GAD) Recharge zone Soil zone excess (EXCS) Ground-water sink (SNK) Ground - water reservoir Ground-water Air temperature 1 Transpiration Transpiration Evaporation Evaporation Sublimation Sublimation Evapotranspiration

The subsurface reservoir performs the routing of soil-water excess that percolates to shallow ground-water zones near stream channels or that moves downslope from point of infiltration to some point of discharge above the water table. Subsurface flow (RAS) is considered to be water in the saturated-unsaturated and ground-water zones that is available for relatively rapid movement to a channel system. The subsurface reservoir can be defined either as linear or nonlinear.

Recharge to the ground-water reservoir can occur from the soil zone (SEP) and the subsurface reservoir (GAD). SEP has a daily upper limit and occurs only when field capacity is exceeded in the soil zone. GAD is computed daily as a function of a recharge rate coefficient (RSEP) and the volume of water stored in the subsurface reservoir. The ground-water reservoir is a linear reservoir and is the source of all baseflow (BAS). Movement of water through the ground-water system to points beyond the area of interest or measurement can be handled by flow to a ground-water sink (GSNK) which is computed as a function of storage in the ground-water reservoir.

Streamflow is the sum of SAS, RAS, and BAS. For daily flow simulations, no channel routing is done.

Watershed Partitioning

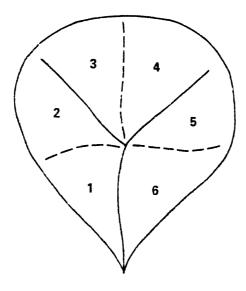
The distributed-parameter modeling capability is provided by partitioning a watershed into "homogeneous" units. Watershed partitioning can be done on the basis of characteristics such as slope, aspect, elevation, vegetation type, soil type, and precipitation distribution. Each watershed unit delineated is considered to be homogeneous with respect to these characteristics. Partitioning provides the ability to account for spatial and temporal variations of basin physical and hydrologic characteristics, climatic variables, and system response. It also provides the ability to impose land-use or climatic changes on parts or all of a basin. Evaluation can then be made of the impacts of such changes on the hydrology of each unit and the total basin.

Two levels of partitioning are available. The first level divides the basin on the basis of some or all of the physical characteristics mentioned above. The resulting units are called hydrologic response units (HRU's), and each is considered homogeneous with respect to its hydrologic response. A water balance and an energy balance are computed daily for each HRU. The sum of the responses of all HRU's, weighted on a unit-area basis, produces the daily system response and streamflow from a basin.

The conceptual watershed system shown in figure 2 could be defined for each HRU. However, for most small watersheds, one soil-zone reservoir is defined for each HRU, while one ground-water reservoir is defined for the entire watershed. One or more subsurface reservoirs are defined, depending on variations in soils and geology.

PRMS will handle a maximum of 50 HRU's. The number and location of HRU's for any given basin are a function of the number of physical characteristics used in the partitioning scheme, the number and location of precipitation

gages available, and the problem to be addressed by the model. There are no hard and fast rules for partitioning currently available; this is an area to be addressed by further research. However, the number of HRU's delineated will influence the calibration fit of many of the model components (Leavesley and Striffler, 1978). A general rule of thumb currently used for daily-flow computations for most problems is not to create HRU's smaller than 4 to 5 percent of the total basin area. Exception would occur if an area smaller than this would have significant influence on streamflow or on general basin hydrology. A common tendency is to overpartition. Therefore, it is recommended that test runs be made at a few levels of partitioning to get a feel for the influence of the numbers of HRU's on model daily-flow response.


A second level of partitioning is available for storm hydrograph simulation. The watershed can be conceptualized as a series of interconnected flow-planes and channel segments. Surface runoff is routed over the flow planes into the channel segments; channel flow is routed through the watershed channel system. An HRU can be considered the equivalent of a flow plane, or it can be delineated into a number of flow planes. Delineation of a basin into 6 overland flow planes and 3 channel segments is shown in figure 3. Overland flow planes have a width equal to the adjacent channel segment, and an equivalent length which, when multiplied by the width, gives the area of the natural basin segment. PRMS will handle a total of 50 overland flow plane and 50 channel segments.

Daily and Storm Modes

A model selected or developed from the PRMS library can simulate basin hydrology on both a daily and a storm time scale. The <u>daily</u> mode simulates hydrologic components as daily average or total values. Streamflow is computed as a mean daily flow. The <u>storm</u> mode simulates selected hydrologic components at time intervals shorter than a day. The minimum time interval is 1 minute. The storm mode is used to compute infiltration, surface-water runoff, and sediment yield from selected rainfall events.

Data required for daily simulations are input to the model 1 water year at a time. Included in the input are the dates of storm periods within the water year, where data are available for rainfall-runoff simulations. The model operates in a daily mode until it reaches one of these dates. It then shifts to the storm mode and inputs the data available for that date. A stormflow hydrograph and sediment-concentration graph can be simulated for that day at a time interval selected by the user. At the end of the storm day, control is returned to selected daily components for updating to insure storm- and daily-mode compatibility and to compute mean daily streamflow. If the storm period is more than 1 day in length, then control returns to the storm mode and another day of data is input. Subsequent storm days of data are read and used in this manner until the storm period terminates. The model then returns to the full daily-mode sequence.

Summaries can be output both for daily and for storm simulations. Daily mode computations can be summarized on a daily, monthly, and annual basis. Storm-mode computations can be summarized for the full storm period and at a user-selected time interval.

. ...t.

HYDROLOGIC-RESPONSE UNIT DELINEATION

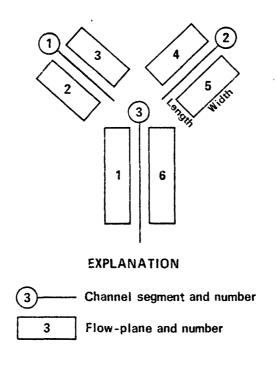


Figure 3.--Flow-plane and channel-segment delineation of a basin.

.

The daily mode keeps account of days using a day-month-year scheme and three numerical sequencing indices that number days of the year from 1 to 365 or 366. One numerical index is the Julian date. This numbers the days of the year beginning on January 1. A water-year date index also is used; it begins day 1 on October 1. The third numerical index is the solar date. Day 1 begins on December 22, which is the winter solstice, or the date of receipt of minimum potential solar radiation.

THEORETICAL DEVELOPMENT OF SYSTEM LIBRARY COMPONENTS

Meteorologic Data

The meteorologic data components take temperature and solar radiation data from one station and precipitation data from up to 5 gages and adjust these data for each HRU. Adjustment factors are computed as functions of the differences in elevation, slope, and aspect between the measuring station and each HRU. Local and regional climate and precipitation data are the sources for the development of these adjustment factors.

Temperature

Observed daily maximum (TMX) and minimum (TMN) air temperatures are adjusted to account for differences in elevation and slope-aspect between the climate station and each HRU. Air-temperature data can be input either in Fahrenheit (°F) or in Celsius (°C), but these data must be consistent througnout a simulation. All temperature variables and parameters must be in the same units as the temperature data. All daily maximum, minimum, and mean air-temperature computations are made in subroutine TEMP.

A correction factor (TCRX) for adjusting TMX for each HRU is computed each month (MO) by:

$$TCRX(MO) = [TLX(MO) * ELCR] - TXAJ$$
(1)

where

TLX is the maximum temperature lapse rate, in degrees per 1,000 feet change in elevation for month MO;

ELCR is the mean elevation of an HRU minus the elevation of the climate station, in 1,000's of feet; and

TXAJ is an average difference in maximum air temperature between a horizontal surface and the slope-aspect of an HRU.

A correction factor [TCRN(MO)] for adjusting TMN for each HRU is computed monthly with an equation of the same form as equation 1, using the monthly minimum temperature lapse rate [TLN(MO)] and minimum temperature slope-aspect correction (TNAJ).

Adjusted daily maximum air temperature (TM) for each HRU is computed by:

$$TM = TMX - TCRX(MO)$$
(2)

Adjusted daily minimum air temperature (TN) for each HRU is computed using an equation of the same form as equation 2 and the variables TMN and TCRN(MO).

Precipitation

Total daily precipitation depth (PPT) received on an HRU is computed by:

$$PPT = PDV * PCOR$$
(3)

where

PDV is the daily precipitation depth observed in the precipitation gage associated with the HRU, in inches (in.), and PCOR is the correction factor for the HRU.

A maximum of five gages can be used to define the spatial and temporal variation of precipitation on a watershed. Each HRU is associated with one of the available gages by the precipitation gage index KDS. A PCOR value is defined for each HRU and relates to the gage specified by KDS. PCOR accounts for the influences of elevation, spatial variation, topography, and gage-catch efficiency. Different values of PCOR can be specified for different precipitation forms and time scales of measurement--DRCOR for daily rainfall, DSCOR for daily snowfall, and UPCOR for storm-mode rainfall. In some geographic and climatic regions, the influence of elevation on precipitation volume varies seasonally with general storm patterns (Barry, 1972). Frontal origin storms may show a strong elevation effect, while convective storms may show little elevation effect. If DRCOR and DSCOR include strong elevational influence, they can be overridden for a period of time to account for these seasonal changes. All HRU values of DRCOR are replaced by a single constant value PCONR and all values of DSCOR are replaced by a constant value PCONS. The override period is user-specified to begin on the first day of month MPCS and end on the first day of month MPCN.

Precipitation form (rain, snow, or mixture of both) on each HRU is estimated from the HRU maximum (TM) and minimum (TN) daily air temperatures and their relationship to a base temperature (BST) (Willen and others, 1971). Precipitation is all snow if TM is less than or equal to BST, and all rain if TN is greater than BST. If TM is greater than BST and TN is less than BST, then the part of the total precipitation occurring as rain (PRMX) is computed by: TM = PST

$$PRMX = \frac{TM - BST}{TM - TN} * AJMX(MO)$$
(4)

where

AJMX is a monthly mixture adjustment coefficient for month MO. For mixed events, rain is assumed to occur first.

The mixture algorithm can be overridden in two ways. One is the use of variable PAT. PAT is an air-temperature value which, when exceeded by TM, forces all precipitation to be rain, regardless of the TN value. This capability permits accounting for convective rainfall during spring, when minimum daily temperatures are below BST. PAT is user-specified for each month. The second override is used when the form of precipitation is known by the user. Precipitation form then can be specified, using the snow and rain data cards (Card Group 5). These cards designate the Julian dates in each water year that are to be considered all snow or all rain.

All of the computations described above are made in subroutine PRECIP. One additional subroutine, PKADJ, is available for adjusting precipitation input. For snow, gage-catch deficiencies of about 45 to 70 percent can be expected at wind speeds of 10 to 20 miles per hour (Larson and Peck, 1974). To account for gage-catch deficiencies, PKADJ provides the capability of adjusting the snowpack water equivalent on each HRU, based on snowcourse data from each HRU or an index snowcourse. This adjustment option is available only once each year; therefore, it is best used near the anticipated date of maximum snowpack accumulation.

Solar Radiation

Observed daily shortwave radiation (ORAD) expressed in langleys per day (ly/d) is used in snowmelt computations and can be used in evapotranspiration computations. ORAD is an optional input for areas with no snowmelt. For areas where snowmelt will be simulated, ORAD can be input directly or estimated from daily air-temperature data for watersheds where it is not available. All solar radiation computations are made in subroutines SOLRAD and SOLTAB.

ORAD, measured on a horizontal surface, is adjusted to estimate SWRD, the daily shortwave radiation received on the slope-aspect combination of each HRU. SWRD is computed by:

$$SWRD = ORAD * \frac{DRAD}{HORAD}$$
(5)

where

DRAD is the daily potential solar radiation for the slope and aspect of an HRU (ly), and HORAD is the daily potential solar radiation for a horizontal surface (ly).

DRAD and HORAD are linearly interpolated from a table of 13 potential solar radiation values (RAD), which are calculated for each slope-aspect combination and the horizontal surface. Because of the symmetry of the solar year, these 13 values represent potential solar radiation for 24 dates throughout the year. The 13 dates and date pairs are listed in table 1. Table values are computed in subroutine SOLTAB using a combination of methods described in Frank and Lee (1966) and Swift (1976).

No.	Date(s)		
1	December 22		
	January 10, December 3		
3	• •		
5			
	February 7, November 5		
	February 20, October 22		
6	March 7, October 8		
7	March 21, September 23		
	April 4, September 9		
	April 19, August 25		
10	· · •		
T A	ing of inguot to		
	May 18, July 27		
12	June 1, July 12		
13	June 22		

Table 1.--Sequence number and dates of the 13 potential solar radiation values for each slope-aspect combination

For missing days or periods of record, ORAD can be estimated from airtemperature data. One of two procedures can be selected using variable MRDC. The first is a modification of the degree-day method described by Leaf and Brink (1973). This method was developed for a section of the Rocky Mountain Region of the United States. It appears most applicable to this region of the country, where predominantly clear skies prevail on days without precipitation.

The method is shown graphically in the coaxial relation of figure 4. A daily maximum temperature is entered in the X-axis of part A and intersects the appropriate month curve. From this intersection point, one moves horizon-tally across the degree-day coefficient axis and intersects the curve in part B. From this point, the ratio of actual-to-potential radiation for a horizon-tal surface (SOLF) can be obtained. An estimate of ORAD is then computed by:

$$ORAD = SOLF * HORAD.$$
 (6)

The ratio SOLF is developed for days without precipitation; thus, the computed ORAD is for dry days. ORAD for days with precipitation is estimated for the period September through April by multiplying the ORAD from equation 6 by a user-defined constant PARW. For days with precipitation in the months May through August, ORAD is adjusted using PARS in place of PARW.

The input data required to use this procedure are the slope (RDM) and the y-intercept (RDC) of the line that expresses the relationship between monthly maximum air temperature and a degree-day coefficient (DD). Estimates

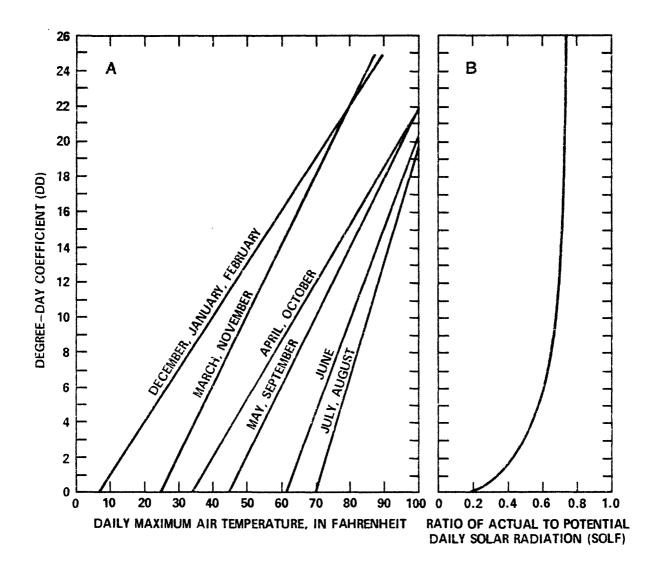


Figure 4.--Example of coaxial relationship for estimating shortwave solar radiation from maximum daily air temperature developed for northwestern Colorado.

of PARW and PARS also are required. DD is computed by:

$$DD = (RDM * TMX) + RDC$$
(7)

where TMX is the observed daily maximum air temperature. The DD-SOLF relationship of figure 4 is assumed constant.

Monthly values of RDM and RDC can be estimated from historic air- temperature and solar-radiation data. One method is to make monthly plots of TMX versus their daily degree-day coefficients, DD, for days without precipitation. The DD values for this plot are computed using figure 4 and the daily SOLF ratios computed from historic data. A set of monthly lines then can be drawn through these points either visually or with linear- regression techniques. A more rapid and coarse procedure is to establish two points for each monthly line using some average values. One point for each month is estimated using the average SOLF and average maximum temperature for days without The second point is estimated using the maximum observed precipitation. temperature for each month and a DD value of 15. Using this second procedure, curves shown in part A of figure 4 were estimated for a region in northwest Colorado. Estimates of PARW and PARS are obtained from the radiation record. PARW is the ratio of SOLF for days with precipitation to days without precipitation over the September through April period. PARS is the ratio of SOLF for days with precipitation to days without precipitation over the May through August period.

The second procedure for estimating missing data uses a relationship between solar radiation and sky cover developed by Thompson (1976) and a relationship between sky cover and a daily range in air temperature demonstrated by Tangborn (1978). This procedure appears applicable to the more humid regions of the country where extensive periods of cloud cover occur with and without precipitation. Daily sky cover (SKY) is computed by:

$$SKY = [RDM(MO) * (TMX-TMN)] + RDC(MO)$$
(8)

where

RDM is the slope of the sky cover-daily air temperature range relationship for month MO,
TMX is observed maximum air temperature,
TMN is observed minimum air temperature, and
RDC is the intercept of the sky-cover daily air-temperature range relationship for month MO.

This SKY value is used to compute an estimate of the ratio (RAJ) of ORAD to potential clear-sky radiation by:

$$RAJ = RDB + (1.-RDB) * [(1.-SKY)*RDP]$$
 (9)

where

RDB is the B value obtained from Thompson (1976) figure 1, and RDP is a parameter, suggested to be 0.61 (Thompson, 1976).

For days with precipitation, RAJ is multiplied by PARS (May through August) or PARW (September through April). An upper limit on RAJ is specified by the parameter RDMX. ORAD is then computed by:

$$ORAD = RAJ * HORAD$$
 (10)

Both ORAD estimation procedures are relatively coarse, but appear to work reasonably well. They normally are used to fill in days of missing data. However, where radiation data are unavailable, they have produced reasonable results when used to generate entire periods of solar-radiation record. In such cases, the nearest climate station with radiation and air-temperature data is used to estimate RDM and RDC values. If there is a large difference in elevation between the climate station on the watershed and the station with radiation data, the air-temperature data associated with the radiation data are adjusted to the study-basin elevation.

Impervious Area

Impervious area can be treated in one of two ways. If it exists as large, contiguous areas, then it can be designated as one or several totally impervious HRU's. If it is of significant area but scattered throughout the pervious areas of a watershed, then impervious area can be expressed as composing a percentage of an otherwise pervious HRU. Interception is assumed not to occur on impervious areas. Therefore, input to impervious areas is total precipitation. Impervious surface is assigned a maximum retention storage capacity (RETIP). Available retention storage (RSTOR) is depleted by evaporation. Surface runoff from impervious areas is delivered directly to the channel network and occurs only after RETIP is filled.

Interception

Interception of precipitation is computed as a function of the cover density and the storage available for the predominant vegetation on an HRU. Net precipitation (PTN) is computed by:

$$PTN = [PPT * (1.-COVDN)] + (PTF * COVDN)$$
(11)

where

PPT is the total precipitation received on an HRU (in.), COVDN is the seasonal cover density, and PTF is the precipitation falling through the canopy (in.).

COVDN is defined for summer (COVDNS) and winter (COVDNW). PTF is computed by:

$$PTF = PPT - (STOR-XIN) \quad PPT > (STOR - XIN) \quad (12)$$

$$PTF = 0.0 \qquad PPT < (STOR - XIN)$$

where

STOR is the maximum interception storage depth
 on vegetation (in.), and
XIN is the current depth of interception storage (in.).

STOR is defined by season and precipitation form--winter snow (SNST), winter rain (RNSTW), and summer rain (RNSTS). When rain falls on intercepted snow, STOR changes from SNST to the seasonal rain-storage value. Any snow in storage that exceeds the new rain-storage value is added to throughfall PTF. When snow falls on intercepted rain, STOR changes to SNST and currently available rain interception is used to satisfy SNST. Intercepted rain in excess of SNST is added to PTF. SNST generally is considered to be greater than or equal to RNSTW. PTF and XIN are computed in subroutine PRECIP for daily-precipitation events, and in subroutine UNITD for storm events.

Intercepted rain is assumed to evaporate at a free-water surface rate (EVCAN). If pan-evaporation data are used, then EVCAN equals the pan loss. If potential evapotranspiration (PET) is computed from meteorologic variables, EVCAN is computed by:

$$EVCAN = \frac{PET}{EVC(MO)}$$
(13)

where EVC is the evaporation-pan coefficient for month MO. Sublimation of intercepted snow (SUBCAN) is assumed to occur at a rate that is expressed as a percentage (CTW) of PET. In addition to sublimation, intercepted snow can be removed from the canopy by melting. An energy balance is computed for a 12-hour period (assumed 0600 to 1800). If the energy balance is zero or negative, no melt occurs. When the energy balance is positive, all melt is delivered to the snowpack or soil surface as net precipitation.

Actual daily loss from interception (XINLOS) is equal to the smaller value of storage XIN or loss rates, EVCAN or SUBCAN. If XIN is not depleted in 1 day, the remainder is carried over to the next day. XINLOS, as computed above, represents loss from the percentage of HRU area expressed in the cover density parameters COVDNS or COVDNW. For water balance computations, XINLOS is adjusted to represent an HRU average value. XINLOS is computed in subroutine INTLOS in the daily mode and in subroutine UNITD in the storm mode.

Soil-Moisture Accounting

Soil-moisture accounting is performed as the algebraic summation of all moisture accretions to, and depletions from, the active soil profile. Depletions include evapotranspiration and recharge to the subsurface and groundwater reservoirs. Accretions are rainfall and snowmelt infiltration. The depth of the active soil profile is considered to be the average rooting depth of the predominant vegetation on an HRU. The maximum available water-holding capacity of the soil zone (SMAX) is the difference between field capacity and wilting point of the profile. The active soil profile is divided into two layers. The upper layer is termed the recharge zone and the lower layer is termed the lower zone. The recharge zone is user-definable as to depth and maximum available water-holding capacity (REMX). The maximum available water-holding capacity (LZMX) of the lower zone is the difference between SMAX and REMX. Losses from the recharge zone occur from evaporation and transpiration; they occur only as transpiration from the lower zone. Evapotranspiration losses occur at a rate that is a function of available soil-moisture storage. The attempt to satisfy potential evapotranspiration is made first from the recharge zone. Soil-moisture accretions must fill the recharge zone storage before water will move to the lower zone. When soil-zone storage reaches SMAX, all additional infiltration is routed to the subsurface and ground-water reservoirs.

Soil-moisture accounting for daily computations is done in subroutine SMBAL. Accounting computations for storm-event periods are done in subroutine UNITD.

Evapotranspiration

Daily estimates of potential evapotranspiration (PET) are computed in subroutine PETS. Three computation procedures are available. Procedure selection is made, using variable IPET. The first procedure uses daily pan-evaporation data. PET (in./day) is computed by:

$$PET = EPAN * EVC(MO)$$
(14)

where

EPAN is daily pan-evaporation loss, (in.), and EVC is a monthly pan-adjustment coefficient for month MO.

A second procedure computes PET as a function of daily mean air temperature and possible hours of sunshine (Hamon, 1961). PET (in./d) is computed by:

$$PET = CTS(MO) * DYL^2 * VDSAT$$
(15)

where

CTS is a coefficient for month MO, DYL is possible hours of sunshine, in units of 12 hours, and VDSAT is the saturated water-vapor density (absolute humidity) at the daily mean air temperature in grams per cubic meter (g/m^3) .

VDSAT is computed by (Federer and Lash, 1978):

$$VDSAT = 216.7 * \frac{VPSAT}{(TAVC + 273.3)}$$
(16)

where

VPSAT is the saturated vapor pressure in millibars (mb) at TAVC, and TAVC is the daily mean air temperature (°C).

VPSAT is computed by (Murray, 1967): $VPSAT = 6.108 * EXP [17.26939 * \frac{TAVC}{(TAVC + 237.3)}]$ (17)

Hamon (1961) suggests a constant value of 0.0055 for CTS. Other investigators (Leaf and Brink, 1973; Federer and Lash, 1978) have noted that 0.0055 underestimated PET for some regions. Limited experience also has shown that a constant annual value underestimates PET for winter months more than summer months. Therefore, the ability to vary CTS by month is provided. DYL will vary with time of year and HRU slope and aspect. A set of day-length values (SSH) in hours is computed in subroutine SOLTAB for 13 specified date-pairs throughout the year (table 1) for each solar-radiation plane. Each SSH value is divided by 12 to compute its associated DYL value. Daily DYL values are interpolated from the 13 DYL values in subroutine SOLRAD.

The third procedure is one developed by Jensen and Haise (1963). PET (in./d) is computed by:

$$PET = CTS(MO) * (TAVF-CTX) * RIN$$
(18)

where

CTS is a coefficient for the month MO, TAVF is the daily mean air temperature (°F), CTX is a coefficient, and RIN is daily solar radiation expressed in inches of evaporation potential.

As with the Hamon procedure, the Jensen-Haise procedure also tends to underestimate winter month PET. Therefore, the ability to change CTS by month is provided. For the warmer months of the year, constant values for CTS and CTX can be estimated using regional air temperature, elevation, vapor pressure, and vegetation data (Jensen and others, 1969). For aerodynamically rough crops, which are assumed to include forests, CTS is computed for the watershed by:

$$CTS = [C1 + (13.0 * CH)]^{-1}$$
(19)

where

C1 is an elevation correction factor, and CH is a humidity index.

C1 is computed by:

$$C1 = 68.0 - [3.6 \div (\frac{E1}{1,000})]$$
 (20)

where

El is the median elevation of the watershed (ft).

CH is computed by:

$$CH = \left(\frac{50}{e^2 - e^1}\right)$$
(21)

where

e2 is the saturation vapor pressure (mb) for the mean maximum air temperature for the warmest month of the year, and e1 is the saturation vapor pressure (mb) for the mean minimum air temperature for the warmest month of the year.

CTX is computed for each HRU by:

$$CTX = 27.5 - 0.25 * (e_2 - e_1) - (\frac{E2}{1,000})$$
(22)

where

E2 is the median elevation of the HRU (ft).

Actual evapotranspiration (AET) is the computed rate of water loss which reflects the availability of water to satisfy PET. When available water is nonlimiting, AET equals PET. PET is first satisfied from interception storage, retention storage on impervious areas, and evaporation/sublimation from snow surfaces. Remaining PET demand then is applied to the soil-zone storage. AET is computed separately for the recharge zone and the lower zone using the unsatisfied PET demand and the ratio of currently available water in the soil zone to its maximum available water-holding capacity. For the recharge zone this ratio is $\frac{\text{RECHR}}{\text{REMX}}$ For the lower zone the ratio $\frac{\text{SMAV}}{\text{SMAX}}$ is used. AET computed

for the recharge zone is used first to satisfy PET; any remaining demand is attempted to be met by AET from the lower zone. HRU soils are designated as being predominantly sand, loam, or clay, using variable ISOIL. The AET-PET relations for these soil types as a function of the soil-water ratio are shown in figure 5 (Zahner, 1967). AET computations are done in subroutine SMBAL.

The time of the year in which transpiration occurs is specified as a period of months between ITST and ITND, which are the starting (ITST) and ending (ITND) months of the transpiration period. The specific date of the start of transpiration is computed for each HRU-using the temperature- index parameter TST. For each HRU, the sum of the daily maximum air temperatures is accumulated, starting with the first day of month ITST. When the sum for an HRU exceeds TST, transpiration is assumed to begin on that HRU. This technique permits accounting in part for warmer- or colder-than-normal spring periods. Transpiration is assumed to stop on the first day of ITND.

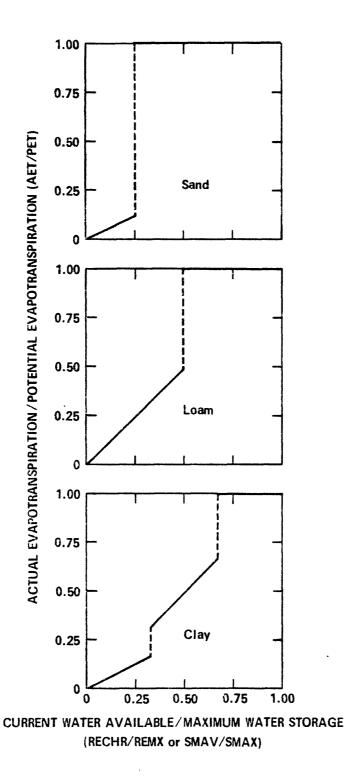


Figure 5.--Soil-water withdrawal functions for evapotranspiration (modified from Zahner, 1967).

Infiltration

Infiltration computations vary depending on the time interval and the form of the precipitation input. For daily rainfall occurring on a snow-free HRU, infiltration is computed as the difference between net rainfall computed in subroutine PRECIP and surface runoff computed in subroutine SRFRO. For snowmelt, infiltration is assumed nonlimiting until the soil reaches field capacity. Once field capacity is reached, a user-defined daily maximum infiltration capacity (SRX) limits the daily-infiltration volume. Any snowmelt in excess of SRX becomes surface runoff. For rain-on-snow, the resulting water available for infiltration is treated as snowmelt if the snowpack is not depleted. If the snowpack is depleted, then the rain and snowmelt are treated as rain on a snow-free surface.

Storm-mode computations are made only for rainfall and only when the basin is snow free. Infiltration during storms is computed in subroutine UNITD, using a variation of the Green-Ampt equation (Green and Ampt, 1911). Net rainfall (PTN) reaching the soil surface is allocated to rainfall excess (QR) and infiltration (FIN), either at the user-specified time interval or at 5 minutes, whichever is less. Point-infiltration capacity (FR) is computed as:

$$FR = KSAT * (1.0 + \frac{PS}{SMS})$$
(23)

where

KSAT is hydraulic conductivity of the transmission zone in inches per hour, PS is effective value of the product of capillary drive and moisture deficit (in.), and SMS is the current value of accumulated infiltration (in.).

PS is varied linearly as a function of the ratio $\frac{\text{RECHR}}{\text{REMX}}$ over the range from PSP, the value of the product of capillary drive and moisture deficit at field capacity, to a maximum value, RGF times PSP, expressed as:

$$PS = PSP * [RGF - (RGF-1) * (\frac{RECHR}{REMX})],$$
 (24)

where

RECHR is the current moisture storage in the recharge zone of the soil profile (in.), and REMX is the maximum moisture storage in the recharge zone of the soil profile (in.). This relationship is shown in figure 6. Net infiltration FIN then is computed, assuming that infiltration capacity varies linearly from zero to FR (fig. 7). Thus, FIN is computed as:

FIN = PTN -
$$\frac{PTN^2}{2FR}$$
 PTN < FR (25)
FIN = $\frac{FR}{2}$ otherwise.

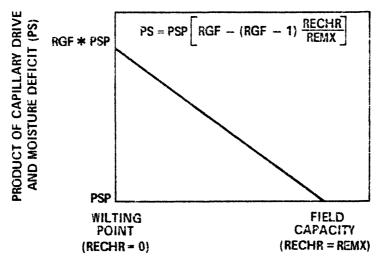
Rainfall excess (QR) is simply the net rainfall minus net infiltration

$$QR = PTN - FIN.$$
(26)

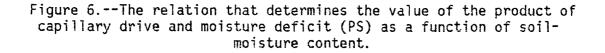
Increments of rainfall excess are stored in the array UPE(1440) to be available for subsequent overland-flow computations. Net infiltration enters the recharge zone and is accumulated in the variable SMS for the purpose of computing point infiltration in equation 23. During periods when net rainfall is equal to zero, SMS is reduced at a rate which is computed by a factor DRN times KSAT. SMS also is depleted by evapotranspiration during zero net rainfall periods.

In both daily and storm-mode computations, all infiltration in excess of SMAX is routed to the subsurface and ground-water reservoirs. The excess first is used to satisfy the maximum ground-water recharge rate SEP, and the remainder is routed to the subsurface reservoir.

Surface Runoff


The computation of surface runoff varies with the computation time mode and source of runoff. Daily mean surface runoff is computed in subroutines SMBAL and SRFRO. Surface runoff for storms is computed in subroutine UNITD.

Daily Mode


Surface runoff from snowmelt is computed only on a daily basis. Snowmelt runoff from pervious areas is assumed to occur only when the soil zone of an HRU reaches field capacity. At field capacity, a daily maximum infiltration rate (SRX) is assumed. Any daily snowmelt in excess of SRX becomes surface runoff. For impervious areas, snowmelt first satisfies available retention storage, and the remaining snowmelt becomes surface runoff. Available retention storage is computed by subtracting current-retention storage (RSTOR) from maximum-retention storage (RETIP). RSTOR is depleted by evaporation after the snowpack melts. Snowmelt generated by rain on a snowpack is treated as all snowmelt, if the snowpack is not depleted by the rain. If rain totally depletes a snowpack, the resulting rain and snowmelt mix is treated as if it were all rain on a snow-free HRU.

Daily surface runoff from rainfall on pervious snow-free HRU's is computed using a contributing-area concept (Dickinson and Whiteley, 1970; Hewlett and Nutter, 1970). The percent of an HRU contributing to surface

25

SOIL-MOISTURE CONTENT

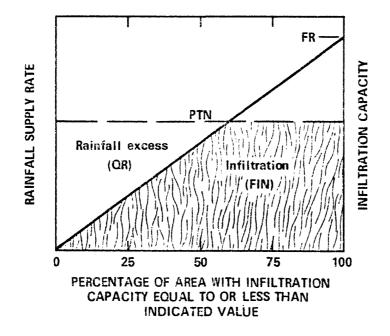


Figure 7.--The relation that determines rainfall excess (QR) as a function of maximum infiltration capacity (FR) and supply rate of rainfall (PTN).

runoff can be computed as either a linear or a nonlinear function of antecedent soil moisture and rainfall amount. In the linear relationship, the contributing area (CAP) expressed as a decimal fraction of the total HRU area is computed by:

$$CAP = SCN + [(SCX-SCN) * (\frac{RECHR}{REMX})]$$
(27)

where

SCN is the minimum possible contributing area, SCX is the maximum possible contributing area, RECHR is the current available water in the soil recharge zone (in.), and REMX is maximum storage capacity of the recharge zone (in.).

Surface runoff (SRO) then is computed by:

$$SRO = CAP * PTN$$
(28)

where

PTN is the daily net precipitation (in.).

The nonlinear scheme uses a moisture index (SMIDX) similar to that developed by Dickinson and Whiteley (1970) for estimating CAP. CAP is computed by:

$$CAP = SCN * 10.**(SC1 * SMIDX)$$
 (29)

where

SCN and SC1 are coefficients, SMIDX is the sum of the current available water in the soil zone (SMAV) plus one-half of the daily net precipitation (PTN).

A maximum CAP is specified using variable SCX. SRO then is computed using equation 28.

Estimates of SCX, SCN, and SC1 and direct-surface runoff can be made from observed runoff and soil-moisture data. Where soil-moisture data are not available, estimates of soil-moisture values can be obtained from preliminary model runs. A regression of log CAP versus SMIDX can be done for these data to determine the coefficients:

$$\log CAP = a + b * SMIDX$$
(29a)

then

```
SCN=10.**a,
SCl=b, and
SCX is a maximum value of CAP.
```

An example of a CAP versus SMIDX plot for Blue Creek, Ala., and the fitted equation for CAP are shown in figure 8. The soil-moisture values used in computing SMIDX were obtained from preliminary model runs.

Daily surface runoff from impervious areas is computed using total daily precipitation (PPT). Available retention storage, computed as above, first is satisfied, and the remaining PPT becomes runoff.

Storm Overland Flow

Surface runoff for storm-mode simulation is computed using the kinematic wave approximation to overland flow. Overland flow computations on pervious areas are performed using the rainfall excess computed using equation 26 as inflow. Impervious areas use the observed rainfall trace as inflow. An HRU can be considered a single overland flow plane, or it can be divided into 2 or more flow planes to account for variations in slope and surface roughness. All flow planes must discharge to a channel segment; cascading flow planes are not permitted. All flow planes delineated on an HRU use the same rainfall excess trace. The partial differential equation to be solved for each overland flow-plane segment is:

$$\frac{\partial h}{\partial t} + \frac{\partial q}{\partial x} = re$$
 (30)

where

h is the depth of flow (ft), q is the rate of flow per unit width in cubic feet per second per foot (ft³/s/ft), re is the rate of rainfall excess inflow (ft/s), t is time (s), and x is distance down plane (ft).

The relation between h and q is given as:

$$q = \alpha h^{m}$$
(31)

where

 α and m are functions of overland flow-plane characteristics and are computed in subroutine AM.

Equations used to compute α (ALPHA) and m (RM) from selected overland flow-plane and channel-segment characteristics are given in table 2. These equations may be overridden by user-defined values for ALPHA and RM. The numerical technique developed by Leclerc and Schaake (1973) and described by Dawdy, Schaake, and Alley (1978) is used to approximate q(x,t) at discrete locations in the x-t plane. A rectangular grid of points spaced at intervals of time, Δt , and distance, Δx , is used. Values of Δt and Δx may vary from segment to segment, as required to maintain computational stability, and to produce desired resolution in computed results.

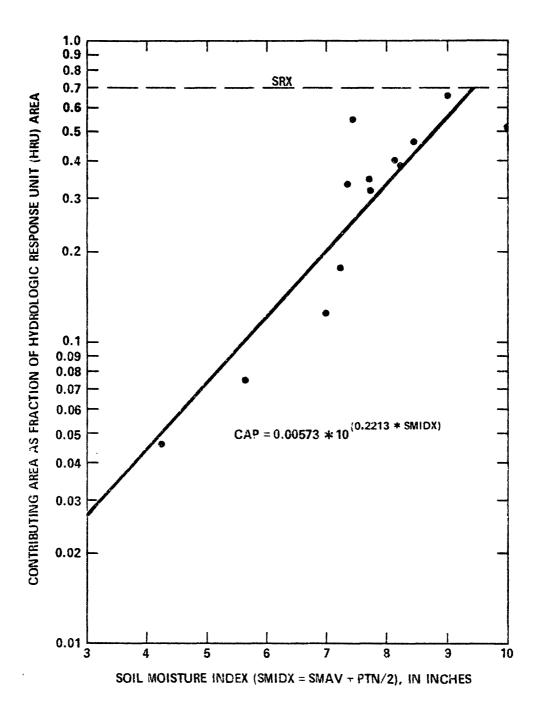


Figure 8.--The relation between contributing area (CAP) and soil-moisture index (SMIDX) for Blue Creek, Ala.

		[α=ALPHA and m=RM]	n=RM]		
Type of segment	ТҮРЕ	ALPHA	RM	Definition of PARAM PARAM (1,1) PARA	PARAM PARAM (I,2)
Rectangular cross- section.	1	<u>1.49 \5lope (1)</u> Frn(1) * Param(1,1) ^{2/3}	1.67	Width	
Iriangular cross- section.	3	<u> </u>	2/3		
	í	<pre></pre>	1. 33	Width from left bank to center at 1 ft depth	Width from right bank to center at 1 ft depth
External specifi- cation of α and m.	4	PARAM (1,1)	PARAM (I,2)	ø	E
Overland flow (turbulent).	ß	<u>1.49 <u>(510PE (1)</u> FRN (1)</u>	1.67		
Overland flow (laminar).	ę	64.4 SLOPE (I) 0.0000141 * FRN (I)	3.00		
Junction	٢			 	
			an daalah da dara ka da		

Table 2.--Equations for computation of ALPHA and RM from selected overland flow-plane and channel-segment characteristics

Subsurface Flow

Subsurface flow is considered to be the relatively rapid movement of water from the unsaturated zone to a stream channel. Subsurface flow occurs during, and for a period of time after, rainfall and snowmelt. The source of subsurface flow is soil water in excess of field capacity. This excess percolates to shallow ground-water zones or moves downslope at shallow depths from point of infiltration to some point of discharge above the water table. Subsurface flow is computed using a reservoir routing system.

Inflow to a subsurface reservoir occurs when the maximum available water-holding capacity (SMAX) of the soil zone of an HRU is exceeded, and this excess is greater than the recharge rate (SEP) to the ground-water reservoir. That is, the difference between soil-water excess and SEP is subsurface reservoir inflow. The continuity of mass equation for the subsurface-flow system is expressed as:

$$RAS = INFLOW - \frac{d(RES)}{dt}$$
(32)

where

RAS is the rate of outflow from the subsurface reservoir (in./ Δ t); INFLOW is the rate of inflow to the subsurface reservoir (in./ Δ t), and RES is the storage volume in the subsurface reservoir (in.).

RAS is expressed in terms of RES using the relationship:

$$RAS = RCF * RES + RCP * RES^2$$
(33)

where

RCF and RCP are routing coefficients.

This is a nonlinear relationship. However, setting RCP equal to 0 makes the relationship linear. Substituting equation 33 into equation 32 produces:

$$\frac{d(\text{RES})}{dt} = \text{INFLOW} - (\text{RCF} * \text{RES}) - (\text{RCP} * \text{RES}^2)$$
(34)

Equation 34 is solved for RES with the initial conditions $RES = RES_0$. This solution is combined with the continuity equation, producing:

$$RAS \star \Delta t = INFLOW \star \Delta t + SOS \star \frac{\left(1 + \frac{RCP}{XK3} \star SOS\right) \star \left(1 - e^{-XK3 \star \Delta t}\right)}{1 + \frac{RCP}{XK3} \star SOS \star \left(1 - e^{-XK3 \star \Delta t}\right)}$$
(35)

where

 $\Delta t \text{ is time interval,} \\ SOS = RES_0 - \frac{XK3 - RCF}{2 * RCP} \text{, and} \\ \end{cases}$

 $XK3 = \sqrt{RCF^2 + 4 * RCP * INFLOW}.$

A second discharge point from the subsurface reservoir provides recharge (GAD) to the ground-water reservoir. The computation of GAD is discussed under the topic ground water in this section of the manual.

A subsurface reservoir can receive inflow from one or several HRU's. The number of subsurface reservoirs delineated in a basin can range from one to the number of HRU's delineated. HRU's contributing to each subsurface reservoir are specified by the index, KRES.

Initial storage volumes and routing coefficients must be determined for each subsurface reservoir. The initial estimate of storage normally is zero. Values of RCF and RCP can be fitted from historic streamflow data. For the nonlinear routing scheme, there are no procedures currently developed for making initial estimates of RCF and RCP. However, for the linear case, RCF can be estimated using the hydrograph separation technique on semilogarithmic paper described by Linsley, Kohler, and Paulhus (1958). Integrating the characteristic depletion equation:

$$q_{t} = q_{0} * K_{r}^{t}$$
(36)

where

 $\boldsymbol{q}_{t},\;\boldsymbol{q}_{o}$ are streamflows at times t and o, and \boldsymbol{K}_{r} is a recession constant,

they show a relationship between RAS and RES that is expressed as:

$$RES = -\frac{RAS}{\log_e K_r}$$
(37)

where

 $K_{\rm r}$ is the slope of the subsurface flow recession obtained from the semilog plot for t=1 day.

Rewriting equation 37 as:

$$RAS = -\log_e K_r * RES$$
(38)

shows that $-\log_{e}K_{r}$ is equivalent to RCF in equation 33 when RCP is zero.

Daily flow computations of RAS are made in subroutine BASFLW using Δt equals 24 hours. Unit storm computations of RAS are made in subroutine UNSM, using Δt equals 15 minutes.

Ground Water

The ground-water system is conceptualized as a linear reservoir and is assumed to be the source of all baseflow (BAS). Water can move to a groundwater reservoir from both a soil zone and a subsurface reservoir (fig. 2). Movement from a soil zone occurs when field capacity is exceeded and is limited by a maximum daily recharge rate, SEP. SEP is defined for each HRU. The reservoir receiving recharge from an HRU is specified by the index KGW. Movement to a ground-water reservoir from a subsurface reservoir (GAD) is computed by:

$$GAD = RSEP * \left(\frac{RES}{RESMX}\right)^{REXP}$$
 (39)

where

RSEP is a daily recharge coefficient, RES is the current storage in the subsurface reservoir (in.), RESMX is a coefficient, and REXP is a coefficient.

RESMX and REXP are used to define the routing characteristics of GAD. Setting them to 1.0 makes the routing a linear function of RES. The ground-water reservoir receiving GAD is specified by the index KRSP. The shape of the baseflow recession of the simulated hydrograph will be influenced by the relative proportion of ground-water recharge from the two source terms, SEP and GAD. Recharge from SEP occurs only on days when SMAX is exceeded by infiltration, while GAD occurs every day there is water available in the subsurface reservoir. Therefore, the use of GAD to recharge ground water preferentially over SEP could decrease subsurface flow and increase ground-water flow contributions to the simulated hydrograph.

BAS expressed in acre-inches (acre-in.) is computed by:

$$BAS = RCB * GW$$
(40)

where

RCB is the reservoir routing coefficient, and GW is the ground-water reservoir storage (acre-in.).

RCB and the initial value of GW can be estimated from available streamflow records using equation 36 and a reformulated equation 37:

$$GW = - \frac{BAS}{\log_e K_r}$$
(41)

where

 K_{r} is the slope of the ground-water flow recession from a semilog plot of discharge versus time. The value $-\log_{e}K_{r}$ is equivalent to RCB in equation 40.

The movement of water through the ground-water reservoir to points beyond the area of interest or measurement is treated using a ground-water sink. The daily accretion to the sink (SNK) in acre-inches is computed by:

$$SNK = GSNK * GW$$
 (42)

where

GSNK is a seepage constant.

One or more ground-water reservoirs can be delineated in a watershed. More than one reservoir requires sufficient data to estimate initial storage volumes and routing coefficients. On small watersheds, only one ground-water reservoir normally is specified.

For mean daily flows, BAS and GAD are computed in subroutine BASFLW and the water in excess of field capacity available to satisfy SEP is computed in subroutine SMBAL. For storm events, BAS and GAD are computed in subroutine UNSM at 15-minute time intervals and the water in excess of field capacity is computed in subroutine UNITD at the same time interval as the infiltration computations.

Channel Flow

Channel-flow routing of daily streamflow is done only when surface reservoirs are designated. In these cases, the only routing is that accomplished by the reservoirs. Reservoir routing is discussed in detail under the reservoir topic in this section of the manual.

Channel-flow routing for storms is implemented by characterizing the drainage network as an ensemble of channel, reservoir, and junction segments that jointly describe the drainage pattern. The total number of channel, reservoir, and channel segments cannot exceed 50. Each type of segment can receive upstream inflow from as many as three other segments. In addition, channel segments may receive lateral inflow from as many as two overland flow planes (left bank and right bank). The upstream inflow hydrograph and the lateral inflow per unit length of channel times the channel length serve as the input or driving functions for channel-segment flow computations.

Channel-flow routing uses the same approach as that used for overland-flow computations--a finite difference approximation of the continuity equation

$$\frac{\partial A}{\partial t} + \frac{\partial Q}{\partial x} = q \tag{43}$$

and the kinematic wave approximation relating discharge and the crosssectional area of flow

$$Q = \alpha A^{m} \tag{44}$$

where

A is the area of flow (ft²), Q is the flow rate (ft³/s), q is the lateral inflow per unit length of channel (ft³/s/ft), t is time(s), x is distance down the channel (ft), and α and m are kinematic wave parameters.

The equations used to compute α (ALPHA) and m (RM) from selected channel segment characteristics are given in table 2. These equations can be overridden with user-defined values for ALPHA and RM. The numerical technique described by Dawdy, Schaake, and Alley (1978) is used to approximate Q(x,t) at discrete locations in the x-t plane.

The kinematic-wave parameters α and m for channel flow can be estimated for channel segments using Manning's equation if the wetted perimeter, W, can be expressed as a power function of the area of flow

.1

where

$$W = cA^{\alpha}$$
(45)

c and d are constants. Defining the hydraulic radius as

$$R = \frac{A}{W} = \frac{A^{1-d}}{c},$$
 (46)

then Manning's equation for the flow rate is

Q = AV =
$$\frac{1.49\sqrt{S}}{nc^{2/3}}$$
 A $\begin{pmatrix} \frac{5}{3} - \frac{2}{3}d \end{pmatrix}$ (47)

where

```
V is flow velocity (ft/s),
n is Manning's n, and
S is slope (ft/ft);
```

then

$$\alpha = \frac{1.49\sqrt{5}}{nc^{2/3}} , \qquad (48)$$

and

$$m = \frac{5}{3} - \frac{2}{3} d \quad . \tag{49}$$

Dawdy, Schaake, and Alley (1978) suggest that the time and space steps, Δt and Δx , used in the numerical computations, be selected on the frequencyresponse characteristic (time to equilibrium) of "fastest" channel segment, the highest expected lateral inflow rate and a unit-hydrograph rule of thumb. A linear-stability criterion (Woolhiser and others, 1970) also can be used to temper the selection of the time and space steps for channel segments with predominantly upstream flow. This criterion is

$$\frac{\Delta \mathbf{x}}{\Delta \mathbf{t}} \geq \mathbf{m} \boldsymbol{\alpha} \mathbf{A}$$
(50)

where

A is a maximum expected cross-sectional area of flow.

Reservoir Routing

Reservoir routing is based on a general form of the continuity equation:

$$0 = I - \frac{d(STO)}{dt}$$
(51)

where

O is reservoir outflow, I is reservoir inflow, STO is reservoir storage, and t is time.

For daily streamflow computations, I is the sum of the streamflow contributions from all HRU's and the part of subsurface- and ground-water reservoirs above the channel reservoir. Reservoir inflow also can include the outflow of up to 3 upstream channel reservoirs. For storm-mode computations, the reservoir is treated as an individual stream segment in the channel-routing scheme. Reservoir inflow in this case is the upstream input of any combination of up to three channel, reservoir, and junction segments.

Two types of reservoir routing are available. One is linear storage routing which uses equation 51 and the relationship

$$0 = RCS * STO$$
(52)

where

RCS is a routing parameter.

Substituting equation 52 into equation 51 and rearranging terms produces

$$\frac{d(STO)}{dt} = I - (RCS * STO)$$
(53)

Equation 53 is solved for STO, and this solution is substituted back in equation 51 producing:

$$0 = (1 - \frac{1 - e^{-(RCS^*\Delta t)}}{RCS^*\Delta t}) * I * \Delta t + (1 - e^{-(RCS^*\Delta t)}) * STO,$$
(54)

where

 Δt is the time interval, and STO is the reservoir storage at the start of Δt .

STO is recomputed at the end of each Δt and used in the next iteration of equation 54.

The second type of reservoir routing available is modified-Puls routing (U.S. Soil Conservation Service, 1971). In this procedure, the 0 and I terms of equation 51 are the averages of 0 and I at the beginning and end of time interval Δt . Rearranging equation 51 using these average values gives

$$\frac{2\text{STO}_2}{\Delta t} + \text{O}_2 = (\text{I}_2 + \text{I}_1) + \frac{2\text{STO}_1}{\Delta t} - \text{O}_1$$
(55)

where the subscripts 1 and 2 specify start and end values for time interval Δt . All terms on the right-hand side of equation 55 are known at the beginning of a routing period. An interpolation procedure described by Dawdy, Schaake, and Alley (1978) is used to solve for 0_2 . A table of outflow versus $\frac{2STO}{\Delta t} + 0$ values is computed by the model from a user-specified table of storage versus outflow. 0_2 can be determined by entering the computed table with the value of $\frac{2STO_2}{\Delta t} + 0_2$ computed from equation 55. Reservoir evaporation, leakage, bank storage, and inflow by direct precipitation are not accounted for by the model.

The type of routing for each reservoir is selected with varibles IRTYP for daily routing and TYPE for storm routing. IRTYP and TYPE must be the same value for a given reservoir. Reservoir routing for daily streamflow simulation is done in subroutine RESVRD. Reservoir routing for storm events is done in subroutine RESVRU.

Sediment

Sediment detachment and transport from overland flow-planes is computed only for storms. Computations are done in subroutine UNITD. The conservation of mass equation used to describe sediment detachment and transport is one presented by Hjelmfelt, Piest, and Saxon (1975) and is expressed as:

$$\frac{\partial(ch)}{\partial t} + \frac{\partial(cq)}{\partial x} = ER + EF$$
(56)

where

c is sediment concentration, in kilograms per cubic foot
 (Kg/ft³),
h is flow depth (ft),
q is flow rate per unit width (ft³/s/ft),
ER is the rainfall detachment rate of sediment (Kg/ft²/s),
EF is the overland flow detachment rate of sediment (Kg/ft²/s),
x is distance down the flow plane (ft), and
t is time(s).

ER is computed using a relationship described by Smith (1976) which is expressed as:

$$ER = KR * PPT2 * e^{-(HC*HBAR2)}$$
(57)

-

where

PPT is the rainfall rate (ft/s), HBAR is the mean depth of flow (ft), and KR and HC are parameters.

EF is computed using a relationship described by Hjelmfelt, Piest, and Saxon (1975) which is expressed as

$$EF = KF * (TC-TR)$$
(58)

where

TC is the sediment transport capacity (Kg/s), TR is the current sediment transport rate (Kg/s), and KF is a parameter.

TC is computed by

$$TC = MM * HBAR^{EN}$$
(59)

where

MM and EN are parameters.

For a given time step, the rainfall detachment rate (ER) is added to the current transport rate (TR) and the sum is compared to the transport capacity (TC). If the sum is greater than the transport capacity, then the current transport rate is set equal to the transport capacity. If the sum is less than the transport capacity, then the flow detachment (EF) computations are made and added to the current transport rate.

Equations for overland flow are solved to obtain the appropriate values of q and h for use in equation 56. The time trace of sediment-transport rate per unit width of overland flow plane is written to a temporary disk file for use in channel-transport computations performed in subroutine ROUTE. Sediment is transported as a conservative substance in the channel system; sediment detachment and deposition in the channel are not included. Channel transport is computed using the channel network described under the Channel Flow heading of this section. The continuity of mass equation used to describe sediment transport is expressed as:

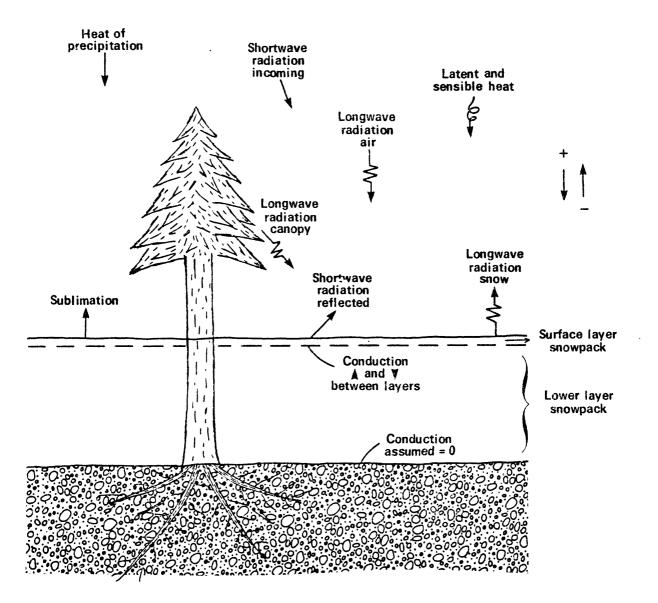
$$\frac{\partial cA}{\partial t} + \frac{\partial cQ}{\partial x} = TLAT$$
(60)

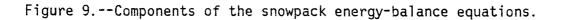
where

A is the cross-sectional area of flow (ft^2) ,

Q is the flow rate (ft^3/s) , and

TLAT is the lateral inflow rate of sediment to the channel (Kg/s/ft).


TLAT is obtained from the temporary disk file written in subroutine UNITD.


Snow

The snow components simulate the initiation, accumulation, and depletion of a snowpack on each HRU. A snowpack is maintained and modified both on a water-equivalent basis and as a dynamic-heat reservoir. A snowpack-water balance is computed daily, and an energy balance is computed twice each day for two 12-hour periods (designated day and night). Most snow computations are done in subroutine SNOBAL.

The conceptual model for the snowpack system and its energy relationships is one described by Obled and Rosse (1977). The snowpack is assumed to be a two-layered system. The surface layer consists of the upper 3 to 5 centimeters of the snowpack, and the lower layer is the remaining snowpack. Heat transfer between the surface layer and the lower layer occurs by conduction when the temperature of the surface layer (TS) is less than 0°C (Celsius). When TS equals 0°C, heat transfer occurs as conduction when the net energy balance at the air-snow interface is negative, and as mass transfer by surface melting when the net energy balance is positive. Heat transfer from precipitation occurs as a mass-transfer process. Conduction of heat across the soil-snow interface is assumed to be zero, since it is negligible compared to the energy exchange at the air-snow interface. The conceptual snowpack system and the components of the snowpack energy-balance equations are shown in figure 9.

Temperature of the surface layer for the daylight period is computed as the mean of the maximum and mean-daily air temperature for an HRU. For the night period, it is computed as the mean of the minimum and mean-daily air temperature for a HRU. Snow surface temperature equals 0° C when these means exceed 0° C. When the surface temperature is less than 0° C, the mean air temperature for that 12-hour period is assumed to integrate the effects of the radiation, latent heat, sensible heat, and diffusion processes expressed in the complete equation for the surface temperature. See Anderson (1968) for a complete discussion of the equation.

The conduction of heat between the snow surface and the lower layer of the snowpack (QCOND) is computed by:

QCOND = 2 * DEN * CS *
$$\sqrt{\frac{\text{KEFF}}{(\text{DEN*CS})} * \frac{\Delta t}{\Pi}}$$
 * (TS-PACT) (61)

where

DEN is snowpack density (g/cm³), CS is the specific heat of ice in calories per gram per °C (cal/g/°C), KEFF is the effective thermal conductivity of the snowpack (cal/s/cm/°C), At is the time interval(s), Π is pi, and PACT is the temperature of the lower layer of the snowpack (°C).

KEFF is assumed equal to 0.0077 * DEN² (Anderson, 1968). DEN is computed by:

$$DEN = PWEQV/DPT$$
(62)

where

PWEQV is snowpack water equivalent (in.); and DPT is snowpack depth (in.).

DPT is computed using a finite difference scheme to solve the equation (Riley, Israelsen, and Eggleston, 1973):

$$\frac{d[DPT(t)]}{dt} + [SETCON*DPT(t)] = \frac{PSN}{DENI} + \frac{SETCON}{DENMX} * PSS$$
(63)

where

SETCON is a settlement-time constant, PSN is net daily snowfall (inches water equivalent), DENI is initial density of new-fallen snow, DENMX is the assumed average maximum snowpack density, t is time in days (t=0 at date of snowpack initiation), and PSS is accumulated sum of PSN from time of snowpack initiation (in. water equivalent).

The temperature of the lower layer of the snowpack, PACT, is recomputed each 12-hour period by:

$$PACT = \frac{-PKDEF}{(PWEQV*1.27)}$$
(64)

where

PKDEF is the number of calories of heat required to bring the lower layer to an isothermal state at 0°C.

The constant 1.27 is the product of the specific heat of ice (0.5 calories/gram/°C) and the conversion factor for inches to centimeters (2.54).

When the temperature of the surface layer equals 0° C, an energy balance at the air-snow interface is computed. For each 12-hour period the energy balance CALN in calories is computed by:

$$CALN = SWN + LWN + CEN$$
 (65)

where

SWN is net shortwave radiation (cal), LWN is net longwave radiation (cal), and CEN is an approximation of the convection-condensation energy terms (cal).

An additional energy term for the heat content of precipitation (CALPR) is computed in subroutine PRECIP and is added to the snowpack before CALN is computed.

Net shortwave radiation SWN is computed by:

$$SWN = SWRD * (1.0 - ALB) * TRNCF$$
(66)

where

SWRD is the computed shortwave solar radiation received (ly), ALB is the albedo of the snowpack surface, and TRNCF is the transmission coefficient for the vegetation canopy over the snowpack.

For albedo computations, the snowpack is considered to be in either an accumulation phase or a melt phase. A new snowpack begins in the accumulation phase and continues in this phase until the temperature of the lower layer is 0° C for 5 consecutive days or the Julian date exceeds a forcing date ISP2. At this point, the snowpack shifts to the melt phase. The date to begin checking for the start of the melt phase (ISP1) and the date to force the start of melt phase (ISP2) are user-specified. Snow surface albedo is computed as a func-tion of the snowpack phase and the number of days since the last snowfall (SLST). A separate albedo-SLST relationship (U.S. Army, 1956) is used for each phase. The albedo of new snow decays daily according to the albedo-SLST relationship in effect at the time of the snowfall. The number of days since the last snowfall (SLST) is reset to zero when all-snow precipitation of at least 0.05 inches water equivalent during the accumulation phase, or 0.1 inches water equivalent during the melt phase, occurs. For precipitation that is a mixture of rain and snow, SLST is not reset if the percentage rain in the mixture (PRMX) is greater than or equal to user-defined value of RMXA for the accumulation phase or RMXM for the melt phase.

The transmission coefficient (TRNCF) is estimated using a winter forestcover density (COVDNW)-TRNCF relationship for the vegetation canopy over the snowpack. Miller (1959) developed a COVDNW-TRNCF relationship for several species of pine, and Vézina and Péch (1964) developed similar relationship for both jack pine and balsam fir. Both pine relationships are shown in figure 10, with an average of the two curves that has given reasonable results in model applications (Leavesley and Striffler, 1978).

Longwave net radiation (LWN) has two components--the longwave exchange between the air and snowpack surface and the longwave exchange between the vegetation canopy and the snowpack surface. LWN is computed by:

LWN = (1.0 - COVDNW) * [(EMIS*AIRN)-SNON]

+ COVDNW * (AIRN-SNON)

(67)

where

COVDNW is the winter cover density of the predominant vegetation above the snowpack, EMIS is the emissivity of air, AIRN is the longwave energy emitted from a perfect black body at the average air temperature for the l2-hour period (cal), and SNON is the longwave energy emitted from the snowpack surface at the surface temperature (TS) for the l2-hour period (cal).

AIRN and SNON are computed using the Stefan-Boltzmann law. The temperature used for AIRN is the average of the daily-minimum and daily-mean air temperatures for the night period, and the average of the daily-maximum and daily-mean air temperature for the daylight period. The snowpack and the vegetation canopy are assumed to radiate as perfect black bodies and, thus, have an emissivity of 1.0. Emissivity of the air (EMIS) is a function of its moisture content and ranges between 0.757 and 1.0 (U.S. Army, 1956). For days without precipitation, EMIS is user specified as EAIR. For days with precipitation, EMIS is computed separately for the day and night periods as a function of storm type and observed solar radiation. A period of months during which storms are predominantly convective in origin can be user-specified with the first month (MTSS) and last month (MTSE) parameters. Storms occurring outside these months are assumed to be frontal in origin with an associated EMIS of 1.0 for both day and night periods. During the convective storm period, days with precipitation are assumed to have an EMIS of 0.85 for the night period. For the associated day period, EMIS is assumed to vary between EAIR and 1.0 as a function of the ratio of observed to potential solar radiation received on a horizontal surface. If solar radiation is computed from temperature data, the day period EMIS is assumed to be 1.0.

The full equation for computing latent and sensible heat flux includes terms for temperature, vapor pressure, wind speed, and diffusivities of heat and vapor (U.S. Army, 1956). However, wind and vapor pressure or humidity data generally are not available. Therefore, the full equation is simplified

43

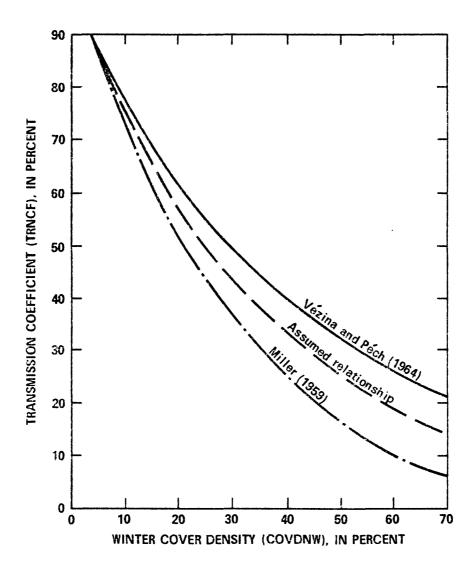


Figure 10.--Functional relationships between winter forest-cover density (COVDNW) and the transmission coefficient (TRNCF) of the forest canopy.

to a temperature index form to estimate latent and sensible heat terms. It is computed by:

$$CEN = CECN(MO) * TAVC$$
(68)

where

CEN is an estimate of latent and sensible heat, CECN is a parameter for month MO, and TAVC is the mean air temperature for the 12-hour period (°C).

To provide a measure of the influence of wind in the full equation for CEN, areas of forest cover are assumed to receive only one-half of CEN computed by equation 68. Vapor pressure influences are considered by computing CEN only on days of rainfall or when the ratio of observed to potential shortwave solar radiation is less than or equal to 0.33.

When the 12-hour energy balance (CALN) is negative, heat flow occurs by conduction only. The amount and direction of heat flow is computed from equation 61. When the 12-hour energy balance is positive, this energy is assumed to melt snow in the surface layer. Snowmelt transports heat into the snowpack by mass transfer. Snowmelt and subsequent thermal and water equivalent changes in the snowpack are computed in subroutine CALIN. Snowmelt (SMLT) is computed by:

$$SMLT = \frac{CALN}{203.2}$$
(69)

where

203.2 is the number of calories required to melt 1 inch of waterequivalent ice at 0°C.

If the temperature of the lower snowpack (PACT) is less than 0° C, then part or all of the snowmelt is refrozen, releasing 203.2 calories per inch of snowmelt refrozen. This heat is used to satisfy part or all of the heat deficit in the lower snowpack (PKDEF), and a new temperature is computed for the lower snowpack using equation 64. When the temperature of the lower snowpack reaches 0° C, any additional snowmelt is used to satisfy the free water-holding capacity (FWCAP) of the snowpack. FWCAP ranges from 2 to 5 percent of the water equivalent of the snowpack existing in the ice phase (U.S. Army, 1956; Leaf, 1966) and is user-specified. Once FWCAP is satisfied, the remaining snowmelt moves out of the snowpack and becomes available for infiltration and surface runoff.

When the temperature of the lower snowpack is $0^{\circ}C$ and the surface temperature is less than $0^{\circ}C$, heat is conducted from the lower snowpack to the snowpack surface. The amount of heat conducted to the surface is computed using equation 61. The heat loss from the lower snowpack first causes any FREWT held in the pack to freeze. The calorie loss (CALND) required to freeze the FREWT is computed by:

$$CALND = FREWT * 203.2$$
 (70)

Any loss available after FREWT is frozen is accumulated as a heat deficit in variable PKDEF, and a new temperature for the lower snowpack is computed using equation 64. These computations are done in subroutine CALOSS.

Evaporation and sublimation from the snow surface are assumed to occur only when there is no transpiration occurring from vegetation above the snowpack. The loss from the snow surface (SNEV) is computed daily as a percentage of the potential evapotranspiration (PET) value computed in subroutine PETS. The equation used is:

SNEV = (CTW*PET) - XINLOS	(CTW*PET) > XINLOS	(71)
SNEV = 0	otherwise;	

where

CTW is a loss coefficient, and XINLOS is the evaporation and sublimation loss from interception computed in subroutine INTLOS (in.).

Optimization

This component controls the automatic adjustment of a specified set of parameters (NV in number) to obtain better agreement between observed and predicted runoff, a process known as optimization. The user selects the parameters to be adjusted by specifying the parameter numbers in an array LOP(J), $J=1,2,\ldots,NV$. The parameters and their corresponding numbers are given in table 3. A maximum of 20 parameters may be adjusted during an optimization run, or NV ≤ 20 . The capability to optimize 20 parameters is not provided to encourage the optimization of a large number of parameters. Rather, it is provided to permit a sensitivity analysis of many parameters. This capability is discussed in the Sensitivity Analysis section of this report.

The agreement between observed and predicted runoff is measured by an objective function. The optimization attempts to adjust the parameters to minimize the value of the objective function. The user specifies whether the objective function is to be computed using daily runoff volumes (IOPT=1 or 2), storm volumes (IOPT=3), storm peaks (IOPT=4), or storm volumes and peaks simultaneously (IOPT=5; see section Optimization Using Peaks and Volumes Simultaneously). If daily volumes are used, setting IOPT=2 allows the correlations between the daily runoff prediction errors to be modeled as a stationary time series (see section Correlated Daily Errors); if IOPT=1, no correlation is assumed. When IOPT is either 1 or 2, the user must specify the months within each year (month MFS through month MFN, inclusive) to be included in computation of the daily objective functions. When IOPT is 3, 4, or 5, the model must be run in the storm mode, and the user must specify the storms (TESTNO(J), $J=1,2,\ldots$,NST, where NST is the number of storms) to be included in computation of the objective function.

The objective function when IOPT is 1, 3, or 4 is computed in one of two ways; it is the sum either of the squared differences (IOBF=2) or of the absolute differences (IOBF=1) between the observed and predicted runoff values. Logarithms (natural) of the runoff values can be used for computing

Parameter identifi- cation No. (LOP)	Number of parameter elements	Parameter	Parameter identifi- cation No. (LOP)	Number of parameter elements	Parameter
1	NRU	COVDNS	50	NRES	RCF
2	NRU	COVDNW	51	NRES	RCP
3	NRU	TRNCF	52	NRES	RSEP
4	NRU	SNST	53	NRES	RESMX
5	NRU	CTX	54	NRES	REXP
6	NRU	TXAJ	60	NGW	RCB
7	NRU	TNAJ	61	NGW	GSNK
8	NRU	SMAX	70	12	TLX
9	NRU	REMX	71	12	TLN
10	NRU	SRX	72	12	RDM
11	NRU	SCX	73	12	RDC
12	NRU	SCN	74	12	EVC
13	NRU	RNSTS	75	12	PAT
14	NRU	RNSTW	76	12	CECN
15	NRU	KSAT	80	NOFSEG	ALPHA
16	NRU	PSP	81	NOFSEG	RM
17	NRU	DRN	85	NCRSEG	ALPHAC
18	NRU	RGF	86	NCRSEG	RMC
19	NRU	NOT USED	90	12	CTS
20	NRU	D50	91	1	NOT USED
21 22 23 24	NRU NRU NRU NRU	KR HC KF KM	92 93 94 95 96	1 1 1 1	BST SETCON PARS PARW CSEL
25 26 27 28 29	NRU NRU NRU NRU NRU	EN SC1 SEP DRCOR DSCOR	97 98 99 100 101	1 1 1 1	RMXA RMXM CTW EAIR FWCAP
30	NRU	TST	102 103	1 1	DENI DENMX

Table 3.--Model parameters and the associated values of the array, LOP

either objective function if ITRANS is set to 1; otherwise, ITRANS is 0. When IOPT is 1 or 2 and ITRANS is 1, one is added to the daily runoff values before logarithms are taken to avoid taking the logarithm of zero. When IOPT is 2 or 5, a special form of the objective function is used, as described in following sections.

There are two algorithms available for performing an optimization: the Rosenbrock and the Gauss-Newton routines. To use the latter, the value of IOPT as described above is made negative; if IOPT is positive, the Rosenbrock routine is used.

The user has the option of running the model for a period of time before the optimization process is begun. When this is done, the beginning and ending dates for the initialization period (BYRIN/BMOIN/BDYIN and EYRIN/EMOIN/ EDYIN) and for the optimization period (BYROP/BMOOP/BDYOP and EYROP/EMOOP/ EDYOP) must be specified. If no initialization period is desired, BYRIN is set to 0. The optimization period always must begin immediately after the initialization period ends. Several optimizations may be performed simply by placing the data for each in succession at the proper point in the data deck (see input data instructions).

Rosenbrock Optimization

The Rosenbrock optimization technique is described in detail in a paper by Rosenbrock (1960) and is discussed in a hydrologic context by Dawdy and O'Donnell (1965) and Dawdy, Lichty, and Bergmann (1972).

The parameter adjustment proceeds by stages. During the first stage, each parameter represents one axis in an orthogonal set of NV search directions. Adjustments are made in these search directions until arbitrary end-of-stage criteria are satisfied. Then another stage is begun by computing a new set of NV orthogonal search directions based on the experience of parameter movement during the preceding stage. This process is repeated and continues until convergence has occurred or until a specified number of adjustments (NV x NTRY, where NTRY is the number of adjustments per parameter) has been tried. The major feature of this procedure is that, after the first stage, one axis is alined in a direction reflecting the net parameter movement experienced during the previous stage.

To start the fitting process, the model is assigned an initial set of parameter values and upper (HU) and lower (GU) bounds for each parameter. The model is run, and the objective function (OBF) is calculated and stored as a reference value. A step of user-specified length (a proportion P of the parameter magnitude) is attempted in the first search direction, and the model is run again with the adjusted parameter value. If the resulting value of the objective function is less than or equal to the reference value, the trial is registered as a success, and the appropriate step size for each parameter is multiplied by 3 for the next adjustment along this axis. If a failure results, the step is not allowed and the step size is multiplied by -1/2. That is, the next adjustment along this search axis will be in the opposite direction and only one-half the magnitude of the current adjustment. An attempt is made in the next search direction and the process continues until the end-of-stage criteria are met. At this point, a new orthogonal search pattern is determined and another stage of optimization undertaken. The objective-function value and associated parameter values are printed for each trial.

Gauss-Newton Optimization

The Gauss-Newton optimization algorithm essentially is identical to the linearization method described by Draper and Smith (1966, p. 267-270) and by Beck and Arnold (1977, p. 340-349), and in addition incorporates the Box-Kanemasu interpolation modification (see Beck and Arnold, 1977, p. 362-368).

Let $\hat{\beta}^{(k)}$ be the set of NV parameter values obtained at the k-th iteration of the routine; the (k+1)th set is then computed by

$$\hat{\beta}^{(k+1)} = \hat{\beta}^{(k)} + h^{(k)} c^{(k)}$$
(72)

where

$$c^{(k)} = Z^{-1}A^{T}(0-P)$$
.

The NV x 1 vector $c^{(k)}$ is the parameter correction vector, and $h^{(k)}$ is a scalar multiplier that is equal to one in the ordinary Gauss-Newton algorithm. The matrix $A=(a_{ij})$ is the sensitivity matrix, and $Z=(z_{ij})=A^TA$ is the information matrix (described in the section Sensitivity Analysis Components), both evaluated at $\tilde{\beta}^{(k)}$. The superscript T denotes transpose and the superscript -1 denotes inverse. The vectors 0 and P are observed and predicted runoff, the latter computed with parameters $\hat{\beta}^{(k)}$.

The correction vector at each iteration is found by a call to subroutine SENST, which performs a partial sensitivity analysis to obtain the magnitude and direction of $c^{(k)}$. The multiplier $h^{(k)}$ initially is 1 for each iteration. If the resulting parameters $\hat{\beta}^{(k+1)}$ are outside the constraints imposed by the user, $h^{(k)}$ then is halved repeatedly until all values lie within the constraints. Next, if the objective function obtained with parameters $\hat{\beta}^{(k+1)}$ is not smaller than that with $\hat{\beta}^{(k)}$, the scalar $h^{(k)}$ again is halved until the objective function shows some improvement. At this point, the Box-Kanemasu interpolation scheme is used to obtain a final value for $h^{(k)}$.

As in the Rosenbrock optimization, the initial parameter values $\hat{\beta}^{(0)}$ are those assigned by the user in the input data. Iterations continue until the elements of $\hat{\beta}^{(k+1)}$ differ from those in $\hat{\beta}^{(k)}$ by a small percentage, or until the number of iterations exceeds NTRY, whichever comes first.

Distributed Parameters

Distributed parameters are defined to be those that are a function of hydrologic response unit, of subsurface reservoir, of ground-water reservoir, of overland flow-plane or channel segment, or of time. Optimization of these parameters presents a special problem because the number of elements over which a parameter is distributed typically is large, and because the observed runoff values used in an optimization are the responses from all the elements lumped together. These two factors make changes in predicted runoff because of changes in any particular element difficult to detect; that is, sensitivities to changes in the individual elements are apt to be small.

The model provides two options for dealing with these problems, both of which actually are just ways of constraining the optimization. Consider, for example, adjustment of the parameter COVDNW. There actually are NRU hydrologic response units (HRU's) into which the basin has been divided; thus, there are NRU values of this parameter. If there are a large number of HRU's, it probably is not feasible to adjust the NRU values of COVDNW independently. Thus, the user is provided with the option of constraining the optimization so the NRU values are all adjusted in the same direction. Initial values of COVDNW for each of the NRU HRU's are user-specified. The user then may elect to adjust these NRU values, or any subset of these values, (1) by the same magnitude or (2) by the same percentage of the initial value. A variable ILOPL must be specified for each parameter to be optimized. If the user wishes to adjust a parameter using option (1) above, ILOPL is set to 0; if option (2) is to be used, ILOPL=1.

Also, variables NVAR and NDVR must be specified for each parameter. The number of values of a distributed parameter that are to be adjusted together is NVAR. For the parameter COVDNW, for example, NVAR would be NRU if it is desired to adjust all COVDNW values together; or, NVAR could be less than NRU if it is desired to adjust only a subset of the COVDNW values. The numbers of the elements on which a distributed parameter is to be adjusted are specified by the values NDVR(.,J), $J=1,2,\ldots$, NVAR. For example, if COVDNW is defined on a watershed with five HRU's (NRU=5), and it is desired to optimize the values only on even-numbered units, leaving the value on odd-numbered HRU's unchanged, then NVAR=2, NDVR(.,1)=2, NDVR(.,2)=4.

The program also allows one to adjust different subsets of distributed parameter values independently. In the example in the preceding paragraph, if one wished to adjust COVDNW on even-numbered HRU's and COVDNW on cdd-numbered HRU's independently, the NVAR and NDVR for the former would be as given above, and for the latter, NVAR=3 and NDVR(.,1)=1, NDVR(.,2)=3, NDVR(.,3)=5. As a special case of this, the values on all HRU's may be adjusted independently.

Optimization instructions for parameters distributed over subsurface reservoir, ground-water reservoir, flow segment, or time are specified in an analogous manner. The variable NVAR must always be less than or equal to the maximum number of parameter elements (table 3) for a given distributed parameter configuration. For parameters that are not distributed, NVAR is set to 1.

When adjustments according to option (1) are to be performed, the program first calculates an average parameter value (XXAVE). For example, XXAVE for COVDNW is calculated by:

 $XXAVE = \Sigma_{J=1}^{NRU} COVDNW(J)/NRU$

if all NRU values are to be adjusted. Adjustments are then made on XXAVE; deviations from the average, XXDEV, are kept constant. Thus, although there are a total of NRU parameters, there are also NRU-1 linear constraints, resulting in only one parameter being adjusted.

On the other hand, adjustments of the same percentage [option (2)] are made by first transforming the parameters, and then using the same procedure involving XXAVE and XXDEV on the transformed values. The transformed parameters are calculated by taking the natural logarithm of the original value plus 20. Due to the logarithmic transformation, linear changes in the transformed parameters are equivalent to multiplicative changes in the original parameters. The constant 20 is added to keep the transformed values positive.

Correlated Daily Errors

When performing an optimization or sensitivity analysis using daily runoff predictions, the user may elect (by setting $IOPT=\pm 2$ or ISEN=2) to include an analysis of the error correlations. It is recommended that this option be used whenever a daily optimization is performed; parameter estimates so obtained are likely to be more physically reasonable, and prediction errors in noncalibration periods usually will be smaller. Correlated errors are discussed by Beck and Arnold (1977) and, in a rainfall-runoff modeling context, by Sorooshian and Dracup (1980).

The error structure is assumed to be of the form $0_i = P_i + e_i$,

where

 0_{i} and P_{i} are the observed and predicted runoff, and

 \mathbf{e}_{i} is the prediction error, for the i-th day.

In the usual least-squares optimization, the objective function $\Sigma(0_i - P_i)^2$ is minimized. This is equivalent to obtaining maximum likelihood parameter estimates with errors e, that have a normal distribution and are uncorrelated with each other. In a daily optimization, the assumption of no correlation

among the errors e_i is clearly violated; the correlation between errors 1 day apart (lag-one correlation) typically will be greater than 0.9, and the correlation between errors K days apart (lag-K correlation) decreases rather slowly as a function of K. This fact should be incorporated in doing an optimization.

The correlation of the errors is modeled by fitting an autoregressivemoving average (ARMA) time-series structure (see Box and Jenkins, 1976); that is, it is assumed that the errors e_i obey a model of the form

$$e_{i}^{e} \phi_{1} e_{i-1}^{e} \cdots \phi_{p}^{e} e_{i-p} = \eta_{i}^{e} - \Theta_{1}^{e} \eta_{i-1}^{e} \cdots \phi_{q}^{e} \eta_{i-q}^{e}.$$
(74)

This model is said to be a mixed ARMA model of order (p,q). The $\{\eta_j\}$ sequence is a zero-mean white noise process, and ϕ_k , Θ_k are parameters that are estimated by the optimization routine along with the physical model parameters. The user must specify the orders p and q.

As an example, when p=1 and q=0, the parameters are found by minimizing the following objective function:

$$U = \Sigma \left[0_{i} - \phi_{1} \ 0_{i-1} - (P_{i} - \phi_{1} \ P_{i-1}) \right]^{2}$$
(75)

The predicted runoffs P_i and P_{i-1} here are a function of the physical parameters. When $\phi_1 = 0$, this reduces to the ordinary least-squares objective function. For more general p and q, see Beck and Arnold (1977).

Constraints (Prior Information)

For both the Rosenbrock and Gauss-Newton optimization schemes, lower and upper bounds outside which the parameters cannot be adjusted must be specified. It should be noted that if the minimum of the objective function for this constrained optimization is located at one of the boundaries, the Gauss-Newton routine usually will not perform satisfactorily in finding this minimum; it is recommended that the Rosenbrock algorithm be used in this case. Also, an optimization may be made essentially unconstrained if the specific bounds are made sufficiently wide.

Lower and upper bounds on the parameters are equivalent to what is known as a uniform (or rectangular) prior-probability distribution on the parameters. (See Beck and Arnold, 1977.) That is, it is known before the optimization that the parameters fall somewhere within the range given, but nothing is known regarding where within this range of values the true parameters lie.

As an alternative to the uniform prior-probability distribution the user may specify a prior distribution that is normal by setting IPRIOR=1. Thus, prior knowledge about the true parameter values is assumed to be better represented by a bell-shaped normal distribution than by a rectangular-shaped distribution. The most likely true value of the parameter (that is, the mean of the prior distribution) is that specified in the data input, with the likelihood of the value decreasing as distance from the mean increases. The tightness of the constraint with a normal prior is defined by user specification of the variance (standard deviation squared) of the distribution. As a rough guide to determining the standard deviation, it should be recalled that about 95 percent of the area under a normal curve lies within two standard deviations of the mean.

The normal distribution alternative is useful for another reason. One may incorporate knowledge not only about the likely values of the parameters individually, but also about how parameters are presumed to be related to each other. This is done by specifying the correlations between each pair of parameters. (The parameters taken together are taken to have a multivariate normal prior.) A correlation of ±1 between a pair of parameters would signify a direct linear relationship between the two; in practice, however, all correlations must be given as less than one. It is recalled that the user is given the option of specifying linear constraints among values of a distributed parameter by proceeding as described in the section Distributed Parameters. The use of the normal prior information option, on the other hand, would allow one to place somewhat weaker constraints on distributed parameters, if desired.

The objective function for normal prior information is:

$$U = [\Sigma(0_{i}^{-P})^{2}] \exp [(\beta - \mu)^{T} V^{-1} (\beta - \mu)/n]$$
(76)

where

 β is the vector of parameters being optimized, and

 $\boldsymbol{\mu}$ and V are the user-supplied mean and covariance of the

prior distribution.

Note that, as the constraints become looser, the elements of V become larger and U approaches an ordinary least-squares objective function. As mentioned before, the elements of μ are the user-specified parameter values in the data input. The elements of V are given as input (array VB) in Card Group 7. One row of V is on each card. For example, if for two parameters (NV=2)

$$V = \begin{bmatrix} 1.0 & 1.5 \\ 1.5 & 3.0 \end{bmatrix} ,$$

the first card would have values (1.0, 1.5) and the second card would have (1.5, 3.0). The diagonal elements 1.0 and 3.0 are the parameter variances and 1.5 is the covariance between the two parameters. The correlation is:

$$\frac{1.5}{\left[(1.0)(3.0)\right]^{\frac{1}{2}}} = 0.87.$$

Optimization Using Volumes and Peaks Simultaneously

Setting IOPT=±5 allows optimization using flood peaks and volumes simultaneously. The estimation procedure is maximum likelihood, under the assumption that volume errors and peak errors have a bivariate normal distribution (see, for example, Hiemstra and Francis, 1981) with zero means and covariance matrix that is estimated along with the physical parameters. The objective function that is minimized is:

$$U = \Sigma E_{v}^{2} \Sigma_{p}^{2} - (\Sigma E_{v} E_{p})^{2}$$
(77)

where

 E_v is observed minus predicted volume, and E_p is observed minus predicted peak, and the summation is over the n storms.

The covariance between peak errors and volume errors is estimated by $n^{-1} \Sigma E_v E_p$, and the variances are $n^{-1} \Sigma E_v^2$ and $n^{-1} \Sigma E_p^2$, so U may be expressed as:

$$U = \Sigma E_v^2 \Sigma E_p^2 (1 - r^2) , \qquad (78)$$

letting r be the sample correlation between peak and volume errors.

Use of this option permits optimization on parameters that influence both volumes and peaks simultaneously. Individual parameters may influence both, and there may be parameters that influence one but not the other. The form of the objective function automatically sorts out sensitivity of both model responses with respect to changes in each parameter, giving each parameter an appropriate influence on the value of U. For example, if one were to use this option with parameters that had no influence on volumes, the optimization would be equivalent to a least-squares fit using peaks.

Statistical Analysis

Daily Error Summaries

Several error summaries are available to aid the user in comparing observed and predicted runoff. At the end of each month, a table summarizing the errors for that month is printed. In the first row of that table, four objective function values are given:

$$\Sigma \left| e \right|, \Sigma \left| e_{L} \right|, \Sigma e^{2}, \text{ and } \Sigma e_{L}^{2}$$
,

where

e = 0-P, e_L = ln(0+1) -ln(P+1), 0 = observed runoff, and P = predicted runoff. The quantity e is the error, or residual, associated with the daily prediction, and e is the error in log-transformed daily prediction. The cumulative sums of these values for month MFS through month MFN (see Optimization Section) are given in the next row of the table. Then, mean values obtained by dividing the objective function by the number of days in the month are printed. Finally, these means expressed as a percentage of the mean observed runoff for the month are given for the untransformed runoff. For the Σe^2 objective function, the percentage is obtained by first taking the square root of the mean objective function (yielding a "standard error"), then dividing by the mean observed runoff.

By setting ISTAT equal to 1 on the "PRINT-OP" input card (card 7, Card Group 1), the user may obtain a statistical summary for the entire period of record. First, a table showing monthly total and mean runoff, both observed and predicted, is given. The number of positive and negative residuals also are shown month by month. A positive run is defined to be a sequence of positive residuals, preceded and followed by a negative residual, and a negative run is defined analogously. These quantities also are shown for each year and for the total period.

In addition, setting ISTAT=1 results in the following statistics being computed for both the total period and the MFS-to-MFN season:

```
coefficient of determination=1 - \Sigma e^2 / \Sigma e_M^2;
coefficient of persistence=(r-m)/s;
coefficient of gain from daily averages=1 - \Sigma e^2 / \Sigma e_D^2;
coefficient of correlation between predicted and residual
runoff=\Sigma (e_L - \bar{e}_L) (P_L - \bar{P}_L) / [\Sigma (e_L - \bar{e}_L)^2 \Sigma (P_L - \bar{P}_L)^2]^{\frac{1}{2}};
```

where

e=0-P, $e_{M}=0-\bar{0}$, $\bar{0}=mean observed runoff for full period of simulation,$ r=total number of runs,m=mean number of runs, ands=standard deviation of number of runs under the hypothesis thatthe order of signs of the residuals is random (Weeks and Hebbert,<math>1980), $e_{D}=0 - \bar{0}_{D}$, $\bar{0}_{p}=mean$ value for that day of the year, $e_L = ln(0+1) - ln(P+1),$ $\bar{e}_L = mean of e_L's,$ $P_L = ln(P+1),$ $\bar{P}_L = mean of P_L's.$

Finally, when ISTAT=1, a table is given showing sums Σe , Σe_L , $\Sigma | e |$, $\Sigma | e_L |$, Σe^2 , Σe_L^2 , means of these values, and these means expressed as a percent of mean observed runoff. This table is given for both total period and MFS-MFN season.

The coefficient of determination is equivalent to R^2 for a regression analysis. It is always between 0 and 1 and measures the fraction of the total runoff variation (Σe_M^2) explained by using the model.

Ideally, one wants to obtain mean errors near zero with mean absolute errors and mean squared errors as small as possible. The mean error, together with the table giving the number of positive and negative residuals, tells the user whether the model seems to be consistently overpredicting or underpredicting. The correlation coefficient between residual and predicted values tells whether there is any consistent association between these two variables; a positive correlation signifies that e=0-P is large when P is large, or that the model generally is underpredicting for large events and overpredicting for small events. This problem may result from model error, input error, parameter error, or a combination of these; the user must decide whether it is desirable or possible to reduce parameter error by an optimization (parameter adjustment) procedure.

The coefficient of persistence measures the serial correlation, or persistence, in the residuals. A highly negative value indicates a large degree of persistence, or tendency for positive errors to follow positive errors and negative errors to follow negative errors. The coefficient of persistence is standardized so that under the hypothesis that the order of signs of residuals is random, it is distributed for large samples as a standard normal random variable. The significance of the computed coefficient can be determined from a standard normal table. For example, the probability that a standard normal random variable is -1.65 or less is 0.05. Therefore, if the computed coefficient is less than -1.65, it is unlikely that the order of the signs is random. Thus, there is significant persistence.

The coefficient of gain from daily averages compares model predictions to predictions based solely on means for each day of the year. For example, the daily average prediction for July 1, given 4 years of record, would be the mean of the four observations for that date. The coefficient is between 0 and 1; a value closer to 1 indicates better predictions using the model over the daily average predictions.

Storm Error Summaries

When the model is run with storm data, a table showing $\Sigma |e|$, $\Sigma |e_L|$, Σe^2 , Σe_L^2 is given, where e=0-P and e_L =1n0 - lnP are now computed with storm volumes (in inches). If routing is performed, these error measures also are given for storm peaks. The mean values of these objective functions, and these means as a percentage of the mean observed values, also are printed.

Sensitivity Analysis

These subroutines perform a sensitivity analysis on the parameters of the model. The results of this analysis allow the user to determine the extent to which uncertainty in the parameters results in uncertainty in the predicted runoff, and to assess the magnitude of parameter errors and parameter intercorrelations when an optimization is performed. Complete discussions of interpretation of the output of the sensitivity analysis are given by Mein and Brown (1978) and Beck and Arnold (1977).

The user selects the parameters to be analyzed by specification of the parameter numbers in array LOP(J), J=1,..., NV. The parameters and the corresponding parameter numbers are given in table 3. Variables NVAR and NDVR must be specified for a sensitivity analysis; they are interpreted exactly as those variables in an optimization and are discussed in the Optimization Components section. A sensitivity analysis of daily runoff parameters normally is run separately from a sensitivity analysis of storm runoff parameters.

Let n denote the number of days (events) under consideration, and let P_i denote the predicted runcff volume for the ith day (event) $1 \le i \le n$. First, a matrix with n rows and p columns (where p is the number of parameters), known as the sensitivity matrix, is computed. The element in the ith row and jth column of this matrix is $a_{ij}=\partial P_i/\partial \beta_j|_{\hat{\beta}}$. This notation indicates that the partial derivative is evaluated at $\hat{\beta}$, where $\hat{\beta}$ is the vector of parameters values used for the model run. The jth component of the vector $\hat{\beta}$ is denoted by $\hat{\beta}_i$.

57

These partial derivatives are approximated by running the model first with parameter value $\hat{\beta}_j$, and then again with parameter $\hat{\beta}_j + \Delta \hat{\beta}_j$, where $\Delta \hat{\beta}_j$ is a small fraction of $\hat{\beta}_j$. The quantity $\partial P_i / \partial \beta_j |_{\hat{\beta}}$ is approximated by the change in P_i divided by $\Delta \hat{\beta}_j$. The increment $\Delta \hat{\beta}_j$ is taken to be a user-specified quantity (PINC) multiplied by $\hat{\beta}_i$.

The quantities a_{ij} are known as "absolute" sensitivities (McCuen, 1973). Comparison of these values for different parameters is difficult because the magnitude is highly dependent on the magnitude of the parameter value itself. Therefore, dimensionless "relative" sensitivities a'_{ij} are displayed, where $a'_{ij}=a_{ij}\cdot(\hat{\beta}_j/P_i)$. For example, if $a'_{ij}=1.40$, a 10-percent change in the parameter value would produce a 14-percent change in predicted runoff.

Next, a matrix Z with p rows and p columns, known as the (scaled) information matrix, is computed. This matrix is the transpose of the sensitivity matrix times the sensitivity matrix itself, so the element in the ith row and jth column is $z_{ij} = \sum_{k} a_{ki} a_{kj}$. The extent to which parameter uncertainty is, on the average, propagated to uncertainty in runoff prediction is examined by evaluating $d_i = \overline{z}_{ii}$ $(\Delta \hat{\beta}_i)^2$ for $\Delta \hat{\beta}_i = k \hat{\beta}_i$, k=0.05, 0.10, 0.20, and 0.50, where $\bar{z}_{ii} = \sum z_{ii}/n$ is an average squared sensitivity. The results are displayed as an error propagation table which gives d_i for the four values of k and for each of the parameters under consideration. For example, in the column labeled 10 percent (k=0.10), a value of 150. would mean that a 10-percent error in the given parameter results in an increase of 150. in the mean squared error of prediction for the model. Units of the values in the table depend on the mode in which the model is being run (daily or unit) and on whether runoff is being logarithmically transformed (as indicated by the switch ITRANS). For example, in a daily mode with no logarithmic transform, the units of the value 150. above would be cubic feet per second squared (cfs^2). In any case, the values in the table should be compared to the mean squared error of prediction (a residual variance) σ^2 as defined below.

With correlated daily errors (ISEN=2), the matrix Z is computed as the transpose of the sensitivity matrix times the inverse of the estimated error correlation matrix times the sensitivity matrix. With normal prior information on the parameters (IPRIOR=1), Z is altered by adding the inverse of the user-specified parameter covariance matrix divided by σ^2 , defined below. (See Beck and Arnold, 1977, section 6.6.)

58

When the parameter estimates are obtained by optimization, the covariance matrix of these estimates may be approximated using asymptotic nonlinear regression theory. When a least squares optimization is performed (IOBF=2), this covariance matrix is the product of the inverse of Z and the scalar $\hat{\sigma}^2$, the residual variance. The residual variance is taken to be the squared difference objective function divided by n-p; this variance and its square root (that is, the residual standard error, $\hat{\sigma}$) are printed. For the minimum absolute deviation estimates (IOBF=1) the covariance matrix is obtained as when IOBF=2 except $\hat{\sigma}^2$ is replaced by the scalar w^2 , the estimated asymptotic variance of the sample median from samples having the given error distribution (see Bassett and Koenker, 1978). The variance w^2 is computed by

$w^2 = (2f)^{-1}$

where f, an estimate of the error density at the median, is given by $[2(e_{.75} - e_{.25})]^{-1}$, e_q being the qth percentile of the sample of errors (see Sen, 1968). The parameter standard errors s_j and correlation matrix (c_{ij}) are then readily obtainable from the resulting parameter covariance matrix, and are printed.

If the parameter standard error obtained from the covariance matrix is referred to as a "joint" standard error, an "individual" standard error for $\hat{\beta}_j$ is computed by $s_j = (z_{jj})^{-\frac{1}{2}} s$, where $s = \hat{\sigma}$ if IOBF=2 and s = w if IOBF=1. (This actually is the standard error of $\hat{\beta}_j$ conditioned on given values of the other parameter estimates, or the standard error that would be obtained if $\hat{\beta}_j$ alone were being optimized.)

The parameter standard errors give an idea of the uncertainty in the optimized parameter estimates. Results of an optimization may conveniently be given in the form "parameter estimate \pm standard error." The parameter correlations give an indication of parameter interaction. A positive correlation between two parameters means that an increase in one parameter has the same effect on predicted runoff as an increase in the other parameter. A negative correlation means they have opposite effects on predicted runoff.

Finally a matrix known as the "HAT" matrix is computed as a product of three matrices: sensitivity matrix, inverse of the information matrix, and the transpose of the sensitivity matrix. The diagonal elements (h_i) of this matrix are printed. These values, which must all lie between 0 and 1, give an

indication of the relative influence of a day or a storm on an optimization. Values closer to 1 signify greater influence. A complete discussion of the interpretation of the HAT matrix is given by Hoaglin and Welsch (1978). The variables referred to above, and the corresponding computer program

names, are summarized in table 4.

Variable	Computer variable	Description
P _i		ith predicted runoff volume
Ø _i		ith observed runoff volume
n	NØBF	number of variables in objective function
Ρ	NV	number of parameters
$U=\Sigma(\emptyset_i-P_i)^2$	ØBF	objective function
$\hat{\sigma}^2 = \frac{U}{n-p}$	RESVAR	residual variance
σ	RESTD	residual standard error
β _j	ZØPT(J)	jth parameter estimate
$ \hat{\beta}_{j} \\ a_{ij} = \frac{\partial P_{i}}{\partial \beta_{j}} \hat{\beta} $	ASENS(I,J)	(i,j)th element of sensitivity matrix
$z_{ij} = \begin{cases} \Sigma & \frac{\partial P_k}{\partial \beta_{ij}} & \frac{\partial P_k}{\partial \beta_j} \\ k & \frac{\partial P_k}{\partial \beta_j} \end{cases}$	Š ZINFC(I,J)	(i,j)th element of information matrix
^s j	PARSTD(J)	estimated ("joint") standard error of jth parameter
sʻj	PARSTD(J)	estimated ("individual") standar error of jth parameter
^c ij	ZINV(I,J)	estimated correlation between ith and jth parameters
h;	PDENT(I)	ith diagonal element of "HAT" matrix

Table 4.--Major variables used in sensitivity-analysis components

Data Handling

The data-handling components input basin characteristics, meteorologic, and hydrologic data, conduct general housekeeping functions on these data, and generate model output in tabular and graphic forms. Subroutines DATIN, INVIN, DVRETR, and UVRET provide data input capabilities. Subroutines SUMALL, PRTHYD, DVPLOT, and UVPLOT provide simulation output capabilities. More detailed descriptions of input data specifications and output options are described in sections Control and System Input Specifications, and System Output.

LINKAGE OF SYSTEM LIBRARY COMPONENTS

The PRMS system library subroutine MAIN controls the sequencing and timing of model operations. Control is accomplished through a logical sequence of subroutine CALL statements to perform data initialization and input, hydrologic-component simulation, and output summarization. Knowledge of the structure and operation of MAIN, and of the library components called, is required to fully understand model logic and to make model modifications.

The following is a brief discussion of MAIN, the subroutine calling sequence, and data links established between library subroutines. A flow chart of MAIN is shown in figure 11. The version of MAIN discussed here is the one used in the PRMS catalog-procedure, PRMODEL. PRMODEL uses all the subroutines in the PRMS system library; table 5 is an annotated list of these subroutines. The names in parentheses in the following discussion are the subroutines called to perform the functions described.

The first functions performed in MAIN are the input of all initialization and basin descriptive data (DATIN, INVIN). In INVIN a number of disk data files are initialized or established for use in storage and transfer of data for stormflow computations. These files are listed in table 6. Next a check is made to determine if the current run is an optimization (ROSOPT), sensitivity analysis (SENST), or straight simulation. After all data, parameter, and variable initialization is completed, the timing structure of the model is The timing structure is a set of 3 nested DO-loops. initialized. The outer loop is incremented on water years. Within this loop, 1 water year of daily data for all meteorologic and hydrologic driving variables is input to the These daily data are stored in core. In addition, all water model (DVRETR). year counters and variables are initialized (TIMEY). The next loop is incremented on months. When a full year of data is available, the period runs from In this loop, all monthly counters and variables are October to September. initialized (TIMEY). The inner loop is incremented on days. It is within the day loop that all hydrologic computations are made.

The first function within the day loop is to increment the counters for the Julian date JLDY, water-year date JWDY, and solar-year date JSOL. The meteorologic data for this date are then obtained. Temperature and solarradiation data are adjusted for application on each HRU, based on differences in elevation, slope, and aspect between the climate station and each HRU (TEMP, SOLRAD). The adjusted data then are used to compute a potential evapotranspiration value for each HRU (PETS).

61

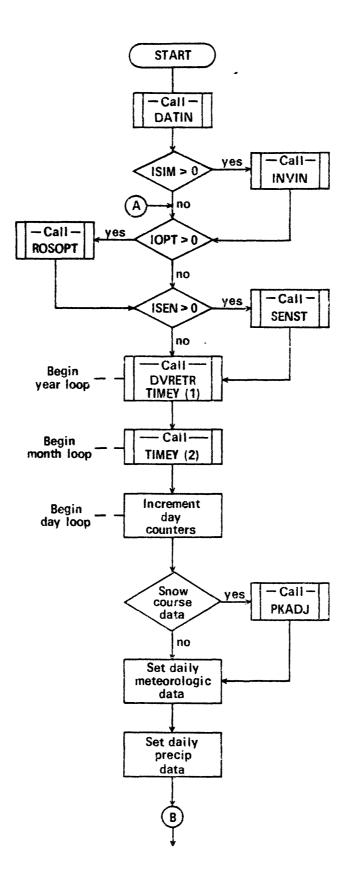


Figure 11.--Flow chart of the MAIN program.

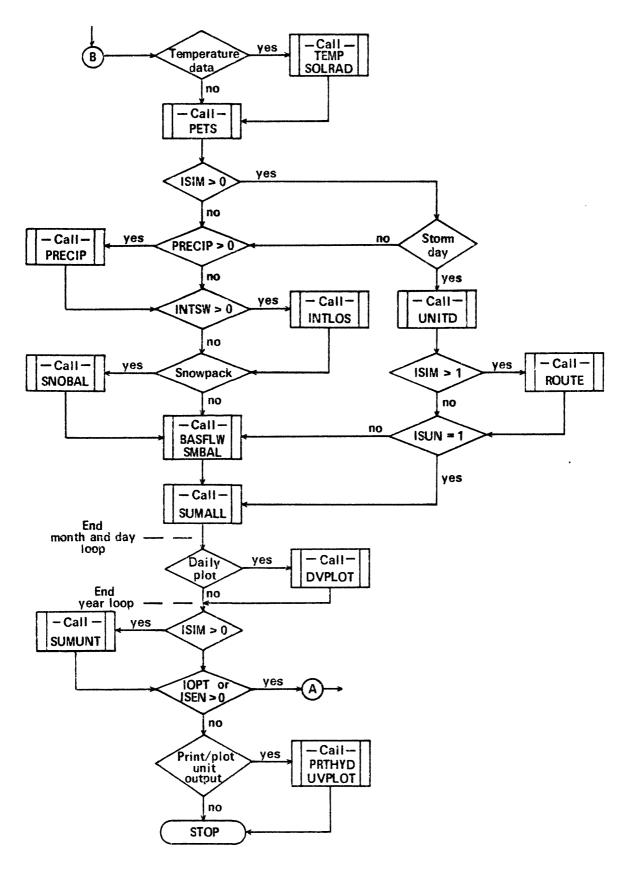


Figure 11.--Flow chart of the MAIN program--Continued.

Subroutine	Calling subroutine	Description
Daily compon	ents:	
BASFLW	MAIN	Computes baseflow and subsurface flow components of the streamflow hydrograph.
CALIN	SNOBAL PRECIP	Computes change in snowpack when a net gain in heat energy has occurred.
CALOSS	SNOBAL PRECIP	Computes change in snowpack when a net loss in heat energy has occurred.
INTLOS	MAIN	Computes the evaporation and sublimation of intercepted rain and snow.
PETS	MAIN	Computes daily estimate of potential evapotran- spiration.
PKADJ	MAIN	Adjusts snowpack water equivalent based on snowcourse data.
PRECIP	MAIN	Computes precipitation form, total precipitation depth, depth intercepted by vegetation and the net precipitation.
RESVRD	SUMALL	Performs daily routing for surface-water detenti reservoirs.
SMBAL	MAIN	Performs daily scil-moisture accounting.
SNOBAL	MAIN	Computes snowpack energy balance.
SOLRAD	MAIN	Computes daily incoming shortwave solar radiatic for each HRU.
SOLTAB	DATIN	Computes potential solar radiation and daylight hours for radiation planes.
SRFRO	PRECIP SMBAL	Computes daily storm runoff from rainfall.
SUMALL	MAIN DATIN	Computes daily, monthly, and annual data summari for total basin and individual HRU's.
TEMP	MAIN	Adjusts daily maximum and minimum air temperatur to account for differences in elevation and aspect from point of measurement to each HRU.

Table 5.--List of subroutines included in cataloged procedure PRMODEL

Subroutine	Calling subroutine	Description
Daily compon TIMEY	ents: MAIN	Performs initialization and maintenance of the time accounting variables.
Storm compon		
AM	INVIN	Computes kinematic routing parameters α and m.
RESVRU	ROUTE	Performs storm-period routing for surface- water detention reservoirs.
ROUTE	MAIN	Performs channel routing of water and sediment
UNITD	MAIN	Computes rainfall excess and performs overland flow routing of water and sediment.
UNSM	UNITD	Performs subsurface and ground-water reservoir routing for storms.
Optimization	components:	
BDRY	SUB1	Determines whether any of the parameters being optimized lie close to their boundaries and penalizes the objective function if they do.
COROPT	ROSOPT	Performs a correlation analysis of the residual in a daily optimization.
OPINIT	ROSOPT	Reads input data and initializes variables for optimization.
PARAM	ROSOPT	Adjusts selected model parameters at the beginning of each parameter fitting iteration
ROSOPT	MAIN	Initializes model variables and selected model parameters at the beginning of each parameter fitting iteration.
SCALE	SUB 1	Scales parameter and constraint values and unscales parameter and constraint values.
SNORT	SUB3	Determines which of new search directions is most parallel to each of the old directions following an end of stage.

Table 5.--List of subroutines included in cataloged procedure PRMODEL--Continued

•

Subroutine	Calling subroutine	Description
SUB1	ROSOPT	Controls the main strategy of the Rosenbrock optimization procedure.
SUB3	SUB1	Does Gram-Schmidt orthogonalization to establish new orthogonal search directions.
Sensitivity	analysis compon	ients:
MATINV	SENST	Performs matrix inversion.
OPINIT	SENST	Reads input data and initializes variables for a sensitivity analysis.
SENMAT	SENST	Computes the sensitivity matrix.
SENST	MAIN	Controls the main strategy of the sensitivity analysis procedure.
PARAM	OPINIT	Adjusts selected model parameters for use in sensitivity analysis routines.
Statistical	analysis compon	ients:
STATS	SUMUNT	Computes daily statistics.
SUMUNT	MAIN	Computes summary statistics.
Data handlin	g components:	
BLKDAT		Initializes data for common areas.
DATIN	MAIN	Reads input of model options, parameters, and variables.
DVPLOT	MAIN	Provides line printer plot of predicted and observed daily mean streamflow.
DVRETR	MAIN	Selects required daily records from ISAM file.
INVIN	MAIN	Reads input data for storm periods and handles accounting for storms.
PRTHYD	MAIN	Provides tabular output of stormflow hydrograph.
UVPLOT	MAIN	Provides line printer plot of predicted and observed stormflow hydrographs and sediment concentration graphs.
UVRET	INVIN	Selects required storm records from ISAM file.

Table 5.--List of subroutines included in cataloged procedure PRMODEL--Continued

File name	Remarks
INV	Inventory of storm rainfall data by water year.
FHS	Hydrograph separation information for each storm period.
DFHS	Hydrograph separation information for each storm day.
UNITP	Rainfall data for each rain gage for each storm day.
UNITQ	Discharge data for each storm period.
LATIN	Direct access file used to store lateral and upstream inflow of water (ISIM=2) and sediment (ISIM=3) to channel segments.

Table 6.--Data files developed in subroutine INVIN for stormflowhydrograph computations

A check is then made to see if this date is a storm-mode simulation date. If it is, then infiltration and rainfall excess computations are made on each HRU (UNITD). If channel-flow routing is to be performed, overland-flow computations are made on each flow plane (UNITD). The time trace of overland flow from each flow plane is written to the LATIN disk file for use in the channel-flow routing computations (ROUTE). If the subsurface and ground-water reservoirs are routed on a stormflow time interval, all daily-flow computations are bypassed. If these reservoirs are not routed on a stormflow time interval, daily-flow subroutines are called to perform these operations and provide continuity between storm-and daily-mode computations (SMBAL, BASFLW).

If the date is not a storm-mode date, daily-flow computations are made. A check is made for precipitation. If it occurs, the observed depth is adjusted to account for elevation, topography, and interception, and its form as rain, snow, or a mixture of both is determined (PRECIP). Intercepted precipitation is subject to evaporation or sublimation from the vegetation canopy (INTLOS). If a snowpack exists, energy and water balances are computed and the amount of snowmelt, if any, is computed (SNOBAL). Infiltration of rainfall or snowmelt is determined (SMBAL), and any surface runoff is computed (SRFRO). Subsurface flow and ground-water flow contributions to streamflow are then computed (BASFLW). The last subroutine called in the day loop (SUMALL) performs summary operations on all HRU, subsurface reservoir, and ground-water reservoir computations.

At the termination of the month loop, a check is made for a request to provide a plot of daily observed and simulated streamflows (DVPLOT). At the termination of the water-year loop, a check is made for stormflow summary output to be printed. A check is then made to see if an optimization or sensitivity analysis is in progress. If so, control is returned to the beginning of MAIN for another iteration on the data set. If the run is a simulation only, then a check is made for output on individual storms to be printed (PRTHYD) or plotted (UVPLOT). The sequence of operations established in MAIN and its associated subroutines attempts to provide a logical and efficient sequence for computation purposes and to simulate the timing of these hydrologic processes in nature. Results of computations in most of the subroutines are used in subsequent subroutines. Proposed changes to MAIN or other library components must incorporate these interactions or provide alternative computation procedures.

CONTROL AND SYSTEM INPUT SPECIFICATIONS

Input to PRMS can be supplied from both punched cards and on-line disk files. All meteorologic and discharge data are stored on index-sequential files, using the procedure GENDISK. Job-control information, system initialization, and basin-characteristics information are input in card format. This section describes the GENDISK procedure and defines the control and data cards required for model operation using the cataloged procedure, PRMODEL. The examples presented are for application of PRMS on the U.S. Geological Survey AMDAHL computer system. Application of PRMS to other computer systems may require modifications to the GENDISK procedure and the data-input subroutines DVRET and UVRET. A discussion of these modifications is presented in attachment VII.

In this discussion, a number of guidelines and standard coding practices have been used. All listings of numeric data are right-justified. All listings of alphabetic data are left-justified. The letter "Oh" is written Ø to contrast with the number zero--written O. The format F5.0 means that the floating-point magnitude of the variable contains no significant digits to the right of the decimal point. If a significant digit is required to the right of the decimal point, the point must be punched in the card listing. The format F4.2 implies that two significant digits lie to the right of the decimal point.

GENDISK

GENDISK reads sequential files containing standard WATSTORE daily- and unit-values records, and creates the PRMS compatible ISAM file. Unit-values records are the storm-period records which contain data at time intervals less than 24 hours. These sequential-files are created either from the WATSTORE system using standard daily- and unit-values retrieval programs or from user-formatted data cards using a procedure called DCARDS (attachment III). An example set of job-control language (JCL) cards for using GENDISK to create an ISAM file immediately following the job steps of a WATSTORE daily- and unit-values retrieval is shown in figure 12.

See Volumes 1 and 5, respectively, of the WATSTORE users manual (Hutchinson, 1975) for daily- and unit-values retrieval control cards. In the examples included here, users should substitute their own catalog pointer (for example, DG4812S), and data set names (for example, TESTIS1.ISAM), for underlined items. Instructions for establishing a catalog pointer (user I.D.) and naming data sets on the U.S. Geological Survey computer system are included in Section 5.2 of the U.S. Geological Survey Computer User Manual, (1970).

//---JØB CARD--//PRØCLIB DD DSN=WRD.PRØCLIB,DISP=SHR
// DD DSN=DG4812S.PRDAT.LIB,DISP=SHR
// EXEC UNRETR,AGENCY=USGS
//HDR.SYSIN DD *
...
daily retrieval control cards
...
/*
// EXEC GENDISK,ISNAME='DG4812S.TESTIS1.ISAM'
/*
//

Figure 12.--JCL for running GENDISK with a WATSTORE unit- and daily-values retrieval.

The output from any WATSTORE retrieval can be stored as a sequential file on disk, for later use as input to GENDISK. Daily- and unit-values data should be kept in separate files, however, because they are in different formats. An example of saving the sequential files following a unit- or daily-values retrieval is shown in figure 13. Again, users should substitute user I.D. and dataset names for underlined items. These files are then used as input to GENDISK in a separate job, as shown in figure 14.

The catalog procedure GENDISK contains several symbolic parameters that may be specified on the EXEC card. These include: DVAL, which specifies the sequential daily-input file; UNITD, which is the device type for DVAL; UVAL, which specifies the sequential unit-values input file; UNITU, which is the device type for UVAL; and ISNAME, which specifies the name of the output index sequential data set that will be used with the model. ISNAME always must be included on the EXEC card. The other parameters default to the temporary data sets created by WATSTORE retrievals. If unit data are not to be included in the ISAM file, code UVAL=NULLFILE.

Data that are not stored in WATSTORE can be used to create the model compatible ISAM file, if they first are converted to the standard WATSTORE daily- and unit-values record format. A procedure called DCARDS is available that will convert user-defined datacard formats to the WATSTORE record format. These converted records then can be added to the files created by previous WATSTORE retrievals or used directly as input to GENDISK. The control cards and JCL for DCARDS are shown in attachment III.

```
//---JØB CARD---
//PRØCLIB DD DSN=WRD.PRØCLIB,DISP=SHR
// EXEC UNRETR,AGENCY=USGS
//HDR.SYSIN DD *
     unit retrieval control cards
/*
//UNR.DATAØUT DD DSN=DG4812S.UVDATA.DATA,DISP=(NEW,CATLG),
// UNIT=ØNLINE,SPACE=(TRK,(10,5),RLSE)
/*
// EXEC DVRETR, AGENCY=USGS
//HDR.SYSIN DD *
     daily retrieval control cards
/*
//DVR.BAKFILE DD DSN=DG4812S.DVDATA.DATA,DISP=(NEW,CATLG),
// UNIT=ØNLINE,SPACE=(TRK,(10,5),RLSE)
/*
11
```

Figure 13.--JCL for saving unit- and daily-values sequential-output files.

//---JØB CARD--//PRØCLIB DD DSN=DG4812S.PRDAT.LIB,DISP=SHR
// EXEC GENDISK,DVAL='DG4812S.DVDATA.DATA',UNITD=ØNLINE,
// UVAL='DG4812S.UVDATA.DATA',UNITU=ØNLINE,
// ISNAME='DG4812S.TESTIS1.ISAM'
/*
//

Figure 14.--JCL for running GENDISK with previously stored onlinesequential files.

Job Control Cards

The cataloged-procedure PRMODEL has been established on the U.S. Geological Survey computer system. The JCL cards required to use the procedure are shown in figure 15. The name of the ISAM file created by GENDISK should be inserted, in single quotes, after INFILE=. The full procedure is listed in attachment I.

A number of input/output units are used in the procedure for data storage, internal data management, and data-output files. An annotated list of these units and the file structure established on each is shown in table 7. With the exception of the files on units 2, 3, 20, and 21, all files have been established as temporary or permanent, and the deletion or retention of each has been predetermined. Files on unit 2 receive plot output for each HRU, and files on unit 3 receive daily data for each HRU. These files can be printed using the JCL shown in figure 16a. Unit 20 receives the predicted mean daily discharge file for permanent storage and further processing, when this option has been selected on card 1 of Card Group 1. A default Data Control Block (DCB) for a standard daily-values WATSTORE record has been established on the DD card for unit 20. However, a null Data Set Name (DSN) parameter has been included. A user DSN must be supplied when the output from a model run is to be saved. An example of how to insert the DSN parameter is shown in figure 16b. If the user selects the second data format option, the DCB parameters of Logical Record Length (LRECL) and Block Size (BLKSIZE) must be included with the DSN parameter on the override card shown in figure 16c. The LRECL parameter should be set to 1480, and the BLKSIZE parameter should be set to 10360.

The predicted storm hydrograph may be saved as a permanent file on unit 21 in the standard unit values format if this option has been selected on card 1 of Card Group 1. A user DSN should be supplied, as shown in figure 16d.

//---JØB CARD---//PRØCLIB DD DSN=DG4812S.PRDAT.LIB,DISP=SHR // EXEC PRMODEL,INFILE='<u>DG4812S.TESTIS1.ISAM</u>' //PR.SYSIN DD * ... CARD GROUPS 1-8

Figure 15.--JCL for using catalog-procedure PRMODEL.

Table 7.--List of input/output and file structures

.

1/0 unit	DSNAME	Unit	Space	Disposition at job end	RECFM	:RECL	BLKSIZE	DSORG	3 Description
3 5	* *	Line printer Line printer	1 		: :		1 5 1 6 1 6		Output file if daily plots selected. Output file if printout of individual HRU'S
5 4		SYSDK CARD INPUT	TRK(5,5) 	DELETE	/ / ! i ! i				serected. Work file for optimization. Input data cards (card group 1).
0 8 O	 	Line printer SYSDK SYSDK	 TRK(5,5) 128(1000)	DELETE DELETE		 128		 DA	Line printer output from fortran programs. Work file for sensitivity analysis. Direct access work file for optimization and
11	&INV	SYSDK	TRK(10,1)	DELETE	VBS	1472	5896	5 6 6	sensitivity analysis. Inventory of unit-values rainfall data by
12	&FHS	SYSDK	TRK(5,1)	DELETE	VBS	656	6568	! ! !	water year. Hydrograph separation information for each
13	&DFHS	SYSDK	TRK(10,5)	DELETE	VBS	108	1088		storm periou. Hydrograph separation information for each
14	&UNITQ	SYSDK	TRK(100,5)	DELETE	VB	5820	5830	1 1 6	unit-values day. Unit-values discharge data for selected storm
15	&UNITP	SYSDK	TRK(100,5)	DELETE	VBS	5820	5830	1 1 1	perious. Unit-values rainfall data for each rain gage
17	&LAI IN	SYSDK	5768(200)	DELETE	ί ι .	4 1 1	5760	DA	Direct access file to store lateral and
18	&SFILE	SYSDK	TRK(100,5)	DELETE	VBS	5764	12000	4 1 1	upstream in low to channel segments. lemporary file for channel segment storm
20 21	* *	ONLINE ONLINE	TRK(5,5) TRK(5,5)	NEW, CATLG NEW, CATLG	FB VB	1656 11604	11592 12932		nyurograph data. Output file to save predicted daily discharge. Output file to save predicted unit discharge.
22	1	CARD INPUT	887	8	9 	1	1 1 1	1 1 1	Input data cards (card group 2).
23	1 ! 1	CARD INPUT	1 6 6	1 1	1	(1 1 1		data cards (card group
24	:	CARD INPUT		1 2 9	;	1 1 1	-	1	data cards (card group
22 92		CARD INPUT	• •						Input data cards (card group 5). Trant data cards (card group 5).
27	1 1 1	CARD INPUT		1	:	1		1 1 1	data cards (card group
30	6 6 6	SYSDK	TRK(5,15)	DELETE	FB	1480	10360	}	Temporary file for predicted and observed
DISK(PL1)	**	ONLINE	CYL(1)	KEEP	VB	11604	12932	IS	daily discharge data. Input ISAM file containing daily and unit
SYSPRINT(PL1)	L 1 1	Line printer	1		1 } 1	1	8	ļ	tine printer output from PL1 programs.
*Dummy files unless overridden in JCL. **Assigned by user.	lless over Iser.	ridden in JCL.							

Figure 16a.

//---JØB CARD---//PRØCLIB DD DSN=DG4812S.PRDAT.LIB,DISP=SHR // EXEC PRMØDEL,INFILE='DG4812S.TESTIS1.ISAM' //PR.FT02F001 DD SYSØUT=A (include to print plots) //PR.FT03F001 DD SYSØUT=A (include if daily HRU data to be printed) //PR.SYSIN DD *

CARD GROUPS 1-8

/* //

Figure 16b.

```
//---JØB CARD---
//PRØCLIB DD DSN=DG4812S.PRDAT.LIB,DISP=SHR
// EXEC PRMØDEL,INFILE='DG4812S.TESTIS1.ISAM',
// DVØUT='DG4812S.DVALUES.DATA'
//PR.SYSIN DD *
CARD GROUPS 1-8
/*
```

.

Figure 16.--JCL modifications to cataloged procedure PRMODEL. (a) Generate printer plot and HRU output; (b) include Data Set Name (DSN) to store simulated daily flows; (c) include DSN, Logical Record Length (LRECL) and Block Size (BLKSIZE) to store simulated daily flows; and (d) include DSN to store simulated stormflows. Figure 16c.

```
//---JØB CARD---
//PRØCLIB DD DSN=DG4812S.PRDAT.LIB,DISP=SHR
// EXEC PRMØDEL,DVØUT='<u>DG4812S.DVALUES.DATA</u>',DVLREC=1480,DVBLK=10360,
// INFILE='<u>DG4812S.TESTIS1.ISAM</u>'
//PR.SYSIN DD *
```

CARD GROUPS 1-8

/* //

Figure 16d.

```
//---JØB CARD---
//PRØCLIB DD DSN=DG4812S.PRDAT.LIB,DISP=SHR
// EXEC PRMØDEL,UVØUT='DG4812S.UVALUES.DATA',
// INFILE='DG4812S.TESTIS1.ISAM'
//PR.SYSIN DD *
...
CARD GROUPS 1-8
```

/* //

> Figure 16.--JCL modifications to cataloged procedure PRMODEL. (a) generate printer plot and HRU output; (b) include Data Set Name (DSN) to store simulated daily flows; (c) include DSN, Logical Record Length (LRECL) and Block Size (BLKSIZE) to store simulated daily flows; and (d) include DSN to store simulated stormflows--Continued.

The options selected in the system input stream will determine the number of files and input/output units that will be used in a particular model run. A daily-flow simulation requires fewer files than a daily and storm-event simulation. The number of files required will influence the core-storage requirements for model execution. The default REGION of 600 K should be sufficient for most model runs, but may need to be increased for a model run that includes optimization and storm simulation. This can be specified in the REGION parameter of the Execute (EXEC) card, as shown in figure 17. Parameters that may be specified on the EXEC card and their default values are listed in table 8.

System Input Cards

The PRMS input cards have been delineated into eight Card Groups. Card Group 1 is required for all model runs. The inclusion of one or more additional groups is a function of the options specified in Card Group 1. The Card Groups to be included in a data deck as a function of selected values for the variables IOPT, ISIM, ISEN, IPSW, and INPK are given in table 9.

Variable and parameter names and their definitions are given in all card groups. Additional information on most of these variables and parameters can be found in the Theoretical Development of System Library Components section. The subsections within the Theoretical Development section that provide this information are listed in brackets [] under the Definitions heading for each data card. When the subsection title appears with Card I.D., most or all items on that card are discussed in the referenced subsection. Variables and parameters that are self-explanatory have no subsection reference.

//---JØB CARD---//PRØCLIB DD DSN=DG4812S.PRDAT.LIB,DISP=SHR // EXEC PRMØDEL,REGIØN.PR=750K,TIME.PR=5,INFILE='<u>DG4812S.TESTIS1.ISAM</u>' //PR.SYSIN DD *

CARD GROUPS 1-8

/* //

Figure 17.--JCL for region and time modification to cataloged procedure PRMODEL.

Table 8.--Default values for parameters specified on EXEC card

Parameter	Description	Default
REGIØN. PR	Core storage requirement	600K
TIME.PR	Time in minutes	3
DVØUT	Name of file to save predicted daily values	NULLFILE
DVLREC	Record length of DVØUT	1656
DVBLK	Blocksize for DVØUT	11592
UVØUT	Name of file to save predicted unit values	NULLFILE

Table 9Input data-card groups needed for various model configuration	ole 9Input data	a-card groups n	needed for variou	us model config	jurations
--	-----------------	-----------------	-------------------	-----------------	-----------

.

.

Variable	Card number	Selected value	Card groups to be included in addition to 1
ISIM	1	0	
		1	2,3 2,3,4
IØPT	1	2,3 0	2,3,4
	-	1,2,3,4,5	7,8
ISEN	1	0	
TOCU	-	1,2,3,4,5	7,8
IPSW	1	0	5
INPK	27	All values O	
		Any value >0	6

Card Group 1: Parameter and Variable Initialization

This card group is read on input unit 5 in subroutine DATIN and is required for all simulation runs. Simulation options, types of input data, and output options are established in this group. Model parameters and variables are initialized, and the physical characteristics of the basin hydrologic response units (HRU's) are established. Card group 1 follows a //PR.SYSIN DD * card in the input card deck.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
1	1-9 15	'01SIMØPT' I1	ISIM	Card I.D. Simulation mode switch O=daily mode 1=storm and daily mode 2=storm and daily mode with flow routing 3=storm and daily mode with flow and sediment routing
	20	I1	IØBS	Observed discharge data switch
				0=no observed discharge data 1=observed discharge data input
	25	11	IØPT	Optimization mode switch [Optimization] O=no optimization 1=daily optimization 2=daily optimization with correlation analysis 3=optimization on storm volumes 4=optimization on storm peaks 5=optimization on storm peaks and volumes

NOTE: IOPT is positive for Rosenbrock and negative for Gauss-Newton optimization.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
1	30	Il	ISEN	Sensitivity analysis switch [Sensitivity Analysis] 0=no sensitivity analysis 1=daily sensitivity analysis 2=daily sensitivity analysis with correlation analysis 3=sensitivity analysis on storm volumes 4=sensitivity analysis on storm peaks 5=sensitivity analysis on storm volumes and peaks simultaneously
	NOTE:	be run sim		sitivity analysis cannot They can be run Group 8.
	35	11	IDØUT	<pre>Store predicted daily mean stream- flow values switch 0=no storage 1=store predicted and observed daily values as sequential direct access data file by water year. Format is 370-word record with 4-word header and 366 data values. 2=Same as 1, except format is standard WATSTORE daily- values record.</pre>
	40	Il	IUØUT	Store predicted stormflow values switch 0=no storage 1=store predicted stormflow values as sequential direct-access data file by storm. Format is standard WATSTORE unit- values record.
	44-45	A2	SCODE	State code for daily- or unit- values output
	NOTE:		IUØUT≠0, outp ncluded on //	ut data set name must EXEC card.

CARD	COLUMNS	<u>FORMAT</u>	VARIABLES	DEFINITIONS
1	55	Ι1	IPSW	Precipitation form data switch [Precipitation] 0=no precipitation form data 1=precipitation form data to be read from cards
	NOTE	E: If IPSW=1,	card group 5 in card c	must be included deck.
2	1-10 20	'02SIM/CØN I1	ΛΡ' IPET	Card I.D. Potential evapotranspiration (ET) calculation switch [Evapotranspiration] O=calculate potential ET from temperature and solar radiation data 1=calculate potential ET from temperature data only 2=calculate potential ET from evaporation pan
-	25	11	ISSR1	data Daily surface runoff computa- tation method switch [Surface Runoff] O=compute surface runoff contributing area as a linear function of soil moisture 1=compute surface runoff contributing area as a nonlinear function of soil moisture and
	30	11	MRDC	precipitation volume Solar radiation computation method switch [Solar Radiation] O=Solar radiation data not used 1=missing days calculated using degree day co- efficients 2=missing days calculated using sky cover- temperature relation
		NOTE: MRDC mu	ist be 1 or 2	for snowmelt simulation.

•

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
2	35		ISUN	Switch for unit subsurface and ground water flow routing [Subsurface Flow, Ground Water] O=surface runoff only included in stormflow computation 1=surface, subsurface, and ground water included in stormflow computations
3	1-6 11-80	'03TITL' 17A4,A2	TITL	Card I.D. Any title user wishes to print as heading for all output
4	1-7	'04INIT1'		Card I.D.
	11-15 16-20	15 15	NDS NRU	Number of rain-gage data sets Number of hydrologic response
	21-25	15	NRD	units (HRU's) Number of solar radiation planes (one slope and aspect combination equals a plane). Equals all defined planes on basin plus 1 for horizontal surface
	26-30	15	NRES	[Solar Radiation] Number of subsurface flow routing reservoirs [Subsurface Flow]
	31-35	15	NGW	[Subsurface Flow] Number of ground-water flow routing reservoirs [Ground Water]
	36-40	15	NSTØR	Number of surface-water detention storage reservoirs
	41-50	F10.0	DAT	[Reservoir Routing] Total basin drainage area, in acres
5	1-7	'05INIT2'		Card I.D.
	11-15	15	BYR	Beginning year of data set (for example, 1978)
	16-20	15	BMØ	Beginning month of data set (1-12)
	21-25	15	BDY	Beginning day of data set (1-31)
	26-30	15	EYR	Ending year of data set (for example, 1979)
	31-35	15	EMØ	Ending month of data set (1-12)
	36-40	15	EDY	Ending day of data set (1-31)

•

80

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
6	1-9	'O6MFS-MFN'		Card I.D. [Optimization]
	11 - 15	15	MFS	Beginning month of objective function computation (daily flow option)
¢	16-20	15	MFN	Ending month of objective function computation (daily flow option)
7	1-10 11-15	'O7PRINT-ØP' I5	IPØP1	Card I.D. Daily mean values print switch O=print summary table 1=0 plus annual summary 2=1 plus monthly summary 3=2 plus daily summary
	16-20	15	IPUN3	Beginning month for printing daily basin average values
	21-25	15	IPUN4	Ending month for printing daily basin average values
	26-30	15	IPØP2	Individual HRU values print switch 0=no print 1=annual summary 2=1 plus monthly summary 3=2 plus daily summary
	31-35	15	IPUN1	Julian date to start printing individual HRU values
	36-40	15	IPUN2	Julian date to stop printing individual HRU values
	41-45	15	ISTAT	O=statistical summary not printed 1=statistical summary printed
8	1-6 11-15	'08PLØT'	TDIAT	Card I.D.
	11-13	15	IPLØT	Plot switchdaily O=no plot output 1=plot output
	16-20	15	IPLTYP	Plot type switch O=linear scale 1=semilog scale
	21-25	I5	IMPLB	Month plot begins (1-12)
	26-30 31-35	I5 I5	IDPLB IMPLE	Day plot begins (1-31) Month plot ends (1-12)
	36-40	15	IDPLE	Day plot ends (1-31)
	41-50	F10.0	PLMX	The maximum plot value. For semilog plots, this must be a power of 10 and equal 1,000 * PLMN
	51-60	F10.0	PLMN	The minimum plot value. For semilog plots, this must be a power of 10 and non-zero

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
9	1-10 11-15	'09DATATYPE' I5	NDTY	Card I.D. Number of data types being used in the simulation
	16-65	1015	IDUS(I)	Specifies input data types. Ten data types (I) in positional order are: 1) daily mean discharge 2) daily pan evaporation 3) daily maximum air tem- perature 4) daily minimum air tem- perature 5) daily solar radiation 6) daily, user defined 7) daily, user defined 8) storm discharge 9) daily precipitation 10) storm precipitation 0=data type not used 1=data type used.
10	1-6 11-60	'10PARM' 10I5	PARMCA(I)	Card I.D. Parameter code (WATSTORE) used with data types (I) specified in IDUS (positional using IDUS sequence, blank field if IDUS(I)=0). See table 10.
11	1-6	'11STAT'		Card I.D.
	11-60	1015	STATCA(I)	Statistic code (WATSTORE) corres- ponding to parameter codes on card 10 (positional using IDUS sequence, blank field if IDUS(I)=0). See table 10.
12	1-8	'12STAIDC'		Card I.D.
	45) 1-26,29-44, 17-62,65-80	4(2X,4A4)	STAIDC(I)	Station I.D. for data types 1 through 8. D or U in first column of each field to indicate daily or unit station, respectively, plus station identification number which is either 15-digit latitude-longitude-sequence number, or 8-digit downstream order number, right- justified. Identification

.....

Data type	IDUS	Parameter code	Statistic code
Daily mean discharge	1	60	3
Daily pan evaporation		50	6
Daily maximum air termperature			
°CJ		20	1
°F		99998	1
Daily minimum air temperature	4		
°C		20	2
°F		99998	2
Daily solar radiation	5	30	6
Storm discharge		60	11
Daily precipitation		45	6
Storm precipitation		45	6

Table 10.--Parameter codes and statistic codes used for input data types (IDUS)

.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
12				number is left-justified when GENDISK was run using a standard WATSTORE retrieval. (positional using IDUS sequence, blank field if IDUS(I)=0)
13 (NDS	1-8 cards)	'13STAIDP'		Card I.D.
	11-26,29-44	2(2X,4A4)	STAIDP(I,J)	<pre>Station I.D. for precipitation data types 9 and 10. D or U in first column of each field to indicate daily or unit station, respectively, plus station identification number which is either 15-digit latitude-longitude-sequence number, or 8-digit downstream order number, right- justified. Identification number is left-justified when GENDISK was run using a standard WATSTORE retrieval. One card required for each set of rain-gage data (I,J=1, NDS)</pre>

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
14 (NRD	1-4	'14RD′		Card I.D. [Solar Radiation]
cards)	5-6	12	I	Index of this solar radiation plane, I=1 is horizontal surface.
	10-13	A4	SA(I)	<pre>Slope and aspect I.D. of this plane (for example, NW20 is northwest aspect, 20 percent slope)</pre>
	20-25 26-30	F5.2 F5.2	SL ASP	<pre>Slope of plane (decimal ft/ft) Aspect of plane (degrees clock- wise from north; for example, north=0.;E=90.0, and so forth)</pre>
	31-35	F5.2	ALAT	Latitude of basin (degrees)
	NOTE:	plane defir cards is ec first card values. No	ed on the basi Jual to NRD spe in this set is	for each solar radiation n. The number of no. 14 cified on card no. 4. The always the horizontal surface MRDC=0 and IPET=0 or 2. IPET=1.
15	1-5	'15RDM'		Card I.D.
	11-70	12F5.2	RDM(I)	<pre>[Solar Radiation] MRDC=1 Slope of maximum air tempera- ture(x) - degree day(y) relationship for months I=1,12 MRDC=2 Slope of max-min air temperature(x) - sky cover(y) relationship for months I=1,12</pre>
16	1-5	'16RDC'		Card I.D. [Solar Radiation]
	11-70	12F5.2	RDC(I)	<pre>MRDC=1 Y-intercept of maximum air temperature(x) - degree day(y) relationship for months I=1-12 MRDC=2 Y-intercept of max-min air temperature(x) - sky cover(y) relationship for months I=1-12</pre>
17	1-9	'17RAD-CØR		Card I.D. [Solar Radiation]
	11-15	F5.2	PARS	Predicted solar radiation correc- tion factor for summer day with precipitation

,

~

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
17	16-20	F5.2	PARW	Predicted solar radiation correc- tion factor for winter day with precipitation
	21-25	F5.2	RDB	MRDC=1 blank MRDC=2 sky cover-solar radiation computation coefficient
	26-30	F5.2	RDP	MRDC=1 blank MRDC=2 sky cover-solar radiation computation coefficient
	31-35	F5.2	RDMX	Maximum percent of potential solar radiation receivable
	NOTE:	Cards 15, 16,	and 17 are not	c required if MRDC=0.
18	1-9	'18CLIM-PR'		Card I.D.
	11-20	F10.0	CSEL	[Precipitation] Climate station elevation (ft)
	21-25	F5.2	RMXA	Proportion of rain in a rain-snow precipitation event above which snow albedo is not reset (snow- pack accumulation stage)
	26-30	F5.2	RMXM	[Snow] Same as RMXA but for snowpack melt stage [Snow]
	31-35	15	MPCS	Month that override of DRCØR and DSCØR begins (1-12)
	36-40	15	MPCN	Month that override of DRCØR and DSCØR ends (1-12); ends last day of previous month.
	41-45	15	MPC1	Starting value of override switch for DRCØR and DSCØR O=non-override period 1=override period
	46-50	F5.2	PCØNR	Override value for DRCØR
	51-55	F5.2	PCØNS	Override value for DSCØR
	56-60	15	MTSS	Month that convective thunder- storms become the predominant storm type (1-12)
	61-65	15	MTSE	Last month that convective thunderstorms are the predom- inant storm type (1-12)
19	1-9	'19CTS-CTW'		Card I.D. [Evapotranspiration]
	11-70	12F5.5	CTS(I)	Air temperature ET coefficient for months I=1,12. IPET=0Jensen-Haise Formulation IPET=1Hamon Formulation

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
19	71-75	F5.2	CTW	Proportion of potential evapo- transpiration that is subli- mated from a snow surface (decimal form) [Snow]
20	1-5 11-70	'20PAT' 12F5.2	PAT(J)	Card I.D. Maximum air temperature, which when exceeded forces precipi- tation to be rain regardless of minimum air temperature, for months J=1,12
21	1-6	'21AJMX'		Card I.D.
	11-70	12F5.2	AJMX(J)	[Precipitation] Adjustment proportion of rain in a rain-snow mix event, for months J=1,12
22	1-5	'22TLX'		Card I.D.
	11-70	12F5.2	TLX(I)	[Temperature] Lapse rate for maximum daily air temperature for months I=1,12
23	1-5	'23TLN'		Card I.D.
	11-70	12F5.2	TLN(I)	[Temperature] Lapse rate for minimum daily air temperature for months I=1,12
24	1-5	'24EVC'		Card I.D.
	11-70	12F5.2	EVC(I)	[Evapotranspiration] Evaporation pan coefficient for months I=1,12
25	1-9	'25SNØ-VAR'		Card I.D.
	11-15	15	ISP1	[Snow] Julian date to start looking for
	16-20	15	ISP2	spring snowmelt stage Julian date to force snowpack to
	21-25	F5.2	EAIR	spring snowmelt stage Emissivity of air on days
	26-30	F5.2	FWCAP	without precipitation Free water-holding capacity of snowpack expressed as decimal fraction of total snowpack water equivalent
	31-35	F5.2	DENI	Initial density of new-fallen
	36-40	F5.2	DENMX	snow (gm/cm ³) Average maximum snowpack density (gm/cm ³)

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
25	41-45	F5.2	SETCØN	Snowpack settlement time constant
	46-50	F5.0	BST	Temperature above which precipi- tation is all rain and below which it is all snow [Precipitation]
26	1-5	'26CEN'		Card I. D. [Snow]
	11-70	12F5.0	CECN(I)	Convection-condensation energy coefficient for months I=1,12 (cal/°C above zero)
27	1-7	'27PKADJ'		Card I.D. [Precipitation]
	11-80	1415	INPK(I)	Julian dates for adjusting computed snowpack water equivalents from snowcourse data. One date for each water-year run. Use zero for years without an update. For each water year with a nonzero value, one Group 6 data card is required.
28	1-5	'28RES'		Card I.D. [Sursurface Flow]
	11-80	14F5.2	RES(I)	Storage in each subsurface flow routing reservoir (in.)
29	1-4	'29GW'		Card I.D. [Ground Water]
	11-80	14F5.2	GW(I)	Storage in each ground-water flow routing reservoir (in.)
30	1-6	'30KRSP'		Card I.D. [Ground Water]
	11-80	14I5	KRSP(I)	The index of the ground-water reservoir receiving recharge from subsurface reservoir I; I=1, NRES
31	1-10	'31RESMX-EX	ſ	Card I.D. [Ground Water]
	11-15 21-25 31-35, etc.	F5.2	RESMX(I)	Coefficient for computing recharge from subsurface reservoir I to its designated ground-water reservoir
	16-20 26-30 36-40, etc.	F5.2	REXP(I)	Exponent coefficient for computing recharge from sub- surface reservoir I to its designated ground-water reservoir

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
32	1-6 11-80	'32RSEP' 14F5.2	RSEP(I)	Card I.D. [Ground Water] Coefficient used in computing recharge rate from subsurface reservoir I to its designated ground-water reservoir
33	1-6 11-80	'33GSNK' 14F5.2	GSNK(I)	Card I.D. [Ground Water] Coefficient used in computing the recharge rate from ground-water reservoir I to a ground-water sink
34	1-5 11-80	'34RCB' 14F5.2	RCB(I)	Card I.D. [Ground Water] Ground-water routing coefficient for each ground-water reservoir I
35	1-9 11-20, 31-40, 51-60 21-30, 41-50, 61-70 NOTE:			Card I.D. [Subsurface Flow] Subsurface flow routing coeffi- cient for each subsurface reservoir I Subsurface flow routing coeffi- cient for each subsurface reservoir I gh 38, is required
36	1-5 9-10 11-13 14-18 19-25 26-30	'36RU1' I2 I3 F5.0 F7.0 I5	IRU IRU IRD SLP ELV ICØV	Card I.D. HRU I.D. Solar radiation plane index associated with this HRU Slope (decimal form) Mean elevation of HRU (feet above MSL) Predominant vegetation cover type, 0=bare 1=grasses 2=shrubs 3=trees
	31-35 36-40	F5.2 F5.2	CØVDNS CØVDNW	Summer vegetation cover density (decimal) Winter vegetation cover density (decimal)

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
36	41-45	F5.2	TRNCF	Transmission coefficient for short-wave radiation through the winter vegetation canopy (decimal form) [Snow]
	46-50	F5.2	SNST	Interception storage capacity of major winter vegetation for snow (inches water equivalent)
	51-55	F5.2	RNSTS	Summer rain interception storage capacity of major vegetation (in.)
	56-60	F5.2	RNSTW	Winter rain interception storage capacity of major vegetation (in.)
	61-62	12	ITST	Month to look for start of tran- spiration (1-12) [Evapotranspiration]
	63-64	12	ITND	Month transpiration ends (1-12); ends last day of previous month [Evapotranspiration]
	65	Il	ITSW	Starting value for transpiration switch 0=vegetation dormant 1=vegetation transpiring [Evapotranspiration]
	66-70	F5.2	СТХ	Air temperature coefficient for evapotranspiration computations [Evapotranspiration] IPET=0 Jensen-Haise Formulation IPET=1 Blank IPET=2 Blank
	71-75	F5.2	LAXT	Adjustment for maximum air temperature for slope and aspect [Temperature]
	76-80	F5.2	TNAJ	Adjustment for minimum air temperature for slope and aspect [Temperature]
37	1-5 9-10 11-15	'37RU2' 12 15	IRU ISØIL	Card I.D. HRU I.D. Soil type, 1=sand, 2=loam, 3=clay
	16-20	F5.2	SMAX	Maximum available water-holding capacity of soil profile (0.3 - 15 bars) (in.) [Soil Moisture]

•

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
37	21-25	F5.2	SMAV	Current available water in soil profile (in.) [Soil Moisture]
	26-30	F5.2	REMX	Maximum available water-holding capacity of soil recharge zone (0.3 - 15 bars) (in.)
	31-35	F5.2	RECHR	[Soil Moisture] Current available water-holding capacity of recharge zone (in.) [Soil Moisture]
	36-40	F5.2	SRX	Maximum daily snowmelt infiltra- tion capacity of soil profile (in.) when profile is at field capacity
	41 -4 5	F5.2	SCX	[Soil Moisture] Maximum possible contributing area as proportion of total HRU area (decimal form) [Surface Runoff]
	46-50	F5.2	SCN	ISSR1=0 Minimum possible contrib- uting area as proportion of total HRU area (decimal form) [Surface Runoff] ISSR1=1 Coefficient in contribut- ing area moisture index rela- tionship
	51-55	F5.2	SC1	[Surface Runoff] ISSR1=0 blank ISSR1=1 Coefficient in contribut- ing area moisture index relation- ship [Surface Runoff]
	56-60	F5.2	IMPERV	Effective impervious area as proportion of total HRU (decimal form) [Surface Runoff]
	61-65	F5.2	RETIP	Maximum retention storage on impervious area (in.) [Surface Runoff]
	66-70	F5.2	SEP	Maximum daily recharge from soil moisture excess to designated ground-water reservoir (KGW), (in./d)
	71-73	13	KRES	Index of subsurface reservoir receiving recharge from HRU [Subsurface Flow]
	74-76	13	KGW	Index of ground-water reservoir receiving recharge from HRU

•

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
37	77-79	Ι3	KSTØR	Index of surface-water detention storage reservoir receiving runoff from HRU [Reservoir Routing]
38	1-5	' 38RU3 '		Card I.D.
	9-10	12	IRU	[Precipitation] HRU I.D.
	11-13	I3	KDS	Index of rain gage
	14-20	F7.0	DARU	Drainage area for HRU (acres)
	21-25	F5.2	UPCØR	Rain correction for storm precipi- tation for rain gage KDS
	26-30	F5.2	DRCØR	Rain correction for daily precipitation for rain gage KDS
	31-35	F5.2	DSCØR	Snow correction for daily precipitation for rain gage KDS
	36-40	F5.2	TST	Temperature index to determine specific date of start of transpiration
39	1-6	'39STØR'		Card I.D.
-	11-15	15	KSTØR	[Reservoir Routing] Index of surface water storage reservoir
	16-20	15	IRTYP	Type of reservoir routing 8=Puls routing
	21-25	15	NSØS	9=Linear routing IRTYP=8 The number of outflow- storage data pairs to be input (maximum of 10) IRTYP=9 blank
	26-30	15	IRUP1	Index (KSTØR) of upstream surface- water storage reservoir 1, else blank
	31-35	15	IRUP2	Index (KSTØR) of upstream surface- water storage reservoir 2, else blank
	36-40	15	IRUP3	Index (KSTØR) of upstream surface- water storage reservoir 3, else blank
	41-50	F10.2	RCS	IRTYP=8 blank IRTYP=9 routing coefficient
	51-60	F10.2	STØ	Initial reservoir storage
	61-70 71-80	F10.2 F10.2	QRØ DIN1	(cfs-days) Initial day mean outflow (cfs) Initial day mean inflow (cfs)

·

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
40	1-6 11-20 31-40 51-60	'40Ø2S2' F10.2	Ø2	Outflow values in outflow-storage table for Puls routing (cfs), lowest value first
	21-30 41-50 61-70	F10.2	S2	Storage values in outflow-storage table for Puls routing (cfs-days), lowest value first

NOTE: Cards 39 and 40 are not required if NSTØR=0. One set of cards 39 and 40 is required for each surface-water reservoir. Up to 10 pairs of Ø2-S2 can be input (4 card 40's) and the card 40's must immediately follow their associated card 39. Card 40 is not required if IRTYP=9.

Card Group 2: Storm Period Selection

This card group is read on input unit 22 in subroutine INVIN and is required only when the ISIM variable (Card Group 1, card 1) is greater than zero. These data define the storm periods to be simulated in a storm mode and the options for storm peak and volume computations. A storm period is defined as one or more consecutive days of storm rainfall. Each storm-period selection card set also describes the number of stormflow hydrograph segments within the storm period. A hypothetical storm period containing two hydrograph segments is shown in figure 18. If storm-mode subsurface and ground-water flow routing are selected (ISUN=1), storm computations are made on full-day time intervals, and hydrograph segmentation is not required. Card group 2 follows a //SYSIN2 DD * card in the input deck.

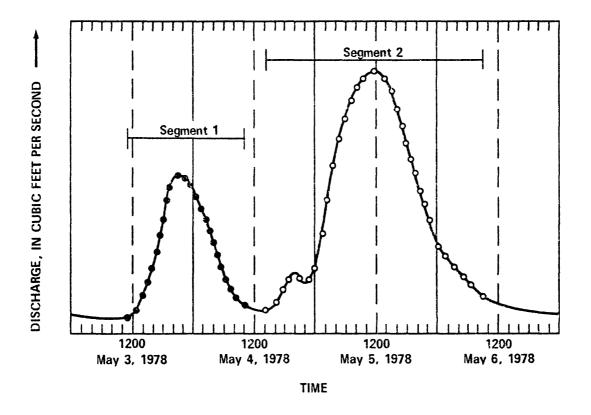


Figure 18.--Delineation of hydrograph segments within a storm period.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
1	1-8 11-15	'01STORMS' I5	NSP	Card I.D. Number of storm periods (maximum of 50)
2 (NSP card sets)	1-7 11-15 16	'02STSEG' I5 I1	ISS CD	Card I. D. Storm period sequence number Data availability code 1=storm rainfall 2=storm rainfall and discharge 3=storm rainfall, discharge, and sediment concentration
	17-20	14	IHS	Number of hydrograph segments
	21-25 27-28 29-30 31-35 37-38 39-40 41-45	15 12 12 15 12 12 12 15	NY NM JY JM JD KD	this storm period Beginning year of storm period Beginning month of storm period Beginning day of storm period Ending year of storm period Ending month of storm period Ending day of storm period Beginning day of hydrograph
	46-50	15	КТ	<pre>segment 1. Beginning time this hydrograph segment (1:30 pm is coded as 1330)</pre>
	51-55	15	LD	Ending day this hydrograph
	56-60	15	LT	segment Ending time this hydrograph
	65	11	IC2	segment Peak and volume code O=segment peak and volume are computed from observed storm discharge 1=segment peak and volume are
	71-75	F5.0	RC1	supplied by user IC2=0 and ISUN=0 Average base- flow rate IC2=0 and ISUN=1 Blank
	76-80	F5.0	RC2	IC2=1 Peak discharge rate IC2=0 Blank IC2=1 Runoff in inches computed ^{as:} <u>VOL (acre-in.)</u> AREA (acre)
	NOTE	Cand columns	11-80 and non	pated on as many cands as

NOTE: Card columns 41-80 are repeated on as many cards as are required to describe IHS hydrograph segments.

Card Group 3: Infiltration/Upland Erosion Parameters

This card group is read on input unit 23 in subroutine INVIN and is required when the variable ISIM (Card Group 1, card 1) is greater than zero. It defines the infiltration and erosion characteristics of an HRU for storm-mode computations. The parameters KSAT, PSP, RGF, and DRN are always included on the card. However, the remaining parameters are only required if ISIM equals 3. One card is required for each HRU defined. Card group 3 follows a //SYSIN3 DD * card in the input card deck.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
1 (NRU d	1-7 cards)	'OlIN-ER'		Card I.D. [Infiltration, Sediment]
•	8-10	13	IRU	HRU I.D.
	11-15	F5.0	KSAT	Hydraulic conductivity of trans- mission zone (inches per hour)
	16-20	F5.0	PSP	The product of moisture defi- cit and capillary drive for RECHR equal to field capacity, REMX (in.)
	21-25	F5.0	RGF	Ratio of PSP at field capacity (RECHR=REMX) to PSP at wilting point (RECHR=0)
	26-30	F5.0	DRN	Drainage factor for redistribu- tion of saturated moisture storage, SMS, to recharge zone moisture storage, RECHR, as a fraction of hydraulic conduc- tivity, KSAT
	31-40	F10.0	KR*	Parametric coefficient in rain drop-flow depth soil detach- ment relation
	41-50	F10.0	HC*	Parametric coefficient in raindrop-flow depth soil detachment relation
	51-60	F10.0	KF*	Parametric coefficient in runoff detachment relation
	61-70	F10.0	КМ*	Parametric coefficient in sediment transport capacity relation
	71-80	F10.0	EN*	Parametric coefficient in sediment transport capacity relation
		*NOTE	Poquined only if	TCTM-2

*NOTE: Required only if ISIM=3.

Card Group 4: Flow and Sediment Routing Specifications

This card group is read on input unit 24 in subroutine INVIN and is required only if the variable ISIM (Card Group 1, card 1) is equal to 2 or 3. These cards define the type and flow characteristics of the overland flow planes and channel, reservoir, and junction segments into which the basin has been divided. One card 2 is required for each overland flow plane defined and one card 4 is required for each channel, reservoir, and junction segment defined. Card group 4 follows a //SYSIN4 DD * card in the input card deck.

An example watershed with three HRU's is shown in figure 19a. HRU 1 is the headwater area of the watershed, HRU 2 is the area adjacent to the main channel and major tributaries, and HRU 3 is an area adjacent to the main channel in the lower part of the watershed. A schematic diagram delineating the segmentation of the figure 19a sample watershed into nine overland-flow planes and nine channel segments is shown in figure 19b. It should be noted that overland-flow planes delineated within an HRU and having the same length, slope, and roughness characteristics can be assigned the same plane identification (PCRID). All the overland-flow planes defined except ØF8 have each been used at least twice in their respective HRU's. Flow-plane characteristics are described on card 2 of this group and one card is completed for each overland-flow plane defined. There is no sequential order required for card 2's. The model computes the rainfall excess and overland-flow hydrograph for a unit width on each defined flow plane. This information then is stored and reused each time a given flow plane is specified as lateral inflow to a channel segment.

Channel segments also can be reused when two or more channel segments have the same length, lateral inflows, and upstream inflows. The outflow hydrograph for the channel segment will be computed once and reused as many times as specified. In figure 19b, channel segments C1, C2, and C6 each are used at least twice. Reuse of overland-flow plane and channel segments where possible decreases storm-mode computation time by eliminating repetitive computations for similar areas. However, areas reused must be within the same HRU to ensure use of the same antecedent soil-moisture conditions and storm-precipitation record.

The channel segments from figure 19b and the upstream and lateral inflows to each are listed in table 11. This information is placed on card 4 of this group and one card 4 for each channel segment is required. Table 11 is presented to illustrate the two card-sequencing requirements for card 4's. The first is that for any channel to be used as an upstream inflow, it must be defined in the channel segment sequence prior to its use. The second requirement is specified for efficient processing and storage. It states that when a channel segment uses as an upstream inflow the channel segment defined by the previous card 4, this previous card 4 segment must appear as upstream inflow 1 (UP1). For example, in table 11, channel segment C2 must appear as Upstream 1 inflow for channel segment C3. This eliminates the need to store and retrieve this segment information before it is processed.

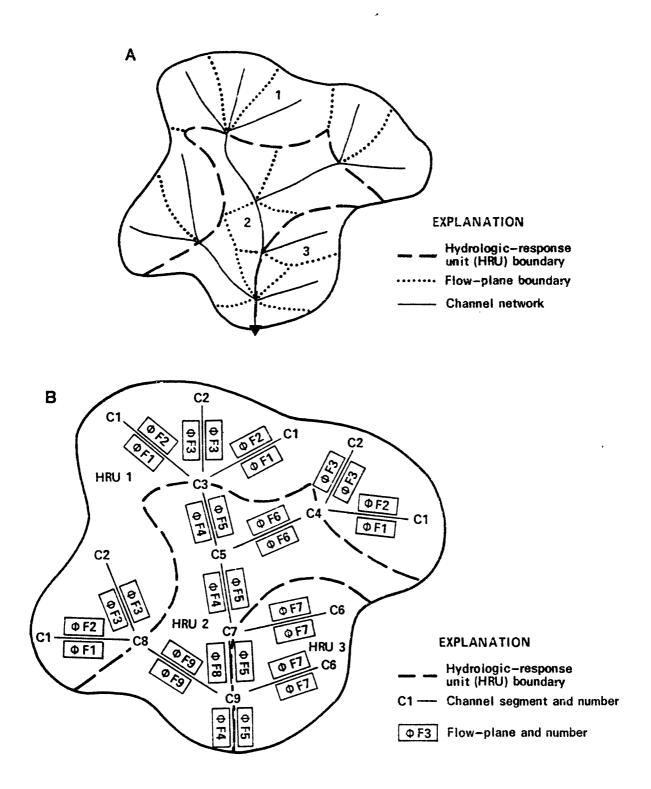


Figure 19.--Delineation of sample watershed: (A) Hydrologic response unit (HRU), flow-plane boundaries, and channel network; (B) schematic of flow planes and channel segments.

Channel segment		Upstream 1	Upstream 2	Upstream 3	Lateral 1	Lateral 2	
C3 C4 C5		C2 C1 C4	C1 C2 C3	C1	ØF1 ØF3 ØF4 ØF6 ØF4 ØF7	ØF2 ØF3 ØF5 ØF6 ØF5 ØF7	
C8		C6 C1 C8	C5 C2 C7	C6	ØF8 ØF9 ØF4	ØF5 ØF9 ØF5	
CARD	COLUMNS	FORMAT	VARIABLES	<u>5</u>	DEFINITIONS	· · · · · · · · · · · · · · · · · · ·	
1	1-8 14-15	'01NØFSEG' I2	NØFSEG). of overland-f 1um of 50)	low planes	
2 (NØFSEG	1-6	'02ØFID'		Card I.[[UNITD]			
cards)		A4	PCRID	tion	l-flow plane	identifica-	
	15-27 28-32	F5.2	IMPV	Blank Impervic fracti	ous area, dec ion	:imal	
	NOTE:	If IMPV equals 0.0 or 1.0 then all values on this card are for the pervious or impervious area, respectively. If 0.0 < IMPV < 1.0 then two no. 2 cards are read with the first card being the values for the pervious area and the second card being the values for the impervious area.					
	33-34	12	ĩΥΡΕ	4=expl kir and 5=turk pla 6=lami 99=no r tic	oulent overla	ication of meters α and-flow i-flow plane Precipita	

Table 11.--List of channel segments delineated in figure 19b and their upstream and lateral inflows

from plane.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
2	35	Il	PRTIN	Print inflow switch O=no 1=print rainfall excess 2=plot rainfall excess, see note after card 4
	36	11	PRTØUT	Print outflow switch 0=no 1=print outflow 2=plot outflow, see note after card 4
	37-38	12	NDX	Number of intervals into which length of overland-flow plane is subdivided for finite- difference calculations, maximum=10
	39-43	F5.0	FLGTH	Length of overland-flow plane (ft)
	44-48	F5.0	SLØPE	Slope of overland-flow plane (ft/ft) if TYPE=5 or 6. If TYPE=4, then leave blank
	49-53	F5.0	FRN	Roughness parameter for TYPE=5 or 6. If TYPE=4, then leave blank
	54-58	F5.0	PARM1	If TYPE=4, then kinematic parameter α, else blank
	59-63	F5.0	PARM2	If TYPE=4, then kinematic
	64-65	12	NIRU	parameter m, else blank Sequence number of the HRU associated with this overland-flow plane
	6 6-7 0	F5.0	THRES	Minimum depth of flow to continue overland-flow routing (in.)
	71-75	F5.0	DTM	Time interval for overland-flow routing (minutes)
	76-80	F5.0	DTØS	Time interval for printing segment outflow (minutes) (omit if PRTØUT=0)
3	1-8	'03NCRSEG'		Card I.D.
	14-15	12	NCRSEG	Number of channel, reservoir, and junction segments (maximum of 50)
4	1-6	'04CHID'		Card I.D.
(NCRSE(cards)		A4	PCRID	[ROUTE] Channel, reservoir, or junction segment identification

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
4	11-14	A4	UP1	Identification of upstream inflow segment number 1, else blank if none. If immedi- ately preceding channel seg- ment (PCRID) is used as up- stream inflow, it must be designated as UP1.
	15-18	A4	UP2	Identification of upstream inflow segment number 2, else blank if none.
	19-22	A4	UP3	Identification of upstream inflow segment number 3, else blank if none
	23-26	A4	RBC	Identification of overland-flow plane that contributes lateral inflow to right side of channel, else blank if none
	27-30	A4	LBC	Identification of overland-flow plane that contributes lateral inflow to left side of channel, else blank if none
	33-34	I2	TYPE	Type of segment 1=rectangular open channel 3=triangular open channel 4=explicit specification of kinematic parameters α and m 7=junction 8=reservoirs, Puls routing 9=reservoir, linear routing
	35	11	PRTIN	Print/plot inflow switch O=no 1=print inflow to segment 2=plot inflow to segment, see note
	36	11	PRTØUT	Print/plot outflow switch 0=no 1=print outflow from segment 2=plot outflow from segment, see note
	37-38	12	NDX	If TYPE < 7 Number of intervals into which the length of channel segment

•

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
4				is to be subdivided for finite-difference computa- tions, maximum=10 If TYPE=8, number of outflow- storage pairs in Puls routing table If TYPE=9, blank
	39-43	F5.0	FLGTH	Length of channel segment in feet
	44-48	F5.0	SLØPE	<pre>Slope of channel segment (ft/ft), not required if TYPE=4, 7, 8, or 9</pre>
	49-53	F5.0	FRN	Roughness (Manning's "n") of channel segment, not required if TYPE=4, 7, 8, or 9
	54-58	F5.0	PARM1	<pre>If TYPE=1, the width of channel (ft) If TYPE=3, then ratio of hori- zontal to vertical change in side slope (right side) If TYPE=4, then kinematic parameter α Else leave blank</pre>
	59-63	F5.0	PARM2	If TYPE=3, same as TYPE 3 above (left side) If TYPE=4, then kinematic parameter m, Else leave blank
	66-70	F5.0	THRES	Minimum rate of discharge to continue channel flow routing (cfs)
	71-75	F5.0	DTM	Time interval for channel flow routing (minutes) If ITYPE=8 must be 5 or 15 minutes
	76-80	F5.0	DTØS	Time interval for printing segment outflow (minutes) (omit if PRTØUT=0)

Note: Stormflow plots for up to 8 overland-flow planes and/or channel segments may be requested.

Card Group 5: Precipitation Form Adjustment

This card group is read on input unit 25 in subroutine TIMEY and is required only if the variable IPSW (Card Group 1, card 1) is equal to 1. A set of cards 1 and 2 are required for each water year in a simulation run. Precipitation occurring on the Julian dates specified will be considered all snow or all rain, thus overriding the algorithm in subroutine PRECIP which apportions snow and rain on the basis of air temperature. These cards normally are used when continuous records of precipitation and air temperature are available to delineate precipitation form. The cards are read on the first day of each water year. Card group 5 follows a //SYSIN5 DD * card in the input card deck.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
1	1-6	'01SPFS'		Card I.D. [PRECIP]
	11 - 15	15	K1	Number of dates to be read (at least 1)
	16-80	13I5	KSV	Julian dates of days with precipitation events whose form should be considered all snow. Zero for the first date indicates no snow form changes
	11-80	1415	KSV	Continuation cards if more than 13 values are used
2	1-6	'02SPFR'		Card I.D. [PRECIP]
	11-15	15	К2	Number of dates to be read (at least 1)
	16-80	1315	KSV	Julian dates of days with precipitation events whose form should be considered all rain. Zero for the first date indicates no rain form changes
	11-80	1415	KSV	Continuation cards if more than 13 values are used

Card Group 6: Snowpack Adjustment

This card group is read on input unit 26 in subroutine TIMEY and is required only when the array INPK (Card Group 1, card 27) has a nonzero value in the array element associated with the current water year. INPK is an array containing one Julian date for each water year when snowcourse data are to be input to update snowpack water equivalent values computed by the model. The data from this card group are used to adjust the snowpack water equivalents on each hydrologic response unit. These cards are read on the first day of each water year. Card group 6 follows a //FT26F001 DD * in the input card deck.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
1	1-10	'01PKADJ-WE'		Card I.D. [PKADJ]
	11-80	14F5.2	DP(I)	Snowpack water equivalent on HRU(I) as measured or estimated from snowcourse data (in.). Data are sequential from HRU(1) to HRU(NRU). For basins with greater than 14 HRU's, the data are continued on a second card. For DP(I) > 0 the snowpack is set to the specified value on HRU(I). For DP(I) < 0 the snowpack is not not adjusted on HRU(I). For DP(I)=0 the snowpack on HRU(I) is melted and becomes available for infiltration and surface run- off.

Card Group 7: Optimization or Sensitivity Analysis Data

This card group is read on input unit 27 in subroutines DATIN and \emptyset PINIT and is required only when variable I \emptyset PT or ISEN (Card Group 1, card 1) is not equal to 0. Card Group 7, for either optimization or sensitivity analysis, followed by Card Group 8 must be included for each optimization or sensitivity analysis desired. Card group 7 follows a //FT27F001 DD * card in the input card deck.

Dat	a cards	for	both	optimization	and	sensitivity	analysis

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
1	1-6	'01ØPT1'		Card I.D. [OPTIMIZATION]
	11-15	15	BYRIN	Beginning year of initialization period (for example, 1978)
	16-20	15	BMØIN	Beginning month of initialization period (1-12)
	21-25	15	BDYIN	Beginning day of initialization period (1-31)
	26-30	15	EYRIN	Ending year of initialization period (for example, 1979)
	31-35	15	EMØIN	Ending month of initialization period (1-12)
	36-40	15	EDYIN	Ending day of initialization period (1-31)

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
2	1-6	'02ØPT2'		Card I.D. [OPTIMIZATION]
	11-15	15	BY RØ P	Beginning year of optimization or sensitivity analysis period (for example, 1979)
	16-20	15	вмøøр	Beginning month of optimization or sensitivity analysis period (1-12)
	21-25	15	BDYØP	Beginning day of optimization or sensitivity analysis period (1-31)
	26-30	15	EYRØP	Ending year of optimization or sensitivity analysis period (for example, 1980)
	31-35	15	ЕМØØР	Ending month of optimization or sensitivity analysis period (1-12)
	36-40	15	EDYØP	Ending day of optimization or sensitivity analysis period (1-31)
3	1-6	'03IØBF'		Card I.D. [OPTIMIZATION]
	11-15	15	IØBF •	Objective function selection switch 1=sum of absolute values of the differences between predicted and observed flows 2=sum of squares of dif- ferences between predicted
	16-20	15	ITRANS	and observed flows Logarithmic transformation switch O=do not transform predicted and observed runoff values before objective function computa- tion 1=transform predicted and observed runoff values before objective function computation
	NOTE	If this is a	concitivity on	alvoic www

NOTE: If this is a sensitivity analysis run, skip to the "Data cards for sensitivity analysis" section for card 4.

Data cards for optimization

These data cards define which model parameters are to be optimized in a given run and the boundary constraints on each parameter. The storm periods for optimizing unit storm parameters are also specified here.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
4	1-6	'04ØPT4'		Card I.D. [OPTIMIZATION]
	11-15	15	NV	Number of parameters to be optimized
	16-20 21-25	15 15	NTRY IPRIØR	Number of optimization cycles Prior information switch O=no normal prior information 1=normal prior information
	NOTE:			required for each (NV on card 4).
5	1-8	'05PARAM1'		Card I.D. [OPTIMIZATION]
	11-15	15	LØP	Parameter to be optimized. See table 3 for parameter numbers
	16-20	15	ILØPL	Switch indicating whether each value of a distributed parameter is to be adjusted by the same magnitude or same percentage of the initial value 0=same magnitude 1=same percentage of initial value
	21-25	15	NVAR	Number of values of a dis- tributed parameter that are to be adjusted (Set NVAR=1 for parameters that are not distributed)
	26-30	15	IDSW	Switch indicating whether card 6 is included for this param- eter. If NVAR equals the total number of parameter elements, then IDSW=0. 0=not included 1=included
	31-35	F5.2	Ρ	Initial step size for parameter adjustment, expressed as a fraction of parameter mag- nitude (These are identical in function to PINC in a sensi- tivity analysis and should be identical for all the

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
5	36-40 41-45	F5.1 F5.1	GU HU	parameters if IØPT is nega- tive; when IOPT is negative, a suggested value is 0.01.) Lower constraint for parameter Upper constraint for parameter
	NOTE:		5 for this para card 5 is 1.	meter only if IDSW on
6	1-8 11-80	'06PARAM2' 3512	NDVR(.,J)	Card I.D. [OPTIMIZATION] The index numbers of the units on which a distributed param- eter is to be adjusted (J=1, NVAR). If these numbers are the consecutive integers 1,2, 3,, NVAR, this card should be omitted and IDSW on card 5 set to 0
	NOTE:	Include card 7	/ if IOPT > 2	; otherwise delete.
7	1-7 11-80	'07STØRM' 3512	TESTNØ(J)	Card I.D. [OPTIMIZATION] Storm events to be included in objective function 1=storm used in computation of objective function 0=storm not used (J=1 to NSP; refers to sequential order of storm
				periods defined in Card Group 2)
	NOTE:	Include NV Car	rd 8's, only if	IPRIØR=1
8	1-7 11-80	'08PRIØR' 14F5.2	VB(.,J)	Card I.D. [OPTIMIZATION] One row of the covariance matrix of the prior infor- mation goes on each card (J=1,NV)
		NOTE: Incl	ude Card 9 if	IOPT=±2.
9	1-7 11-15 16-20	'09CØRØPT' 15 15	IP IQ	Card I.D. [OPTIMIZATION] Autoregressive order Moving-average order

Data cards for sensitivity analysis

CARD	COLUMNS	FORMAT	VARIABLÉS	DEFINITIONS					
4	1-7	'04SENST'		Card I.D.					
	11-15	15	NV	[SENSITIVITY ANALYSIS] Number of parameters to be					
	16-20	F5.2	PINC	analyzed Fraction by which parameters are to be varied to estimate sensitivities (a suggested value is 0.01)					
	21 - 25	15	IPRIØR	Prior information switch O=no normal prior information 1=normal prior information					
	NOTE: One set of cards 5 and 6 is required for each parameter to be analyzed (NV on card 1)								
5		al to card 5 1 HU are need		on except no values for P,					
6	Identica	al to card 6	for optimizati	on.					
	NOTE: 3	[nclude card	7 if ISEN>2; o	therwise delete.					
7	Identica	al to card 7	for optimizati	on.					
	NOTE: 1	[nclude NV ca	ard 8's only if	IPRIØR=1.					
8	Identica	al to card 8	for optimizati	on.					
	NOTE: 1	[nclude card	9 if ISEN=2.						
9	Identica	al to card 9	for optimizati	on.					

Card Group 8: Optimization/Sensitivity Analysis Continuation

This card group is read on input unit 27 in subroutines RØSØPT or SENST and is required only if one of the variables IØPT or ISEN (Card Group, card 1) is not equal to 0. This card group permits successive optimization or sensitivity analysis runs on a data set. When an optimization or sensitivity analysis is selected, this card group must be followed by cards 4 to 9 of Card Group 7 to supply the necessary information. Any number of Group 8 cards may be used. A blank Card Group 8 terminates the simulation. Card Group 8 always follows Card Group 7.

CARD	COLUMNS	FORMAT	VARIABLES	DEFINITIONS
	NOTE: Switch		lescribed on can rd 3, Card Group	rds 1 and 6, Card Group 1 5 7.
1	1-10	'010PT/SE	ENS'	Card I.D.
	11-15	15	IØPT	Optimization switch
	16-20	15	ISEN	Sensitivity analysis switch
	21-25	I5	IØBF	Objective function switch
	26-30	15	ITRANS	Log transformation switch
	31-35	15	MFS	Beginning month of objective function application
	36-40	15	MFN	Ending month of objective function application

SYSTEM OUTPUT

System output can be in the form of tabular summaries of hydrologic and climatic variables, printer plots displaying observed and predicted mean daily flow and stormflow hydrographs, statistical summaries, and files of predicted discharge stored on direct-access devices for further hydrologic analysis. The specific combination of these output options is selected by the user in the input data stream.

Tabular summaries are available for both the daily and storm components of the System. The daily flow summaries can be output as averages and totals for the entire basin and for each HRU. Summary tables can range from a simple table of predicted versus observed discharge to annual, monthly, and daily averages and totals for certain hydrologic and climatic variables. The desired daily mean and totals options for basin values are selected using the System variable IPØP1. An example of the output summary table of predicted versus observed mean daily discharge (IPØP1=0) is shown in figure 20. Examples of the output tables for annual (IPØP1=1), monthly (IPØP1=2), and daily (IPØP1=3) summaries of hydrologic and climatic variables are shown in figures 21, 22, and 23. For a specified value of IPØP1, the table indicated plus all tables for IPØP1 values less than the value selected are output. The variable identifiers used in these tables, and the definition of each, are listed in table 12.

OBSERVED AND PREDICTED RUNOFF FOR WY 1957

. •

DAY	ОСТОВ	BER	NOVEN	IBER	DECEM	BER	JANU	ARY	FEBRI	JARY	MARC	СН
	OBS	PRED	OBS	PRED	OBS	PRED	OBS	PRED	OBS	PRED	0 B S	PRED
1	0.04	0.00	0.15	0.12	0.04	0.01	0.26	0.67	8.30	7.97	1.80	1.30
2	0.04	0.00	0.05	0.08	0.04	0.01	0.20	0.62	4.90	5.19	1.60	1.15
3	0.09	0.02	0.05	0.05	0.04	0.00	0.18	0.58	2.80	3.20	1.30	1.05
4	0.11	0.02	0.04	0.04	0.04	0.00	0.82	3.18	1.90	2.31	1.10	0.96
5	0.04	0.00	0.04	0.03	0.04	0.00	1.70	2.05	2.80	3.61	0.94	0.89
6	0.04	0.00	0.04	0.02	0.04	0.00	1.20	1.48	2.70	2.67	1.00	1.98
7	0.04	0.00	0.05	0.02	0.04	0.01	0.94	1.19	2.50	2.31	3.10	2.73
8	0.03	0.00	0.05	0.02	0.06	0.03	0.78	1.51	2.50	2.53	4.00	2.01
9	0.03	0.00	0.05	0.01	0.05	0.01	5.50	4.20	2.70	1.88	2.70	3.35
10	0.03	0.00	0.05	0.01	0.04	0.00	6.50	5.00	3.70	2.52	2.60	2.44
11	0.04	0.00	0.04	0.01	0.05	0.03	2.60	3.25	2.40	1.75	2.50	2.31
12	0.04	0.00	0.04	0.01	1.30	0.97	1.70	2.18	1.90	1.53	2.00	1.94
13	0.04	0.00	0.04	0.01	7.30	3.35	1.20	1.64	1.50	1.37	1.60	1.47
14	0.04	0.00	0.03	0.01	6.60	3.59	0.88	1.33	1.10	1.25	1.30	1.26
15	0.04	0.00	0.04	0.04	1.50	1.68	0.78	1.12	0.88	1.38	1.20	1.24
16	0.04	0.00	0.19	0.03	0.68	1.03	0.60	0.98	0.83	1.09	0.94	1.00
17	0.04	0.00	0.04	0.01	0.42	0.77	0.49	0.88	0.68	1.00	0.83	0.91
18	0.06	0.00	0.04	0.01	0.43	0.80	0.42	0.80	0.64	0.94	0.78	0.87
19	0.05	0.00	0.03	0.01	0.31	0.47	0.39	0.73	3.00	5.01	0.68	0.79
20	0.05	0.00	0.03	0.01	0.38	0.89	0.48	1.26	3.50	3.48	0.60	0.73
21	0.05	0.01	0.21	0.07	4.90	11.53	0.94	1.12	2.40	2.36	0.56	0.88
22	0.19	0.03	0.06	0.01	12.00	8.25	11.00	9.74	2.00	1.94	0.72	0.80
23	0.09	0.00	0.04	0.01	5.10	5.48	8.50	6.90	1.70	1.64	0.56	0.60
24	0.08	0.00	0.04	0.01	2.50	3.75	2.90	3.59	1.50	1.39	0.49	0.60
25	0.09	0.00	0.04	0.01	1.40	2.24	1.90	2.38	1.20	1.22	0.66	0.74
26	0.19	0.04	0.04	0.01	0.94	1.63	1.30	1.73	1.40	1.59	0.56	0.64
27	0.06	0.00	0.04	0.01	0.68	1.29	2.20	1.60	1.10	1.07	0.56	0.48
28	0.06	0.00	0.04	0.01	0.56	1.24	12.00	11.77	1.70	1.96	0.49	0.46
29	0.06	0.00	0.04	0.01	0.49	0.93	84.00	70.19	0.00	0.00	0.49	0.43
30	0.05	0.00	0.04	0.01	0.36	0.84	6.10	17.77	0.00	0.00	0.49	0.41
31	0.44	0.19	0.00	0.00	0.31	0.74	3.70	7.87	0.00	0.00	0.45	0.39

Figure 20.--Summary table of predicted versus observed daily mean discharge.

2:	OBSERVED RUNOFF(IN) =	20.13	PREDICTED RUNOFF(IN) =	POTENTIAL ET= 60.28	ANNUAL SUMMARY 1957 OBSERVED PRECIP= 55.70
381	(CFS)=	363.42	(CFS)=	ACTUAL ET= 29.22	NET PRECIP= 51.50
	MEAN DAILY(CFS)=	1.00	MEAN DAILY(CFS)=	SNOWMELT= 7.40	INTERCEPTION LOSS= 4.20
	4 GW SINK= 0.00	FLOW= 5.14	40 SSR FLO₩= 9.59 GW	1.92 SURFACE RO= 5.	GW IN= 3.23 SSR IN= 11.52 SSR TO GW=

Figure 21.--Annual summary table for basin average and total values.

MO SUMMARY	1/1957	0-PPT	N-PPT	INLOS	P-ET	A-ET		SMELT	GW-FL	RS-FL	SRO	P-ROFF	O-ROFF
		11.76	11.59	0.16	1.24	0.94		7.00	1.20	4.63	3.55	169.33 (9.38)(162.16 8.98)
										ME/	N CFS	5.46	5.23
					ERROR	SUMMARY							
		ABS V	ALUE OB.	FNC			SUM (DF SQUARES OBJ	FNC				
	NO L	OG		LC	G		NO LOG		LOG				
SUM CUM SUM MEAN PERCENT	47. 76. 1. 29.	51 54		7.9 17.1 0.2	L6		362.98 451.07 11.71 65.42		3.31 5.91 0.11				

Figure 22.-- Monthly summary table for basin average and total values.

.

110

DAILY
7HRUS,
Kγ
BRANCH,

	D-ROFF
	∙PPT N-PPT INLOS P-ET A-ET SMAV %SN#SN PWEQV SMELT GW-ST RS-ST GW-FL RS-FL SRO TRO P-ROFF O-ROFF
	TRO
	SRO
	RS-FL
	GW-FL
	12-ST (
	W-ST H
	MELT 0
	WEQU S
	SN#SN F
	4AV %
	A-ET SI
	P-ET
	INLOS
	N-PPT
DAILY	199-0
7HRUS,	ORAD
КY	X TMN
ANCH,	EAR IM
CANE BRANCH, KY	MO DY YEAR IMX TMN (

.

0-ROFF	0.26	0.20	0.18	0.82	1.70	1.20	0.94	0.78	5.50	6.50	2.60	1.70	1.20	0.88	0.78	0.60	0.49	0.42	0.39	0.48	0.94	11.00	8.50	2.90	1.90	1.30	2.20	12.00	84.00	6.10	3.70
P-ROFF	0.67	0.62	0.58	3.18	2.05	1.48	1.19	1.51	4.20	5.00	3.25	2.18	1.64	1.33	1.12	0.98	0.88	0.80	0.73	1.26	1.12	9.74	6.90	3.59	2.38	1.73	1.60	11.77	70.19	17.77	7.87
TRO	0.037	0.034	0.032	0.176	0.113	0.082	0.066	0.084	0.233	0.277	0.180	0.121	0.091	0.074	0.062	0.054	0.049	0.044	0.041	0.070	0.062	0.539	0.382	0.199	0.132	0.096	0.089	0.652	3.887	0.984	0.436
SRO	0.000	0.000	0.000	0.096	0.001	0.000	0.001	0.023	0.091	0.045	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.024	0.012	0.254	0.003	0.000	0.002	0.000	0.011	0.402	2.549	0.003	0.036
RS-FL	0.009	0.007	0.006	0.049	0.081	0.052	0.035	0.028	0.103	0.188	0.137	0.079	0.051	0.035	0.025	0.019	0.014	0.011	0.009	0.010	0.011	0.241	0.335	0.156	0.088	0.055	0.038	0.204	1.284	0.928	0.341
GW-FL	0.028	0.027	0.026	0.031	0.031	0.030	0.029	0.033	0.039	0.044	0.043	0.042	0.040	0.039	0.037	0.036	0.035	0.033	0.032	0.036	0.038	0.045	0.044	0.043	0.042	0.041	0.040	0.046	0.054	0.054	0.059
RS-ST	0.11	0.10	0.09	0.44	0.34	0.27	0.22	0.20	0.59	0.59	0.43	0.33	0.27	0.22	0.19	0.16	0.14	0.12	0.11	0.13	0.12	1.01	0.64	0.46	0.35	0.28	0.23	0.87	1.92	0.94	0.70
GW-ST	0.53	0.51	0.49	0.60	0.58	0.57	0.55	0.63	0.74	0.84	0.81	0.79	0.76	0.74	0.71	0.68	0.66	0.63	0.60	0.68	0.73	0.85	0.84	0.82	0.80	0.77	0.76	0.87	1.03	1.02	1.11
SMELT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.39	0.04	0.00	0.00	0.00	0.00	0.00	0.01	1.45	5.09	0.01	0.00
PWEQV	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.09	0.11	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.53	0.27	0.00	0.0	0.00
%SN#SN																													0		
SMAV 9	60	58	55	78	76	73	11	78	76	11	74	70	<u>66</u>	63	61	59	59	59	59	79	76	74	73	70	67	64	26	81	5.75	75	[]
A-ET S																													0.05 5		
P-EI	03	02	3	04	64	03	64	5	90	65	63	8	64	8	8	8	02	20	63	64	67	80	02	5	02	64	2	05	0.07 0	5	05
INLOS	8	00	8	10	10	00	01	01	01	5	8	8	8	8	8	8	8	8	01	01	01	01	5	8	01	8	8	01	0.01	5	0
Idd-N	0.00	0.00	0.00	0.89	0.01	0.01	0.02	0.24	0.75	0.43	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.08	0.02	0.29	0.12	1.60	0.04	0.00	0.02	0.00	0.68	1.19	4.82	0.03	0.35
14d-0	0.00	0.00	0.00	0.90	0.02	0.01	0.02	0.25	0.76	0.44	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0. 11	0.00	0.30	0.13	1.61	0.05	0.00	0.03	0.00	0.71	1.18	4.83	0.04	0.36
OKAD	309.7	310.7	311.8	78.2	75.6	42.7	79.0	79.2	79.5	79.7	321.5	324.0	326.6	329.1	307.4	334.2	84.2	84.8	341.9	86.1	86.8	87.3	88.0	355.3	72.3	361.2	69.5	92.0	92.7	93.5	94.3
MMI																													4.		
W N	7.	ş	б	7.	ъ.	~	7.	ω.	17.	Γ.	'n	11.	8. 8.	i	-2.	- 4-	-4-	÷		7.	17.	16.	17.		7.	4	2.	æ.	15.	م	.
MU DY YEAR IMX IMN																													1957		
MUL	-	1	- -	1 4			1	1.6	-	1 10	1 11	1 12	1 13	1 14	1 15	1 16	1 17	1 18	1 19	1 20	1 21	1 22	1 23	1 24	1 25	1 26	1 27	1 28	1 29	1 30	1 31

Figure 23.--Daily summary table for basin average and total values.

•

Variable	Definition
TMX	Maximum temperature (°F or °C, depending on input data)
TMN	Minimum temperature (°F or °C, depending on input data)
ORAD	Observed solar radiation (langleys)
O-PPT	Observed precipitation (inches)
N-PPT	Net precipitation (inches)
INLOS	Interception loss (inches)
P-ET	Potential evapotranspiration (inches)
A-ET	Actual evapotranspiration (inches)
SMAV	Available water in soil profile (inches)
%SN	Percent of basin with snow cover
#SN	Number of HRU's with snow cover
PWEQV	Snowpack water equivalent (inches)
SMELT	Snowmelt (inches)
GW-ST	Ground-water reservoir storage (inches)
RS-ST	Subsurface reservoir storage (inches)
GW-FL	Ground-water flow (inches)
RS-FL	Subsurface flow (inches)
SRO	Surface runoff (inches)
TRO	Predicted runoff (inches)
P-ROFF	Predicted mean daily discharge (cfs)
O-ROFF GW IN SSR IN SSR to GW	Observed mean daily discharge (cfs) Inflow to ground-water reservoirs from HRU's (inches) Inflow to subsurface reservoirs (inches) Inflow to ground-water reservoirs from subsurface reservoirs (inches)
SURFACE RO SSR FLOW GW FLOW GW SINK	Total surface runoff (inches) Total outflow from subsurface reservoirs (inches) Total outflow from ground-water reservoirs (inches) Seepage to ground water that does not contribute to ground- water outflow from basin (inches)

Table 12.--Variable identifiers used in output summary tables for basin averages and totals, and their definitions

Tabular summaries of certain hydrologic and climatic variables can also be output for each HRU. The desired HRU summaries are selected using the System variable IPØP2. Inflow and outflow summaries for each ground water and subsurface reservoir also are included. When IPØP2 equals zero, there are no HRU summaries output. Examples of the output tables for annual (IPØP2=1), monthly (IPØP2=2), and daily (IPØP2=3) summaries for hydrologic and climatic variables associated with each HRU are shown in figures 24, 25, and 26. For a specified value of IPØP2, the table indicated plus those tables for IPØP2 values less than the value specified, will be output. The variable identifiers used in the HRU summaries and the definition of each are listed in table 13. The specific period within the water year for the printing of daily HRU values can be specified by using the beginning Julian date for the output in variable IPUN1 and the ending Julian date for the output in variable IPUN2.

	IRU		SL	-AS	ELEV	0-PP1	r n-ppt	INTLOS	PET	AET	SMELT	UGS	USS S	SRO
AUS	1957	1	NE	20	1100.	55.70	51.25	4.45	57.71	28.19	8.07	3.90	11.14	5.95
AUS	1957	2	SW	30	1100.	55.70	51.19	4.51	58.91	29.94	7.02	3.27	10.09	6.24
AUS	1957	3	S	10	1250.	55.70	51.19	4.51	64.66	30.63	7.16	3.13	9.58	5.95
AUS	1957	4	E	20	1250.	55.70	51.22	4.48	57.63	29.00	7.17	3.35	10.83	6.25
	1957	5	SW	10	1250.	55.70	51.19	4.51	64.70	30.53	7.07	3.16	9.62	6.13
AUS	1957	6	NE	20	1250.	55.70	51.26	4.44	56.95	27.97	8.13	3.96	11.29	5.95
AUS	1957	7	E	20	1200.	55.70	55.70	0.00	57.88	2 6 .39	7.19	0.00	27.86	1.54
	RES#		SSR-IN	SSR-	STO	SSR-FLOW	SSR-TO-GW		GW-IN	GWSS-IN	GW-STOR	GW-FLOW	GW-SINK	
	1		10.401	0.0	000	8.606	1.795		3.227	1.918	0.011	5.137	0.000	
	2		27.863	0.0)61	24.093	3.715		0.000	0.000	0.000	0.000	0.000	

•

-

Figure 24.--Annual summary table for HRU's.

.

MUS	IRU MO	YEAR	SA I	ELEV 0-P	PT N-PPT	INTCP	POTET	ACTET	SM-AV	PWEQV	SMELT	UGS	USS	SRO
	14	1957	NE20	1100. 4.	47 3.86	0.61	4.92	4.31	3.20	0.00	0.00	0.23	0.86	0.37
	24	1957	SW30 3	1100. 4.	17 3.86	0.61	4.98	4.38	3.17	0.00	0.00	0.12	0.78	0.34
	34	1957	S10 3	1250. 4.	17 3.86	0.61	5.52	4.92	2.75	0.00	0.00	0.12	0.59	0.30
	44	1957	E20 3	1250. 4.	17 3.86	0.61	4.90	4.29	3.23	0.00	0.00	0.12	0.85	0.36
	54	1957	SW10 1	1250. 4.	17 3.86	0.61	5.49	4.88	2.76	0.00	0.00	0.12	0.65	0.31
	64	1957	NE20 1	1250. 4.4	47 3.86	0.61	4.85	4.24	3.25	0.00	0.00	0.26	0,86	0.37
	74	1957	E20 1	1200. 4.	4.47	0.00	4.92	2.97	2.14	0.00	0.00	0.00	1.67	0.04
	RES#	SSR-IN	SSR-ST	0 SSR-FLOW	SSR-TO-GW		G₩-IN	GWSS-I	N GW-S	TOR GV	-FLOW	GW-SINK		
	1	0.761	0.030	0.569	0.191		0.150	0.199	0.2	10 (). 529	0.000		
	2	1.667	0.033	1.355	0.311		0.000	0.000	0.0	00 (0.000	0.000		

Figure 25.--Monthly summary table for HRU's.

IRU	MO	DY	YR	SWR	тмх	TMN	OPPT	NPPT	INT	INLS	PET	AET	SMAV	PWEQV	DEN	PACT ALB	TCAL SMLT	INFL UGS USS SRO
1	4	28	1957	170.	84.	55.	0.17	0.11	0.00	0.06	0.25	0.19	3.66	0.00	0.23	0.000.77	112.3 0.00	0.11 0.00 0.00 0.00
2	4	28	1957	179.	87.	58.	0.17	0.11	0.00	0.06	0.25	0.19	3.63	0.00	0.21	0.000.91	14.2 0.00	0.11 0.00 0.00 0.00
3	4	28	1957	185.	86.	56.	0.17	0.11	0.00	0.06	0.28	0.22	3.25	0.00	6.21	0.000.91	11.1 0.00	0.11 0.00 0.00 0.00
4	4	28	1957	178.	86.	56.	0.17	0.11	0.00	0.06	0.25	0.19	3.68	0.00	0.21	0.000.80	16.3 0.00	0.11 0.00 0.00 0.00
5	4	28	1957	184.	87.	57.	0.17	0.11	0.00	0.06	0.28	0.22	3.27	0.00	0.21	0.000.91	12.9 0.00	0.11 0.00 0.00 0.00
6	4	28	1957	170.	84.	54.	0.17	0.11	0.00	0.06	0.25	0.19	3.71	0.00	0.23	0.000.77	109.9 0.00	$0.11 \ 0.00 \ 0.00 \ 0.00$
7	4	28	1957	178.	86.	57.	0.17	0.17	0.00	0.00	0.25	0.08	2.23	0.00	0.21	0.000.91	17.4 0.00	0.17 0.00 0.00 0.00
	RES	ŧ	SSR-1	IN S	SR-S	r0 :	SSR-FL	LOW S	SSR-TO)-GW		(GW-IN	GWS	S-IN	GW-STOR	GW-FLOW	GW-SINK
	1		0.00	00 0	0.030	5	0.00	01	9.0	02		(0.000	0.0	002	0.230	0.012	0.000
	2		0.00	00	0.040	0	0.00)2	0.0	002		(000.000	0.0	000	0.000	0.000	0.000

Figure 26.--Daily summary table for HRU's.

Table	13Variable	identifiers	used	in	output	summary	table
	for HRU	values, and	their	de	finitio	ons	

Variable	Definition
SWR	Shortwave solar radiation (langleys)
ТМХ	Maximum temperature (°F)
TMN	Minimum temperature (°F)
OPPT	Observed precipitation (inches)
NPPT	Net precipitation (inches)
INT	Computed interception (inches)
INLS	Evaporated and sublimated moisture loss from inter- ception (inches)
PET	Potential evapotranspiration (inches)
AET	Actual evapotranspiration (inches)
SMAV	Available water in soil profile (inches)
PWEQV	Snowpack water equivalent (inches)
DEN	Snowpack density (grams per cubic centimeter)
PACT	Snowpack temperature (°C)
ALB	Computed albedo
TCAL	Net energy balance of snowpack (calories)
SMELT	Snowmelt (inches)
INFL	Infiltration (inches)
UGS	Seepage to ground-water reservoir (inches)
USS	Seepage to subsurface reservoir (inches)
SRO	Surface runoff (inches)
SA	Slope and aspect
ELEV	Elevation (feet)
SSR-IN	Inflow to subsurface reservoir (inches)
SSR-STO	Storage in subsurface reservoir (inches)
SSR-FLOW	Outflow from subsurface reservoir to streamflow (inches)
SSR-TO-GW	Outflow from subsurface reservoir to ground-water reservoir (inches)
GW-IN	Inflow to ground-water reservoir from HRU's (inches
GWSS-IN	Inflow to ground-water reservoir from subsurface reservoirs (inches)
GW-STOR	Storage in ground-water reservoir (inches)
GW-FLOW	Outflow from ground-water reservoir (inches)
GW-SINK	Seepage from ground water that does not contribute ground-water outflow from basin (inches)

HRU summaries are written to input/output unit 3. In the cataloged procedure PRMODEL, unit 3 is defined as a dummy unit. Therefore, if HRU summary output is desired, unit 3 must be redefined as a SYSOUT file. See Control and System Input Specifications for details.

A summary table of observed and predicted peak flows and runoff volumes for each storm period simulated is printed after the last yearly summary; figure 27 is an example of this table. Small differences may occur between "storm predicted volume" and "routed outflow." This is because the predicted volume is computed as the sum of the rainfall excess, subsurface flow and baseflow, whereas the routed outflow is the computed volume past the outflow point at the end of the user-defined storm period. Some rainfall excess may remain to be routed if the storm period is ended early in the hydrograph recession.

Tabular summaries of inflow and outflow for specified overland-flow planes and channel segments can be output for all storm events. The overlandflow plane and channel segments are selected using the PRTIN and PRTØUT System variables. The time interval for printing segment outflows can be specified in the variable DTØS. An example of inflow and outflow summary table for a storm is shown in figure 28.

Printer plots of observed and predicted discharge for mean daily flows, stormflows, and sediment concentrations can be output. Mean daily flow plots are selected by setting variable IPLØT=1. Plot scale can be linear (IPLTYP=0) or semilog (IPLTYP=1). The starting and ending month and day for the plot period and the maximum and minimum values for the Y-axis are user-definable. An example of a linear printer plot is shown in figure 29; an example of a linear semilog printer plot is shown in figure 30. Storm-flow plots are obtained by setting the variables PRTIN/PRTØUT=2 for up to eight overland-flow or channel segments. An example of the stormflow hydrograph plot is shown in figure 31; an example of a sediment concentration plot is shown in figure 32.

Predicted mean daily and stormflow discharges can be stored on a direct-access device for later processing by WATSTORE, SAS, or user-written data analysis programs. Two output formats are available for storing mean daily discharges by water year. One is the standard WATSTORE daily-values format (IDØUT=2), which makes the record compatible with WATSTORE and SAS programs on the U.S. Geological Survey computer system. The other (IDØUT=1) is simply a record with 366 data values and a header containing four data items, one of which is the water year of the record. All storm discharges are output by storm period, and are in the standard WATSTORE unit-values format.

An example of the statistical summary that may be obtained by setting ISTAT=1 is shown in figure 33. This summary is provided by month for each water year simulated, followed by the summary for the entire period simulated.

Some output sections will require redefining and renaming of system data sets established in the cataloged procedure, PRMØDEL. See the Control and System Input Specifications section for the required control cards (JCL) to make these modifications.

STORM	PREDICTED VOLUME (INCHES)	ROUTED OUTFLOW (INCHES)	OBSERVED OUTFLOW (INCHES)	PREDICTED PEAK (CFS)	OBSERVED PEAK (CFS)	PREDICTED SEDIMENT (TONS)	
1	2.44	2.39	2.82	96.83	83.80	1094.26	
2	1.07	1.03	1.52	64.56	75.00	525.59	
3	0.70	0.65	1.17	64.34	97.80	451.48	
4	0.01	0.01	0.01	0.36	0.61	2.60	
5	0.03	0.03	0.01	1.28	0.64	32.27	

		STORM VOLUME	ERROR SUMMARY	
	ABS	VALUE OBF FNC	SUM OF	SQUARES OBF FNC
	NO LOG	LOG	NO LOG	LOG
SUM	1.31	2.27	0.56	1.37
MEAN	0.26	0.45	0.11	0.27
PERCENT	23.6 3		30.14	

	-	STORM PEAK ERROR	SUMMARY	
	ABS	VALUE OBF FNC	SUM OF	SQUARES OBF FNC
	NO LOG	LOG	NO LOG	LOG
SUM	57.84	1.95	1399.28	0.99
MEAN	11.57	0.39	279.86	0.20
PERCENT	22.43		32.44	

Figure 27.--Storm summary table.

.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HYDROGRAPH	SEGMENT # 1	M/D/Y=10/ 5/19	981 START= 15.	.0 MIN., END=144	40.0 MIN., DT=1	5.0 MIN.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	HH:MM:SS						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	00 15 00		(CFS)		(CFS)		(CFS)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 7115+00		1 0055+02		2 1045+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1./110702		1.9036702		2.104E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.653E+02		1.910E+02		2.047E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	02:30:00	1.628E+02		1.779E+02			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				1.770E+02		1.865E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.635E+02		1.826E+02		1.941E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
04:00:00 1.595E+02 1.612E+02 1.724E+02 1.780E+02 1.801E+02 1.801E+02 04:15:00 1.558E+02 1.712E+02 1.931E+02 1.932+02 04:45:00 1.556E+02 1.712E+02 1.733E+02 1.827E+02 05:00:00 1.547E+02 1.587E+02 1.744E+02 1.776E+02 1.827E+02 05:30:00 1.534E+02 1.657E+02 1.744E+02 1.766E+02 1.764E+02 05:45:00 1.599E+02 1.637E+02 1.709E+02 1.736E+02 1.795E+02 06:00:00 1.499E+02 1.632E+02 1.671E+02 1.709E+02 1.795E+02 06:30:00 1.447E+02 1.632E+02 1.697E+02 1.795E+02 1.697E+02 06:45:00 1.487E+02 1.605E+02 1.656E+02 1.672E+02 1.791E+02 07:10:00 1.484E+02 1.497E+02 1.605E+02 1.672E+02 1.702E+02 07:30:00 1.487E+02 1.605E+02 1.672E+02 1.668E+02 1.702E+02 07:45:00 1.492E+02 1.612E+02 1.668E+02 1.702E+02 1.668E+02 1.702E+02							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1 6105.00		1 7005.00		1.0005.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.612E+02		1./802+02		1.869E+U2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
$\begin{array}{llllllllllllllllllllllllllllllllllll$			1 587E+02		1 744E+02		1 827E+02
$\begin{array}{llllllllllllllllllllllllllllllllllll$			1.30/2.02		1./++L/UZ		1.0271.02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{llllllllllllllllllllllllllllllllllll$			1.535E+02		1.709E+02		1.795E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06:15:00	1.491E+02					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	06:30:00	1.487E+02		1.613E+02		1.709E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.697E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.497E+02		1.656E+02		1.751E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			3 4005-00		1 0000.00		1 7025.00
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			1.4926+02		1.6256+02		1.703E+02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.498F+02		1 623E+02		1 683E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			2. 1962 62		1.0202.02		1.0001.02
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	09:45:00						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1.494E+02	1.502E+02	1.616E+02	1.630E+02	1.678E+02	1.685E+02
$\begin{array}{cccccccccccccccccccccccccccccccccccc$							
11:00:00 1.487E+02 1.498E+02 1.609E+02 1.631E+02 1.677E+02 1.690E+02 11:15:00 1.485E+02 1.607E+02 1.675E+02 1.675E+02 11:30:00 1.482E+02 1.605E+02 1.674E+02 1.672E+02 11:45:00 1.480E+02 1.602E+02 1.672E+02 1.699E+02 12:00:00 1.477E+02 1.489E+02 1.602E+02 1.669E+02 1.689E+02 12:15:00 1.475E+02 1.697E+02 1.626E+02 1.665E+02 1.689E+02 12:15:00 1.475E+02 1.597E+02 1.662E+02 1.667E+02 12:30:00 1.472E+02 1.594E+02 1.665E+02 1.662E+02 13:00:00 1.465E+02 1.592E+02 1.665E+02 1.659E+02 13:15:00 1.465E+02 1.587E+02 1.657E+02 1.582E+02 13:30:00 1.462E+02 1.584E+02 1.654E+02 1.654E+02 13:45:00 1.460E+02 1.581E+02 1.652E+02 1.652E+02							
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						1.678E+02	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			1.498E+02		1.631E+02		1.690E+02
11:45:00 1.480E+02 1.602E+02 1.672E+02 12:00:00 1.477E+02 1.489E+02 1.600E+02 1.626E+02 1.669E+02 1.689E+02 12:15:00 1.475E+02 1.597E+02 1.667E+02 1.665E+02 1.665E+02 12:30:00 1.472E+02 1.594E+02 1.665E+02 1.665E+02 12:45:00 1.470E+02 1.592E+02 1.665E+02 13:00:00 1.467E+02 1.480E+02 1.617E+02 1.657E+02 13:15:00 1.465E+02 1.584E+02 1.657E+02 1.657E+02 13:30:00 1.462E+02 1.584E+02 1.654E+02 1.654E+02 13:45:00 1.460E+02 1.581E+02 1.652E+02 1.652E+02							
12:00:00 1.477E+02 1.489E+02 1.600E+02 1.626E+02 1.669E+02 1.689E+02 12:15:00 1.475E+02 1.597E+02 1.667E+02 1.667E+02 12:30:00 1.472E+02 1.594E+02 1.665E+02 1.665E+02 12:45:00 1.470E+02 1.592E+02 1.662E+02 1.662E+02 13:00:00 1.467E+02 1.480E+02 1.589E+02 1.657E+02 1.657E+02 13:15:00 1.465E+02 1.587E+02 1.657E+02 1.657E+02 1.654E+02 13:30:00 1.462E+02 1.584E+02 1.654E+02 1.654E+02 13:45:00 1.460E+02 1.581E+02 1.652E+02							
12:15:00 1.475E+02 1.597E+02 1.667E+02 12:30:00 1.472E+02 1.594E+02 1.665E+02 12:45:00 1.470E+02 1.592E+02 1.662E+02 13:00:00 1.467E+02 1.480E+02 1.617E+02 1.659E+02 1.682E+02 13:15:00 1.465E+02 1.587E+02 1.657E+02 1.657E+02 13:30:00 1.462E+02 1.584E+02 1.654E+02 13:45:00 1.460E+02 1.581E+02 1.652E+02			1 4005+02		1 6266+02		1 6005+02
12:30:00 1.472E+02 1.594E+02 1.665E+02 12:45:00 1.470E+02 1.592E+02 1.662E+02 13:00:00 1.467E+02 1.480E+02 1.589E+02 1.617E+02 1.659E+02 1.582E+02 13:15:00 1.465E+02 1.587E+02 1.657E+02 1.657E+02 1.654E+02 13:30:00 1.462E+02 1.584E+02 1.654E+02 1.654E+02 13:45:00 1.460E+02 1.581E+02 1.652E+02			1.4036402		1.0205702		1.0075702
12:45:00 1.470E+02 1.592E+02 1.662E+02 13:00:00 1.467E+02 1.480E+02 1.589E+02 1.617E+02 1.659E+02 1.582E+02 13:15:00 1.465E+02 1.587E+02 1.657E+02 1.657E+02 13:30:00 1.462E+02 1.584E+02 1.654E+02 13:45:00 1.460E+02 1.581E+02 1.652E+02							
13:00:00 1.467E+02 1.480E+02 1.589E+02 1.617E+02 1.659E+02 1.582E+02 13:15:00 1.465E+02 1.587E+02 1.657E+02 1.657E+02 13:30:00 1.462E+02 1.584E+02 1.654E+02 1.654E+02 13:45:00 1.460E+02 1.581E+02 1.652E+02							
13:15:00 1.465E+02 1.587E+02 1.657E+02 13:30:00 1.462E+02 1.584E+02 1.654E+02 13:45:00 1.460E+02 1.581E+02 1.652E+02			1.480E+02		1.617E+02		1.582E+02
13:45:00 1.460E+02 1.581E+02 1.652E+02							
	13:30:00	1.462E+02		1.584E+02			
14:00:00 1.457E+02 1.469E+02 1.579E+02 1.606E+C2 1.649E+02 1.672E+02							
	14:00:00	1.457E+02	1.469E+02	1.579E+02	1.606E+C2	1.649E+02	1.672E+02

.

.

Figure 28.--Inflow and outflow summary table for a storm event.

.

CANE BRANCH, KY 7HRUS, DAILY

WATER YEAR= 1956

50.

O=OBSERVED P=PREDICTED *=O AND P R=OUT OF RANGE

DAILY MEAN DISCHARGE, IN CFS

0. T-	3.	6.	9.	12.	15.	18.	. 21	. 24	. 27.	30.
FEB 11 IR FEB 12 IR FEB 13 IR FEB 14 IR FEB 15 IR	!		1	!	! ! ! !	!				
FEB 16 I FEB 17 I FEB 18 I FEB 19 I FEB 20 I	! * ! !	! ! ! 0 P!0	• • •		! ! !	P !			PO !	
FEB 21 I FEB 22 I FEB 23 I FEB 24 I FEB 25 I	0! P 0 P ! 0 P ! 0! P ! 0P	P 0 !	9 9 9	!	! ! ! !	, , , , , ,			2	I I I I
FEB 26 I FEB 27 I FEB 28 I FEB 29 I	OP OP *! *!	! ! !	!	! ! !	! ! !	! ! !				
MAR 2 I MAR 3 I MAR 4 I MAR 5 I MAR 6 I	P0 ! *1 P 0! * !	! ! ! !	1 2 2 2 2	1	, , , , , , , , , , , , , , , , , , ,	! ! !			! ! !	
MAR 7 I MAR 8 I MAR 9 I MAR 10 I	! P PO! * !	P 0 ! 0 ! !	1	1	1	:			· [I I I
MAR 11 I MAR 12 I MAR 13 I MAR 14 I MAR 15 I	* ! 0 P! !0 ! !	P ! ! 0 ! P	! ! ! !	*	9 	8 5 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			! ! }	I I I I
MAR 16 I MAR 17 I MAR 18 I MAR 19 I MAR 20 I	! OP P 0! P 0 !	O P ! ! ! !	! ! !	! ! !	!	! ! ! !			! ! ! !	I I I I
MAR 21 I MAR 22 I MAR 23 I MAR 24 I MAR 25 I	* ! PO ! OP ! OP ! OP !		*	! ! ! !	1 1 1 1 1 1	! ! ! !			! ! !	I I I I I
MAR 26 I MAR 27 I MAR 28 I (MAR 29 I MAR 30 I (* ! > P ! * ! OP !	! ! ! !	* * *	1 1 1	1 1 1 1 1	! ! ! !			! ! ! !	I I I I
MAR 31 I '	* ! .2	! .	! 5	! 1.0	! 2.0	!	5.0	10.	! 20.	I

Figure 29.--Linear plot of mean daily discharge.

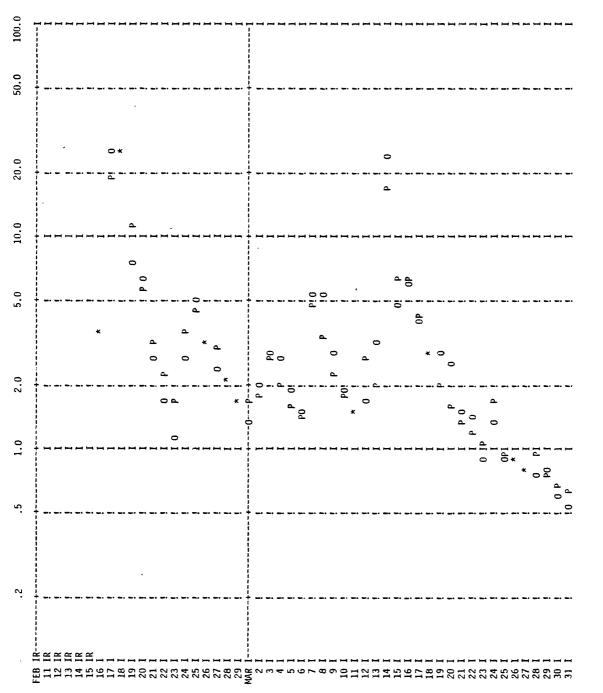


Figure 30.--Semilog plot of mean daily discharges.

119

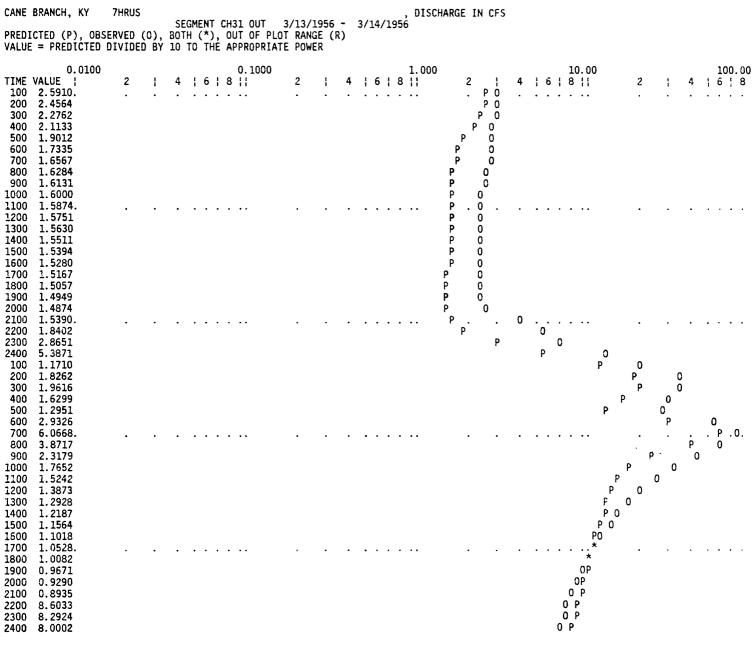


Figure 31.--Stormflow hydrograph plot.

CANE BRANCH, KY	7HRUS	SEGMENT	CH31 OUT 3/	/13/1956 -	, SE 3/14/1956	EDIMENT IN G/L		
PREDICTED (P), OBS VALUE = PREDICTED	ERVED (0), DIVIDED BY	BOTH (*)	, OUT OF PLOT	RANGE (R)	-, -, -, -, -,			
0.0100 TIME VALUE 100 0.0000R 200 0.0000R 300 0.0000R 400 0.0000R	2 · ·	4 16	0.1000 8 	2 4		000 2 ¦ 4 	10.00 6 8 	100. 2 4 6
500 0.0000R 600 0.0000R 700 0.0000R 800 0.0000R 900 0.0000R 1000 0.0000R 1100 0.0000R 1200 0.0000R 1300 0.0000R 1400 0.0000R 1500 0.0000R 1600 0.0000R 1700 0.0000R								
1800 0.0000R 1900 0.0000R 2000 0.5321R 2100 1.8428. 2200 1.1915 2300 3.5176 2400 6.2298 100 1.4944 200 1.5493 300 1.5306			<i>.</i> F)		р Р. Р.		
400 1.5456 500 1.4967 600 1.4757 700 1.3942. 800 1.6309 900 1.6342 1000 1.4864 1100 1.2864 1200 1.1061 1300 0.9475	• •						P P P P P P P P	· · · · · · · · · · · · · · · · · · ·
1400 7.9204 1500 6.3991 1600 5.0285 1700 3.8991 1800 3.0286 1900 2.3835 2000 1.9124 2100 1.5672 2200 1.3106 2300 1.1160 2400 0.9651					 P	P P P P P	Р Р Р	

Figure 32.--Storm sediment-concentration plot.

CANE BRANCH, KY 7HRUS, DAILY SUMMARY STATISTICS FOR WATER YEAR 1957

•

	MEAN F (CFS		TOTAL R (CFS D	UNOFF AYS)	# (RESII	DF DUALS	# OF RUNS
	OBSV.	PRED.	OBSV.	PRED.	+	-	
OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP	0.074 0.056 1.569 5.231 2.294 1.245 1.494 0.255 0.284 0.072 0.027 0.210	0.011 0.023 1.664 5.462 2.363 1.187 0.885 0.156 0.072 0.018 0.004 0.142	$\begin{array}{c} 2.290\\ 1.680\\ 48.640\\ 162.160\\ 64.230\\ 38.600\\ 44.830\\ 7.920\\ 8.510\\ 2.230\\ 0.830\\ 6.300\end{array}$	$\begin{array}{c} 0.345\\ 0.701\\ 51.592\\ 169.331\\ 66.159\\ 36.788\\ 26.553\\ 4.831\\ 2.175\\ 0.550\\ 0.126\\ 4.270\\ \end{array}$	31 27 15 7 14 17 27 19 29 31 31 28	0 3 16 24 14 14 3 12 1 0 0 2	1 5 4 7 10 7 4 7 2 1 1 3
YEAR MFS-MFN SEASON	1.064 1.064	0.996 0.996	388.219 388.219	363.421 363.421	276 276	89 89	45 45

Ň

RESIDUAL = OBSERVED - PREDICTED MFS-MFN SEASON IS OCT TO SEP

CANE BRANCH, KY 7HRUS, DAILY SUMMARY STATISTICS FOR OPTIMIZATION PERIOD 1956 TO 1958

	MEAN (CF:	RUNOFF S)	TOTAL R (CFS D		# O RESID	# OF RUNS	
	OBSV.	PRED.	OBSV.	PRED.	+	-	
TOTAL MFS-MFN SEASON	0.981 0.981	0.829 0.829	1075.308 1075.308	908.417 908.417	660 660	436 436	120 120

RESIDUAL = OBSERVED - PREDICTED MFS-MFN SEASON IS OCT TO SEP

Figure 33.--Statistical summary.

VERIFICATION CRITERIA				
	DA	ILY	MO	NTHLY
	TOTAL	MFS-MFN	TOTAL	MFS-MFN
COEFFICIENT OF DETERMINATION	0.872	0.872	0.918	0.918
	(LOGS) 0.881	0.881		
COEFFICIENT OF PERSISTENCE	-25.616	-25.616		
COEFFICIENT OF GAIN	0.870	0.870		
FROM DAILY AVERAGES				
RESIDUAL-PREDICTED CORRELATION	-0.015	-0.015		

.

		ERROR S	SUMMARY (MFS-MFN PE	RIOD)		
	E	RRORS	ABSOLUTE	ERRORS	SQUARED E	ERRORS
	NO LOG	LOG	NO LOG	LOG	NO LOG	LOG
SUM	166.88	38.54	403.33	127.13	1679.80	42.56
MEAN	0.15	0.04	0.37	0.12	1.53	0.04
PERCENT	15.52		37.51		126.18	

		ERROR SI	JMMARY (TOTAL PERI	OD)		
	E	RRORS	ABSOLUTE	ERRORS	SQUARED I	ERRORS
	NO LOG	LOG	NO LOG	LOG	NO LOG	LOG
SUM	166.88	38.54	403.33	127.13	1679.80	42.56
MEAN	0.15	0.04	0.37	0.12	1.53	0.04
PERCENT	15.52		37.51		126.18	

.

Figure 33.--Statistical summary--Continued.

SYSTEM MODIFICATION

The modular design of the precipitation-runoff modeling system gives users the flexibility to add or replace subroutines to fit their particular modeling needs. Two options to modify the System are described in this section: (1) Replacing model subroutines with user subroutines, and (2) adding and (or) replacing model subroutines that require a new main program.

Several things must be taken into consideration when substituting a user subroutine for one of the system subroutines. The common areas used in the new subroutines should have the same labels as the system commons, although the variable names within the common area may be different as long as they are in the same order. The user should determine if all the data needed for the new subroutine are available through the common areas. A list of the labeled commons, the variables included, and the subroutines they are used in is given in attachment VI. If new data items need to be read from cards, the placement of these cards within the input stream is critical. Any input/output (I/O) of data within the new subroutine should be compatible with the existing I/O for the rest of the system.

An example of substituting user subroutines for system subroutines, using source-card decks is given in figure 34. If the new subroutines have different names than the system subroutines, the REPLACE card in the example is

```
//---JØB CARD---
//PRØCLIB DD DSN=DG4812S.PRDAT.LIB,DISP=SHR
//STEP1 EXEC FØRTXCL,PARM.FØRT='ØPT(2)'
//FØRT.SYSIN DD *
    fortran source decks
/*
//LKED.DD1 DD DSN=DG4812S.PRRØTEST.LØAD,DISP=SHR
//LKED.SYSIN DD *
                                              (needed only if subroutines have
     REPLACE oldsr1(newsr1),oldsr2(newsr2)
                                                     different names
     INCLUDE DD1(PRMØD1)
     ENTRY MAIN
/*
// EXEC PRMØDLK, INFILE='DG4812S. TESTIS1. ISAM'
//PR.SYSIN DD *
    card groups 1-8
/*
11
           Figure 34.--JCL to compile and replace system subroutines
                            with user subroutines.
```

needed; otherwise, it should be omitted. Subroutines with identical names will be replaced automatically. When the new subroutines have been debugged and are running correctly, a copy of the model containing the user modifications may be stored in a userdefined load module library, as shown in figure By selecting one of the two //LKED.SYSLMØD cards shown, a new library can 35. be created or an existing library can be updated. The library, designated by 'userid.libname' in the example, may contain more than one version of the The names for the library and any of the modified versions of the model. model are user options. The model, including the user subroutines, then may be run, using the JCL shown in figure 36. The underlined items should be replaced with the same names assigned by the user in figure 35. The catalog procedure PRMØDLK has the same I/O options and symbolic parameters as PRMØDEL. The two additional symbolic parameters shown on the EXEC card and the JØBLIB card in figure 36 always must be included when PRMØDLK is used alone.

A new subroutine can be incorporated using the procedure described above. The new subroutine and the existing subroutines from which the CALL is made to the new subroutine must be recompiled and link-edited. A copy of the resulting load module may be stored and executed, using figures 35 and 36.

//JØB CARD //STEP1 EXEC FØRTXCL,PARM.FØRT='OPT(2)' //FØRT.SYSIN DD *	
fortran source decks	
/* //LKED.SYSLMØD DD DSN=userid.libname,DISP=(NEW,CATLG),UNIT= // SPACE=(TRK(10,10,10)) or	ØNLINE, to create new user library
<pre>//LKED.SYSLMØD DD DSN=userid.libname,DISP=ØLD,UNIT=ØNLINE //LKED.DD1 DD DSN=DG4812S.PRRØTEST.LØAD,DISP=SHR //LKED.SYSIN DD *</pre>	to add to or replace model in user library
INCLUDE DD1(PRMØD1) NAME <u>PRMØD2</u> or	add new module to library
NAME <u>PRMØD2(</u> R)	replace existing module in library
ENTRY MAIN	, ,

/* //

Figure 35.--JCL to store modified program as user-defined load module.

Figure 36.--JCL to execute stored user-modified program.

REFERENCES

Anderson, E. A., 1968, Development and testing of snow pack energy balance equations: Water Resources Research, v. 4, no. 1, p. 19-38.

Barry, R. G., 1972, Climatic environment on the east slope of the Colorado front range: Boulder, University of Colorado, Institute of Arctic and Alpine Research Occasional Paper 3, 206 p.

- Bassett, Gilbert, and Koenker, Roger, 1978, Asymptotic theory of least absolute error regression: Journal of the American Statistical Association, v. 73, p. 618-622.
- Beck, J. V., and Arnold, K. J., 1977, Parameter estimation in engineering and science: New York, John Wiley and Sons, Inc., 501 p.
- Box, G. E. P., and Jenkins, G. M., 1976, Time series analysis--Forecasting and control: San Francisco, Holden-Day, 575 p.
- Dawdy, D. R., Lichty, R. W., and Bergmann, J. M., 1972, A rainfall-runoff simulation model for estimation of flood peaks for small drainage basins: U.S. Geological Survey Professional Paper 506-B, p. B1-B28.
- Dawdy, D. R., and O'Donnell, Terence, 1965, Mathematical models of catchment behavior: Proceedings of the American Society of Civil Engineers, lowmpal of the Hydrawlice Division y 21 no HYA p 122-127

Journal of the Hydraulics Division, v. 91, no. HY4, p. 123-137.

- Dawdy, D. R., Schaake, J. C., Jr., and Alley, W. M., 1978, Distributed routing rainfall-runoff model: U.S. Geological Survey Water-Resources Investigations 78-90, 151 p.
- Dickinson, W. T., and Whiteley, H. Q., 1970, Watershed areas contributing to runoff: International Association of Hydrologic Sciences Publication 96, p. 1.12-1.28.
- Draper, N. R., and Smith, Harry, 1966, Applied regression analysis: New York, John Wiley and Sons, Inc., 407 p.
- Federer, Anthony C., and Lash, Douglas, 1978, Brook: A hydrologic simulation model for eastern forests: Durham, New Hampshire, University of New Hampshire, Water Resources Research Center, Research Report No. 19, 84 p.
- Frank, E. C., and Lee, Richard, 1966, Potential solar beam irradiation on slopes: U.S. Department of Agriculture, Forest Service Research Paper RM-18,116 p.
- Green, W. H., and Ampt, G. A., 1911, Studies on soil physics, I--Flow of air and water through soils: Journal of Agricultural Research, v. 4, p. 1-24.
- Hamon, W. R., 1961, Estimating potential evapotranspiration: Proceedings of the American Society of Civil Engineers, Journal of the Hydraulic Division, v. 87, no. HY3, p. 107-120.
- Hewlett, J. D., and Nutter, W. L., 1970, The varying source area of streamflow from upland basins, *in* Symposium on Interdisciplinary Aspects of Watershed Management, Montana State University, Bozeman, Montana, 1970, Proceedings, p. 65-83.
- Hiemstra, L. A. V., and Francis, D. M., 1981, Run hydrographs for prediction of flood hydrographs: Proceedings of the American Society of Civil Engineers, Journal of the Hydraulics Division, v. 107, no. HY6, p. 759-778.
- Hjelmfelt, A. T., Piest, R. P., and Saxton, K. E., 1975, Mathematical modeling of erosion on upland areas: Congress of the 16th International Association for Hydraulic Research, Sao Paulo, Brazil, 1975, Proceedings, v. 2, p. 40-47.

Hoaglin, D. C., and Welsch, R. E., 1978, The hat matrix in regression and ANOVA: The American Statistician, v. 32, no. 1, p. 17-22.

Hutchinson, N. E., compiler, 1975, WATSTORE--National water data storage and retrieval system of the U.S. Geological Survey--User's Guide, U.S. Geological Survey Open-File Report 75-426, 791 p.

Jensen, M. E., and Haise, H. R., 1963, Estimating evapotranspiration from solar radiation: Proceedings of the American Society of Civil Engineers, Journal of Irrigation and Drainage, v. 89, no. IR4, p. 15-41.

Jensen, M. E., Rob, D. C. N., and Franzoy, C. E., 1969, Scheduling irrigations using climate-crop-soil data: National Conference on Water Resources Engineering of the American Society of Civil Engineers, New Orleans, La., 1969, Proceedings, 20 p.

Larson, L. W., and Peck, E. L., 1974, Accuracy of precipitation measurements for hydrologic modeling: Water Resources Research, v. 10, no. 4, p. 857-863.

Leaf, C. F., 1966, Free water content of snowpack in subalpine areas: Western Snow Conference, Seattle, Wash., 1966, Proceedings, v. 34, p. 17-24.

Leaf, C. F., and Brink, G. E., 1973, Hydrologic simulation model of Colorado subalpine forest: U.S. Department of Agriculture, Forest Service Research Paper RM-107, 23 p.

Leavesley, G. H., and Striffler, W. D., 1978, A mountain watershed simulation model, in Colbeck, S. C., and Ray, M., eds., Modeling of Snow Cover Runoff, Hanover, New Hampshire, 1978, Proceedings: U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, p. 379-386.

Leclerc, Guy, and Schaake, J. C., Jr., 1973, Methodology for assessing the potential impact of urban development on urban runoff and the relative efficiency of runoff control alternatives: Massachusetts Institute of Technology, Ralph M. Parsons Laboratory Report 167, 257 p.

Linsley, R. K., Jr., Kohler, M. A., and Paulhus, J. L., 1958, Hydrology for engineers: New York, McGraw-Hill, p. 151-155.

McCuen, R. H., 1973, The role of sensitivity analysis in hydrologic modeling, Journal of Hydrology, v. 18, p. 37-53.

Mein, R. G., and Brown, B. M., 1978, Sensitivity of optimized parameters in watershed models: Water Resources Research, v. 14, no. 2, p. 299-303.

Miller, D. H., 1959, Transmission of insolation through pine forest canopy as it effects the melting of snow: Mitteilungen der Schweizerischen Anstalt für das forstliche Versuchswesen, Versuchsw. Mitt., v. 35, p. 35-79.

Murray, F. W., 1967, On the computation of saturation vapor pressure: Journal of Applied Meteorology, v. 6, p. 203-204.

Musser, John J., 1963, Description of physical environment and of strip-mining operations in parts of Beaver Creek basin, Kentucky: U.S. Geological Survey Professional Paper 427-A, 25 p.

Obled, Charles, and Rosse, B. B., 1977, Mathematical models of a melting snowpack at an index plot: Journal of Hydrology, no. 32, p. 139-163.

Philip, J. R., 1954, An infiltration equation with physical significance: Soil Science Society of America Proceedings, v. 77, p. 153-157.

Riley, J. P., Israelsen, E. K., and Eggleston, K. O., 1973, Some approaches to snowmelt prediction, *in* The role of snow and ice in hydrology: International Association of Hydrological Sciences Publication 107, p. 956-971. Rosenbrock, H. H., 1960, An automatic method of finding the greatest or least value of a function: Computer Journal, v. 3, p. 175-184.

- SAS Institute Inc., 1982, SAS user's guide--basics, 1982 edition: Cary, N.C., Statistical Analysis System Institute Inc., 923 p.
- Sen, P. K., 1968, Asymptotic normality of sample quantiles for independent processes: Annals of Mathematical Statistics, v. 39, p. 1724-1730.
- Smith, R. E., 1976, Field test of a distributed watershed erosion/sedimentation model, in Soil erosion--Prediction and control: Ankeny, Iowa, Soil Conservation Society of America, p. 201-209.
- Sorooshian, Soroosh, and Dracup, John, 1980, Stochastic parameter estimation procedures for hydrologic rainfall-runoff models--Correlated and heteroscedastic error cases: Water Resources Research, v. 16, no. 2, p. 430-442.
- Swift, Lloyd W., Jr., 1976, Algorithm for solar radiation on mountain slopes: Water Resources Research, v. 12, no. 1, p. 108-112.
- Tangborn, W. V., 1978, A model to predict short-term snowmelt runoff using synoptic observations of streamflow, temperature, and precipitation in Colbeck, S. C., and Ray, M., eds., Modeling of snow cover runoff, Hanover, New Hampshire, 1978, Proceedings: U.S. Army Corps of Engineers, Cold Region Research and Engineering Laboratory, p. 414-426.
- Thompson, E. S., 1976, Computation of solar radiation from sky cover: Water Resources Research, v. 12, no. 5, p. 859-865.
- U.S. Army, 1956, Snow hydrology: Portland, Oreg., U.S. Army Corps of Engineers, North Pacific Division, 437 p.
- U.S. Geological Survey, 1970, U.S. Geological Survey computer user's manual: Computer Center Division [Information Services Division], p. 5.4-5.7.
- U.S. Soil Conservation Service, 1971, SCS national engineering handbook, Section 4--Hydrology: Washington, D.C., U.S. Government Printing Office, 654 p.
- Vézina, P. E., and Péch, G. Y., 1964, Solar radiation beneath conifer canopies in relation to crown closure: Forest Science v. 10, no. 4, p. 443-451.
- Weeks, W. D., and Hebbert, R. H. E., 1980, A comparison of rainfall-runoff models: Nordic Hydrology, v. 11, p. 7-24.
- Willen, D. W., Shumway, C. A., and Reid, J. E., 1971, Simulation of daily snow water equivalent and melt: Western Snow Conference, Billings, Montana, 1971, Proceedings, v. 39, p. 1-8.
- Woolhiser, D. A., Hanson, C. L., and Kuhlman, A. R., 1970, Overland flow on rangeland watersheds: Journal of Hydrology, v. 9, no. 2, p. 336-356.
- Zahner, R., 1967, Refinement in empirical functions for realistic soilmoisture regimes under forest cover, *in* Sopper, W. E., and Lull, H. W., eds., International symposium of forest hydrology: New York, Pergamon Press, p. 261-274.

ATTACHMENT I

PRMODEL Cataloged Procedure

A cataloged procedure has been written that includes all of the JCL required to use the Precipitation-Runoff Modeling System. This procedure, named PRMODEL, is stored in the procedure library DG4812S.PRDAT.LIB. Figure I-1 is a listing of PRMODEL.

ATTACHMENT II

Simulation Examples

The simulation examples for this attachment were developed using the Cane Branch watershed located in the Cumberland Plateau physiographic section of southeastern Kentucky. The watershed is described by Musser (1963). It has an area of 429 acres and relief of about 400 feet. The highest altitude above mean sea level is about 1,380 feet. Except for a small area of strip mining, the watershed is completely forested with a mix of hardwoods and pines. Soils generally are silt loam in texture. The topography and channel network of Cane Branch are shown in figure II-1. For daily mean flow simulation, the watershed was divided into seven HRU's. HRU 7 is the 27.4-acre strip-mined area. For stormflow simulation, an average overland-flow plane was defined in each HRU and reused several times to describe the flow plane network of each The channel system was delineated into 28 segments. The HRU and the HRU. channel segments defined are shown in figure II-2. A listing of the input card deck created to run a dailv and stormflow simulation on Cane Branch from February 16, 1956, to September 30, 1957, is given in figure II-3. The deck consists of card groups 1, 2, 3, and 4, and includes the cards necessary for water and sediment routing of five storms. Card group 1 contains the physical description of the HRU's shown in figure II-2 and card groups 3 and 4 contain the physical description of the overland-flow plane and channel segments shown.

Selected segments of the output from this simulation run are shown in figures II-4 through II-9. The summary of the input data as they are displayed to the user in the model output is shown in figure II-4. It is important that the user always review this section of the output to ensure that the data supplied in the input card groups are correct. The daily mean flow summary table and the annual summary for water year 1956 are shown in figure II-5. Note that the simulation began in February; therefore, the annual summary is for a period less than 1 year. The line printer plot of the daily mean flows for the period February and March 1956 is shown in figure II-6. The plot is on a semilog scale.

The summary for water and sediment discharge for the five storms simulated is shown in figure II-7. There were no observed sediment data available for this example. Therefore, the sediment parameters used in card group 3 were just estimated values to permit the generation of a sediment summary and a sediment-concentration graph. The stormflow hydrograph for storm no. 2 (March 13-14, 1956) is shown in figure II-8, and the hypothetical sedimentconcentration graph for this storm is shown in figure II-9.

```
//PRMODEL
              PROC
                     INFILE=NULLFILE, DVOUT=NULLFILE, DVLREC=1656,
              DVBLK=11592,UVOUT=NULLFILE,UVLREC=11604,UVBLK=12932
//
//PR EXEC PGM=PRMOD1,REGION=600K,TIME=3
//STEPLIB DD DSN=DG4812S.PRROTEST.LOAD,DISP=SHR
17
          DD DSN=SYS1.FORTG.LINKLIBX,DISP=SHR
\prod
          DD DSN=SYS1.PLIX.TRANSLIB,DISP=SHR
//FT02F001 DD DUMMY
//FT03F001 DD DUMMY
//FT04F001 DD UNIT=SYSDK,SPACE=(TRK,(5,5)),DISP=(,DELETE)
//FT05F001 DD DDNAME=SYSIN1
//FT06F001 DD SYSOUT=A
//FT08F001 DD UNIT=SYSDK,SPACE=(TRK,(5,5)),DISP=(,DELETE)
//FT09F001 DD DISP=(,DELETE),SPACE=(128,(1000)),
              DCB=(RECFM=F, LRECL=128, DSORG=DA), UNIT=SYSDK
\prod
//FT10F001 DD UNIT=SYSDK,SPACE=(TRK,(5,5)),DISP=(,DELETE)
//INV
           DD DSN=&INV,UNIT=SYSDK,DISP=(,DELETE),SPACE=(TRK,(10,1)),
              DCB=(RECFM=VBS, LRECL=1472, BLKSIZE=5896, BUFNO=2)
\Pi
//FT11F001 DD DSN=*.INV,DISP=(OLD,DELETE),VOL=REF=*.INV
//FT12F001 DD DSN=&FHS,UNIT=SYSDK,DISP=(,DELETE),SPACE=(TRK,(5,1)),
              DCB=(RECFM=VBS,LRECL=656,BLKSIZE=6568,BUFNO=2)
\prod
//DFHS
           DD DSN=&DFHS,UNIT=SYSDK,DISP=(,DELETE),SPACE=(TRK,(10,5)),
              DCB=(RECFM=VBS,LRECL=108,BLKSIZE=1088)
11
//FT13F001 DD DSN=*.DFHS,DISP=(OLD,DELETE),VOL=REF=*.DFHS
           DD DSN=&UNITQ,UNIT=SYSDK,DISP=(,DELETE),SPACE=(TRK,(100,5)),
//UNITO
              DCB=(RECFM=VB,LRECL=5820,BLKSIZE=5830,BUFN0=2)
11
//FT14F001 DD DSN=*.UNITQ,DISP=(OLD,DELETE),VOL=REF=*.UNITQ
//UNITP
           DD DSN=&UNITP,UNIT=SYSDK,DISP=(,DELETE),SPACE=(TRK,(100;5)),
              DCB=(RECFM=VB,LRECL=5820,BLKSIZE=5830,BUFN0=2)
//
//FT15F001 DD DSN=*.UNITP,DISP=(OLD,DELETE),VOL=REF=*.UNITP
//FT17F001 DD DSN=&LATIN, DISP=(, DELETE), SPACE=(5768, (200)),
II
              DCB=(RECFM=F,BLKSIZE=5760,DSORG=DA),UNIT=SYSDK
//QSFILE
           DD DSN=&SFILE,DISP=(,DELETE),UNIT=SYSDK,SPACE=(TRK,(100,5)),
              DCB=(RECFM=VBS,LRECL=5764,BLKSIZE=12000,BUFN0=3)
17
//FT18F001 DD DSN=*.QSFILE,DISP=(OLD,DELETE),VOL=REF=*.QSFILE
//FT20F001 DD DSN=&DVOUT.DISP=(NEW.CATLG).SPACE=(TRK.(5.5).RLSE).
\prod
              DCB=(RECFM=FB,LRECL=&DVLREC,BLKSIZE=&DVBLK,BUFN0=2),
11
              UNIT=ONLINE
//FT21F001 DD DSN=&UVOUT.DISP=(NEW.CATLG).SPACE=(TRK.(5.5).RLSE).
11
              DCB=(RECFM=VB,LRECL=&UVLREC,BLKSIZE=&UVBLK,BUFNO=2),
11
              UNIT=ONLINE
//DISK
           DD DSN=&INFILE,DISP=SHR,UNIT=ONLINE,
11
              DCB=(RECFM=VB, LRECL=11604, BLKSIZE=12932,
\prod
              KEYLEN=28,DSORG=IS)
//FT30F001 DD UNIT=SYSDK,SPACE=(TRK,(5,5)),DISP=(,DELETE)
//FT22F001 DD DDNAME=SYSIN2
//FT23F001 DD DDNAME=SYSIN3
//FT24F001 DD DDNAME=SYSIN4
//FT25F001 DD DDNAME=SYSIN5
//SYSPRINT DD SYSOUT=A
```

Figure I-1.--Cataloged procedure PRMODEL.

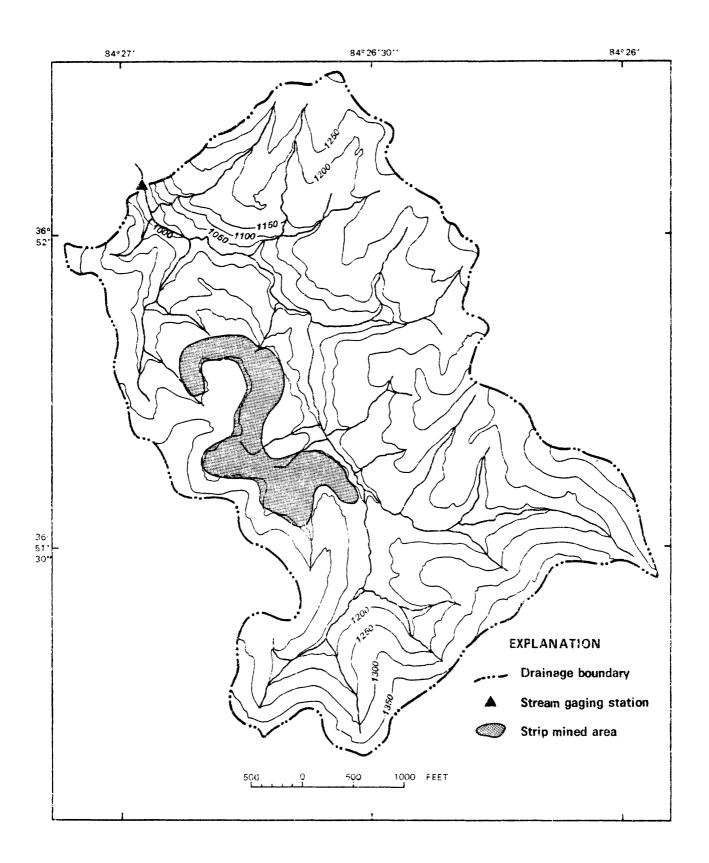


Figure II-1.--Topography and channel network of Cane Branch watershed.

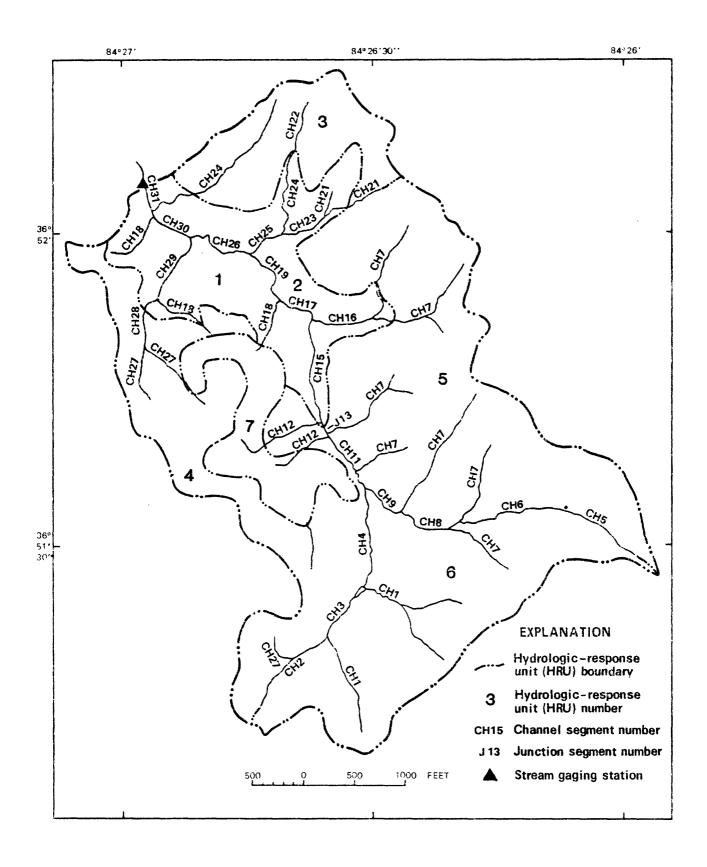


Figure II-2.--HRU and channel segments delineated for Cane Branch watershed.

CARD GROUP 1

O1SIM/OPT 1 3 0 0 0 0 0 0 02SIM/COMP 1 1 2 1 CANE BRANCH. ΚY 7HRUS, DAILY 03TITL 429. 04INIT1 1 7 2 0 6 1 1956 16 1957 30 **05INIT2** 02 09 06MFS-MFN 10 9 1 07PRINT-OP 2 10 9 1 9 08PLOT 1 1 10 30 100. .1 • 1 **09DATATYPE** 6 1 1 1 0 0 1 0 0 1 00060000500002000020 10PARM 000600004500045 11STAT 00003000060000100002 000110000600006 D 03407100 D365200085090000 D370700084370000 12STAID D370700084370000 12STAID U 03407100 D365205084265702 U365205084265702 13STAIDP 0.0 14RD 1 HOR 0.0 37. 14RD 2 **NE20** 0.2 45. 37. 0.3 225. 14RD 3 SW30 37. 14RD 4 **S10** 0.1 180. 37. 14RD 5 E20 0.2 90. 37. 0.1 225. 14RD 6 SW10 37. 15RDM 1.0 1.0 1.0 16RDC 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 . 25 .50.25 .61 .8 17RAD-COR 1050. 18CLIM-PR .8 .6 0 0 0 .1 19CTW 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 20PAT 4.5 4.5 1.0 1.0 1.0 1.0 1.0 21AJMX 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 1.5 1.5 22TLX 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.523TLN 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 24EVC 1.3 1.2 .72 .75 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.5 25SNO-VAR 90 120.757 .04 .20 . 40 .1 1.0 6. 6. 5. 5. 26CEN 5. 5. 6. 6. 6. 6. 6. 6. 27PKADJ **28RES** .6 .6 29GW .7 1 30KRSP 1 31RESMX-EX 1.0 1.0 1.0 1.0 .05 32RSEP .05 33GSNK 0. 0. .05 34RCB .02 35RCF-RCP .02 .47 .47

Figure II-3.--Input card deck for daily and stormflow simulation on Cane Branch watershed.

CARD GROUP 1--Continued

36RU1 37RU2 38RU3	1 1 1	2 1	2	25 6. 39.	0	100. 5.8 1.0	3 2.0 1.0	.60 1.8 1.0	.30 1.0	.42 .60	.1 .0016	.1 .3	.05 0.	4111 0.	24 .12	78 1		78 0
36RU1 37RU2 38RU3	2 2 2	3 1	2	35 6. 38.	0	100. 5.8 1.0	3 2.0 1.0	.60 1.8 1.0	.30 1.0	.42 .60	.1 0016.	.1 .3	.05 0.	4111 0.	24. .12	.78 1	1.	78 0
36RU1 37RU2 38RU3	23333	4	2	10	1 0	1.0 1250. 5.8 1.0	1.0 3 2.0 1.0	1.0 .60 1.8 1.0	.30 1.0	. 42 . 60	.1 0016	.1 .3	.05 0.	4111 0.	24. .12	.39 1		39 0
36RU1 37RU2 38RU3	5 4 4 4	5	2		נ 0	1.0 250. 5.8 1.0	1.0 3 2.0 1.0	1.0 .60 1.8 1.0	.30 1.0	. 42 . 60	.1 0016.	.1 .3	.05 0.	4111 0.	24. .12	.39 1		39 0
36RU1 37RU2 38RU3	5 5 5	6 1	2	12	1 0	1.0 L250. 5.8 1.0	1.0 3 2.0 1.0	.60 1.8 1.0	.30 1.0	.42 .60	.1 0016.	.1 .3	.05 0.	4111 0.	24. .12	.78 1	1	78 0
36RU1 37RU2 38RU3	6 6 6	2	2	23	1 0	1.0 1.0 5.8 1.0	3 2.0 1.0	.60 1.8 1.0	.30 1.0	. 42 . 60	.1 .0016	.1 .3	.05 0.	4111 0.	24. .12			78 0
36RU1 37RU2 38RU3	7 7 7 7	5 1	2	10 3. 27.] 0	2.5 1.0	$ \begin{array}{c} 1.0 \\ 0 \\ 1.0 \\ 1.0 \\ 1.0 \\ \end{array} $	0. .5 1.0	0. 1.0	1.0 .01	0. .0016	0. .3	0. 0.	4111 0.	24. .0	. 39 2		39 0
CARD GRO	UP	2							Þ									
01STORMS 02STSEG 02STSEG 02STSEG 02STSEG 02STSEG			5 12 22 32 42 52		1 1 1	1956 1956 1956	0217 0313 0406 0526 0613	1956 1956 1956	0314 0406 0526	13 6 26	0000 0000 0000 0000 0000	14 6 26	2400 2400 2400 2400 2400 2400					
CARD GRO	UP	3																
IN-ER IN-ER IN-ER IN-ER IN-ER IN-ER IN-ER	1 2 3 4 5 6 7	•	555550		$1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	9.5 9.5 9.5 9.5 9.5 9.5 9.5	1.0 1.0 1.0 1.0 1.0 1.0 1.0		1. 1. 1. 1. 1. 1. 10.		10. 10. 10. 10. 10. 10. 10.		1. 1. 1. 1. 1. 1. 10.		1. 1. 1. 1. 1. 1. 1.			$ \begin{array}{r} 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ 1.5 \\ \end{array} $

Figure II-3.--Input card deck for daily and stormflow simulation on Cane Branch watershed--Continued.

CARD GROUP 4

020FID0F6400 3 320.2.20 1.67 60.5.020FID0F7400 2 200.1.18 1.67 70.5.NCRSEG28	
04CHIDCH1 0F6 0F6 400 31000. 0.69 1.67 0.5. 04CHIDCH27 0F4 0F4 400 2700. .56 1.67 0.5. 04CHIDCH2 0F4 0F6 400 31000. .61 1.67 0.5. 04CHIDCH2 0F4 0F6 400 3860. .24 1.67 0.5. 04CHIDCH3 CH2 CH1 CH2/70F4 0F6 400 2650. .16 1.67 0.5. 04CHIDCH5 0F5 0F6 400 41100. .34 1.67 0.5. 04CHIDCH3 0F5 0F6 400 2 600. .25 1.67 0.5. 04CHIDCH3 CH7 OF5 0F6 400 2 600. .91 1.67 0.5. 04CHIDCH12 OF7 OF7 400 2 500. .91 1.67 0.5. 04CHIDCH12 OF7 OF7 400 2 500. .07 1.67 0.10.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Figure II-3.--Input card deck for daily and stormflow simulation on Cane Branch watershed--Continued.

•

CANE BRANCH, KY	7HRUS												
IOPT= 0 IDOUT= 0	ISIM= IUOUT=		DBS= 1 CODE==319	ISEN= ICBC=	C 0	IPSW=	0						
IPET= 1 NYR= 2	ISSR1= NDS=		RDC= 2 RU= 7	ISUN= NRD=	1 6	NRES=	2 NGW=	: 1	NSTOR=	0 D/	AT=	429.00	
BYR/BMO/BDY=	1956/ 2/16	EYR/	/EMO/EDY=	1957/ 9/30						•			
MFS= 10 M DATA TYPE DAILY DISCHARGE	FN≕ 9 PARAMETEI CODE 00060	R STATIST CODE 00003	ric	STATION I 03407100									
DAILY DISCHARGE DAILY EVAP DAILY MAX TEMP DAILY MIN TEMP DAILY SOLAR RAD	00080 00050 00020 00020	00003 00006 00001 00002		365200085 370700084 370700084	090000 370000								
USER VARIABLE 1 USER VARIABLE 2 UNIT DISCHARGE DAILY PRECIP	00C60 00045	00011 00006		03407100 365205084									
UNIT PRECIP	00045	00006		365205084	265702								
POT SOLAR RAD 1 HOI 2 NE2 3 SW3 4 S1 5 E2 6 SW1	R 37 D 26 D 55 D 45 D 37	50.2 28 36.4 55 58.8 48 76.5 40	38.6 440. 34.6 327 38.4 595 32.2 521 30.5 441 57.4 497	.0 388.6 .2 645.6 .7 576.7 .6 499.7	571.5 466.4 704.7 642.8 571.1 621.9	651.1 554.6 765.8 713.6 649.4 695.3	732.4 647.9 824.2 783.7 729.3 769.0	809.8 739.7 875.4 848.2 805.1 837.4	877.2 823.0 915.7 902.4 871.0 895.5	933.2 894.6 945.8 945.7 925.7 942.5	975.4 950.6 965.8 977.0 966.8 977.0	1003.7 989.2 977.8 997.4 994.3 999.7	1019.7 1011.4 984.1 1008.6 1009.8 1012.2
RDM(1-12)= -0 RDC(1-12)= 1													
MRDC= 2 PARS								1.00					
SUNLIGHT HOUR	R	0.8		.8 0.9	0.9	1.0	1.0	1.0	1.1	1.1	1.2	1.2	1.2
2 NE2 3 SW3 4 S1 5 E2 6 SW1	0 0 0	0.7 0.8 0.8 0.7 0.8	0.8 0 0.8 0 0.7 0	.7 0.8 .8 0.8 .8 0.9 .8 0.8 .8 0.8 .8 0.8	0.8 0.9 0.9 0.8 0.9	0.9 0.9 1.0 0.9 0.9	0.9 0.9 1.0 0.9 1.0	1.0 1.0 1.0 1.0 1.0	1.0 1.0 1.1 1.0 1.1	$1.1 \\ 1.0 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1$	$1.1 \\ 1.1 $	1.2 1.1 1.2 1.1 1.2	1.2 1.1 1.2 1.1 1.2

.

Figure II-4.--Variables, parameters, and initial conditions for daily and stormflow simulation on Cane Branch watershed.

.

CANE BRANCH, KY 7HRUS CSEL= 1050. RMXA= 0.80 RMXM= 0.60 MTSS= 0 MTSE= 0 MPCN= 0 MPCS= 0 MPC1= 0 PCONR= 1.00 PCONS= 1.00 0.10 CTw= PAT(1-12)= 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 AJMX(1-12)= 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.50 1.50 1.50 1.50 1.50 1.50 TLX(1-12)= 1.50 1.50 1.50 1.50 1.50 1.50 TLN(1-12)= 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 0.750 EVC(1-12)= 1.300 1.200 0.720 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.500 ISP1= 90 ISP2=120 EAIR= 0.757 FWCAP= 0.04 DENI= 0.20 DENMX= 0.40 SETCON= 0.10 BST= 1.00 CECN(1-12)= 5.00 6.00 5.00 6.00 6.00 6.00 6.00 6.00 6.00 6.00 5.00 5.00 **RES-RSEP** 1-0.60 0.05 2-0.60 0.05 RESMX~REXP 1.0000 1.0000 1.0000 1.0000 KRSP= 1 1 RCF-RCP 1- 0.0200000 0.4700000 2- 0.0200000 0.4700000 GW-GSNK 0.700 0.000 1-RCB 1- 0.0500

.

. . .

Figure II-4.--Variables, parameters, and initial conditions for daily and stormflow simulation on Cane Branch watershed--Continued.

CANE BRANCH, KY 7HRUS

IRU	IRD ELEV	ITST ITND	ITSW CTX	TXAJ TNAJ	RNSTS RNSTW	SNST TRNCF	COVDS	ICOV ISOIL	SMAX SMAV	REMX RECHR	SCN SC1	SRX SCX	RETIP IMPRV	SEP KSTOR	KRES KGW	
1	2 1100.	4 11	1 24.00	-0.78 -0.78	0.10 0.05	0.10 0.42	0.60 0.30	3 2	6.00 5.80	2.00 1.80	0.00160 0.30000	1.00 0.60	0.00	0.12	1 1	
2	3	4	1	0.78	0.10	0.10	0.60	3	6.00	2.00	0.00160	1.00	0.00	0.12	ī	
3	1100. 4	11 4	24.00 1	0.78 0.39	0.05 0.10	0.42 0.10	0.30 0.60	2 3	5.80 6.00	1.80 2.00	0.30000 0.00160	0.60 1.00	0.00 0.00	0 0.12	1	
	1250.	11	24.00	0.39	0.05	0.42	0.30	2	5.80	1.80	0.30000	0.60	0.00	0	ī	
4	5 1250.	4 11	1 24.00	0.39 0.39	0.10 0.05	0.10 0.42	0.60 0.30	3 2	6.00 5.80	2.00 1.80	0.00160	1.00 0.60	0.00 0.00	0.12 0	1 1	
5	6	4	1	0.78	0.10	0.10	0.60	3	6.00	2.00	0.00160	1.00	0.00	0.12	j	
6	1250. 2	11 4	24.00 1	0.78 -0.78	0.05 0.10	0.42 0.10	0.30 0.60	2 3	5.80 6.00	1.80 2.00	0.30000 0.00160	0.60 1.00	0.00 0.00	0 0.12	1	
7	1250. 5	11 4	24.00 1	-0.78 0.39	0.05 0.00	0.42	0.30 0.00	2 0	5.80 3.00	1.80 1.00	0.30000 0.00160	0.60 1.00	0.00 0.00	0 0.00	1	
,	1200.	11	24.00	0.39	0.00	1.00	0.00	2	2.50	0.50	0.30000	0.01	0.00	0.00	2	
IRU	IDS	s	LOPE	AREA		ERV REA	IMPERV AREA	UPC	OR	DRCOR	DSCOR	⁺st				
1	1		0.25	39.5	3	39.5	0.0	1.00) 1	. 00	1.00	0.0				
2 3	1		0.35 0.10	38.0 38.2		18.0 18.2	0.0 0.0	1 00 1.00		L.00 L.00	1.00 1.00	0.0 0.0				
4 5	1		0.20	77.7	7	7.7	0.0	1.00		. 00	1.00	0.0				
6	1 1		0.12 0.23	122.7 85.5		2.7 5.5	0.0 0.0	1.00 1.00		00 00	1.00 1.00	0.0 0.0				
7	1		0.10	27.4	2	27.4	0.0	1.00	1	. 00	1.00	0.0				
TOTAL				429.0	42	9.0	0.0									

•

Figure II-4.--Variables, parameters, and initial conditions for daily and stormflow simulation on Cane Branch watershed--Continued.

BYR=	1956	3MO=	2 BDY:	= 16
NSP=	5			
1	11956	2171956	218	NE= 16
2	11956	3131956	314	NE= 16
3	11956	4 61956	46	NE= 16
4	11956	5261956	526	NE= 16
5	11956	6131956	614	NE= 16
INV=	1956			
INV=	1957			

STORMFLOW HYDROGRAPH PARAMETERS FOR EACH HYDROLOGIC RESPONSE UNIT(IRU)

IRU	KSAT	PSP	RGF	DRN	KR	HC	KF	MM	EN
1	0.500	0.100	9.500	1.000	1.00	10.0	1.00000	1.00	1.50
2	0.500	0.100	9.500	1.000	1.00	10.0	1.00000	1.00	1.50
3	0.500	0.100	9.500	1.000	1.00	10.0	1.00000	1. 0 0	1.50
4	0.500	0.100	9.500	1.000	1.00	10.0	1.00000	1.00	1.50
5	0.500	0.100	9.500	1.000	1.00	10.0	1.00000	1.00	1.50
6	0.500	0.100	9.500	1.000	1.00	10.0	1.00000	1.00	1.50
7	1.000	0.100	9.500	1.000	10.00	10.0	10.00000	1.00	1.50

•

WY	WYD	#HS	ST#	RFL	SFL	BEGIN AND	END	TIMES	FOR	#HS
1956	140	1	1	0	1	0.1440.				
1956	141	1	1	1	0	0.1440.				
1956	165	1	2	0	1	0.1440.				
1956	166	1	2	1	0	0.1440.				
1956	189	1	3	0	0	0.1440.				
1956	239	1	4	0	0	0.1440.				
1956	257	1	5	0	1	0.1440.				
1956	258	1	5	1	0	0.1440.				

Figure II-4.--Variables, parameters, and initial conditions for daily and stormflow simulation on Cane Branch watershed--Continued.

ERISTICS ARE AS FOLLOWS:
THEIR CHARACTERISTI
; .
SEGMENTS IS
W PLANE
AND FLO
ER OF OVERLAND I
NUMBER OF OVERLAND FLOW PLANE SEGMENTS

.

PRINF INT.							
ROUTE I INT.	5.0	5.0	5.0	5.0	5.0	5.0	5.0
ALPHA EXPM			1.67 1.67				
PARM2 A	1.67	1.67	1.67	1.67	1.67	1.67	1.67
ARM1 P	2.35	2.63	1.67	1.86	1.49	2.20	1.18
OUGH- F	.000	000.	000.	000.	.000	.000	000.
~			.0000				
ENGTH S	170.0	170.0	530.0	500.0	310.0	320.0	200.0
NDX LE	2	~	5	S	e	n	2
RINT IN OUT	000	000	000	000	000	000	0 0
Η Ξdλ.	4	4	4	4	4	4	4
THRES TY DEPTH	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
IRU	1	2	c.	4	ŝ	6	7
SOI	-1	-1	1	-1	٦	-	-
SEGMENT # NAME	1 OF1	2 OF2	3 OF3	4 0F4	5 OF5	6 0F6	7 OF 7

NUMBER OF CHANNEL AND RESERVOIR SEGMENTS IS 28

YPE PRINT NDX LENGTH SLOPE ROUGH- PARMI PARM2 ALPHA IN OUT NESS	3 1000.0 .0000 .000 0.69 1.67 0.69 1.67 5.0	.0000 .000 0.56 1.67 0.56 1.67 5.0	.0000 .000 0.61 1.67 0.61 1.67 5.0	.0000 .000 0.24 1.67 0.24 1.67 5.0	.0000 .000 0.16 1.67 0.16 1.67 10.0	.000 0.56 1.67 0.56 1.67 5.0	.000 0.34 1.67 0.34 1.67 5.0	0.54 1.67 0.54 1.67 5.0	0.25 1.67 0.25 1.67 5.0	1.67 0,19 1.67 10.0	1.6/ 0.09 1.67 10.0	1.67 0.44 1.67 5.0	0.00 0.44 1.67 10.0	1.67 0.07 1.67 10.0	0.30 1.67 5.0	0.07 1.67 10.0	0.75 1.67 5.0	0.06 1.67 10.0	0.70 1.67 5.0	0.53 1.67 5.0	0.35 1.67 5.0	0.61 1.67 5.0	0.37 1.67 10.0	0.04 1.67 15.0	1.67 0.35 1.67 5.0	1.67 0.26 1.67 10.0	1.67 0.03 1.67 15.0 1.67 0.03 1.67 15.0
YPE PRINT NDX LENGTH SLOPE ROUGH- PARM1 PARM2 ALPHA EXPM IN OUT NESS	3 1000.0.0000 .000 0.69 1.67 0.69 1.67	.0000 .000 0.56 1.67 0.56 1.67	.0000 .000 0.61 1.67 0.61 1.67	.0000 .000 0.24 1.67 0.24 1.67	.0000 .000 0.16 1.67 0.16 1.67	.000 0.56 1.67 0.56 1.67	.000 0.34 1.67 0.34 1.67	0.54 1.67 0.54 1.67	0.25 1.67 0.25 1.67	1.67 0,19 1.67	1.6/ 0.09 1.67	1.67 0.44 1.67	0.00 0.44 1.67	1.67 0.07 1.67	0.30 1.67	0.07 1.67	0.75 1.67	0.06 1.67	0.70 1.67	0.53 1.67	0.35 1.67	0.61 1.67	0.37 1.67	0.04 1.67	1.67 0.35 1.67	1.67 0.26 1.67	1.67 0.03 1.67 1.67 0.03 1.67
YPE PRINT NDX LENGTH SLOPE ROUGH- PARMI PARM2 ALPHA IN OUT NESS	3 1000.0 0000 000 0.69 1.67 0.69	.0000 .000 0.56 1.67 0.56	.0000 .000 0.61 1.67 0.61	.0000 .000 0.24 1.67 0.24	.0000 .000 0.16 1.67 0.16	.000 0.56 1.67 0.56	.000 0.34 1.67 0.34	0.54 1.67 0.54	0.25 1.67 0.25	1.67 0.19	1.6/ 0.09	1.67 0.44	0.00 0.44	1.67 0.07	0.30	0.07	0.75	0.06	0.70	0.53	0.35	0.61	0.37	0.04	1.67 0.35	1.67 0.26	1.67 0.03 1.67 0.03
YPE PRINT NDX LENGTH SLOPE ROUGH- PARM1 PARM2 A IN OUT	3 1000.0.0000 .000 0.69 1.67	.0000 .000 0.56 1.67	.0000 .000 0.61 1.67	.0000 .000 0.24 1.67	.0000 .000 0.16 1.67	.000 0.56 1.67	.000 0.34 1.67	0.54 1.67	0.25 1.67	1.67	1.6/	1.67	0.00	1.67											1.67	1.67	1.67
YPE PRINT NDX LENGTH SLOPE ROUGH- PARMI IN OUT NESS	3 1000.0,0000,000 0.69	.0000 .000 0.56	.0000 .000 0.61	.0000 .000 0.24	.0000 .000 0.16	.000 0.56	.000 0.34	0.54	0.25				-		1.67	1.67	1.67	1.67	.67	l. 67	1.67	1.67	1.67	1.67			
YPE PRINT NDX LENGTH SLOPE ROUGH- IN OUT NESS	3 1000.0.0000 .000	.0000 .000	.0000 .000	000 0000	000 0000	000.	000.			0.19	0.09	44	_						-							10	m -
YPE PRINT NDX LENGTH SLOPE IN OUT	3 1000.0.0000	.0000	.0000	.0000	.0000			000.	8			ò	0.00	0.07	0.30	0.07	0.75	0.06	0.70	0.53	0.35	0.61	0.37	0.04	0.35	0.26	0.03
YPE PRINT NDX LENGTH SLOPE IN OUT	3 1000.0					.0000	00		°.	.000	000 .	000.	000.	000.	000.	000.	.000	.000	000.	000.	.000	000	.000	.000	000.	000.	000
YPE PRINT NDX LENGTH IN OUT	e	2 700.0	1000.0	60.0	0		3.	.0000	.0000	.0000	.0000	.0000	. 0000	.0000	.0000	. 0000	.0000	.0000	.0000	.0000	0000	0000	.0000	.0000	. 0000	.0000	0000
YPE PRINT NDX I IN OUT	e	2	_	ã	650.	900.0	100.0	1100.0	600.0	500.0	660.0	500.0	0.0	1200.0	670.0	500.0	560.0	600.0	560.0	780.0	410.0	770.0	420.0	660.0	400.0	850.0	430.0
YPE PRINT IN OUT			m	m	2	m	4	4	2	~	~	~	0	4	~	~	~	~	~	m	2	m	~	~	~	m	~ ~
ΥΡΙ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0~
ΥΡΙ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	00
ς.	4	4	4	4	4	4	4	4	4	4	4	4	~	4	4	4	4	4	4	4	4	4	4	4	4	4	4 4
ISC	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.0
CUM. 7 AREA D	14.7	16.1	18.8	65.8	92.7	13.0	28.9	15.7	68.0	90.8	206.9	4.6	227.2	241.1	36.5	281.6	4.4	290.6	4.4	19.0	11.9	25.0	40.2	336.0	41.3	52.3	391.7
ARCA /																											
ENT SNTS	0F6	0F4	0F6	0F6	016	0F6	0F6	0F5	0F6	0F6	0F7	0F7		0F1	0F2	0F2	0F1	0F2	0F2	0F3	0F2	0F2	0F2	0F2	0F4	OF1	0F2 0F2
ADJACENT SEGMENTS	0F6	0F4	0F4	0F4	0F4	0F5	0F5	0F5	0F5	0F5	0F5	0F7		OF1	0F2	OFI	OF1	0F1	0F2	0F3	0F2	0F2	0F2	0F1	0F4	0F1	0F1
				CH27					EH		CH4		CH7														
UPSTREAM SEGMENTS				CH1	CHI				C116	CIID	CH7		CHIII	CH12	CH7	CH15		CH17			CH21		CH23	CH19	CH27	CH18	CH26 CH18
ч Я				CH2	CH3		CH5		CH7	CHB	CH3		CI112	J13	CH7	CH16		CH18			CH21	CH22	CH24	CH25	CH27	CH28	CH29 CH30
SEGMENT # NAME		1127	CH2	4 CH3	5 CH4	6 CH5	7 CH6	8 CH7	9 CH8	10 CH9	11 CH11	12 CH12	13 J13	14 CH15	(5 CII16	6 CI117	7 CH18	8 CH19	9 CH21	0 CH22	1 CH23	2 CH24	3 CH25	24 CH26	25 CH28	26 CH29	27 CH30 28 CH31

Figure II-4.--Variables, parameters, and initial conditions for daily and stormflow simulation on Cane Branch watershed--Continued

.

-

OBSERVED AND PREDICTED RUNOFF FOR WY 1956

•

•

н	PRED	1.63	1.73	2.66	2.00	1.62	1 . 39	4.74	3.27	2.26	1.75	1.48	2.62	1.94	16.61	6.46	6.18	4.23	2.85	2.02	1.62	1.37	1.20	1.07	1.71	0.95	0.88	0.81	0.96	0.73	0.67	0.63	
MARCH	085	1.30	2.00	2.80	2.70	1.90	1.50	5.40	5.40	2.80	1.90	1.50	1.70	3.20	24.00	4.80	5.90	4.00	2.80	2.80	2.50	1.50	1.40	0.88	1.30	0.88	0.88	0.78	0.73	0.78	0.60	0.52	
EBRUARY	PRED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.52	18.53	24.50	11.12	5.56	3.19	2.19	1.67	3.49	4.46	3.18	3.04	2.07	1.66	0.00	0.00	
FEBR	085	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	3.50	25.00	25.00	7.40	6.40	2.60	1.70	1.10	2.70	5.00	3.10	2.40	2.10	1.70	0.00	0.00	
лкү	PRED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
JANUAR	085	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ER	PRED	0.00	0.00	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
DFCEMBER	085	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
BER	PRED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.60	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
NOVEMBER	085	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ER	PRED	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
OCTOBER	085	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
DAY		1	2	m	4	5	9	1	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	

Figure II-5.--Daily mean flow summary table and annual summary for daily simulation on Cane Branch watershed.

•

OBSERVED AND PREDICTED RUNOFF FOR WY 1956--Continued

			15.04 271.63 0.74	
SEPTEMBER	PRED		(IN) = (CFS)= (CFS)=	
SEPT	OBS		OBSERVED RUNDFF(IN) = (CFS)= MEAN DAILY(CFS)=	(= 0.00
UST	PRED	0.022 0.020 0.0220 0.0200000000	06SERVEI Mei	9 GW SINK=
AUGUSI	085	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	12.53 226.25 0.62	GW FLOW= 3.29
۲	PRED	0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02	TED RUNOFF(IN) = (CFS)= MEAN DAILY(CFS)=	6.78 GW F
JULY	085	0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00	PREDICTED RUNOFF(IN) = (CFS)= MEAN DAILY(CFS)=	ssr flow=
JUNE	PRED	0.022 0.020 0.022 0.020 0.000 0.020 0.020 0.020 0.020 0.020 0.0200 0.0200 0.0200 0.0200 0.02000 0.02000 0.0200000000	49.56 PRE 23.72 0.02	R0= 2.46
Πſ	085	9.99.99.99.99.99.99.99.99.99.99.99.99.9	POTENTIAL ET= Actual et= Snowmelt=	SURFACE R
	PRED	0.000000000000000000000000000000000000	34.01 POTE 30.12 A 3.89	GW= 1.22
МАҮ	085	0.00 0.12 0.12 0.12 0.00 0.12 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.13 0.00 0.00	SERVED PRECIP= 3 Net Precip= 3 RCEPTION LOSS=	D SSR TO GM-
	PRED	0.255699999999999999999999999999999999999		R IN= 7.40
APRIL	005	22.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	Arhulal Summary 1956 OB: Inte	1.37 SSR
DAY			ANNUAL SI	GW IN-

Figure II-5.--Daily mean flow summary table and annual summary for daily simulation on Cane Branch watershed--Continued.

.

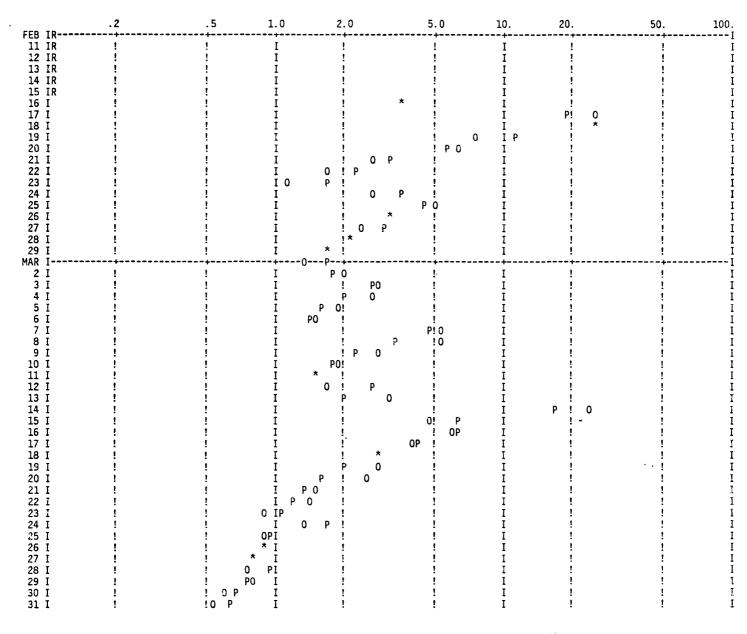


Figure II-6.--Line printer plot of simulated and observed daily mean discharge for Cane Branch watershed, February and March, 1956.

STORM	PREDICTED VOLUME (INCHES)	ROUTED OUTFLOW (INCHES)	OBSERVED OUTFLOW (INCHES)	PREDICTED PEAK (CFS)	OBSERVED PEAK (CFS)	PREDICTED SEDIMENT (TONS)
1	2.44	2.39	2.82	96.83	83.80	1094.26
2	1.07	1.03	1.52	64.56	75.00	525.59
3	0.70	0.65	1.17	64.34	97.80	451.48
4	0.01	0.01	0.01	0.36	0.61	2.60
5	0.03	0.03	0.01	1.28	0.64	32.27

.

STORM VOLUME ERROR SUMMARY

	ABS VALU	E OBF FNC	SUM OF SQUAR	ES OBF FNC
	NO LOG	LOG	NO LOG	LOG
SUM	1.31	2.27	0.56	1.37
MEAN	0.26	0.45	0.11	0.27
PERCENT	23.63		30.14	

STORM PEAK ERROR SUMMARY

.

	ABS V	ALUE OBF FNC	SUM OF SQUAR	RES OBF FNC
	NO LOG	LOG	NO LOG	LOG
SUM MEAN PERCENT	57.84 11.57 22.43	1.95 0.39	1399.28 279.86 32.44	0.99 0.20

Figure II-7.--Summary for water and sediment discharge for five storms simulated on Cane Branch watershed.

PREDICTED (P), OBSER	HRUS SEGMENT CH31 OUT 3 VED (0), BOTH (*), OUT OF PLOT VIDED BY 10 TO THE APPROPRIATE	, DISCHARGE IN CA 8/13/1956 - 3/14/1956 [RANGE (R) E POWER	^z s
0.0100 TIME VALUE ¦ 100 2.5910. 200 2.4564 300 2.2762 400 2.1133 500 1.9012 600 1.7335 700 1.6567	0.1000 2 4 6 8 	1.000 2 4 6 8 2 	
800 1.6284 900 1.6131 1000 1.6000 1100 1.5874. 1200 1.5751 1300 1.5630 1400 1.5511 1500 1.5394 1600 1.5280 1700 1.5167		P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0	
1800 1.5057 1900 1.4949 2000 1.4874 2100 1.5390. 2200 1.8402 2300 2.8651 2400 5.3871 100 1.1710 200 1.8262 300 1.9616		P 0 P 0 P 0 P 0 P 1 P 1 P 1 P 1	. 0
400 1.6299 500 1.2951 600 2.9326 700 6.0668. 800 3.8717 900 2.3179 1000 1.7652 1100 1.5242 1200 1.3873 1300 1.2928			P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0 P 0
1400 1.2187 1500 1.1564 1600 1.1018 1700 1.0528. 1800 1.0082 1900 0.9671 2000 0.8335 2200 8.6033 2300 8.2924			P 0 P 0 P0 P0 OP OP OP OP O P O P O P O P O
2400 8.0002	Figure II-8Line storm 2 (Ma	printer plot of simulated and observe rch 13-14, 1956) on Cane Branch water	O P ed discharge for rshed.

-

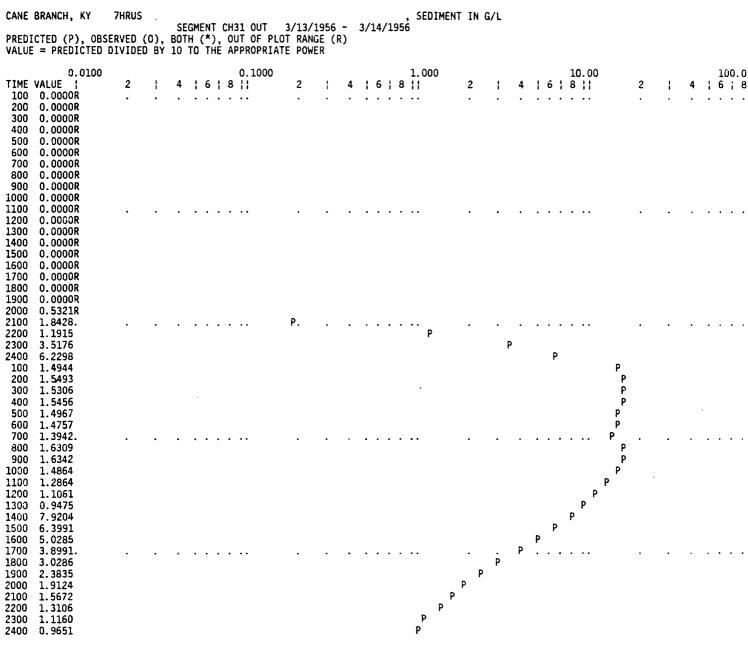


Figure II-9.--Line printer plot of simulated sediment concentration graph for storm 2 (March 13-14, 1956) on Cane Branch watershed.

Rosenbrock Optimization and Sensitivity Analysis Example

An example of selected segments of the input and output for a daily simulation run using the Rosenbrock optimization option followed by the sensitivity analysis option is shown in figures II-10 through II-14. The four parameters SMAX (LOP=8), EVC (LOP=74), RCF (LOP=50), and RCP (LOP=51) were optimized. Card groups 1, 7, and 8 are shown in figure II-10. The input values in card group 7 for the optimization are displayed in the model output shown in figure II-11. An initialization period of February through as September, 1956, was used and parameters were fitted only on the period October, 1956, through September, 1957. The results of each step in the Rosenbrock optimization procedure are displayed along with the summary of best fit parameter values as shown in figure II-12. The first line of output shows the initial objective function value in the first column followed by a zero in the second column and then four columns showing the parameter values used to obtain the initial objective function. Parameter columns are in the same order as the '05PARAM1' cards in card group 7. The second row begins the iterations of the optimization procedure. The first column is the iteration number and the second column is the sequence number of the parameter being The next column is the old objective function from the previous adjusted. iteration and it is followed by the objective function value computed during The remaining four columns are again the parameter the current iteration. values used in this iteration. In this example, log transforms were selected so that parameters were adjusted as a percentage of their initial value. Therefore, the tabular values are log values. This table is followed by the initial and final parameter and objective function values. Again. these values are log values. The base 10 parameter values are given in the last section of the optimization output. The values for the distributed parameters SMAX and EVC are output in the same sequential order as they are expressed on the 'O6PARAM2' card. If the 'O6PARAM2' card is not used, then the sequence is 1 to n, where n is the maximum number of HRU's, months, or reservoirs about which the parameter is distributed.

Using the Rosenbrock optimization option with correlation analysis produces a different output from that shown in figure II-12. The correlation analysis option for daily simulation is selected by changing the IOPT parameter on card 1 of card group 1 (fig. II-10) from a "1" to a "2." Output from iterations 0 and 1 for a Rosenbrock optimization with correlation analysis is shown in figure II-13. A table of parameter values and options precedes the output shown in figure II-13 and is identical to the output shown in figure II-11. Iteration 0 presents the results of the simulation run for the optimization period using the initial parameter values. The subiterations shown are the iterations for fitting the autoregressive moving average (ARMA) model being used to model the correlation of errors on successive days. Subiterations are terminated when no further improvement is made in the sum of squares computation which is the objective function. The ARMA parameters are shown for each subiteration. Subiteration 0 shows the objective function without the ARMA model. The final set of ARMA parameters are carried forward to the next major iteration to provide a starting point in the subiterations.

A Chi-squared statistic and the lag 1-10 correlations are presented for this major iteration for the cases of before and after ARMA model application. This is followed by the variance of the original series and the white noise CARD GROUP 1

.

O1SIM/OPT	0	1	· 1	0	0	0	0	0					
02SIM/COMP		1	1	2	1								
		RANCH				DAILY							
04INIT1	1	7	6	2	1	0		429.					
	1956	02	16	1957	09	30							
06MFS-MFN	10	9	1										
07PRINT-OP	2	10	9										
08PLOT	1	1	10	1	9	30		100.		.1			
09DATATYPE	6	1	0	1	1	0	0	0	1	1	1		
10PARM 0	00600	00500	00200	00020			(00600	00450	0045			
11STAT 0	00030	00060	00010	00002			(000110	00060	0006			
	0340				52000	085090	000	D3707	00084	37000	0 D:	370700	084370000
12STAID												03407	
	36520	50842	65702	2 U36	52050	084265	702				-		
	OR	000.2	0.0		37.								
14RD 2 NE			0.2	45.	37.								
14RD 3 SW				225.	37.								
	10			180.	37.								
	20			90.	37.								
14RD 6 SW				225.	37.								
		- 10-				05	- 05	- 05	- 05	- 05-	075	- 10	
16RDC	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
17RAD-COR	.50		. 25	.61	.8	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
18CLIM-PR		.25	.25	. 61	. 0	0	0						
								012	010	012	012	010	7
20PAT	4.5	4.5	4.5	.012 4.5	4.5	4.5		.012 4.5	4.5	4.5	4.5	4.5	.1
21AJMX	4.5		4.5		4.5		4.5 1.0		4.5	1.0	4.5	4.5	
		1.0		1.0		1.0		1.0					
22TLX	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5		• 1.5	1.5	1.5	
23TLN	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	
24EVC	1.3	1.2	.72	.75	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.5	
25SNO-VAR	90		.757	.04	. 20	.40	.1	1.0	~	~	-	-	
26CEN	5.	5.	6.	6.	6.	6.	6.	6.	6.	6.	5.	5.	
27PKADJ	_	-											
28RES	.6	.6											
29GW	.7												
30KRSP	1	1											
31RESMX-EX	1.0	1.0	1.0	1.0									
32RSEP	. 05	. 05											
33GSNK	0.	0.											
34RCB	.05												
35RCF-RCP		.02		. 47		.02		. 47					

Figure II-10.--Input card deck for a Rosenbrock optimization followed by a sensitivity analysis on Cane Branch watershed.

· ..

CARD GROUP 1--Continued

÷

36RU1 37RU2 38RU3	1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	3 2.0 1.0	.60 1.8 1.0	.30 1.0	.42 .1 .60.0016	.1 .3	.05 0.	4111 0.	24 .12	.78 1	78 1 0
36RU3	2	3 .35 1100.	1.0	.60	. 30	.42 .1	.1	.05	4111	24.	. 78	.78
37RU2	2	2 6.0 5.8	2.0	1.8	1.0	.60.0016	. 3	0.	0.	. 12	1	1 0
38RU3	2	1 38.0 1.0	1.0	1.0								
36RU1	3	4 .10 1250.	3	.60	.30	.42 .1	.1	.05	4111	24.	. 39	. 39
37RU2	3	2 6.0 5.8	2.0	1.8	1.0	.60.0016	. 3	0.	0.	.12	1	1 0
38RU3	3	1 38.2 1.0	1.0	1.0								
36RU1	4	5 .20 1250.	3	.60	.30	.42 .1	.1	.05	4111	24.	. 39	. 39
37RU2	4	2 6.0 5.8	2.0	1.8	1.0	.60.0016	. 3	0.	0.	.12	1	1 0
38RU3	4	1 77.7 1.0	1.0	1.0								
36RU1	5	6 .12 1250.	3	.60	.30	.42 .1	.1	.05	4111	24.	. 78	.78
37RU2	5	2 6.0 5.8	2.0	1.8	1.0	.60.0016	. 3	0.	0.	. 12	1	1 0
38RU3	5	1 122.7 1.0	1.0	1.0								
36RU1	6	2 .23 1250.	3	.60	. 30	.42 .1	.1	.05	4111	24	. 78	78
37RU2	6	2 6.0 5.8	2.0	1.8	1.0	.60.0016	. 3	0.	0.	.12	1	1 0
38RU3	6	1 85.5 1.0	1.0	1.0								
36RU1	7	5 .10 1200.	0	0.	0.	1.0 0.	0.	0.	4111	24.	. 39	. 39
37RU2	7	2 3.0 2.5	1.0	.5	1.0	.01.0016	. 3	0.	0.	.0	2	1 0
38RU3	7	1 27.4 1.0	1.0	1.0								

CARD GROUPS 7 AND 8

010PT1 020PT2	1956 1956	2 10	16 1	1956 1957	9 9	30 30	
03IOBF	2	1					
040PT4	4	8	0				
05PARAM1	8	1	7	0	.1	0.	10.
05PARAM1	74	1	12	0	.1	0.	2.
05PARAM1	50	0	1	0	.1	0.	1.
05PARAM1	51	0	1	0	.1	0.	1.
010PT/SENS	0	1	2	1	10	9	
04SENST	4	.01	0				
05PARAM1	8	1	7	0			
05PARAM1	74	1	12	0			
05PARAM1	50	0	1	0			
05PARAM1	51	0	1	0			
010PT/SENS	0	0					

Figure II-10.--Input card deck for a Rosenbrock optimization followed by a sensitivity analysis on Cane Branch watershed--Continued.

CANE BRANCH, KY	7HRUS,	DAILY													
IOPT= 1 IDOUT= 0	ISIM= IUOUT=	0 0	IOBS= SCODE==3		ISEN= ICBC=	0 0	IPSW=	0							
IPET= 1 NYR= 2	ISSR1= NDS=	1 1	MRDC= NRU=		ISUN= NRD=	1 6	NRES=	2	NGW=	1	NSTOR=	0 0	AT=	429.00	1
BYR/BMO/BDY=	1956/ 2/16	5 EY	rr/emo/ed	Y= 1957	/ 9/30										
INIT-BYR/BMO/ IOBF= 2 MFS= 10 №	ITRANS= IFN= 9	1		MO/EDY=	1956/	9/30	OPT -BY	r/BMO/	/BDY=	1956/10	/ 1	EYR/EMO/	'EDY= 195	57/ 9/30	
DATA TYPE	PARAMETE CODE	R STATI			ATION 1	(D 1									
DAILY DISCHARGE	00060	00003	-		3407100) 5090000									
DAILY MAX TEMP	00020	00001	L	6 37	0700084	370000									
DAILY MIN TEMP DAILY SOLAR RAD USER VARIABLE 1 USER VARIABLE 2		00002	2	7 37 0 0 0	0700084	1370000									
UNIT DISCHARGE DAILY PRECIP	00060 00045	00011 00006			3407100 5205084) 1265702									
UNIT PRECIP	00045	00006	5	8 36	5205084	265702									-
POT SOLAR RAD	IATION														
1 HC 2 NE2		74.4		440.2 327.0	499.1 388.6	571.5 466.4			2.4	809.8 739.7	877.2 823.0	933.2 894.6	975.4 950.6	1003.7 989.2	1019.7 1011.4
3 SW3	0 5	36.4	558.4	595.2	645.6	704.7	765.8	3 82	.4.2	875.4	915.7	945.8	965.8	977.8	984.1
4 S1 5 E2	0 3	58.8 76.5	482.2 400.5	521.7 441.6	576.7 499.7	642.8 571.1	649.4	\$ 72	13.7 19.3	848.2 805.1	902.4 871.0	945.7 925.7	977.0 966.8	997.4 994.3	1008.6 1009.8
6 SW1	.0 4	33.7	457.4	497.5	553.7	621.9	695.3	3 76	9.0	837.4	895.5	942.5	977.0	999.7	1012.2
RDM(1-12)= -0															
RDC(1-12)= 1								1.00	1.00	1.00			· · .		
MRDC= 2 PARS	= 0.50 PA	.R₩= 0.	25 RDB=	0.25RD	P= 0.6	SIRDMX=	0.80								
SUNLIGHT HOUF		0.0	0.0	0.0		~ ~		`	1.0	1 0				1 0	
1 HC 2 NE2	:0	0.8 0.7	0.8 0.7	0.8 0.7	0.9 0.8	0.9 0.8	B 0.9	9	1.0 0.9	1.0 1.0	$1.1\\1.0$	$1.1 \\ 1.1$	1.2 1.1	1.2 1.2	1.2 1.2
3 SW3 4 SI		0.8 0.8	0.8 0.8	0.8 0.8	0.8 0.9	0.9			0.9 1.0	1.0 1.0	1.0 1.1	1.0	$1.1 \\ 1.1$	1.1 1.2	1.1 1.2
5 E2 6 SW1	0	0.7	0.7	0.8	0.8	0.8	3 0.9	9	0.9 1.0	1.0 1.0	1.0	1.1 1.1	1.1 1.1	1.1	1.1
5 541					5.5			-							

.

Figure II-11.--Variables, parameters, and initial conditions for Rosenbrock optimization run on Cane Branch watershed.

CANE BRANCH, KY 7HRUS, DAILY

CSEL= 1050. RMXA= 0.80 RMXM= 0.60 MTSS= 0 MTSE= 0 MPCS= MPCN= 0 PCONR= 1.00 PCONS= 1.00 0 MPC1= 0 CTW= 0.10 4.50 PAT(1-12)= 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 AJMX(1-12)= 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.50 1.50 1.50 1.50 1.50 TLX(1-12)= 1.50 1.50 1.50 1.50 1.50 1.50 1.50 TLN(1-12)= 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.000 EVC(1-12)= 1.300 1.200 0.720 0.750 1.000 1.000 1.000 1.000 1.000 1.000 1.500 ISP1= 90 ISP2=120 EAIR= 0.757 FWCAP= 0.04 DENI= 0.20 DENMX= 0.40 SETCON= 0.10 BST= 1.00 CECN(1-12)= 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 RES-RSEP 0.05 1-0.60 0.05 2-0.60 RESMX-REXP 1.0000 1.0000 1.0000 1.0000 KRSP= 1 1 1- 0.0200000 0.4700000 2- 0.0200000 0.4700000 RCF-RCP 0.700 GW-GSNK 1-0.000 RCB 1- 0.0500

Figure II-11.--Variables, parameters, and initial conditions for Rosenbrock optimization run on Cane Branch watershed--Continued.

~

· .

CANE BRANCH, KY 7HRUS, DAILY

IRU	IRD	ITST	ITSW	TXAJ	RNSTS	SNST	COVDS	ICOV	SMAX		SCN	SRX	RETIP	SEP	KRES
	ELEV	ITND	СТХ	TNAJ	RNSTW	TRNCF	COVDW	ISOIL	SMAV		SC1	SCX	IMPRV	KSTOR	KGW
1	2	4	1	-0.78	0.10	0.10	0.60	3	6.00	2.00	0.00160	1.00	0.00	0.12	1
	1100.	11	24.00	-0.78	0.05	0.42	0.30	2	5.80		0.30000	0.60	0.00	0	1
2	3	4	1	0.78	0.10	0.10	0.60	3	6.00		0.00160	1.00	0.00	0.12	1
	1100.	11	24.00	0.78	0.05	0.42	0.30	2	5.80		0.30000	0.60	0.00	0	1
3	4	4	1	0.39	0.10	0.10	0.60	3	6.00	2.00	0.00160	1.00	0.00	0.12	1
	1250.	11	24.00	0.39	0.05	0.42	0.30	2	5.80		0.30000	0.60	0.00	0	1
4	5	4	1	0.39	0.10	0.10	0.60	3	6.00	2.00	0.00160	1.00	0.00	0.12	1
	1250.	11	24.00	0.39	0.05	0.42	0.30	2	5.80		0.30000	0.60	0.00	0	1
5	6	4	1	0.78	0.10	0.10	0.60	3	6.00	2.00	0.00160	1.00	0.00	0.12	1
	1250.	11	24.00	0.78	0.05	0.42	0.30	2	5.80	1.80	0.30000	0.60	0.00	0	1
6	2	4	1	-0.78	0.10	0.10	0.60	3	6.00	2.00	0.00160	1.00	0.00	0.12	1
	1250.	11	24.00	-0.78	0.05	0.42	0.30	2	5.80	1.80	0.30000	0.60	0.00	0	1
7	5	4	1	0.39	0.00	0.00	0.00	0	3.00	1.00	0.00160	1.00	0.00	0.00	2
	1200.	11	24.00	0.39	0.00	1.00	0.00	2	2.50	0.50	0.30000	0.01	0.00	0	1
					ы	ERV	IMPERV								
IRU	IDS	c	LOPE	AREA		REA	AREA	iID	COR	DRCOR	DSCOR	TST			
1	103		0.25	39.5		39.5	0.0	1.0		1.00	1.00	0.0			
2	i		0.35	38.0		38.0	0.0	1.0		1.00	1.00	0.0			
3	i		0.10	38.2		38.2	0.0	1.0		1.00	1.00	0.0			
4	ī		0.20	77.7		77.7	0.0	1.0		1.00	1.00	0.0			
5	ī		0.12	122.7		22.7	0.0	1.0		1.00	1.00	0.0			
6	ī		0.23	85.5		35.5	0.0	1.0		1.00	1.00	0.0			
7	1		0.10	27.4		27.4	0.0	1.0		1.00	1.00	0.0			
,	-				•		0.0	1.0	-	2.00	2.00				
TOTAL				429.0	4:	29.0	0.0								

Figure II-11.--Variables, parameters, and initial conditions for Rosenbrock cptimization run on Cane Branch watershed--Continued.

· ..

-

ROSENBROCK OPTIMIZATION

		-	
IOPT	1	NTRY	8
NV	4	IPRIOR	0
IOBF	2	ITRANS	1
MFS	10-	MFN	9

THE FOLLOWING PARAMETERS ARE TO BE ADJUSTED:

LOP=	8	74	50	51		
ILOPL=	1	1	0	0		
NVAR=	7	12	1	1		
THE LOWER	CON	STRA	INTS	ARE		
0.00000)E+0(0 0	.000	000E+00	0.00000E+00	0.00000E+G0
THE UPPER	CON	STRA	INTS	ARE		
0.100000)E+0	20	. 200	000E+01	0.100000E+01	0.100000E+01
THE TRANSP	FORM	ED L	OWER	CONSTRA	INTS ARE	
0 00000)F+0	n n	. 000	000E+00	0 000000E+00	0 000000E+00

- 0.0000000E+00 0.00000E+00 0.00000E+00 0.000000E+00 THE TRANSFORMED UPPER CONSTRAINTS ARE 0.223026E+02 0.206931E+02 0.100000E+01 0.100000E+01 THE STARTING PARAMETER VALUES ARE 0.216927E+02 0.200195E+02 0.200000E+01 0.470000E+00 THE INITIAL STEP SIZE INCREMENTS ARE 0.100000E+00 0.10000E+00 0.100000E+00 0.100000E+00 THE TRANSFORMED INITIAL STEP SIZE INCREMENTS ARE 0.460984E-02 0.499513E-02 0.10000E+00 0.100000E+00

.

Figure II-11.--Variables, parameters, and initial conditions for Rosenbrock optimization run on Cane Branch watershed--Continued.

INIT 0.13436401E+02 0.00000000E+00 0.21692726E+02 0.20019493E+02 0.20000000E-01 0.47000003E+00 1 0.13436401E+02 0.13755552E+02 0.21792725E+02 0.20019493E+02 0.20000000E-01 0.47000003E+00 1 2 0.13436401E+02 0.13436049E+02 0.21692726E+02 0.20119492E+02 0.20000000E-01 0.47600003E+00 1 3 0.13436049E+02 0.13447371E+02 0.21692726E+02 0.20119492E+02 0.21999996E-01 0.47000003E+00 1 1 4 0.13436049E+02 0.13311890E+02 0.21692726E+02 0.20119492E+02 0.20000000E-01 0.51699996E+00 2 1 0.13311890E+02 0.14238367E+02 0.21642723E+02 0.20119492E+02 0.20000000E-01 0.51699996E+00 2 0.13311890E+02 0.13301014E+02 0.21692726E+02 0.20419491E+02 0.20000000E-01 0.51699996E+00 2 2 3 0.13301014E+02 0.13295477E+02 0.21692726E+02 0.20419491E+02 0.18999998E-01 0.51699996E+00 2 4 0.13295477E+02 0.13083899E+02 0.21692726E+02 0.20419491E+02 0.18999998E-01 0.65799987E+00 3 1 0.13083899E+02 0.12797766E+02 0.21717720E+02 0.20419491E+02 0.18999998E-01 0.65799987E+00 2 0.12797766E+02 0.12799482E+02 0.21717720E+02 0.20644485E+02 0.18999998E-01 0.65799987E+00 3 3 0.12797766E+02 0.12784101E+02 0.21717720E+02 0.20419491E+02 0.15999995E-01 0.65799987E+00 3 3 4 0.12784101E+02 0.12771284E+02 0.21717720E+02 0.20419491E+02 0.15999995E-01 0.86949980E+00 4 1 0.12771284E+02 0.13509754E+02 0.21792717E+02 0.20419491E+02 0.15999995E-01 0.86949980E+00 4 2 0.12771284E+02 0.12774082E+02 0.21717720E+02 0.20306988E+02 0.15999995E-01 0.86949980E+00 4 3 0.12771284E+02 0.12733070E+02 0.21717720E+02 0.20419491E+02 0.69999946E-02 0.86949980E+00 4 0.12733070E+02 0.12775019E+02 0.21717720E+02 0.20419491E+02 0.59999946E-02 0.94881213E+00 4 5 1 0.12733070E+02 0.13122808E+02 0.21680218E+02 0.20419491E+02 0.69999946E-02 0.86949980E+00 2 0.12733070E+02 0.12732435E+02 0.21717720E+02 0.20475735E+02 0.69999946E-02 0.86949980E+00 5 3 0.12732435E+02 0.12703945E+02 0.21717720E+02 0.20475735E+02 0.24999498E-03 0.86949980E+00 5 4 0.12703945E+02 0.12689768E+02 0.21717720E+02 0.20475735E+02 0.24999498E-03 0.82984352E+00 5 1 0.12689763E+02 0.12722698E+02 0.21736469E+02 0.20475735E+02 0.24999498E-03 0.82984352E+00 6 2 0.12689768E+02 0.12691196E+02 0.21717720E+02 0.20644482E+02 0.24999498E-03 0.82984352E+00 6 6 3 0.12589768E+02 0.12589260E+02 0.21717720E+02 0.20475735E+02 0.91791808E-04 0.82984352E+00 6 4 0.126897685+02 0.12686590E+02 0.21717720E+02 0.20475735E+02 0.24999498E-03 0.71087480E+00

Figure II-12.--Rosenbrock optimization run on Cane Branch watershed.

INIT

.

7	10	.12686590E+	02 0.127692	95E+02 0.	21708344E+02	0.204757	35E+02 0.2	4999498E-03	0.7108748	30E+00	
7	2 0.	.12686590E+	02 0.126877	73E+02 0.	21717720E+02	0.203913	57E+02 0.2	4999498E-03	0.7108748	30E+00	
7	3 0	.12686590E+	02 0.126870	71E+02 O.	21717720E+02	0.204757	35E+02 0.3	2909651E-03	0.7108748	80E+00	
7	4 0.	.12686590E+	02 0.134453	70E+02 0.	21717720E+02	0.204757	35E+02 0.2	4999498E-03	0.3539686	2E+00	
8	1 0.	.12686590E+	02 0.126607	89E+02 0.	21722404E+02	0.204757	35E+02 0.2	4999498E-03	0.7108748	80E+00	
8	2 0	.12660789E+	02 0.126604	35E+02 0.	21722404E+02	0.205179	18E+02 0.2	4999498E-03	0.7108748	30E+00	
8	3 0	.12660435E+	02 0.126602	50E+02 0.	21722404E+02	0.205179	18E+02 0.2	1044415E-03	0.7108748	30E+00	
8	40.	.12660250E+	02 0.126904	74E+02 0.	21722404E+02	0.205179	18E+02 0.2	1044415E-03	0.8893278	38E+00	
			VALUES WER 02E+02 0.	E 2000E-01	0.4700E+00						
		PARAMETER V E+02 0.20		2104E-03	0.71C9E+00						
		L AND FINAL D+02 0.126	OBJ FUNCTI 60D+02	ON VALUES	ARE						
SUMMARY	Y OF	NEW PARAME	TER VALUES:								
LOP= 6.3	8 1799	6.1799	6.1799	6.1799	6.1799	6.1799	3.0900				
LOP= 2.2	74 1397	1.9751	1.1851	1.2344	1.6459	1.6459	1.6459	1.6459	1.6459	1.6459	1.64
LOP= ! 0.(50 0002										
LOP= 5 0.7	51 7109										

Figure II-12.--Rosenbrock optimization run on Cane Branch watershed--Continued.

ITERATION NO. 0

SUB-		
ITERATION	SUM OF SQUARES	ARMA PARAMETERS
0	0.134364D+02	0.000 0.000
1	0.821386D+01	0.688 0.000
1 2	0.814668D+01	0.684 0.047
3	0.8119390+01	0.693 0.086
4 5	0.810565D+ 01	0.704 0.118
5	0.809795D+01	0.715 0.143
6 7	0.809347D+01	0.725 0.163
	0.809086D+01	0.732 0.177
8	0.808935D+01	0.738 0.189
9	0.808848D+01	0.743 0.197
10	0.8087990+01	0.746 0.204
11	0.808771D+01	0.748 0.209
12	0.808756D+01	0.750 0.212
13	0.8087470+01	0.752 0.215
14	0.808742D+01	0.753 0.217
15	0.803739D+01	0.754 0.219
16	0.808738D+01	0.754 0.220
17	0.808737D+01	0.755 0.220
18	0.808737D+01	0.755 0.221
19	0.808736D+01	0.755 0.222

	CHI-SQUARED STATISTIC	CORRELA	CORRELATIONS											
		LAG 1	2	3	4	5	6	7	8	9	10			
BEFORE ARMA														
MODELING	352.5	0.62	0.41	0.38	0.34	0.25	0.20	0.11	0.09	0.13	0.10			
AFTER ARMA														
MODELING	17.7	0.02	-0.15	0.04	0.09	0.02	0.04	-0.08	-0.05	0.D 7	-0.00			

VARIANCE, ORIGINAL SERIES= 0.036 VARIANCE, WHITE NOISE SERIES= 0.022

RESULTS FOR INITIAL PARAMETER VALUES

PARAMETERS	:	21.693
		20.019
		0.020
		0.470

OBJ. FNC. : 8.087

AUTOREGRESSIVE, MOVING AVE. PARAMETERS: 0.755 0.222

Figure II-13.--Rosenbrock optimization with correlation analysis run on Cane Branch watershed.

.

ITERATION NO. 1

SUB-		
ITERATION	SUM OF SQUARES	ARMA PARAMETERS
0	0.137556D+02	0.000 0.000
1	0.970586D+01	0.755 0.222
2	0.960905D+01	0.756 0.278
3	0.9573810+01	0.768 0.323
4	0.955986D+01	0.779 0.354
5	0.9554340+01	0.788 0.375
6	0.955221D+01	0.794 0.388
7	0.955141D+01	0.797 0.396
8	0.955112D+01	0.800 0.401
9	0.955101D+01	0.301 0.403
10	0.9550970+01	0.802 0.405
11	0.955095D+01	0.803 0.406
12	0.955095D+01	0.803 0.407
13	0.955095D+01	0.803 0.407

	CHI-SQUARED STATISTIC	CORRELA	TIONS								
BEFORE ARMA		LAG 1	2	3	4	5	6	7	8	9	10
MODELING AFTER ARMA	222.1	0.50	0.33	0.33	0.28	0.18	0.13	0.06	0.04	0.08	0.03
MODELING	13.1	0.02	-0.12	0.04	0.07	-0.02	-0.01	-0.06	-0.07	0.07	-0.03

VARIANCE, ORIGINAL SERIES= 0.036 VARIANCE, WHITE NOISE SERIES= 0.026

RESULTS FOR ADJ	USTMENT	1, PÁRAMETER	1
PARAMETERS :	OLD 21.693 20.019 0.020 0.470	NEW 21.793 20.019 0.020 0.470	
OBJ. FNC. :	8.087	9.551	

AUTOREGRESSIVE, MOVING AVE. PARAMETERS: 0.803 0.407

.

Figure II-13.--Rosenbrock optimization with correlation analysis run on Cane Branch watershed--Continued.

-

THE INITIAL PARAMETER VALUES WERE 0.2169E+02 0.2002E+02 0.2000E-01 0.4700E+00 THE FINAL PARAMETER VALUES ARE 0.2171E+02 0.2069E+02 0.1215E-03 0.7109E+00 THE INITIAL AND FINAL OBJ FUNCTION VALUES ARE 0.80874D+01 0.78978D+01											
SUMMARY OF	NEW PARAME	TER VALUES	:								
LOP= 8 6.0936	6.0936	6.0936	6.0936	6.0936	6.0936	3.0468					
LOP= 74 2.5431	2.3474	1.4085	1.4671	1.9562	1.9562	1.9562	1.9562	1.9562	1.9562	1.9562	2.9343
LOP= 50 0.0001											
LOP= 51 0.7109											
AUTOREGRESSIVE, MOVING AVE. PARAMETERS: 0.776 0.281											

•

Figure II-13.--Rosenbrock optimization with correlation analysis run on Cane Branch watershed--Continued.

.

- - - - .

١

SENSITIVITY ANALYSIS

ISEN	1	PINCO.	010
NV	4	IPRIOR	0
IOBF	2	ITRANS	1
MFS	10	MFN	9

THE FOLLOWING PARAMETERS ARE TO BE ADJUSTED:

LOP=	8	74	50	51
ILOPL=	1	1	0	0
NVAR=	7	12	1	1
LOP	VAL	UE		
8	5.5	973		

0	5.5575
74	1.6783
50	0.0002
51	0.7109

SENSITIVITY MATRIX (ASENS)

1	0.000	0.000	0.000	0.000
2	0.002	-0.000	-0.000	-0.000
3	0.021	-0.000	-0.000	-0.000
4	0.020	0.092	-0.000	-0.000
5	0.005	0.001	-0.000	-0.000
6	0.006	0.003	-0.000	-0.000
7	0.000	0.000	0.000	0.000
8	0.000	0.000	0.000	0.000
9	0.000	0.000	0.000	0.000
10	0.000	0.000	0.000	0.000
11	0.000	0.000	0.000	0.000
12	0.000	0.000	0.000	0.000
13	0.000	0.000	0.000	0.000
14	0.000	0.000	0.000	0.000
15	0.000	0.000	0.000	0.000

Figure II-14.--Sensitivity analysis run on Cane Branch watershed.

SENSITIVITY MATRIX (ASENS)--Continued

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	$\begin{array}{c} 0.000\\ 0.004\\ 0.019\\ 0.000\\ 0.000\\ 0.034\\ 0.044\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.045\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ -2.386\end{array}$	$\begin{array}{c} 0.\ 000\\ 0.\ 001\\ 0.\ 004\\ 0.\ 000\\ 0.\ 000\\ 0.\ 005\\ 0.\ 115\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 000\\ 0.\ 012\\ \end{array}$	$\begin{array}{c} 0.000\\ 0.000\\ -0.000\\ 0.000\\ 0.000\\ -0.000\\ -0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.003\\$	$\begin{array}{c} 0.000\\ 0.000\\ -0.000\\ 0.000\\ 0.000\\ -0.000\\ -0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.000\\ 0.004\\ 0.004\\ \end{array}$	OCTOBER
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	$\begin{array}{c} -0.219\\ -0.218\\ -0.218\\ -0.217\\ -0.217\\ -0.217\\ -0.216\\ -0.216\\ -0.216\\ 0.880\\ 0.457\\ -0.094\\ 0.236\\ 0.139\\ 0.073\\ 0.006\\ 0.139\\ 0.073\\ 0.006\\ 0.153\\ -0.001\\ -0.001\\ 0.106\\ 0.115\\ -0.001\\ 0.106\\ 0.115\\ -0.001\\ -0.001\\ 0.005\\ -0.004\\ -0.005\\ -0.005\\ 0.502\\ 0.614\\ -0.005\end{array}$	0.001 0.001 0.001 0.001 0.001 0.001 0.001 -0.001 -0.000 -	$\begin{array}{c} -0.006\\ -0.006\\ -0.006\\ -0.006\\ -0.006\\ -0.006\\ -0.006\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.000\\ -0.001\\ -0.001\\ -0.001\\ -0.000\\ -0.000\\ -0.000\\ -0.000\\ -0.001\\ -0.001\\ -0.000\\$	$\begin{array}{c} -0.221\\ -0.221\\ -0.222\\ -0.222\\ -0.223\\ -0.223\\ -0.224\\ -0.224\\ -0.224\\ -0.015\\ -0.004\\ -0.026\\ -0.012\\ -0.000\\ -0.000\\ -0.000\\ -0.000\\ -0.000\\ -0.000\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.001\\ -0.002\\ -0.003\\ -0.004\\ -0.004\\ -0.004\\ -0.004\\ -0.002\\ -0.005\end{array}$	SEPTEMBER

Figure II-14.--Sensitivity analysis run on Cane Branch watershed--Continued.

INFORMATION MATRIX (ZINFC)

0.2500E-01	-C.5066E-04	-0.4489E-04	-0.7683E-04
-0.5066E-04	0.2667E-06	0.7054E-07	-0.2756E-06
-0.4489E-04	0.7054E-07	0.1674E-06	0.2058E-05
-0.7683E-04	-0.2756E-06	0.2058E-05	0.2139E-03

ERROR PROPOGATION:

TABLE OF MEAN SQUARED RUNOFF PREDICTION ERROR RESULTING FROM PARAMETER ERRORS

LOP	MAGN 5%	ITUDE OF PARA 10%	AMETER ERROR 20%	50%
8	0.00122	0.00489	0.01956	0.12227
74	0.00000	0.00000	0.00000	0.00000
50	0.00000	0.00000	0.00000	0.00000
51	0.00001	0.00004	0.00017	0.00105
JOINT	0.00123	0.00493	0.01973	0.12332

RESIDUALS ANALYSIS

VARIANCE	0.03507
STD DEV	0.18727
MEAN ABS	0.11180

PARAMETER	VALUE	STA	STANDARD ERROR			
		JOINT	INDIVIDUAL			
8	5.5973	0.1375	0.0785			
74	1.6783	9.3196	7.2014			
50	0.0002	0.0018	0.0011			
51	0.7109	0.1204	0.1077			

PARAMETER CORRELATION MATRIX (ZINV)

1.000	0.555	0.684	-0.255
0.555	1.000	0.155	-0.004
0.684	0.155	1.000	-0.441
-0.255	-0.004	-0.441	1.000

Figure II-14.--Sensitivity analysis run on Cane Branch watershed--Continued.

DIAGONAL	ELEMENTS	OF HAT	MATRIX	(PDENT)					
0.000 0.000 0.000 0.002	0.000 0.000 0.008	0.000 0.000 0.000	0.003 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.001	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
0.006 0.000 0.000	0.002 0.000 0.000	0.001 0.000 0.000	0.000 0.000 0.000						
C.000 O.001 O.056 O.014	0.000 0.003 0.038	0.000 0.010 0.005	0.000 0.051 0.123	0.000 0.296 0.051	0.000 0.218 0.032	0.000 0.134 0.025	0.000 0.093 0.013	0.001 0.074 0.019	0.000 0.112 0.015
0.013 0.073 0.069 0.114	0.012 0.022 0.062	0.011 0.017 0.092	0.018 0.016 0.016	0.040 0.015 0.026	0.008 0.013 0.028	0.027 0.012 0.026	0.023 0.010 0.125	0.026 0.009 0.011	0.033 0.022 0.134
0.014 0.010 0.006	0.086 0.009 0.047	0.037 0.008 0.020	0.031 0.008 0.014	0.021 0.005 0.012	0.026 0.005 0.014	0.028 0.007 0.035	0.029 0.006 0.058	0.014 0.027	0.008 0.061
0.005 0.048 0.006 0.003	0.004 0.048 0.046	0.003 0.023 0.005	0.006 0.014 0.004	0.006 0.011 0.005	0.015 0.009 0.004	0.013 0.008 0.003	0.024 0.007 0.003	0.024 0.006 0.003	0.025 0.006 0.003
0.016 0.009 0.004	0.002 0.012 0.004	0.002 0.012 0.004	0.023 0.012 0.003	0.005 0.010 0.003	0.002 0.009 0.003	0.002 0.008 0.003	0.036 0.007 0.002	0.097 0.006 0.002	0.010 0.005 0.002
0.002 0.001 0.001 0.000	0.002 0.001 0.003	0.002 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.002 0.001 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.001 0.001 0.000	0.001 0.001 0.000
0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.001 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000
0.000 0.000 0.000 0.000	0.000 0.000 0.000								
$0.000 \\ 0.000 \\ 0.000 \\ 0.000 \\ 0.000$	0.000 0.000 0.000								
0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.078	0.000 0.000 0.000

Figure II-14.--Sensitivity analysis on Cane Branch watershed--Continued.

series. The initial parameter values, objective function value, and the ARMA parameters are then listed.

Iteration 1 presents the same output sequence as iteration 0, except that parameter 1 has now been adjusted. The new parameter value and the new objective function are shown. In this example, the increase in parameter 1 by 10 percent had a deleterious effect on the simulation which is evidenced by the increase in the objective function. For the next iteration parameter 1 will be returned to its original value and parameter 2 will be changed. This iteration sequence and iteration step output will be repeated until NV (number of variables) times NTRY (number of cycles through parameters) iterations are completed. These will be followed by a summary table of initial and final parameter and objective function values and a listing of the distributed parameter values in the same format as shown in figure II-12.

The operational sequence for an optimization run begins with a complete simulation for the period designated using the initial parameter estimates. The results of this simulation are output in a form dependent on the choices selected on the 'O7PRINTØP' card in card group 1. This is followed by the optimization output shown in figure II-12. Then another complete model simulation is run using the new 'best fit' parameter values. The results of this simulation are output after the optimization tables in the same format as the initial simulation run.

The sensitivity analysis output is shown in figure II-14. The first section lists the input values specified in card group 7 and is followed by the summary of parameter values fitted in the previous optimization. The next section is the sensitivity matrix which is n x p in size where n is the number of days or storm periods and p is the number of parameters. The values output are relative sensitivities. Only the 61 values for October and September are shown out of the total 365 daily values output. This is followed by the information matrix. The diagonal elements of this matrix are the sums of squares of the sensitivity matrix columns. The off diagonal elements are the cross products of the sensitivity matrix columns.

Parameter errors are expressed in the next three sections. The first is the error propogation table showing the increase in the mean squared runoff prediction error resulting from various size errors in each parameter. These are the increases that would occur in the variance value expressed in the residuals analysis shown next. The error and variance values shown are log values because ITRANS=1 was selected in card group 7. The residuals analysis is followed by a list of the parameter values with their joint and individual error values.

Parameter correlations are shown in the next output segment which is the parameter correlation matrix. This is followed by the diagonal elements of the hat matrix.

ATTACHMENT VIII

Instructions for obtaining a copy of PRMS

A copy of PRMS on magnetic tape (9 track, 1600 BPI) may be obtained by sending a magnetic tape along with a written request to:

U.S. Geological Survey Water Resources Division, Surface Water Branch National Center, Mail Stop 415 12201 Sunrise Valley Drive Reston, VA 22092

A listing only may also be obtained by writing to the same address.

٠

Inquiry should be made to this address regarding the cost of a copy request. Prepayment of the costs of producing a magnetic tape copy or listing is required. Check or money order, in exact amount, should be made payable to the U.S. Geological Survey.

Gauss-Newton Optimization Example

A second optimization procedure that can be selected is the Gauss-Newton procedure. This option is selected by making the IOPT parameter on card 1 of card group 1 negative. Figure II-15 shows the output for one iteration of a daily simulation run using the Gauss-Newton optimization with correlation analysis. Input parameter values and options are presented in a form identical to figure II-11 and immediately precede the output shown in figure II-15.

Unlike the Rosenbrock procedure, the Gauss-Newton procedure moves all parameters at once during an iteration step. The first item output in each iteration is the sensitivity matrix which is used in computing the direction and magnitude of movement for each parameter. This is followed by the subiteration table of the ARMA modeling procedure used in the error correlation analysis. This table and the subsequent ARMA output are the same as that described in the preceding section. The first subiteration table uses the parameter values available at the beginning of the current major iteration. For iteration 1, these are the initial parameter estimates. The first ARMA procedure is followed by the information matrix, the initial correction vector, and the correction vector multiplier. A table of the old and new adjusted parameters is then output. Using these new parameters, a second ARMA fitting is conducted and the results printed. A final correction vector multiplier is then computed using the Box-Kanemasu interpolation modification (Beck and Arnold, 1977). The old parameter values and the new parameter values computed using the new correction vector are output. A final ARMA fitting is conducted and the results are printed.

The sequence of procedures described and the outputs shown are repeated for each NTRY iteration requested. After the last iteration a table of initial and final objective functions and parameter values are output along with a table of the distributed parameter values in the same format as shown in figure II-12.

GAUSS-NEWTON OPTIMIZATION

IOPT	-2	NTRY	8
NV	4	IPRIOR	0
IOBF	2	ITRANS	1
MFS	10	MFN	9
•			

THE FOLLOWING PARAMETERS ARE TO BE ADJUSTED:

LOP=	8	74	50	51
ILOPL=	1	1	0	0
NVAR=	7	12	1	1

- OTHE LOWER CONSTRAINTS ARE 0.00C000E+00 0.000000E+00 0.000000E+00 0.000000E+00
- OTHE UPPER CONSTRAINTS ARE 0.100000E+02 0.200000E+01 0.100000E+01 0.100000E+01
- 0THE TRANSFORMED LOWER CONSTRAINTS ARE 0.000000E+00 0.000000E+00 0.000000E+00 0.000000E+00
- OTHE TRANSFORMED UPPER CONSTRAINTS ARE 0.223026E+02 0.206931E+02 0.100000E+01 0.100000E+01
- OTHE STARTING PARAMETER VALUES ARE 0.216927E+02 0.200195E+02 0.200000E-01 0.470000E+00
- OTHE INITIAL STEP SIZE INCREMENTS ARE 0.100000E+00 0.100000E+00 0.100000E+00 0.100000E+00
- OTHE TRANSFORMED INITIAL STEP SIZE INCREMENTS ARE 0.460984E-02 0.499513E-02 0.100000E+00 0.100000E+00

Figure II-15.--One iteration of Gauss-Newton optimization with correlation analysis on Cane Branch watershed.

ITERATION NUMBER 1

.

SENSITIVITY MATRIX (ASENS)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	$\begin{array}{c} 0.\ 000\\ 0.\ 033\\ 0.\ 449\\ 0.\ 441\\ 0.\ 100\\ 0.\ 138\\ 0.\ 000\\ 0.\ 0.\ 000\\ 0.\ 0.\ 000\\ 0.\ 0.\ 000\\ 0.\ 0.\ 0.\ 000\\ 0.\ 0.\ 0.\ 000\\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\ 0.\$	0.000 0.000 -0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 -0.000 -0.000 0.0000 0.00000 0.00000 0.00000 0.0000000 0.00000000	
16	0.000	0.000	0.000	0.000	
17 18	0.095	0.000	0.000	0.000	
19	0.414 0.000	-0.000 0.000	-0.000 0.000	-0.000 0.000	
20	0.000	0.000	0.000	0.000	
21	0.729	-0.000	-0.000	-0.000	
22	0.936	-0.000	-0.000	-0.000	
23	0.000	0.000	-0.000	0.000	
24	0.000	0.000	-0.000	0.000	
25	0.000	0.000	-0.000	0.000	
26	0.960	0.000	-0.000	-0.000	
27 28	0.000 0.000	0.000 0.000	-0.000 -0.000	0.000 -0.000	
29	0.000	0.000	-0.000	0.000	
30	0.000	0.000	-0.000	0.000	
31	-44.871	0.153	0.000	0.000	OCTOBER
Ē		:	:	:	0010020
1	-6.323	0.019	-0.095	-0.141	SEPTEMBER
2 3 4 5 6	-6.313	0.019	-0.095	-0.141	
3	-6.303	0.019	-0.095	-0.140	
4	-6.293	0.019	-0.095	-0.140	
5	-6.283	0.019	-0.095	-0.140	
ь 7	-6.273	0.019	-0.095	-0.140	
8	-6.264 -6.255	0.019 0.019	-0.095 -0.096	-0.140 -0.140	
9	20.338	-0.000	-0.005	-0.008	
10	10.253	-0.001	-0.001	-0.002	
11	-2.284	-0.012	-0.012	-0.017	
12	5.932	-0.006	-0.005	-0.008	
13	3.091	-0.001	-0.000	-0.000	

•

Figure II-15	One iteration of Gauss-Newton optimizatio	n with correlation
-	analysis on Cane Branch watershedConti	nued.

••

SENSITIVITY MATRIX (ASENS)--Continued

14	1,632	-0.000	-0.000	-0.000
15	0.134	0.000	-0.000	-0.000
16	3.397	-0.000	-0.000	-0.000
17	-0.025	0.000	-0.000	-0.000
18	-0.037	0.000	-0.000	-0.001
19	2.204	-0.000	-0.001	-0.001
20	2.421	-0.000	-0.001	-0.001
21	-0.076	0.000	-0.001	-0.001
22	9.754	-0.001	-0.000	-0.001
23	0.608	0.000	-0.001	-0.002
24	-0.107	0.000	-0.001	-0.002
25	-0.114	0.000	-0.002	-0.002
26	-0.120	0.000	-0.002	-0.002
27	-0.126	0.000	-0.002	-0.002
28	21.765	-0.001	-0.001	-0.001
29	26.286	-0.001	-0.000	-0.000
30	-0.136	0.000	-0.002	-0.003

.

SUB-			
ITERATION	SUM OF SQUARES	ARMA PARAME	TERS
0	0.134364D+02	0.000	0.000
1	0.821386D+01	0.688	0.000
2	0.814668D+01	0.684	0.047
3	0.811939D+01	0.693	0.086
4	0.810565D+01	0.704	0.118
5	0.8097950+01	0.715	0.143
6 7	0.809347D+01	0.725	0.163
	0.809086D+01	0.732	0.177
8	0.808935D+01	0.738	0.189
9	0.808848D+01	0.743	0.197
10	0.808799D+01	0.746	0.204
11	0.808771D+01	0.748	0.209
12	0.808756D+01	0.750	0.212
13	0.808747D+01	0.752	0.215
14	0.808742D+01	0.753	0.217
15	0.808739D+01	0.754	0.219
16	0.8087380+01	0.754	0.220
17	0.8087370+01	0.755	0.220
18	0.808737D+01	0.755	0.221
19	0.808736D+01	0.755	0.222

Figure II-15.--One iteration of Gauss-Newton optimization with correlation analysis on Cane Branch watershed--Continued.

	CHI-SQUARED STATISTIC	CORRELATIONS									
		LAG 1	2	3	4	5	6	7	8	9	10
BEFORE ARMA MODELING AFTER ARMA	352.5	0.62	0.41	0.38	0.34	0.25	0.20	0.11	0.09	0.13	0.10
MODELING	17.7	0.02	-0.15	0.04	0.09	0.02	0.04	-0.08	-0.05	0.07	-0.00

.

VARIANCE, ORIGINAL SERIES= 0.036 VARIANCE, WHITE NOISE SERIES= 0.022

INFORMATION MATRIX (ZINFC)

.

- -

.

0.6983E+01	-0.1803E-02	-0.5094E-03	0.9923E-04
-0.1803E-02	0.3767E-04	-0.2712E-06	-0.1841E-04
-0.5094E-03	-0.2712E-06	0.3320E-06	0.3652E-05
0.9923E-04	-0.1841E-04	0.3652E-05	0.1241E-03

.

INITIAL CORRECTION VECTOR:							
-0.0588	1	2.1704	-0.5256 0	. 5898			
PARAMETER	2	OUTSIDE	CONSTRAINTS,	ALPHA	HALVED,	ALP=	1.000
PARAMETER	2	OUTSIDE	CONSTRAINTS,	ALPHA	HALVED,	ALP=	0.500
PARAMETER	2	OUTSIDE	CONSTRAINTS,	ALPHA	HALVED,	ALP=	0.250
PARAMETER	2	OUTSIDE	CONSTRAINTS,	ALPHA	HALVED,	ALP=	0.125
PARAMETER	2	OUTSIDE	CONSTRAINTS,	ALPHA	HALVED,	ALP=	0.063

CORRECTION	VECTOR MULT	IPLIER:	0.031
	OLD	NEW	
PARAMETERS	: 21.693	21.691	
	20.019	20.400	
	0.020	0.004	
	0.470	0.488	

SUB- ITERATION	SUM OF SQUARES	ARMA PARAMETERS	
0	0.1330200+02	0.000 0.0	00
1	0.804972D+01	0.755 0.2	22
2	0.8049670+01	0.754 0.2	22
3	0.8049660+01	0.754 0.2	22

Figure II-15.--One iteration of Gauss-Newton optimization with correlation analysis on Cane Branch watershed--Continued.

	CHI-SQUARED	CORRELA	TIONS -		•						
	STATISTIC	LAG 1	2	3	4	5	6	7	8	9	
BEFORE ARMA MODELING AFTER ARMA	345.5	0.61	0.41	0.38	0.34	0.25	0.19	0.10	0.09	0.13	0.3
MODELING	17.4	0.02	-0.14	0.04	0.09	0.02	0.04	-0.08	-0.05	0.07	-0.0
		0.005									

VARIANCE, ORIGINAL SERIES= 0.036 VARIANCE, WHITE NOISE SERIES= 0.022

.

0BJ. FNC. : 8.087 8.050

FINAL RESULTS FO	OR ITERATIO	DN 1	
CORRECTION VECTO	R MULTIPL	IER:	0.034
	OLO	NEW	
PARAMETERS :	21.693	21.691	
	20.019	20.438	
	0.020	0.002	
	0.470	0.490	

SUB- ITERATION	SUM OF SQUARES	ARMA PARAMETERS
0	0.1328900+02	0.000 0.000
1	0.804628D+01	0.754 0.222
2	0.804627D+01	0.753 0.222

	CHI-SQUARED STATISTIC	CORRELAT	TIONS								
	51A11511C	LAG 1	2	3	4	5	6	7	8	9	
BEFORE ARMA MODELING AFTER ARMA	344.8	0.61	0.41	0.38	0.34	0.25	0.19	0.10	0.09	0.12	0.
MODELING	17.4	0.02	-0.14	0.04	0.09	0.02	0.04	-0.08	-0.05	0.07	0.
VARIANCE, ORIGI VARIANCE, WHITE	NAL SERIES= NOISE SERIES=	0.036 0.022									

.

OBJ. FNC. : 8.087 8.046

Figure II-15.--One iteration of Gauss-Newton optimization with correlation analysis on Cane Branch watershed--Continued.

ATTACHMENT III

Procedure DCARDS

This procedure contains several subroutines that will read cards with different input formats and write records to online disk storage in the WATSTORE sequential format. The card formats that are currently available for input are: (1) WATSTORE standard daily- and unit-values input formats; (2) "Carter Card" format for daily and unit values; and (3) a variable daily format. Formats of the control cards and data cards are described below.

Input Format--WATSTORE Daily

This subroutine will read data in the U.S. Geological Survey WATSTORE standard daily values card format. Program control cards as shown below are inserted before and after data cards.

CARD	COLUMNS	FORMAT	VARIABLE	DESCRIPTION
1	1	I1	ITYP	WATSTORE Daily=0
1 2	17-64	12A4	TITL	Station name
3	2-16	3A4,A3	STAID	15-digit station identifi-
				cation number
	29-33	15	PARM	WATSTORE 5-digit parameter
				code
	34-38	15	STAT	WATSTORE 5-digit statistic
				code -
4-51	2-16	3A4,A3	STAID	15-digit station identifi-
				cation
	17-20	14	YEAR	Water year of record
	21-22	12	IMØ	Month
	23-24	I2	ICD	Sequence number of card within
				month (ICD=1,2,3,4)
	25-80	8F7.0	DATA(I)	8 data values per card
Repeat	cards 4-51	for each y	/ear.	
52		I1	ICODE	8=end of parameter code or
52		**	TOODE	statistic code
				9=end of station
				5-end of seacron
NOTE:	For new na	irameter or	statistic code	e, start at card 3. For new station,
NUTE.	Tor new po		tart at card 1.	
				•
		Ir	nput FormatW	ATSTORE unit
1	1	I1	ΙΤΥΡ	WATSTORE Unit=4
1 2 3	17-64	12A4	TITL	Station name
3	2-16	3A4,A3	STAID	15-digit station identifi-
Ť		0,0		cation number
	29-33	15	PARM	WATSTORE 5-digit parameter
		10		code

Input Format--WATSTORE Unit--Continued.

CARD	COLUMNS	FORMAT	VARIABLE	DESCRIPTION
	34-38	15	STAT	WATSTORE 5-digit statistic
4	1 17-20 21-22 23-24 25-26 27-28 29-30 31-35 39-80	A1 14 12 12 12 12 12 12 15 6F7.0	FLAG LYR LMO LDY LHR LMN LSC RPD DATA(I)	code B=unit values data Calendar year Month Day Hour (1st observation) Minute Second Readings per day Unit values for six consecutive time intervals
Re	peat card	4 as necess	ary	
5	1	Al	FLAG	"2"=new time interval, continue with card 4 "7"=new station, continue with card 2 "8"=new parameter or statistic code, continue with card 3 "9"=end of WATSTORE Unit values card
		Inj	put FormatCa	irter Cards
1 2	1 9-56 59-64 65-79	I1 12A4 F6.0 3A4,A3	ITYP TITL PTIME STAID	Carter=1 Station name Time interval for unit data 15-digit station identifi- cation
	80	11	ICØDE	Unit sediment=0 Unit precipitation=1 Unit discharge=2 Daily precipitation=3 Daily evaporation=4 Daily maximum temperature (°C)=5 Daily minimum temperature (°C)=6 Daily solar radiation=7
3(uni		12	IYR	Year
data	11-12 13-14 17-18 19-78 80	I2 I2 I2 12F5.0 I1	IMØ IDY ICD DATA(I) ICØDE	Month Day Card sequence number Unit data Same as card 2

CARD	COLUMNS	FORMAT	VARIABLE	DESCRIPTION
3(daily data)		12	IYR	Year
-	11-12	12	IMØ	Month
	13	I1	ICD	Card sequence (1 or 2)
	14-77	16F4.2	DATA(I)	Daily data
	80	I1	ICØDE	Same as card 2
4	80	Il	ICØDE	'8' to signify end of record
Repeat ca	rds 2-4 for	all records.		

.

5	79X,I1	ICØDE	'9' to signify end of Carter
			cards

Input Format--Variable Daily

This option reads in daily data, one card per day with up to 8 variables per card. The format of the data cards is read in along with parameter and statistic codes corresponding to the variables.

CARD	COLUMNS	FORMAT	VARIABLE	DESCRIPTION
1	1	I1	ITYPE	Variable format=2
2	2-16	3A4,A3	STAID	15-digit station identifi- cation
	17-64	12A4	TITL	Title
	65-66	12	NV	Number of variables read per day (maximum=8)
3	1-40	815	PARM(I)	WATSTORE parameter code for each data item
4	1-40	815	STAT(I)	Statistic code for each data item
5	1-80	20A4	FØRM(I)	Format of data cards, in parentheses
6(One	1-2	12	IMØ	Month of observation
card	3-4	I2	IDY	Day
per	5-8	14	IYR	Year
day)	9-80	Variable	DV(I)	Variablesup to 8 per card

Note: Place 99 in columns for 'IMØ' at end of variable format data.

Underlined items should be replaced with the data set name for the unit values (UVAL) and daily values (DVAL) sequential output files.

An example of WATSTORE card format for daily values and Carter card format for storm period values is shown in figure III-1. One water year of daily data for streamflow, precipitation, maximum and minimum air temperature and pan evaporation, in WATSTORE card format, and 45 storm days of streamflow and precipitation at 15-minute intervals in Carter card format were input to DCARDS. The resulting DCARDS output which indicates by water year and storm day the station identification, parameter code, and statistics code of each record created is shown in figure III-2. DCARDS creates both a daily records file and a storm days file. These two output files were then used as input to program GENDISK to create a PRMS compatible ISAM file. The GENDISK output is shown in figure III-3. //DG4812SD JOB (********,D000),'SAINDON',CLASS=B
//PROCLIB DD DSN=DG4812S.PRDAT.LIB,DISP=SHR
// EXEC DCARDS,DVAL='DG4812S.TESTD.DATA',
// UVAL='DG4812S.TESTU.DATA'
//SYSIN DD *

0 N 2	02462500BLACK WAF 02462500	RIOR R AT BA 000200000		&D NEAR	BESSEME ENT	R AL		
3	0246250019761001	23.90 27.8			30.50	30.00	20.50	22.20
3 3	0246250019761002 0246250019761003	16.10 18.3 24.40 18.3			25.50 11.70	26.70 17.20	28.30 22.20	27.20 24.40
3	0246250019761004	20.50 21.1			14.40	13.90	18.30	21.10
	•							
	•							
3	0246250019770901	35.50 35.5			32.80	31.70	25.50	26.70
3 3	0246250019770902 0246250019770903	31.70 31.1 30.00 31.1			31.70 28.90	29.40 30.50	31.10 29.40	30.00 31.70
3	0246250019770903	29.40 28.9			30.00	21.10	29.40	51.70
3 8 2 3 3 3								
2	02462500 0246250019761001	000200000		15.00	ENT 15.00	19.40	11.10	12.20
3	0246250019761001	12.20 12.2			9.40	19.40	10.00	12.20 10.00
3	0246250019761003	11.10 6.1			3.30	4.40	4.40	8.30
3	0246250019761004	15.00 10.0	0 3.90	3.90	3.30	3.30	8.30	
	•							
	•							
3	0246250019770901	20.50 19.4			21.70	21.70	22.20	20.50
3	0246250019770902 0246250019770903	20.00 20.0 20.50 19.4			16.10 16.70	20.50 17.20	20.50 15.60	20.50 18.30
3 3	0246250019770903	20.00 20.0			19.40	18.90	15.00	10.30
8								
2	02462500 02462500197610011	00060000		500 000	ENT	000	250 003	760.00
8 2 3 3 3	0246250019761001							
3	0246250019761003	530.00 530.0	0 590.00	410.002	630.001	500.00	410.00	
3	0246250019761004	590.001570.0	0 770.00	840.001	520.00	470.00	710.00	
	•							
	•							
3	02462500197709011	500.001330.0	0 700.00	590.00	650.001	590.00	10300.	15100.
3 3	02462500197709025 02462500197709035	200 00 710 0	01340.00 05020 00	2860.003 3990 NN3	8700.004 1080 002	730.004	940.004 410 00	900.00
3	02462500197709041							100.00
9								

Figure III-1.--Card deck used to run DCARDS procedure.

2 024 3 024 3 024 3 024 3 024	62990YELL0 62990 6299019761 6299019761 6299019761 6299019761	1001 1002 1003		AR N(4500)		PORT AI 0 0 0 0	_	0 0 10 0	ENT 0 0 0.03	0.59 0 0 0.19		0 0 0 0	0 0.33 0.01
3 024 3 024	6299019770 6299019770 6299019770 6299019770)902) 903	0 0 0.04		0 0 0 .78	0 0 0.03 0.08	0.	32 0 0 0	0.44 0.01 0 0.70	4.38 0.53 0 0.26	0.0		0 1.31 0
9 0 N3240000855 23240000855 33240000855 33240000855 33240000855	50001 500011976 500011976 500011976	L001 L002 L003		5000) 0 0 0		4ARTIN 0.13 0.15 0 0.12	0. 0. 0.	AL 11 12 08 06	ENT 0.13 0.09 0.13 0.07	0 0.10 0.09 0.09	0. 0.	18 12	0.10 0.02 0.02
33240000855 33240000855 33240000855 33240000855 9	5000119770 5000119770)902)903	0.19 0.11 0.10 0.26	0 0	. 15 . 18 . 06 . 07	0.14 0.19 0.08 0.07	0. 0.	09 16 14 23	0.10 0.13 0.15 0.07	0.03 0.11 0.20 0.11	0. 0.	21	0.07 0.26 0.08
1 YEL 02462990763 02462990763 02462990763 02462990763 02462990763 02462990763 02462990763 02462990763 0246299077 0246299077	22015 2 22015 3 22515 4 22515 5 22515 6 22515 7 22515 1 1 915 1	NORTH 0 1 7 0 5 6 0 0 0 0 0 0 3	IPORT, 0 1 7 0 7 8 0 0 0 0 0 3	AL 1 2 5 0 3 8 0 0 0 1	1 5 7 0 7 4 2 0 0 0 0	1 3 1 0 11 2 1 0 0 1 5	1 4 0 8 1 0 0 0 4	0 4 1 9 0 1 1 0 4	1 7 2 19 1 0 0 0 0 3	15. 1 7 1 2 7 0 0 0 0 5	2 20 1 4 7 1 0 0 0 0 4	0246 2 5 1 5 8 2 0 0 1 5	529901 0 1 19 1 1 1 4 1 7 1 1 1 0 1 0 1 0 1 3 1 4 1
0246299077 0246299077 0246299077 0246299077 0246299077	22615 8 22715 1	0 0 4 0	0 0 4 0	0 0 6 0	0 0 4 0	0 0 1 0	0 49 3 0	0 5 2 0	0 3 1 0	0 3 0 0	0 7 0 0	0 8 0 0	0 1 5 1 0 1 0 1 8

Figure III-1.--Card deck used to run DCARDS procedure--Continued.

YELLOW CR NR NORTHPORT, AL 15.	024629902
0246299076122015 1 8.10 8.10 8.10 8.10 8.10 8.10 8.10 8.	
0246299076122015 2 8.40 8.40 8.40 8.40 8.40 8.80 8.80 9.10 9.10 9.50 9.	
0246299076122015 3 13.0 15.0 17.0 20.0 24.0 28.0 30.0 33.0 37.0 44	
0246299076122015 4 56.0 60.0 61.0 62.0 62.0 62.0 62.0 61.0 60.0 61	
0246299076122015 5 57.0 56.0 56.0 55.0 53.0 52.0 51.0 49.0 48.0 46	
0246299076122015 6 43.0 42.0 40.0 39.0 38.0 36.0 35.0 35.0 34.0 32	
0246299076122015 7 30.0 29.0 29.0 28.0 27.0 27.0 26.0 25.0 25.0 24	
0246299076122015 8 23.0 23.0 22.0 22.0 21.0 21.0 21.0 21.0 21.0 20	0.0 20.0 20.0 2
0246299076122515 1 9.50 9.50 9.50 9.10 9.10 9.10 9.10 9.10 9.10 9.	.10 9.10 9.10 2
0246299076122515 2 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10	.10 9.10 9.10 2
0246299076122515 3 9.10 9.10 9.10 9.10 9.10 9.10 9.10 9.10	.10 9.10 9.10 2
0246299076122515 4 9.10 9.50 9.50 9.50 9.90 10.0 10.0 11.0 11.0 12	2.0 13.0 15.0 2
0246299076122515 5 18.0 21.0 26.0 32.0 37.0 43.0 50.0 59.0 68.0 76	6.0 83.0 85.0 2
0246299076122515 6 88.0 90.0 90.0 91.0 88.0 87.0 87.0 85.0 84.0 82	2.0 81.0 79.0 2
0246299076122515 7 77.0 76.0 75.0 74.0 73.0 72.0 71.0 69.0 67.0 67	7.0 65.0 64.0 2
0246299076122515 8 62.0 61.0 59.0 58.0 56.0 54.0 52.0 51.0 49.0 47	7.0 46.0 44.0 2
0246299076122615 1 44.0 43.0 42.0 41.0 40.0 39.0 38.0 37.0 37.0 36	6.0 35.0 35.0 2
0246299076122615 2 35.0 34.0 33.0 32.0 32.0 32.0 32.0 31.0 31.0 30	0.0 30.0 30.0 2
0246299076122615 3 30.0 29.0 29.0 28.0 28.0 28.0 28.0 28.0 28.0 27	7.0 27.0 27.0 2
0246299076122615 4 26.0 26.0 25.0 25.0 25.0 25.0 25.0 25.0 24.0 24	4.0 24.0 23.0 2
0246299076122615 5 23.0 23.0 23.0 23.0 23.0 23.0 23.0 23.0	2.0 22.0 22.0 2
0246299076122615 6 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	
0246299076122615 7 20.0 20.0 20.0 20.0 20.0 20.0 20.0 20	
0246299076122615 8 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	
0246299077 1 915 1 11.0 11.0 11.0 11.0 11.0 11.0 11.0	
0246299077 1 915 2 11.0 11.0 11.0 11.0 11.0 11.0 11.0 11	
	1.0 11.0 10.0 1
0246299077 22515 1 24.0 24.0 24.0 24.0 24.0 23.0 23.0 23.0 23.0 23	3.0.23.0.23.0.2
0246299077 22515 2 23.0 23.0 22.0 22.0 22.0 22.0 21.0 21.0 21.0 21	
0246299077 22515 3 21.0 21.0 21.0 21.0 21.0 21.0 21.0 21.0	
0246299077 22515 4 21.0 21.0 20.0 20.0 21.0 20.0 20.0 20.0	
0246299077 22515 5 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	
0246299077 22515 6 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	
	J.0 10.0 10.0 Z

Figure III-1.--Card deck used to run DCARDS procedure--Continued.

0246299077 22	2515 7	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	2
0246299077 22	2515 8	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	18.0	17.0	17.0	2
0246299077 22	2615 1	17.0	1 7.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	2
0246299077 2	2615 2	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	2
0246299077 22	2615 3	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	17.0	2
0246299077 22	2615 4	17.0	17.0	17.0	17.0	17.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	2
0246299077 22	2615 5	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	2
0246299077 22	2615 6	16.0	16.0	16.0	15.0	15.0	16.0	15.0	15.0	15.0	15.0	15.0	15.0	2
0246299077 22	2615 7	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	2
0246299077 22	2615 8	15.0	15.0	15.0	18.0	17.0	18.0	18.0	20.0	23.0	25.0	27.0	30.0	2
0246299077 22	2715 1	32.0	36.0	40.0	45.0	49.0	52.0	54.0	56.0	56.0	57.0	59.0	60.0	2
0246299077 22	2715 2	60.0	61.0	61.0	59.0	59.0	58.0	57.0	56.0	55.0	54.0	53.0	52.0	2
0246299077 22	2715 3	50.0	49.0	48.0	46.0	45.0	45.0	43.0	42.0	41.0	39.0	38.0	38.0	2
0246299077 22	2715 4	37.0	36.0	35.0	35.0	34.0	34.0	33.0	32.0	32.0	32.0	31.0	31.0	2
0246299077 22	2715 5	30.0	30.0	30.0	29.0	29.0	29.0	28.0	28.0	28.0	28.0	27.0	27.0	2
0246299077 22	2715 6	27.0 3	27.0	26.0	26.0	26.0	25.0	25.0	25.0	25.0	25.0	25.0	25.0	2
0246299077 22	2715 7	25.0	25.0	25.0	24.0	24.0	24.0	24.0	24.0	24.0	23.0	23.0	23.0	2
0246299077 22	2715 8	23.0	23.0	23.0	23.0	23.0	23.0	23.0	23.0	22.0	22.0	22.0	22.0	2
0246299077 22	2815 1	0	0	0	0	0	0	0	0	0	0	0	0	2
														9

•

0 /* //

Figure III-1.--Card deck used to run DCARDS procedure--Continued.

<pre>*** ITYPE = 0</pre>	20 20 60 45 60 50	1 2 3 6 3 6	1977 1977 1977 1977 1977 1977	
*** ITYPE = 1 02462990	50 45 45 45 45 45 45 45 45 45 45 45 45 45	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1977 1976 1976 1977 1977 1977 1977 1977	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
02462990 02462990	60 60	11 11	1977 1977	2 27 2 28

Figure III-2.--Sample printout from DCARDS procedure.

.

PROGRAM DSK268 REVISED 04-01-75

CREATES A TEMPORARY ISAM FILE FOR RAINFALL-RUNOFF PROGRAMS

SUMMARY OF RECORDS ENTERED INTO ISAM FILE:

STA=D	02462500	PARM=	20	STAT=	1	RECORDS WRITTEN=	1
STA=D	02462500	PARM=	20	STAT=	2	RECORDS WRITTEN=	1
STA=D	02462500	PARM=	60	STAT=	3	RECORDS WRITTEN=	1
STA=D	02462990	PARM=	45	STAT=	6	RECORDS WRITTEN=	1
STA=D	02462990	PARM=	60	STAT=	3	RECORDS WRITTEN=	1
STA=D324000	0085550001	PARM=	50	STAT=	6	RECORDS WRITTEN=	1
STA≓U	02462990	PARM=	45	STAT=	6	RECORDS WRITTEN=	45
STA=U	02462990	PARM=	60	STAT=	11	RECORDS WRITTEN=	45

.

END PROGRAM DSK268

Figure III-3.--Sample printout from GENDISK procedure.

ATTACHMENT IV

Definitions of System Variables

Definitions are listed alphabetically in table IV-1 for all input and common variables used in PRMS. Dimensions and labeled common areas are also indicated in the table.

ATTACHMENT V

Instructions for obtaining MAIN and subroutine listings

To obtain a listing of main and all Fortran subroutines, submit the following job (approximately 5,000 lines of print):

//---JØB CARD---// EXEC PGM=PDSLIST, PARM='LIST, INDEX, SPACE' //STEPLIB DD DSN=SYS1.USERLIB,DISP=SHR //SYSPRINT DD SYSØUT=A //SYSUT9 DD DSN=DG4812S.PRMS83.FØRT.DISP=SHR //SYSIN DD DUMMY /* 11 The following job can be run to obtain listings of selected subroutines: //---JØB CARD---// EXEC PGM=PDSLIST, PARM='ALPHA, LIST, SPACE' //STEPLIB DD DSN=SYS1.USERLIB,DISP=SHR //SYSPRINT DD SYSØUT=A //SYSUT9 DD DSN=DG4812S.PRMS83.FØRT,DISP=SHR //SYSIN DD * PRMAIN BASFLW {selected subroutine names .

/* // Table IV-1.--Definitions of system variables

VARIABLE	DIMENSION	COMMON	DESCRIPTION
AA	11,100	INITCD	INITIAL AREA VALUE FOR EACH X-SECTION FOR EACH OVERLAND FLOW AND CHANNEL SEGMENT(SQ FT) - STORM
MODE			
AAI	11,50	INITCD	INITIAL AREA VALUES FOR EACH X-SECTION FOR IMPERVIOUS AREA OF EACH OVERLAND FLOW PLANE(SQ FT) - STORM MODE
AET	50	SM	COMPUTED ACTUAL EVAPOTRANSPRIATION (INCHES)
AJMX	12	DPR	RAIN/SNOW MIXTURE ADJUSTMENT COEFFICIENT, BY MONTH
ALB	50	SNO	
ALPIA	50	PCRCHA	COEFFICIENT IN KINEMATIC ROUTING EQUATION FOR IMPERVIOUS AREA OF EACH OVERLAND FLOW PLANE - STORM MODE
ALPI1A	50	PCRCHA	INVERSE OF ALPIA - STORM MODE
ALPRA	100		COEFFICIENT IN KINEMATIC ROUTING EQUATION FOR PERVIOUS AREA OF EACH OVERLAND FLOW PLANE AND CHANNEL SEGMENTS - STORM MODE
ALPR1A	100	рсрсна	INVERSE OF ALPRA - STORM MODE
ANSW		SNO	
ARG	50	BS	CONTRIBUTING AREA ASSOCIATED WITH SPECIFIC GROUND WATER RESERVOIR(ACRES)
ARS	50	BS	CONTRIBUTING AREA ASSOCIATED WITH SPECIFIC SUBSURFACE RESERVOIR(ACRES)
ASENS	366,20	SENT1	SENSITIVITY MATRIX - SENSITIVITY ANALYSIS
BAS		BS	TOTAL DAILY FLOW FROM ALL GROUNDWATER RESERVOIRS(ACRE-INCHES)
BASQ	50	BS	DAILY FLOW FROM EACH GROUNDWATER RESERVOIR (ACRE-INCHES)
BDY		DATES	BEGIN DAY OF SIMULATION
BDYIN		DATOP	
			OPTIMIZATION OR SENSITIVITY ANALYSIS
BDYOP		DATOP	BEGIN DAY OF OPTIMIZATION OR SENSITIVITY ANALYSIS
BMO		DATES	
BMOIN		DATOP	BEGIN MONTH OF INITIALIZATION PERIOD FOR OPTIMIZATION OR SENSITIVITY ANALYSIS
BMOOP		DATOP	BEGIN MONTH OF OPTIMIZATION OR SENSITIVITY ANALYSIS
BMSA	50	DSM	MOISTURE STORAGE IN RECHARGE ZONE OF SOIL PROFILE (INCHES) - STORM MODE
врк	50	VOL	COMPUTED PEAK FLOW FOR EACH STORM PERIOD(CFS)
BRO	50	VOL	COMPUTED RUNOFF VOLUME FROM EACH STORM PERIOD(INCHES)
BST		DPR	TEMPERATURE BELOW WHICH PRECIPITATION IS SNOW AND ABOVE WHICH IT IS RAIN (DEGREES F OR C)
BWY		SIZE	BEGIN WATER YEAR FOR SIMULATION
BYL		ALL	NOT CURRENTLY USED
BYR		DATES	BEGIN CALENDAR YEAR FOR SIMULATION
BYRIN	web the	DATOP	BEGIN YEAR OF INITIALIZATION PERIOD FOR OPTIMIZATION OR SENSITIVITY ANALYSIS
BYROP		DATOP	BEGIN YEAR OF OPTIMIZATION OR SENSITIVITY ANALYSIS
B4			OBJECTIVE FUNCTION SWITCH (-1.0=MINIMIZE)

VARIABLE DIMENSION COMMON

MONTHS1-12(CAL/DEGREEABOVE OC)CDSTORM DATA AVAILABILITY CODE (1=PRECIPITATION; 2=1+DISCHARGE; 3=2+SEDIMENT) - STORM MODECDA50UNSSCUMULATIVE DRAINAGE AREA FOR EACH CHANNEL SEGMENT (ACRES) - STORM MODECMIA50PCRCHAEXPONENT IN KINEMATIC ROUTING EQUATION FOR IMPERVIOUS AREA OF EACH OVERLAND FLOW PLANE - STORM MODECMIA50PCRCHA INVERSE OF CMIA - STORM MODECMIA50PCRCHA INVERSE OF CMIA - STORM MODECMPA100PCRCHA INVERSE OF CMPA - STORM MODECMPA100PCRCHA INVERSE OF CMPA - STORM MODECOVDNS50DPRSUMMER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)COVDNW50DPRWINTER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENTIINITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 54 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE
CDA50UNSSCUMULATIVE DRAINAGE AREA FOR EACH CHANNEL SEGMENT (ACRES) - STORM MODECMIA50PCRCHA EXPONENT IN KINEMATIC ROUTING EQUATION FOR IMPERVIOUS AREA OF EACH OVERLAND FLOW PLANE - STORM MODECMI1A50PCRCHA INVERSE OF CMIA - STORM MODECMPA100PCRCHA INVERSE OF CMIA - STORM MODECMPA100PCRCHA INVERSE OF CMPA - STORM MODECMPA100PCRCHA INVERSE OF CMPA - STORM MODECMPA100PCRCHA INVERSE OF CMPA - STORM MODECOVDNS50DPRSUMMER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)COVDNW50DPRWINTER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENTIINITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
CMIA50PCRCHAEXPONENT INKINEMATICROUTINGEQUATIONFORIMPERVIOUS AREA OFCMIA50PCRCHAINVERSE OFCMIA - STORMSTORMMODECMPA100PCRCHAEXPONENT INKINEMATICROUTINGEQUATIONSFOR PERVIOUSCMPA100PCRCHAEXPONENT INKINEMATICROUTINGEQUATIONSFOR PERVIOUSCMPA100PCRCHAEXPONENT INKINEMATICROUTINGEQUATIONSFOR PERVIOUSCMPA100PCRCHAEXPONENT INKINEMATICROUTINGEQUATIONSFOR PERVIOUSCOVDNS50DPRSUMMERCOVERPASORSTORMMODECOVDNW50DPRWINTERCOVERPENSITYFOR MAJORVEGETATION FOR EACH HRU(DECIMAL PERCENT)CSELWXCLIMATESTATIONELEVATION(FTABOVEMSL)CTS12ETAIRTEMPERATURECOEFFICIENT FORECOMPUTATION FORFORFORFORFORCTWETCOEFFICIENTFOREACH HRUCCCCCCTWETAIRTEMPERATURECOEFFICIENT FORECOMPUTATION FORFORFORFORFORCTWETAIRTEMPERATURECOEFFICIENTFOREACH HRUCCCTWETAIRTEMPERATURECOEFFICIENT FORECOMPUTATION FOR
AREA OF EACH OVERLAND FLOW PLANE - STORM MODECMI1A50PCRCHA INVERSE OF CMIA - STORM MODECMPA100PCRCHA EXPONENT IN KINEMATIC ROUTING EQUATIONS FOR PERVIOUS AREA OF EACH OVERLAND FLOW PLANE AND CHANNEL SEGMENTS - STORM MODECMP1A100PCRCHA INVERSE OF CMPA - STORM MODECOVDNS50DPRSUMMER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)COVDNW50DPRWINTER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENT1INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
CMI1A50PCRCHA INVERSE OF CMIA - STORM MODECMPA100PCRCHA EXPONENT IN KINEMATIC ROUTING EQUATIONS FOR PERVIOUS AREA OF EACH OVERLAND FLOW PLANE AND CHANNEL SEGMENTS - STORM MODECMP1A100PCRCHA INVERSE OF CMPA - STORM MODECOVDNS50DPRSUMMER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)COVDNW50DPRWINTER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENTIINITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
PERVIOUS AREA OF EACH OVERLAND FLOW PLANE AND CHANNEL SEGMENTS - STORM MODECMP1A100PCRCHA INVERSE OF CMPA - STORM MODECOVDNS50DPRSUMMER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)COVDNW50DPRWINTER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENTIINITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
CMP1A100PCRCHAINVERSE OF CMPA - STORM MODECOVDNS50DPRSUMMER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)COVDNW50DPRWINTER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENT1INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
COVDNS50DPRSUMMER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)COVDNW50DPRWINTER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENT1INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STOR MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
COVDNW50DPRFOR EACH HRU (DECIMAL PERCENT) FOR EACH HRU (DECIMAL PERCENT)CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENT1INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTINGC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
COVDNW50DPRWINTER COVER DENSITY FOR MAJOR VEGETATION FOR EACH HRU (DECIMAL PERCENT)CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENTIINITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
CSELWXCLIMATE STATION ELEVATION(FT ABOVE MSL)CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENT1INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
CTS12ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR MONTHS 1-12CTWETCOEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENT1INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
CTWETFOR MONTHS 1-12 COEFFICIENT FOR COMPUTING SNOWPACK SUBLIMATION FROM PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENT1INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
PETCTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENT1INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
CTX50ETAIR TEMPERATURE COEFFICIENT FOR ET COMPUTATION FOR EACH HRUCX20SENT1INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
CX20SENT1FOR EACH HRU INITIAL PARAMETER VALUES IN OPTIMIZATION AND SENSITIVITY ANALYSISC1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
C1510,10STORSENSITIVITY ANALYSIS Y INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
C1510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
C2410,10STORPOINTS IN THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR ROUTING - STORM MODEC2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
C2410,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTINGC510,10STORY INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
POINTS IN THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTING C5 10,10 STOR Y INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
RESERVOIR ROUTING C5 10,10 STOR Y INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
C5 10,10 STOR Y INTERCEPT OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN THE PULS ROUTING TABLE FOR 5 MINUTE
RESERVOIR ROUTING - STORM MODE
DARIP 50 IMPRV IMPERVIOUS DRAINAGE AREA FOR EACH HRU (ACRES)
DARP 50 IMPRV PERVIOUS DRAINAGE AREA FOR EACH HRU (ACRES)
DARU 50 ALL DRAINAGE AREA OF EACH HRU (ACRES)
DAT ALL TOTAL BASIN BIATAAL MALA (AOALS)
DATIP IMPRV TOTAL IMPERVIOUS DRAINAGE AREA (ACRES)
DATP IMPRV TOTAL PERVIOUS DRAINAGE AREA (ACRES)
DEN 50 SNO DENSITY OF SNOWPACK ON EACH HRU
DENI SNO INITIAL DENSITY OF NEW-FALLEN SNOW (DECIMAL PERCENT)
DENMX SNO AVERAGE MAXIMUM DENSITY OF SNOW PACK (DECIMAL
PERCENT)
DFH 20 DFHSEG BEGAN AND END TIMES FOR EACH HYDROGRAPH SEGMENT WITHIN SPECIFIED DAY - STORM MODE
DIAG 20 SENT2 SQUARE ROOT OF DIAGONAL ELEMENTS OF INFORMATION
MATRIX-OPTIMIZATION AND SENSITIVITY ANALYSIS

VARIABLE DIMENSION COMMON

•

DIN1	10	STOR	SURFACE WATER RESERVOIR INFLOW FROM THE PREVIOUS
DIRL		ALL	TIME STEP (CFS) NOT CURRENTLY USED
DPT	50	OPSNO	DEPTH OF SNOWPACK ON EACH HRU (INCHES)
DRAD			DAILY POTENTIAL SOLAR RADIATION FOR SLOPE-ASPECT
UNAD			COMBINATION OF AN HRU (LANGLEYS)
DRCOR	50	DPR	DAILY PRECIPITATION CORRECTION FACTOR FOR RAIN
2			FOR EACH HRU
DRN			DRAINAGE FACTOR FOR REDISTRIBUTION OF SATURATED
			MOISTURE STORAGE AS A FRACTION OF KSAT
DS	366,7	DVDT	DAILY CLIMATE DATA FOR ONE YEAR AND UP TO 7
			VARIABLE TYPES
DSCOR	50	DPR	DAILY PRECIPITATION CORRECTION FACTOR FOR SNOW
			FOR EACH HRU
DTDXA	100	PCRCHA	DT/DX FOR EACH OVERLAND FLOW AND CHANNEL ROUTING
			SEGMENT (SEC/FT) - STORM MODE
DTDXMA	100	PCRCHA	(DT/DX) * CMA FOR EACH OVERLAND FLOW AND
0.714			CHANNEL ROUTING SEGMENT - STORM MODE
DTM			ROUTING TIME INTERVAL FOR OVERLAND FLOW OR
DTMA	100	DODOUA	CHANNEL SEGMENT (MINUTES) - STORM MODE
DTMA	100	PURCHA	ROUTING TIME INTERVAL FOR EACH OVERLAND FLOW AND
DTMN		DTMN1	CHANNEL SEGMENT (MINUTES) - STORM MODE OUTPUT SWITCH - STORM MODE
DTOS		DIPINI	PRINT OR PLOT OUTPUT TIME INTERVAL FOR OVERLAND
0105			FLOW OR CHANNEL SEGMENT (MINUTES) - STORM MODE
DTOSA	100	PCRCHA	PRINT OR PLOT INTERVAL FOR EACH OVERLAND FLOW
Broom	200		AND CHANNEL ROUTING SEGMENT (MINUTES) - STORM MODE
DTSA	100	PCRCHA	ROUTING TIME IN SECONDS FOR EACH OVERLAND FLOW
			AND CHANNEL SEGMENT - STORM MODE
DUM1		DUMV	USER DEFINED INPUT CLIMATE VARIABLE.
DUM2		DUMV	USER DEFINED INPUT CLIMATE VARIABLE.
DVP	366,5	DVDT	DAILY OBSERVED PRECIPITATION FOR ONE YEAR AND UP
			TO 5 GAGES (INCHES).
DXA	100	PCRCHA	LENGTH/NDX FOR EACH OVERLAND FLOW AND CHANNEL
			SEGMENT - STORM MODE
DXDTA	100	PCRCHA	DX/DT FOR EACH OVERLAND FLOW AND CHANNEL ROUTING
			SEGMENT (FT/SEC)
DYL	50	ET	POSSIBLE HOURS OF SUNSHINE, IN UNITS OF 12 HOURS
D50		DODOUA	NOT CURRENTLY USED
D50A	50	PCRCHA	
EAIR EDY		SNO DATES	EMISSIVITY OF AIR ON DAYS WITHOUT PRECIPITATION END DAY OF SIMULATION
EDT		DATES	END DAY OF SIMULATION END DAY OF INITIALIZATION PERIOD FOR
CDITM		UNIUP	OPTIMIZATION AND SENSITIVITY ANALYSIS
EDYOP		DATOP	END DAY OF OPTIMIZATION OR SENSITIVITY
			ANALYSIS
ELCR			ELEVATION DIFFERENCE FROM CLIMATE STATION TO HRU
nas nas Vef I V			(THOUSANDS OF FEET)
ELV	50	WX	ELEVATION OF HRU (FEET ABOVE MSL)

VARIABLE DIMENSION COMMON

EMO EMOIN		DATES DATOP	END MONTH OF SIMULATION END MONTH OF INITIALIZATION PERIOD FOR
LINUIN		UPITO	OPTIMIZATION AND SENSITIVITY ANALYSIS
EMOOP		DATOP	END MONTH OF OPTIMIZATION OR SENSITIVITY ANALYSIS
EN		~~~	SEDIMENT PARAMETER FOR OVERLAND FLOW PLANE - STORM
ENA ENFIL	50 50	PCRCHA Sm	EN FOR EACH OVERLAND FLOW PLANE - STORM MODE PRECIPITATION AVAILABLE FOR INFILTRATION ON EACH HRU (INCHES)
EPAN EVC EVCAN	12	ET ET	DAILY INPUT VALUE FOR PAN EVAPORATION (INCHES)
EVIMP	50	IMPRV	
EWY		SIZE	END WATER YEAR FOR SIMULATION
EXCS	50	SM	DAILY SOIL WATER IN EXCESS OF SOIL MOISTURE CAPACITY (SMAX) FOR EACH HRU (INCHES)
EXSS	50	BS	DAILY ACCUMULATED VOLUME OF WATER ADDED TO A SUBSURFACE RESERVOIR (ACRE-INCHES)
EYR		DATES	END CALENDAR YEAR FOR SIMULATION
EYRIN		DATOP	END YEAR OF INITIALIZATION PERIOD FOR
		DATOD	OPTIMIZATION AND SENSITIVITY ANALYSIS
EYROP		DATOP	END YEAR OF OPTIMIZATION OR SENSITIVITY ANALYSIS
FLGTH			LENGTH OF OVERLAND FLOW PLANE OR CHANNEL SEGMENT (FEET) - STORM MODE
FREWT	50	SNO	FREE WATER CONTENT OF SNOW ON EACH HRU (INCHES)
FRN			ROUGHNESS PARAMETER FOR OVERLAND FLOW PLANE OR CHANNEL SEGMENT - STORM MODE
FWCAP		SNO	FREE WATER HOLDING CAPACITY OF SNOWPACK (DECIMAL PERCENT OF SNOWPACK WATER EQUIVALENT)
G	60	SENT1	LOWER CONSTRAINT FOR EACH PARAMETER FOR OPTIMIZATION
GSNK	50	BS	COEFFICIENT TO COMPUTE SEEPAGE FROM EACH
			GROUND-WATER RESERVOIR TO A GROUND-WATER SINK
GU	**		LOWER CONSTRAINT OF PARAMETER FOR OPTIMIZATION
GW	50	BS	STORAGE IN EACH GROUND-WATER RESERVOIR (ACRE- INCHES)
GWE1		DATOP	NOT CURRENTLY USED
GWE2		DATOP	NOT CURRENTLY USED
GWS		BS	DAILY INFLOW TO ALL GROUND-WATER RESERVOIRS (INCHES)
GWSNK	50	BS	TOTAL SEEPAGE TO GROUND WATER SINK FOR EACH GROUND-WATER RESERVOIR (ACRE-INCHES)
Н	60	SENT1	
HA	1440		ROUTED OUTFLOW FOR OVERLAND FLOW OR CHANNEL SEGMENTS
HC			FOR 1-60 MINUTE INTERVALS - STORM MODE SEDIMENT PARAMETER FOR OVERLAND FLOW PLANE - STORM MODE

VARIABLE DIMENSION COMMON

НСА	50	PCRCHA	HC FOR EACH HRU - STORM MODE
HORAD		ALL	POTENTIAL SHORTWAVE RADIATION ON HORIZONTAL SURFACE FOR GIVEN DATE (LANGLEYS)
HU			UPPER CONSTRAINT OF PARAMETER FOR OPTIMIZATION
ICBC		EXC	CHANGE PARAMETER VALUES SWITCH (0 = NO CHANGES
			MADE TO PARAMETER VALUES DURING RUN; 1 = CHANGES
			MADE)
ICHG		VOL	COMPUTATION MODE SWITCH (0 = STORM COMPUTATIONS;
			1 = DAILY COMPUTATION)
ICOV	50	SM	VEGETATION COVER TYPE FOR EACH HRU (O= BARE,
101			1= GRASSES, 2= SHURBS, 3= TREES)
IC1 IC2			NOT CURRENTLY USED PEAK AND VOLUME SWITCH (0 = VALUES
162			COMPUTED FROM OBSERVED DISCHARGE; 1 = VALUES
			SUPPLIED BY USER) - STORM MODE
IDB		DATES	
IDE		DATES	
IDOUT		OPT	STORE PREDICTED DAILY VALUES SWITCH (O= NO
			<pre>STORAGE; 1,2 = STORAGE FORMAT OPTIONS)</pre>
IDPLB		PLOT	
IDPLE		PLOT	
IDS IDSW		SIZE	INDEX FOR SPECIFIC RAIN GAGE DATA SET DISTRIBUTED PARAMETER ADJUSTMENT SWITCH FOR
1024			OPTIMIZATION OR SENSITIVITY ANALYSIS (0 = ADJUST
			ALL PARAMETERS; $1 = ADJUST SELECTED PARAMETERS)$
IDUM		SIZE	
IDUS	10	SIZE	DATA USE SWITCH FOR DATA TYPES 1-10 (O= NOT USED;
			1= USED)
IDY		SIZE	CURRENT DAY OF MONTH COUNTER
IGOPT		DATOP	
IHS	~~~		NUMBER OF HYDROGRAPH SEGMENTS IN A STORM PERIOD -
ILOPL	100	SENT1	STORM MODE DISTRIBUTED PARAMETER ADJUSTMENT SWITCH FOR
ILUFL	100	JENTI	OPTIMIZATION AND SENSITIVITY ANALYSIS (O= EQUAL
			INCREMENTS; 1=PROPORTIONAL INCREMENTS)
IMO		SIZE	CURRENT MONTH COUNTER
IMPERV	50	UPR	PERCENT IMPERVIOUS AREA FOR EACH HRU (DECIMAL)
IMPLB		PLOT	BEGIN MONTH FOR DAILY PLOTS
IMPLE		PLOT	END MONTH FOR DAILY PLOTS
INIT		OPT	INITIALIZATION SWITCH - OPTIMIZATION AND
THOD	F 0		SENSITIVITY ANALYSIS
INPR	50	DPR	JULIAN DATES FOR ADJUSTING SNOWPACK WATER
INQ	1440	UNITE	EQUIVALENTS FOR EACH YEAR ACCUMULATED UPSTREAM INPUT TO A CHANNEL SEGMENT
TUÓ	1440	UNTIK	FOR FLOW ROUTING FOR 1-60 MINUTE INTERVALS -
			STORM MODE
INS	1440	UNITRF	WEIGHTED AVERAGE UPSTREAM INPUT TO A CHANNEL
			SEGMENT FOR SEDIMENT ROUTING FOR 1-60 MINUTE
			INTERVALS - STORM MODE
INSW	50	DPR	INTERCEPTION FORM SWITCH ($0 = RAIN; 1 = SNOW$)

VARIABLE DIMENSION COMMON

INTSW		ALL	INTERCEPTION SWITCH ($0 = NO$ INTERCEPTED
			PRECIPITATION; 1 = INTERCEPTED PRECIPITATION AVAILABLE)
IOBF		OPT	OBJECTIVE FUNCTION SELECTION SWITCH (1= SUM
			ABSOLUTE VALUES OF DIFFERENCE; 2= SUM SQUARED
		20 7	DIFFERENCES)
IOBS		OPT	OBSERVED DISCHARGE SWITCH (O= NO DATA; 1= DATA AVAILABLE)
IOBSW		ОРТ	OBJECTIVE FUNCTION COMPUTATION SWITCH ($0 = VALUES$
10000		011	NOT INCLUDED IN COMPUTATION; 1 = INCLUDED)
IOBSWK		SENT2	OBJECTIVE FUNCTION COMPUTATION SWITCH (0 = VALUES
1007		0.D.T	NOT INCLUDED IN COMPUTATION; 1 = INCLUDED)
IOPT		OPT	OPTIMIZATION MODE SWITCH ($0 = NO$ OPTIMIZATION; 1,2 = DAILY OPTIONS; 3,4,5 = STORM OPTIONS)
IOSW		OPT	INPUT/OUTPUT SWITCH - OPTIMIZATION AND SENSITIVITY
1000		011	ANALYSIS
IP		SENT1	
			ERRORS FOR OPTIMIZATION OR SENSITIVITY ANALYSIS
TOET		ET	WHEN IOPT OR ISEN=2 POTENTIAL EVAPOTRANSPIRATION METHOD SWITCH
IPET		E1	(0 = JENSEN-HAISE; 1 = HAMON; 2 = USE PAN DATA)
IPK		ALL	JULIAN DATE TO ADJUST SNOWPACK ON HRUS USING
			OBSERVED SNOW COURSE DATA
IPLOT		PLOT	DAILY VALUES PLOT SWITCH (O= NO PLOTS;
		DLAT	1= PLOT OUTPUT)
IPLTYP		PLOT	DAILY PLOT TYPE SWITCH (O= LINEAR SCALE; 1= SEMI-LOG SCALE)
IPOP1	~-	OPT	DAILY MEAN VALUES PRINT SWITCH ($0 = SUMMARY$
			TABLE; $1 = 0 + ANNUAL$ SUMMARY; $2 = 1 + MONTHLY$
			SUMMARY; $3 = 2 + DAILY$ SUMMARY)
IPOP2		OPT	INDIVIDUAL HRU VALUES PRINT SWITCH (O= NOT
			PRINTED; 1= ANNUAL SUMMARY; 2= 1 + MONTHLY SUMMARY; 3= 2 + DAILY SUMMARY)
IPPT		DPR	INITIALIZATION SWITCH FOR PRECIPITATION VARIABLES,
		0111	SUBROUTINE PRECIP
IPRIOR	~-	SENT1	PRIOR INFORMATION SWITCH FOR OPTIMIZATION OR
			SENSITIVITY ANALYSIS ($0 = NONE$; $1 = PRIOR$
τοστ		OTMNO	INFORMATION AVAILABLE) PRINT STORM HYDROGRAPH SWITCH (= NUMBER OF X-SECTION
IPRT		DTMN1	AT WHICH STORM HYDROGRAPH DATA WILL BE PRINTED) -
			STORM MODE
IPSR	366	DVDT	
			(0 = NO CHANGE; 1 = SNOW; 2 = RAIN)
IPSW		DVDT	PRECIPITATION FORM SWITCH (O= NO DATA;
IPUN1		ΟΡΤ	1= READ INPUT DATA) CALENDAR YEAR JULIAN DATE TO START PRINTING
TLOUT		VEL	INDIVIDUAL HRU VALUES
IPUN2		OPT	CALENDAR YEAR JULIAN DATE TO STOP PRINTING
			INDIVIDUAL HRU VALUES
IPUN3		OPT	CALENDAR YEAR JULIAN DATE TO START PRINTING

·

VARIABLE DIMENSION COMMON

IPUN4		OPT	CALENDAR YEAR JULIAN DATE TO STOP PRINTING
10		CENTS	DAILY BASIN AVERAGES
IQ		SENT1	MOVING AVERAGE FOR CORRELATED DAILY ERRORS FOR
			OPTIMIZATION OR SENSITIVITY ANALYSIS WHEN IOPT
TD		CE1174	OR ISEN=2
IR		SENT1	IP + IQ FOR OPTIMIZATION OR SENSITIVITY ANALYSIS
100	50	20	WHEN IOPT OR ISEN=2
IRD	50	RD	SOLAR RADIATION PLANE ASSOCIATED WITH EACH HRU
IRTYP	10	STOR	TYPE OF ROUTING FOR EACH SURFACE RESERVOIR
7.611			(8 = PULS; 9 = LINEAR)
IRU			INDEX FOR SPECIFIC HYDROLOGIC RESPONSE UNIT
IRUP1	10	STOR	INDEX OF UPSTREAM SURFACE WATER STORAGE RESERVOIR 1
TRUDO	10		FOR EACH SURFACE WATER STORAGE RESERVOIR
IRUP2	10	STOR	INDEX OF UPSTREAM SURFACE WATER STORAGE RESERVOIR 2
	10	070P	FOR EACH SURFACE WATER STORAGE RESERVOIR
IRUP3	10	STOR	INDEX OF UPSTREAM SURFACE WATER STORAGE RESERVOIR 3
TC		DEUCES	FOR EACH SURFACE WATER STORAGE RESERVOIR
IS			STORM EVENT INDEX - STORM MODE
ISAVE		VOL	PRINT/PLOT RECORD COUNTER - STORM MODE
ISBAS			INITIALIZATION SWITCH, SUBROUTINE BASFLW
ISEN		OPT	SENSITIVITY ANALYSIS SWITCH (O= NO ANALYSIS;
тети		007	1, $2 = \text{DAILY OPTIONS}$; 3, $4 = \text{STORM OPTIONS}$)
ISIM		OPT	SIMULATION MODE SWITCH (0= DAILY; 1,2,3=
TCNO		CNO	STORM OPTIONS)
ISNO		SNO	SNOW SWITCH ($\dot{0}$ = NO SNOWPACK; 1 = SNOWPACK)
ISNOSW		UPSNU2	INITIALIZATION SWITCH FOR SNOW VARIABLES, SUBROUTINE
TCHOVE		00000	SNOBAL
ISNOYR		OPSNO	
ISO	50	UPSNU2	SNOWPACK MELT SWITCH FOR EACH HRU (1=
TCOTI	FO	CM	ACCUMULATION STAGE; 2= SPRING MELT STAGE)
ISOIL	50	SM	SOIL TYPE FOR EACH HRU (1=SAND; 2=LOAM;
101		CNO	3=CLAY)
ISP1		SNO	JULIAN DATE TO START LOOKING FOR SPRING SNOW
TCDO		CNO	MELT STAGE.
ISP2		SNO	JULIAN DATE TO FORCE SNOWPACK TO SPRING SNOW
TCC			MELT STAGE.
ISS		 0DT	SEQUENCE NUMBER OF STORM PERIOD - STORM MODE
ISSOL		OPT	
ISSRO			INITIALIZATION SWITCH, SUBROUTINE SRFRO
ISSR1		SWITCH	SURFACE RUNOFF METHOD SWITCH ($0 = \text{LINEAR}$;
TOTAT		CENTO	1 = NON-LINEAR
ISTAT		SENT2	STATISTICAL SUMMARY SWITCH (O=NONE; 1=STATISTICAL
TOTMO		ODT	SUMMARY AT END OF RUN)
ISTMP		OPT	INITIALIZATION SWITCH, SUBROUTINE TEMP
ISUN		SWITCH	STORM SUBSURFACE AND GROUNDWATER ROUTING SWITCH
			(0 = NOT DONE; 1 = SUBSURFACE AND GROUND WATER
TOVI		CUITTOU	INCLUDED IN STORM COMPUTATION)
ISX1			INITIALIZATION SWITCH, SUBROUTINE UNITD
IT	50	ET	TEST FOR START OF TRANSPIRATION PERIOD SWITCH
			(0 = NO TEST; 1 = TEST SUM OF DAILY MAX
			TEMPERATURES VS TST)

VARIABLE DIMENSION COMMON

ITND	50	ET	MONTH THAT TRANSPIRATION ENDS FOR EACH HRU
ITRANS		SENT2	
			SENSITIVITY ANALYSIS (0 = NO TRANSFORMATION OF
			RUNOFF VALUES; 1 = TRANSFORM)
ITST	50	ΕT	MONTH TO BEGIN CHECKING FOR START OF TRANSPIRA-
	••		TION FOR EACH HRU
ITSW	50	ALL	TRANSPIRATION SWITCH FOR EACH HRU (0 =
2.2.			VEGETATION DORMANT; 1= VEGETATION TRANSPIRING)
IUOUT		OPT	STORE PREDICTED STORM VALUES SWITCH (O= NO
			STORAGE; 1= STORE)
IWSW		OPT	INPUT/OUTPUT SWITCH-OPTIMIZATION AND SENSITIVITY
IWSW2		SENT	WRITE SWITCH, OPTIMIZATION AND SENSITIVITY ANALYSIS
IWY		SIZE	CURRENT WATER YEAR COUNTER
JD			END DAY OF STORM PERIOD - STORM MODE
JDS		DATES	NUMBER OF RAIN GAGE DATA SETS
JLDY		ALL	JULIAN DATE, CALENDAR YEAR $(1 = JANUARY 1)$
JM			END MONTH OF STORM PERIOD - STORM MODE
JPL		DTMN1	PLOT SWITCH ($0 = NO PLOTS$; $1 = PLOT$) - STORM MODE
JPR		DTMN1	PRINT SWITCH ($0 = NO PRINT$; $1 = PRINT$) - STORM MODE
JSOL		ALL	JULIAN DATE, SOLAR YEAR $(1 = DECEMBER 22)$
JWDY		ALL	JULIAN DATE, WATER YEAR $(1 = \text{OCTOBER 1})$
JY			END YEAR OF STORM PERIOD - STORM MODE
KD			BEGIN DAY OF HYDROGRAPH SEGMENT - STORM MODE
KDS	50	ALL	INDEX OF RAIN GAGE ASSOCIATED WITH EACH HRU
KF			SEDIMENT PARAMETER FOR OVERLAND FLOW PLANE
KFA	50	PCRCHA	KF FOR EACH OVERLAND FLOW PLANE
KGW	50	BS	INDEX OF GROUND WATER RESERVOIR RECEIVING SEEPAGE
			FROM EACH HRU
KJDY		EXC	JULIAN DAY TO READ IN CHANGES TO HRU PARAMETERS
KNT		BS	NUMBER OF HRUS WITH SNOW COVER
KR			SEDIMENT PARAMETER FOR OVERLAND FLOW PLANE
KRA	50	PCRCHA	
KRES	50	BS	INDEX OF SUBSURFACE RESERVOIR RECEIVING SEEPAGE
			FROM EACH HRU
KRSP	50	BS	INDEX OF GROUND WATER RESERVOIR RECEIVING SEEPAGE
			FROM EACH SUBSURFACE RESERVOIR
KSAT			HYDRAULIC CONDUCTIVITY OF TRANSMISSION ZONE
			(INCHES/HOUR) - STORM MODE
KSTOR	50	STOR	INDEX OF SURFACE WATER RESERVOIR RECEIVING RUNOFF
			FROM EACH HRU
KSV			JULIAN DAY FOR PRECIPITATION FORM ADJUSTMENT
KT			BEGIN TIME OF HYDROGRAPH SEGMENT - STORM MODE
KYR		EXC	CALENDAR YEAR TO READ IN CHANGES TO HRU PARAMETERS
Kl			NUMBER OF DAYS IN WATER YEAR FOR PRECIPITATION
			FORM ADJUSTMENT TO SNOW
К2			NUMBER OF DAYS IN WATER YEAR FOR PRECIPITATION FORM
	~ -		ADJUSTMENT TO RAIN
LBA	50	PCRCHA	INDEX OF OVERLAND FLOW SEGMENT TO BE USED AS INPUT
			TO CHANNEL SEGMENT - STORM MODE

VARIABLE DIMENSION COMMON

LBC			I.D. OF OVERLAND FLOW PLANE PROVIDING LATERAL
INFLOW			
			TO CHANNEL SEGMENT - STORM MODE
LD			END DAY OF HYDROGRAPH SEGMENT - STORM MODE
LMO		SIZE	PREVIOUS MONTH COUNTER
LOP	20	OPT	INDEX NUMBER OF PARAMETER TO BE OPTIMIZED
LS0	50	0PSN02	COUNTER FOR CONSECUTIVE DAYS OF ISOTHERMAL SNOWPACK FOR EACH HRU (5= START SPRING MELT STAGE)
LST	50	OPSNO	SNOWPACK ALBEDO ADJUSTMENT SWITCH ($0 = NO$ ADJUSTMENT 1 = ADJUST FOR SHALLOW SNOWFALL)
LT			END TIME OF HYDROGRAPH SEGMENT - STORM MODE
LYR		SIZE	
MB		DATES	
MDY		ALL	DAY OF MONTH
ME		DATES	
MEN		OPT	END MONTH OF OBJECTIVE FUNCTION COMPUTATION
MFS		OPT	BEGIN MONTH OF OBJECTIVE FUNCTION COMPUTATION
MMA	50		SEDIMENT PARAMETER FOR OVERLAND FLOW PLANE - STORM MODE
MO		ALL	CURRENT MONTH COUNTER
MPCN		DPR	MONTH THAT OVERRIDE OF DRCOR AND DSCOR ENDS
MPCS		DPR	MONTH THAT OVERRIDE OF DRCOR AND DSCOR ENDS
MPC1		DPR	OVERRIDE SWITCH FOR DRCOR AND DSCOR (0= NON-
PIF G I		UFN	OVERRIDE PERIOD; 1= OVERRIDE PERIOD)
MRDC		RD	SWITCH TO DETERMINE METHOD USED TO COMPUTE SOLAR RADIATION FOR MISSING DAYS (O= RADIATION DATA NOT
MSO	50	OPSNO2	USED; 1= DEGREE - DAY; 2= SKY COVER) ENERGY BALANCE SWITCH FOR EACH HRU (1=WINTER PERIOD; 2 = BEGIN LOOKING FOR SPRING MELT PERIOD)
MTSE		ET	MONTH THAT THUNDERSTORM TYPE EVENTS END
MTSS		ET	MONTH THAT THUNDERSTORM TYPE EVENTS START
MXDY		ALL	NUMBER OF DAYS IN YEAR
MYR		ALL	CURRENT CALENDER YEAR
NCRSEG		VOL	NUMBER OF CHANNEL ROUTING SEGMENTS - STORM MODE
ND			BEGIN DAY OF STORM PERIOD - STORM MODE
NDELSA	100		NUMBER OF TIME INCREMENTS FOR ROUTING FOR EACH
	100		OVERLAND FLOW AND CHANNEL SEGMENT - STORM MODE
NDOP		OPT	OPTIMIZATION SWITCH (O= CONTINUE; 1= END)
NDS		ALL	NUMBER OF RAIN GAGE DATA SET
NDSN		SENT	SENSITIVITY ANALYSIS SWITCH (O= CONTINUE; 1= END)
NDTY		SIZE	NUMBER OF DATA TYPES USED IN SIMULATION
NDVR	20,50	SENT1	INDICES OF DISTRIBUTED PARAMETERS TO BE ADJUSTED IN
			OPTIMIZATION AND SENSITIVITY ANALYSIS
NDX			NUMBER OF INTERVALS TO SUBDIVIDE OVERLAND FLOW PLANES OR CHANNEL SEGMENT FOR FINITE-DIFFERENCE
	10	CT75	CALCULATIONS - STORM MODE
NDY	12	SIZE	NUMBER OF DAYS IN EACH MONTH
NGW		BS	NUMBER OF GROUND WATER STORAGE RESERVOIRS
NIRU	*** **		IRU ASSOCIATED WITH OVERLAND FLOW PLANE - STORM MODE

VARIABLE DIMENSION COMMON

NM			BEGIN MONTH OF STORM PERIOD - STORM MODE
NMOBF		SENT	NUMBER OF MONTHS IN DAILY OBJECTIVE FUNCTION FOR
			OPTIMIZATION
NOBF		SENT	NUMBER OF DAYS OR EVENTS INCLUDED IN OBJECTIVE
			FUNCTION FOR OPTIMIZATION
NOFSEG		VOL	NUMBER OF OVERLAND FLOW PLANES - STORM MODE
NPRNT		OPT	PRINT SWITCH DURING OPTIMIZATION (0= NO PRINT;
		~ -	1= PRINT)
NRD		RD	NUMBER OF SOLAR RADIATION PLANES
NREC		SENT2	INDEX FOR DIRECT ACCESS FILE USED IN OPTIMIZATION
		50	OR SENSITIVITY ANALYSIS
NRES		BS	NUMBER OF SUBSURFACE STORAGE RESERVOIRS
NRU		ALL	NUMBER OF HYDROLOGIC RESPONSE UNITS
NS		DFHSEG	NUMBER OF HYDROGRAPH SEGMENTS IN A STORM PERIOD -
NCOC	10	CTOD	STORM MODE
NSOS	10	STOR	NUMBER OF STORAGE-OUTFLOW VALUES IN TABLE FOR PULS
NCD			ROUTING OF SURFACE-WATER RESERVOIR
NSP			NUMBER OF STORM PERIODS - STORM MODE
NST	~ ~	VOL	TOTAL NUMBER OF HYDROGRAPH SEGMENTS IN ALL STORM EVENTS - STORM MODE
NSTOR		STOR	NUMBER OF SURFACE WATER STORAGE RESERVOIRS
NSW	50	SNOP	NUMBER OF SURFACE WATER STURAGE RESERVOIRS
NTRY		SENT1	NUMBER OF ADJUSTMENTS PER PARAMETER FOR OPTIMIZATION
NV		SENT	NUMBER OF PARAMETERS TO BE OPTIMIZED
NVAR	20	SENT1	NUMBER OF VALUES OF A DISTRIBUTED PARAMETER TO BE
NVAK	20	SENIT	ADJUSTED DURING OPTIMIZATION
NXSA	100	реренл	NUMBER OF CROSS-SECTIONS FOR ROUTING FOR EACH
МАЗА	100	runna	OVERLAND FLOW AND CHANNEL SEGMENT - STORM MODE
NY			BEGIN YEAR OF STORM PERIOD - STORM MODE
NYR		SIZE	NUMBER OF WATER YEARS TO BE SIMULATED
NYRI		OPT	NUMBER OF YEARS IN INITIALIZATION PERIOD
		VET	OPTIMIZATION OR SENSITIVITY ANALYSIS
OBF	10	OPT	COMPUTED OBJECTIVE FUNCTIONS
OBFOPT		SENT2	FINAL OBJECTIVE FUNCTION VALUE FOR OPTIMIZATION
OBPK	50	VOL	OBSERVED STORM PEAK (CFS) - STORM MODE
OBRO	50	VOL	OBSERVED STORM RUNOFF VOLUME (INCHES) - STORM MODE
OBSRUN	366	SENT1	
obolition	000		SENSITIVITY ANALYSIS
ODELSA	100	PCRCHA	NUMBER OF TIME INCREMENTS FOR PRINT OR PLOT FOR EACH
	~~~		OVERLAND FLOW AND CHANNEL SEGMENT - STORM MODE
OFIPA	50	PCRCHA	PORTION OF OVERLAND FLOW PLANE THAT IS IMPERVIOUS
			(DECIMAL PERCENT) - STORM MODE
OFLT	50	SED	TOTAL AREA FOR EACH OVERLAND FLOW PLANE - STORM MODE
ORAD		ALL	COMPUTED SHORTWAVE RADIATION ON HORIZONTAL SURFACE
			(LANGLEYS)
ORO		ALL	DAILY VALUE OF OBSERVED DISCHARGE (CFS)
02	10,10	STOR	OUTFLOW-STORAGE TABLE VALUES FOR PULS ROUTING

VARIABLE DIMENSION COMMON

Р	20	SENT1	INITIAL ADJUSTMENT FACTOR FOR EACH PARAMETER
			FOR OPTIMIZATION
PACT	50	SNO	SNOWPACK TEMPERATURE (DEGREES C), EACH HRU
PARMCA	10	SIZE	FIVE DIGIT CODE TO IDENTIFY EACH TYPE OF INPUT
			CLIMATE, PRECIPITATION AND DISCHARGE DATA
PARM1			KINEMATIC PARAMETER ALPHA FOR TYPE = 4 OR WIDTH
			OF CHANNEL FOR CHANNEL TYPE = $1 \text{ OR } 3 - \text{STORM MODE}$
PARM2			KINEMATIC PARAMETER M FOR TYPE = 4 - STORM MODE
PARS	~ ~	RD	CORRECTION FACTOR FOR COMPUTED SOLAR RADIATION
			ON SUMMER DAY WITH PRECIPITATION (DECIMAL
			PERCENT)
PARW		RD	CORRECTION FACTOR FOR COMPUTED SOLAR RADIATION
			ON WINTER DAY WITH PRECIPITATION (DECIMAL
			PERCENT)
PAT	12	DPR	MAXIMUM AIR TEMPERATURE, WHICH WHEN EXCEEDED,
			FORCES PRECIPITATION TO BE ALL RAIN
PCONR		DPR	OVERRIDE VALUE FOR RAINFALL ADJUSTMENT FACTOR DRCOR
			WHEN MPC1=1
PCONS		DPR	OVERRIDE VALUE FOR SNOWFALL ADJUSTMENT FACTOR DSCOR
		57 10	WHEN MPC1=1
PCOR			CORRECTION FACTOR FOR PRECIPITATION ON AN HRU
PCRID			IDENTIFICATION CHARACTERS FOR OVERLAND FLOW
TORID			PLANES, CHANNEL AND RESERVOIR SEGMENTS AND
			JUNCTIONS - STORM MODE
PCRIDA	100	рсрсна	PCRID FOR EACH PLANE, CHANNEL, RESERVOIR OR
ICKIDA	100	CROIR	JUNCTION - STORM MODE
PERV	50	UPR	PERCENT OF PERVIOUS AREA ON EACH HRU (DECIMAL)
PET	50	ALL	COMPUTED POTENTIAL EVAPOTRANSPIRATION FOR EACH
F <b>L</b> 1	50	ALL	HRU (INCHES)
PHI	10	SENT2	ARRAY OF AUTOREGRESSIVE AND MOVING AVERAGE
FAT	10	JENIZ	PARAMETERS FOR OPTIMIZATION AND SENSITIVITY ANALYSIS
PICE	50	SNO	PORTION OF SNOWPACK EXISTING AS ICE ON EACH HRU
PICE	50	SINU	
DTHO		CENTS	(INCHES) FRACTION BY WHICH PARAMETERS ARE ADJUSTED IN A
PINC		SENT1	
DVAD	50	CNOD	SENSITIVITY ANALYSIS
PKAD	50	SNOP	ADJUSTED SNOWPACK WATER EQUIVALENT COMPUTED FROM
0V055	50	<u></u>	OBSERVED SNOW COURSE DATA
PKDEF	50	SNO	CALORIES REQUIRED TO BRING PACK TO ISOTHERMAL
<b>D1 141</b>		<b>D</b> / <b>AT</b>	STATE, EACH HRU
PLMN		PLOT	MINIMUM VALUE FOR DAILY PLOT
PLMX		PLOT	MAXIMUM VALUE FOR DAILY PLOT
PP		ALL	AREA WEIGHTED PRECIPITATION FOR BASIN (INCHES)
PPAR	5	DPR	AREA ASSOCIATED WITH EACH PRECIPITATION GAGE (ACRES)
PPT		ALL	MEASURED PRECIPITATION (INCHES)
PPTI	50	ALL	ADJUSTED PRECIPITATION FOR IMPERVIOUS AREA OF EACH
			HRU (INCHES)
PQ	50	SED	TOTAL ROUTED FLOW FOR EACH STORM PERIOD (INCHES) -
			STORM MODE
PRMX	50	SNOP	PERCENT OF TOTAL PRECIPITATION IN A MIXED RAIN-SNOW
			EVENT THAT IS RAIN (DECIMAL)

VARIABLE DIMENSION COMMON

PRORO	366	PLOT	OBSERVED MEAN DISCHARGE VALUES FOR EACH DAY OF WATER
			YEAR (CFS)
PROUTA	100		PRTOUT FOR EACH ROUTING SEGMENT - STORM MODE
PRPRO	366	PLOT	PREDICTED MEAN DISCHARGE VALUES FOR EACH DAY OF WATER YEAR (CFS)
PRTIN			SWITCH TO PRINT OR PLOT INFLOW TO ROUTING
			SEGMENTS - STORM MODE ( $0 = NONE$ ; $1 = PRINT$ ;
0.077114		Depairs	2 = PLOT)
PRTINA PRTOUT	100	PCRCHA	PRTIN FOR EACH ROUTING SEGMENT - STORM MODE SWITCH TO PRINT OR PLOT OUTFLOW TO ROUTING
PRIOUT			SEGMENTS - STORM MODE (0 = NONE; 1 = PRINT;
			2 = PLOT)
PSED	50	SED	TOTAL ROUTED SEDIMENT LOAD FOR EACH STORM PERIOD
5.6.4			(TONS) - STORM MODE
PSN	50	SNOP	WATER EQUIVALENT OF NEW SNOW ON EACH HRU (INCHES)
PSP			COMBINED EFFECT OF MOISTURE DEFICIT AND
			CAPILLARY POTENTIAL (INCHES) - STORM MODE
PSS	50	OPSNO	ACCUMULATED SUM OF NET PRECIPITATION BEGINNING ON
			THE FIRST DAY OF SNOWPACK FORMATION
PTF			PRECIPITATION WHICH FALLS THROUGH VEGETATION CANOPY (INCHES)
PTN	50	ALL	NET PRECIPITATION FOR EACH HRU (INCHES)
PWEQV	50	SNO	WATER EQUIVALENT OF SNOWPACK ON EACH HRU
,			(INCHES)
QA	1440	UNITRF	ROUTED OUTFLOW FOR AN OVERLAND FLOW OR CHANNEL
			SEGMENT FOR 1-60 MINUTE INTERVALS (CFS/FT) - STORM MODE
QCOND			HEAT CONDUCTION BETWEEN SNOW SURFACE AND SNOWPACK
QUUIL			(CALORIES)
QLAT	1440	UNITRF	ACCUMULATED LATERAL INFLOW TO A CHANNEL SEGMENT FOR
			FLOW ROUTING FOR 1-60 MINUTE INTERVALS (CFS/FT)
OMVA	100	TNITCO	STORM MODE
QMXA	100	INTICO	MAXIMUM ROUTED DISCHARGE FOR EACH OVERLAND FLOW OR CHANNEL SEGMENT FOR A STORM EVENT - STORM MODE
QQ	11,100	INITCD	INITIAL DISCHARGE VALUES FOR EACH X-SECTION OF EACH
	,		OVERLAND FLOW AND CHANNEL SEGMENT - STORM MODE
QQI	11,50	INITCD	INITIAL FLOW VALUE FOR EACH X-SECTION FOR IMPERVIOUS
000	10	CTOD	AREA OF EACH OVERLAND FLOW PLANE - STORM MODE
QRO	10	STOR	INITIAL DAY MEAN OUTFLOW FOR EACH SURFACE STORAGE RESERVOIR (CFS)
QSDY		QSOUT	DAY OF OUTPUT RECORD FOR PLOT OR PRINT - STORM MODE
QSID		QSOUT	OVERLAND FLOW OR CHANNEL SEGMENT ID FOR OUTPUT
·			RECORD FOR PLOT OR PRINT - STORM MODE
QSIO		QSOUT	INFLOW/OUTFLOW SWITCH FOR OUTPUT RECORD FOR PLOT OR
			PRINT (1 = INFLOW TO SEGMENT; 2 = OUTFLOW) - STORM MODE
QSMO	~ -	QSOUT	MONTH OF OUTPUT RECORD FOR PLOT OR PRINT - STORM MODE
40110		40001	

VARIABLE DIMENSION COMMON

.

QSQS		QSOUT	TYPE SWITCH FOR OUTPUT RECORD FOR PLOT OR PRINT $(1 = PRINT DISCHARGE; 2 = PRINT SEDIMENT; 3 = PLOT$
QSRPD		QSOUT	DISCHARGE; 4 = PLOT SEDIMENT) - STORM MODE VALUES PER DAY FOR OUTPUT RECORD FOR PLOT OR PRINT- STORM MODE
QSWY		QSOUT	WATER YEAR OF OUTPUT RECORD FOR PLOT OR PRINT -
RAD	20,13	RD	STORM MODE POTENTIAL SHORTWAVE RADIATION FOR EACH SOLAR
RAJ			RADIATION PLANE FOR 13 DATES (LANGLEYS) RATIO OF ACTUAL TO POTENTIAL SOLAR RADIATION FOR
RAS		<b>B</b> S	A HORIZONTAL SURFACE DAILY SUBSURFACE FLOW FOR ALL SUBSURFACE RESERVOIRS
RASQ	50	BS	(ACRE-INCHES) DAILY SUBSURFACE FLOW FROM EACH SUBSURFACE
RBA	50	PCRCHA	RESERVOIR (ACRE-INCHES) INDEX OF OVERLAND FLOW SEGMENT TO BE USED AS
RBC			INPUT TO CHANNEL SEGMENT - STORM MODE I.D. OF OVERLAND FLOW PLANE PROVIDING LATERAL INFLOW
RCB	50	BS	TO CHANNEL SEGMENT - STORM MODE ROUTING COEFFICIENT FOR EACH GROUNDWATER
RCF	50	BS	RESERVOIR LINEAR ROUTING COEFFICIENT FOR EACH SUBSURFACE
RCP	50	BS ,	RESERVOIR NON-LINEAR ROUTING COEFFICIENT FOR EACH SUB-
RCS	10	STOR	SURFACE RESERVOIR SURFACE STORAGE RESERVOIR LINEAR ROUTING COEFFICIENT
RC1			FOR EACH RESERVOIR AVERAGE BASEFLOW OR PEAK DISCHARGE WHEN IC2 = 0
RC2			OR 1 - STORM MODE VOLUME OF RUNOFF IN INCHES PER SQUARE MILE WHEN
NOL			IC2 = 1 - STORM MODE
RDB		RD	COEFFICIENT USED IN SKY COVER - SOLAR RADIATION RELATION
RDC	12	RD	Y - INTERCEPT FOR RELATION BETWEEN TEMPERATURE (X) AND 1) DEGREE DAY (Y) OR 2) SKY COVER (Y)
			WHEN MRDC = 1 OR 2
RDM	12	RD	SLOPE FOR RELATION BETWEEN TEMPERATURE (X) AND
			1) DEGREE DAY (Y) OR 2) SKY COVER (Y) WHEN
RDMX		RD	MRDC = 1 OR 2 MAXIMUM PERCENT OF POTENTIAL SOLAR RADIATION
000		00	(DECIMAL)
RDP	48 - 48	RD	COEFFICIENT USED IN SKY COVER - SOLAR RADIATION RELATION
RECHR	50	SM	STORAGE IN UPPER PART OF SOIL PROFILE WHERE LOSSES OCCUR AS EVAPORATION AND TRANSPIRATION
			(INCHES)
REMX	50	SM	MAXIMUM VALUE OF RECHR FOR EACH HRU (INCHES)
RES	50	BS	STORAGE IN EACH SUBSURFACE RESERVOIR (ACRE-INCHES)
			(

VARIABLE DIMENSION COMMON

RESMX	50	BS	COEFFICIENT FOR ROUTING WATER FROM EACH SUB- SURFACE RESERVOIR TO GROUNDWATER RESERVOIR
RETIP	50	IMPRV	MAXIMUM RETENTION STORAGE ON IMPERVIOUS AREA FOR EACH HRU (INCHES)
REXP	50	BS	COEFFICIENT FOR ROUTING WATER FROM EACH SUB- SURFACE RESERVOIR TO GROUNDWATER RESERVOIR
RFL		DFHSEG	READ FLAG FOR CONTINUATION OF STORM HYDROGRAPH FROM PREVIOUS DAY - STORM MODE
RGF			RATIO OF COMBINED EFFECTS OF MOISTURE DEFICIT AND CAPILLARY POTENTIAL AT WETTING FRONT FROM WILTING POINT TO FIELD CAPACITY - STORM MODE
RITEA	50	PCRCHA	WRITE SWITCH FOR EACH CHANNEL, RESERVOIR OR JUNCTION ( $0 = NO$ STORAGE; $1 = OUTPUT$ DATA STORED
RMXA		SNOP	FOR INPUT TO SUBSEQUENT SEGMENT) - STORM MODE PROPORTION OF RAIN IN RAIN/SNOW EVENT ABOVE WHICH SNOW ALBEDO IS NOT RESET FOR SNOWPACK ACCUMULATION STAGE
RMXM		SNOP	PROPORTION OF RAIN IN RAIN/SNOW EVENT ABOVE WHICH SNOW ALBEDO IS NOT RESET FOR SNOWPACK MELT STAGE
RNSTS	50	DPR	INTERCEPTION STORAGE CAPACITY OF UNIT AREA OF VEGETATION FOR RAIN DURING SUMMER PERIOD, FOR EACH HRU (INCHES)
RNSTW	50	DPR	INTERCEPTION STORAGE CAPACITY OF UNIT AREA OF VEGETATION FOR RAIN DURING WINTER PERIOD FOR EACH HRU (INCHES)
RQD		SED	DAILY ROUTED FLOW DURING STORM PERIOD - STORM MODE
RSEP	50	520	SEEPAGE RATE FROM EACH SUBSURFACE RESERVOIR TO
NOLI	00		GROUND WATER RESERVOIR (INCHES/DAY)
RSTOR	50	IMPRV	RETENTION STORAGE ON IMPERVIOUS AREA FOR EACH HRU (INCHES)
SA	50	WX	SLOPÈ AND ASPECT FOR EACH RADIATION PLANE
SALB	50	OPSNO	ALBEDO ON DAY PRIOR TO LAST SNOW FOR EACH HRU
SAS		SM	TOTAL SURFACE RUNOFF FROM ALL HRUS (ACRE-INCHES)
SCN	50	SM	MINIMUM CONTRIBUTING AREA FOR SURFACE RUNOFF WHEN ISSR1 = 0; COEFFICIENT IN CONTRIBUTING AREA - SOIL MOISTURE INDEX RELATION WHEN ISSR1 = 1
SCT	50	SM	DIFFERENCE BETWEEN MAXIMUM AND MINIMUM CONTRIBUTING AREA FOR SURFACE RUNOFF FOR EACH HRU
SCX	50	SM	MAXIMUM POSSIBLE CONTRIBUTING AREA FOR SURFACE RUNOFF AS PROPORTION OF EACH HRU
SC1	50	SM	COEFFICIENT IN SURFACE RUNOFF CONTRIBUTING AREA - SOIL MOISTURE INDEX RELATION
SEP	50	BS	SEEPAGE RATE FROM SOIL MOISTURE EXCESS TO EACH GROUNDWATER RESERVOIR (INCHES/DAY)
SETCON	-74 607	SNO	SNOWPACK SETTLEMENT TIME CONSTANT
SFL	nas vita	DFHSEG	
			DAY - STORM MODE
SGW		BS	TOTAL DAILY GROUNDWATER FLOW FROM ALL GROUNDWATER RESERVOIRS (ACRE-INCHES)

VARIABLE DIMENSION COMMON

SIMOPT	3	VOL	NOT CURRENTLY USED
SLP	50	SM	SLOPE OF EACH HRU (DECIMAL PERCENT)
SLST	50	OPSNO	NUMBER OF DAYS SINCE LAST SNOWFALL ON EACH HRU
SMAV	50	SM	DAILY AVAILABLE WATER IN SOIL PROFILE FOR EACH HRU
			(INCHES)
SMAX	50	SM	MAXIMUM AVAILABLE WATER HOLDING CAPACITY OF SOIL
			PROFILE FOR EACH HRU (INCHES)
SMLT	50	SNO	DAILY SNOWMELT FOR EACH HRU (INCHES)
SMSA	50	DSM	ACCUMULATED INFILTRATION FOR EACH HRU (INCHES)
JUJA	30	0.5M	- STORM MODE
SMVOPT	366	SENT1	PREDICTED RUNOFF PRODUCED FROM FINAL PARAMETER
			VALUES OBTAINED IN OPTIMIZATION
SNEV	50	SNO	EVAPORATION FROM SNOWPACK FOR EACH HRU (INCHES)
SNST	50	DPR	INTERCEPTION STORAGE CAPACITY OF UNIT AREA OF
31131	50	Urn	
			VEGETATION FOR SNOW, FOR EACH HRU (INCHES, WATER
CHCH	50	00000	EQUIVALENT)
SNSV	50	OPSNO	DEPTH OF NEW SNOW ON EACH HRU (INCHES)
SOLF			RATIO OF ACTUAL TO POTENTIAL SOLAR RADIATION FOR
			A HORIZONTAL SURFACE
SRO	50	SM	SURFACE RUNOFF FROM EACH HRU (INCHES)
SRS		BS	TOTAL DAILY SUBSURFACE FLOW FROM ALL SUBSURFACE
			RESERVOIRS (ACRE-INCHES)
SRX	50	SM	MAXIMUM DAILY SNOWMELT INFILTRATION CAPACITY OF SOIL
			PROFILE AT FIELD CAPACITY FOR EACH HRU (INCHES)
SSGW		BS	TOTAL FLOW FROM ALL SUBSURFACE RESERVOIRS TO
<b>C</b> un		50	GROUND-WATER RESERVOIRS FOR WATER YEAR (INCHES)
SSH	20,13	ET	HOURS BETWEEN SUNRISE AND SUNSET FOR EACH RADIATION
<b>JJII</b>	20,10		PLANE FOR 13 DATES
STAIDC	32	SIZE	ARRAY OF 16 DIGIT STATION IDENTIFICATION NUMBERS FOR
STAIDC	52	SILE	
CTATOD	0 5	CT75	CLIMATE DATA
STAIDP	8,5	SIZE	ARRAY OF 16-DIGIT STATION IDENTIFICATION NUMBERS
			FOR PRECIPITATION DATA
STATCA	10	SIZE	FIVE DIGIT CODE USED IN CONJUNCTION WITH PARMCA TO
			DISTINGUISH INPUT DATA TYPES
STO	10	STOR	INITIAL STORAGE IN EACH SURFACE RESERVOIR (CFS-DAYS)
SWRD	50	ALL	COMPUTED SW RADIATION FOR EACH HRU (LANGLEYS)
SX	50	BS	PORTION OF SNOWMELT THAT BECOMES SURFACE RUNOFF
			(INCHES)
S15	10,10	STOR	SLOPE OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN
010	20,20	oron	THE PULS ROUTING TABLE FOR 15 MINUTE RESERVOIR
			ROUTING - STORM MODE
S2	10 10	STOR	STORAGE VALUES IN OUTFLOW/STORAGE TABLE FOR PULS
32	10,10	SIUK	
6.24	10 10	CT00	ROUTING (CFS DAYS)
S24	10,10	STOR	SLOPE OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN
			THE PULS ROUTING TABLE FOR 24 HOUR RESERVOIR ROUTING
S5	10,10	STOR	SLOPE OF LINE DRAWN BETWEEN TWO ADJACENT POINTS IN
			THE PULS ROUTING TABLE FOR 5 MINUTE RESERVOIR
			ROUTING - STORM MODE

VARIABLE DIMENSION COMMON

ومستراب والمتعادي ومراجع والمتقاد والمعادية	سيبعي الشاعد ويعبيه فنعد بتعصيفات المستعديين	ويبهج والمنافق والمركان المجرورية الشريقة	
ТА	1440	UNITRF	ROUTED SEDIMENT OUTFLOW FOR AN OVERLAND FLOW OR CHANNEL SEGMENT FOR 1-60 MINUTE INTERVALS (KG/CU.FT./S) - STORM MODE
TAVO	EO	A I 3	
TAVC	50	ALL	DAILY AVERAGE TEMPERATURE FOR EACH HRU (DEGREES C)
TAVF	50	ALL	DAILY AVERAGE TEMPERATURE FOR EACH HRU (DEGREES F)
TCAL	50	SNO	DAILY NET ENERGY BALANCE FOR EACH HRU WITH
			SNOW
TCRN			MONTHLY MINIMUM TEMPERATURE ADJUSTMENT FACTOR FOR
			AN HRU (DEGREES C OR F)
TCRX			MONTHLY MAXIMUM TEMPERATURE ADJUSTMENT FACTOR FOR
			AN HRU (DEGREES C OR F)
TESTNO	50	OPT	SWITCH TO INCLUDE STORM IN OPTIMIZATION OR
1201110	50	011	SENSITIVITY ANALYSIS (O= NOT INCLUDED; 1= INCLUDED)
THRES			MINIMUM DEPTH OF FLOW FOR CONTINUATION OF ROUTING
THRES			(FT) - STORM MODE
TUDECA	100	DODOUA	
THRESA	100	PUKUNA	THRES FOR EACH OVERLAND FLOW PLANE OR CHANNEL
			ROUTING SEGMENT (FT) - STORM MODE
TITL	18	SIZE	TITLE FOR PRINTED OUTPUT (UP TO 70 CHARACTERS)
TLAT	1440	UNITRF	LATERAL SEDIMENT INFLOW TO A CHANNEL SEGMENT FOR
			SEDIMENT ROUTING FOR 1-60 MINUTE INTERVALS
			(KG/SQ.FT./S) - STORM MODE
TLN	12	WX	LAPSE RATE FOR MINIMUM DAILY TEMPERATURE FOR MONTHS
			1-12 (DEGREES C OR F)
TLPS		WX	NOT CURRENTLY USED
TLX	12	WX	LAPSE RATE FOR MAXIMUM DAILY AIR TEMPERATURE FOR
1 64	<i>6</i>	WA	MONTHS 1-12 (DEGREES C OR F)
TMN		WX	DAILY MINIMUM TEMPERATURE MEASURED AT CLIMATE
1 27111		WΛ	
TMALE	50	A.L. (	STATION (DEGREES C OR F)
TMNF	50	ALL	DAILY MINIMUM TEMPERATURE FOR EACH HRU (DEGREES F)
TMX	*ie us	₩X	DAILY MAXIMUM TEMPERATURE MEASURED AT CLIMATE
			STATION (DEGREES C OR F)
TMXF	50	ALL	DAILY MAXIMUM TEMPERATURE FOR EACH HRU (DEGREES F)
TNAJ	50	WX	ADJUSTMENT FOR MINIMUM AIR TEMPERATURE FOR SLOPE AND
			ASPECT FOR EACH HRU (DEGREES C OR F)
TRNCF	50	SNO	TRANSMISSION COEFFICIENT FOR SHORTWAVE RADIATION
			THROUGH VEGETATION CANOPY FOR EACH HRU
TSM	50	SENT2	SUM OF DAILY MAXIMUM TEMPERATURE TO DETERMINE START
	~~	-ur a ₁₀ ; 1 i faa	OF ACTIVE ET PERIOD FOR EACH HRU
TST	50	ET	ACCUMULATED DAILY MAXIMUM TEMPERATURE VALUE FOR
131	50	L I	MONTH ITST AT WHICH TRANSPIRATION BEGINS FOR EACH
TOUL	<b>F</b> .0	CED	HRU
TSUW	50	SED	SEDIMENT LOAD FROM EACH OVERLAND FLOW PLANE
			(TONS/DAY) - STORM MODE
TT	11,100	INITCD	INITIAL SEDIMENT VALUES FOR EACH X-SECTION FOR EACH
			OVERLAND FLOW AND CHANNEL SEGMENT (KG/CU.FT)
			- STORM MODE
TXAJ	50	WX	ADJUSTMENT FOR MAXIMUM AIR TEMPERATURE FOR SLOPE AND
			ASPECT FOR EACH HRU (DEGREES C OR F)
TYPE			TYPE OF OVERLAND FLOW PLANE OR CHANNEL ROUTING
1115			SEGMENT - STORM MODE
			JEURENT STONT NODE

VARIABLE DIMENSION COMMON

TYPEA	100	PCRCHA	TYPE FOR EACH OVERLAND FLOW PLANE OR CHANNEL ROUTING
UGS	50	BS	SEGMENT - STORM MODE SEEPAGE TO GROUND WATER RESERVOIRS FROM EACH HRU
UINF	50,96	UNSS	(INCHES) SUBSURFACE FLOW FOR EACH SUBSURFACE RESERVOIR AT
UNBAS	50,96	UNSS	15 MINUTE INTERVALS (INCHES) - STORM MODE GROUND WATER FLOW FOR EACH GROUND WATER RESERVOIR
UPA	50,3	PCRCHA	AT 15 MINUTE INTERVALS (INCHES) - STORM MODE UPSTREAM INFLOW SEGMENT I.D.S FOR EACH CHANNEL ROUTING SEGMENT - STORM MODE
UPCOR	50	UPR	STORM PRECIPITATION CORRECTION FACTOR FOR EACH HRU
UPE	1440	UNITRF	PRECIPITATION EXCESS FOR 1 TO 15 MINUTE INTERVALS (INCHES) - STORM MODE
UPSWA	50	PCRCHA	UPSTREAM INFLOW SWITCH FOR EACH CHANNEL ROUTING SEGMENT - STORM MODE (0 = NONE; 1 = UPSTREAM INFLOW)
UP1	an. 40		UPSTREAM INFLOW SEGMENT FOR CHANNEL ROUTING SEGMENT - STORM MODE
UP2			UPSTREAM INFLOW SEGMENT FOR CHANNEL ROUTING SEGMENT - STORM MODE
UP3			UPSTREAM INFLOW SEGMENT FOR CHANNEL ROUTING SEGMENT - STORM MODE
USS	50	BS	SEEPAGE TO SUBSURFACE RESERVOIRS FROM EACH HRU
UVWY	367	UVRT	(INCHES) STORM VALUES SWITCH FOR EACH DAY OF WATER YEAR - STO MODE (0 = NONE; 1 = PRECIPITATION; 2 = PRECIPITATION
VBIN	20,20	SENT1	AND DISCHARGE) PRIOR INFORMATION COVARIANCE MATRIX FOR OPTIMIZATION OR SENSITIVITY ANALYSIS
WCTX		ET	NOT CURRENTLY USED
WVD	10,10	STOR	CALCULATED TABLE VALUES OF (2S/DT + 0) TO DETERMINE OUTFLOW FOR DAILY PULS ROUTING
WV15	10,10	STOR	CALCULATED TABLE VALUES OF (2S/DT + 0) TO DETERMINE OUTFLOW FOR 15 MINUTE PULS ROUTING
WV5	10,10	STOR	CALCULATED TABLE VALUES OF (2S/DT + 0) TO DETERMINE OUTFLOW FOR 5 MINUTE PULS ROUTING
WY		DEHSEG	WATER YEAR OF STORM EVENT - STORM MODE
WYD			WATER YEAR DAY OF STORM EVENT - STORM MODE
X	5,50	VOL	INFILTRATION PARAMETERS FOR EACH HRU - STORM MODE
XIN	50	DPR	INTERCEPTION FOR EACH HRU (INCHES)
XINLOS	50	ALL	INTERCEPTION LOSS FOR EACH HRU (INCHES)
XOPT	20	SENT	FINAL VALUES OF PARAMETERS OBTAINED FROM OPTIMIZATION
ХХ	20	SENT	ARRAY OF PARAMETERS FOR OPTIMIZATION OR SENSITIVITY ANALYSIS
XXAVE	20	SENT1	AVERAGE VALUE OF DISTRIBUTED PARAMETERS FOR OPTIMIZATION OR SENSITIVITY ANALYSIS
XXDEV	20,50	SENT1	DEVIATION OF DISTRIBUTED PARAMETERS FROM AVERAGE FOR OPTIMIZATION OR SENSITIVITY ANALYSIS
TINEC	20.20	SENT1	INFORMATION MATRIX FOR SENSITIVITY ANALYSIS
ZINFC	20,20	SENT1 SENT1	INFORMATION MATRIX FOR SENSITIVITY ANALYSIS
ZINV	20,20	SENIT	ANALYSIS

## ATTACHMENT VI

## System labeled COMMON areas

The labeled common areas used in PRMS, the variables included in each common area and the subroutines in which they are used are listed in table VI-1.

COMMON	6 8 8 9	VAR	IABLES		SUB	ROUTINES	
ALL	SCODE DIRL ITSW(50) KDS(50) MYR ORO PTN(50) TMNF(50)	PPTI(50) HORAD JLDY MDY NDS PET(50) SWRD(50) TMXF(50)	DAT INTSW JSOL MO NRU PP TAVC(50) XINLOS(50)	DARU(50) IPK JWDY MXDY ORAD PPT TAVF(50)	BASFLW INTLOS PKADJ PRTHYD ROUTE SNOBAL SUMALL TIMEY UVRET	BLKDAT INVIN PRECIP RESVRD SENST SOLRAD SUMUNT UNITD	DATIN PETS PRMAIN ROSOPT SMBAL SRFRO TEMP UNSM
BS	ARG(50) GWS KRSP(50) RCB(50) SEP(50) UGS(50) KRS BASQ(50)	ARS(50) KGW(50) NGW RCF(50) SGW USS(50) EXSS(50) RASQ(50)	BAS KNT NRES RCP(50) SRS RESMX(50) GSNK(50) RSEP(50)	GW(50) KRES(50) RAS RES(50) SX(50) REXP(50) GWSNK(50)	BASFLW PARAM ROUTE SUMALL	DATIN RESVRD SENST UNSM	OPINIT ROSOPT SMBAL
DATES	EYR EMO IDB	BMO EDY IDE	BDY MB JDS	EYR ME	DATIN PETS SENST	DVRETR PRMAIN SUMALL	INVIN ROSOPT TIMEY
DATOP	BYRIN EMOIN BDYOP IGOPT	BMOIN EDYIN EYROP GWE1	BDYIN BYROP EMOOP GWE2	EYRIN BMOOP EDYOP	DATIN	ROSOPT	SENST

Table VI-1.--System labeled common areas

#### COMMON ! VARIABLES SUBROUTINES DFHSEG WY WYD NS IS PRTHYD ROUTE UNITD RFL SFL **UNSM** DFH(20) DPR BST DRCOR(50) DSCOR(50)INPK(50)BLKDAT DATIN INTLOS IPPT AJMX(12)PAT(12) RNSTS(50) PARAM PETS PRECIP RNSTW(50) SNST(50) XIN(50)INSW(50)PRMAIN ROSOPT SENST COVDNS(50) COVDNW(50) PPAR(3) MPC1 SMBAL SNOBAL SOLRAD MPCS MPCN PCONR **PCONS** SUMALL TIMEY UNITD DSM BMSA(50)SMSA(50) BLKDAT UNITD DTMN1 DTMN JPL JPR IPRT INVIN PRMAIN PRTHYD DUMV DUM1 DUM2 PRMAIN DVDT DS(366,7) DVP(366,5) IPSR(366) IPSW BLKDAT DATIN DVRETR PRECIP PRMAIN ROSOPT SENST SUMALL TIMEY ET CTS(12) CTW CTX(50) IT(50) DATIN INTLOS PARAM ITND(50)ITST(50)TST(50) PETS PRMAIN ROSOPT WCTX EVC(12) EPAN IPET SSH(20,13); SENST SNOBAL SOLRAD DYL(50)SOLTAB UNITD MTSS MTSE IMPRV DARP(50)DARIP(50) RSTOR(50) RETIP(50) BLKDAT DATIN SMBAL EVIMP(50) DATP SRFRO SUMALL UNITD DATIP UNSM INITCD QMXA(100) AA(11,100) 00(11,100)TT(11,100); UNITD ROUTE AAI(11,50) QQI(11, 50)OPSNO LST(50)SNSV(50)SALB(50) SLST(50) BLKDAT CALIN PKADJ ROSOPT SENST SNOBAL ISNOYR DPT(50)PSS(50)

## Table VI-1.--System labeled common areas--Continued.

ISNOSW

MS0(50)

OPSNO2

ISO(50)

LSO(50)

PRMAIN

SNOBAL

BLKDAT

SENST

ROSOPT

TIMEY

COMMON		SUBROUTINES					
OPT	IOPT IPUN1 ISSOL MFS NPRNT IOBS TESTNO(50)	IOSW IPUN2 ISTMP INIT IWSW OBF(10) IDOUT	IPOP1 IPUN3 LCP(20) NYRI ISEN IOBF IUOUT	IPOP2 IPUN4 MFN NDOP ISIM IOBSW	BLKDAT DVRETR PARAM ROSOPT SENST SUMALL TIMEY	COROPT INVIN PKADJ ROUTE SOLRAD SUMUNT UNITD	DATIN OPINIT PRMAIN SENMAT STATS TEMP UVPLOT
PCRCHA	UPA(50,3) RITEA(50) PROUTA(100) THRESA(100) DTDXMA(100) ALP1A(100) ALP1A(50) OFIPA(50) KFA(50)		RBA(50) TYPEA(50) NDELSA(100) DTMA(100) DXDTA(100) ALPRA(100) CMIA(50) KRA(50) ENA(50)	LBA(50) PRTINA(100) ODELSA(100) DTSA(100) DTDXA(100) CMPA(100) CMI1A(50) HCA(50)		PARAM UVPLOT	ROUTE
PLOT	PRPRO(366) IDPLB PLMN	PRORO(366) IMPLE IPLTYP	IPLOT IDPLE	IMPLB PLMX	DATIN ROSOPT SUMALL	DVPLOT ROUTE	PRMAIN SENST
QSOUT	QSWY QSQS	QSMO QSID	QSDY QSRPD	QS10	PRTHYD	ROUTE	UNITD
RD	IRD(50) RDM(12) RDB	NRD PARS RDP	RAD(20,13) PARW RDMX	RDC(12) MRDC COSSL(20)	DATIN SOLTAB	PARAM SUMALL	SOLRAD
SED	OFLT(50) PQ(50)	SEDSG	TSUW(50)	PSED(50)	BLKDAT PRMAIN SUMALL	INVIN ROSOPT SUMUNT	ROUTE SENST UNITD
SENT	IWSW2 NV	NOBF XX(20)	NMOBF XOPT(20)	NDSN	BLKDAT PARAM SENST	COROPT ROSOPT SUMALL	OPINIT SENMAT

# Table VI-1.--System labeled common areas--Continued.

COMMON		VARIABLES				SUBROUTINES		
SENTI	XXDEV(20,50 NVAR(20) SMVOPT(366) NTRY H(60) IQ	NDVR(20,50)		OBFOPT G(60) IP	COROPT ROSOPT	OPINIT SENMAT	PARAM SENST	
SENT12	PHI(10)			<u> </u>	ROSOPT	SENST		
SENT13	ITRANS				COROPT ROSOPT	DATIN SENMAT	OPINIT SENST	
SENT14	OFSPR(10)				ROSOPT	SUMALL		
SENT15	TSM(50)				BLKDAT	ROSOPT	SENST	
SENT16	NREC				COROPT SENST	ROSOPT SUMALL	SENMAT	
SENT17	IOBSWK				ROSOPT	SENST		
SENT18	ISTAT				DATIN	SUMALL	SUMUNT	
SENT22	IPTEMP				ROSOPT	SENST		
SIZE	BYW LMO NMO STAIDC(32) IMO	EWY LYR NYR STAIDP(8,5) IDY	IDS NDTY PARMCA(10) TITL(18) IDUM	IDUS(10) NDY(12) STATCA(10) IWY	BLKDAT DVRETR PRECIP ROSOPT SNOBAL SUMALL UNITD	DATIN INVIN PRMAIN ROUTE SOLRAD TEMP UVPLOT	DVPLOT PETS PRTHYD SENST STATS TIMEY UVRET	
SM	AET(50) ISOIL(50) SCT(50) SRO(50) SC1(50)	ENFIL(50) RECHR(50) SLP(50) SRX(50)	EXCS(50) REMX(50) SMAV(50) SCX(50)	ICOV(50) SAS SMAX(50) SCN(50)	DATIN RESVRD SMBAL SUMALL	PARAM ROSOPT SNOBAL UNITD	PRECIP SENST SRFRO UNSM	

Table VI-1.--System labeled common areas--Continued.

COMMON	1 6 6	VARIA	BLES		SUB	ROUTINES	5
SNO	ALB(50) IPS1 PKDEF(50) TCAL(50) DENI	ANSW IPS2 PWEQV(50) TRNCF(50) DENMX	EAIR PACT(50) SMLT(50) FWCAP SETCON	FREWT(50) PICE(50) SNEV(50) ISNO DEN(50)	BLKDAT DATIN PKADJ ROSOPT SNOBAL	CALIN INTLOS PRECIP SENST SRFRO	CALOSS PARAM PRMAIN SMBAL SUMALL
SNOP	NSW(50) RMXM	PRMX(50) PKAD(50)	PSN(50) CECN(12)	RMXA	DATIN PKADJ SNOBAL TIMEY	INTLOS PRECIP SRFRO	PARAM SMBAL SUMALL
SWITCH	ISBAS ISUN	ISSRO	ISX1	ISSR1	BASFLW PRMAIN SENST UNITD	BLKDAT ROSOPT SRFRO	DATIN ROUTE SUMALL
UNITRF	UPE(1440) TLAT(1440)	INQ(1440) QA(1440)	INS(1440) TA(1440)	QLAT(1440) HA(1440)	PRTHYD UNITD	RESVRU UVPLOT	ROUTE
UNSS	UINF(50,96)	UNBAS(50,96	)CDA(50)	PROLST	INVIN	ROUTE	SUMALL
UPR	IMPERV(50)	PERV(50)	UPCOR(50)		DATIN UNITD	INTLOS	SUMALL
UVRT	UVWY(367)				BLKDAT INVIN SMBAL UVRET	DATIN PRMAIN SUMALL	DVRETR SENST UVPLOT
VOL	NST OBPK(50) NOFSEG	BRO(50) ICHG KRU(50)	X(5,50) SIMOPT(3) ISAVE	OBRO(50) NCRSEG BPK(50)	BLKDAT PARAM ROSOPT SENST UNITD	INVIN PRMAIN ROUTE SMBAL UNSM	OPINIT PRTHYD SENMAT SUMUNT UVPLOT
WX	CSEL TLX(12) TXAJ(50)	ELV(50) TMN SA(50)	TLN(12) TMX	TLPS TNAJ(50)	DATIN SOLRAD	PARAM SUMALL	PRMAIN TEMP

# Table VI-1.--System labeled common areas--Continued.

#### ATTACHMENT VII

#### Modifying PRMS Data Retrieval Subroutines

PRMS uses an indexed sequential (ISAM) file structure for input of streamflow and meteorologic data. Daily data are stored 1 water year per record and storm data are stored 1 day per record. Each record has a key which consists of the station identification, WATSTORE parameter and statistic code, and the year, month, and day of the record. The subroutines DVRETR and UVRET read these ISAM file records. Both subroutines are written in PL1.

Some computer systems do not have ISAM file-handling capabilities that are compatible with the AMDAHL computer system, while others may have no ISAM or PL1 capabilities. To run PRMS on these machines, a compatible file structure will have to be selected and the subroutines DVRETR and UVRET will have to be modified or rewritten to read the data from the new file structure. This section describes the subroutines DVRETR and UVRET, their input and output requirements, and data specifications to facilitate any necessary modifications required for data storage and retrieval.

Subroutine DVRETR is called at the beginning of each water year and retrieves 366 values for each daily data type. The data are entered into arrays which are included in a labeled common area. The daily meteorologic and streamflow data are entered into the array DS (I,J) where J is dimensioned at 366 and represents the water year day. I is dimensioned at seven and indicates the data type as follows:

> Ι Data type 1 Daily discharge 2 Daily pan evaporation 3 Daily maximum air temperature 4 Daily minimum air temperature 5 Daily solar radiation Daily data--user defined 6 7 Daily data--user defined

For example, DS (3,15) would be the maximum air temperature value for October 15 of the water year being simulated. The array IDUS indicates which data types need to be retrieved for the model run. The values for IDUS are read in subroutine DATIN, Card Group 1, card 9.

PRMS can use up to five precipitation gages. Daily data for the water year for all precipitation gages are entered into the array DVP (I,J) where J again is dimensioned at 366 and corresponds to the water year day. I is dimensioned at five and corresponds to the precipitation gage. For example, DVP (3,15) is the precipitation at rain gage 3 for October 15 of the water year being simulated. JDS is the number of rain gages and is read in subroutine DATIN, Card Group 1, card 4 (NDS). For a storm simulation, the array UVWY (366) is read in DVRETR from file unit 11. This file was written in subroutine INVIN and contains a 0,1 or 2 for every day of the water year, indicating the types of storm data available for that day. A "1" indicates precipitation data only are to be retrieved and a "2" indicates that precipitation and discharge data are available.

The labeled common areas required in DVRETR and the variables used in each of them are the following:

Common	Variable	Description
DATES	JDS	Number of precipitation gages
OPT	ISIM	Indicates type of simulation
		<pre>(ISIM=0 is daily only; ISIM &gt;0 is daily and storm)</pre>
SIZE	IWY	Water year
	IDUS(10)	Data types
	PARMCA(10)	WATSTORE parameter code corresponding to IDUS
	STATCA(10)	WATSTORE statistic code corresponding to IDUS
	STAIDC(8)	Station I.D.'s for IDUS(1) through IDUS(8)
	STAIDP(5,2)	Station I.D.'s for IDUS(9) and IDUS(10) for up to five precipitation gages
UVRT	UVWY(366)	Storm day indicator (0=no storm; 1=storm day, precipitation data only; 2=storm day with precipitation and discharge data)
DVDT	DS(7,366) DVP(5,366)	Daily meteorologic and streamflow data Daily precipitation data

The type specifications necessary when the above common areas are used in a subroutine are as follows:

INTEGER*2 STATCA, IWY, IMO, IDY, IDUM INTEGER UVWY, BYR, BMO, BDY, EYR, EMO, EDY, TESTNO, BWY, EWY, PARMCA

Subroutine UVRET is called from subroutine INVIN at the beginning of a storm simulation run. Precipitation and discharge data for all storm days specified in Card Group 2 are retrieved and written sequentially to temporary files for later use in the model run. Precipitation data are written to temporary file unit 15 and the discharge data are written to temporary file unit 14. The UVWY array specifying storm days also is created using the storm day information in Card Group 2.

The following unformatted Fortran write statement is an example of how the temporary files are written: WRITE (15) UVDEL, UVSTA, UVPARM, UVSTAT, UVYR, UVMO, UVDY, UVRPD, UVRDG1, UVNRDG, IDUM, UVNVAL, (UVDATA(J), J=1, UVNRDG) where UVDEL is a blank. UVSTA is the station identification from STAIDC or STAIDP, UVPARM is the WATSTORE parameter code from PARMCA, UVSTAT is the WATSTORE statistic code from STATCA, UVYR is the calendar year, UVMO is the month, UVDY is the day. UVRPD is the maximum number of data values possible (for example, for 15-minute-interval data, UVRPD = 96), UVRDG1 is the starting index of the first data value (for example, for UVRPD = 96 and first data at 0115, then UVRDG1 = 5), UVNRDG is the number of data values to be written, IDUM is a dummy variable, and UVDATA(J) is the data array. UVDATA is dimensioned at 1440 to permit the use of 1-minute data. Labeled commons "SIZE" and "UVRT" are required in subroutine UVRET. The following type declarations and dimensions also should be used. LOGICAL*1 UVDEL INTEGER*2 STATCA, IWY, IMO, IDY, UVYR, UVMO, UVDY, UVRPD, UVRDG1, UVNRDG, IDUM, UVSTAT BWY, EWY, PARMCA, UVWY, UVPARM, OWY INTEGER DIMENSION UVSTA(4), UVDATA (1440)