## WATER-QUALITY CHARACTERISTICS OF SIX SMALL, SEMIARID WATERSHEDS IN THE GREEN RIVER COAL REGION OF COLORADO

## U.S. GEOLOGICAL SURVEY



## Water-Resources Investigations 81-19

Prepared in cooperation with the U. S. Bureau of Land Management

7. Author(s)

John T. Turk and Randolph S. Parker
9. Performing Organization Name and Address

U.S. Geological Survey<br>Water Resources Division Box 25046, Mail Stop 415 Denver Federal Center Lakewood, CO 80225

12. Sponsoring Organization Name and Address
13. Recipient's Accession No.

## 5. Report Date

1982
6.
8. Performing Orgagization Rept. No. incisk
10. Project/Task/Work Unit No.
11. Contract(C) or Grant(G) No.
(C)
(G)
13. Type of Report \& Period Covered Final ${ }^{-}$
15. Supplementary Notes
U.S. Geological Survey
Water Resources Division
Box 25046 , Mail Stop 415
Denver Federal Center
Lakewood, CO 80225 Lew
14.
16. Abstract (Limit: 200 words)

Analysis of major and trace constituents in streams flowing through six semiarid watersheds indicates that the stream chemistry is characterized by saturation with respect to common carbonate minerals (calcium, magnesium, iron, manganese, and lead). The solubility of the carbonate minerals may be a major control on the absolute and relative concentrations of calcium, magnesium, bicarbonate, iron, manganese, and lead; however, other mechanisms probably control the concentrations of cadmium and zinc.

Statistical analyses indicated that the mean concentrations of the major ions in the two climatic areas studied are significantly ( $P=0.05$ ) different from one another, with larger mean concentrations in the more arid area. Trace-metal concentrations were similar from one area to another and indistinguishable ( $P=0.05$ ) from site to site for lead, cadmium, and zinc. Linear regressions of major ion concentration to specific conductance are similar in both areas for sodium, bicarbonate, sulfate, and chloride.

Results of the study may be useful in providing a first approximation of stream chemistry in other watersheds with the same geologic setting, in selecting representative watersheds to allow investigation of geochemical controls, and in determining future changes in stream chemistry in the watersheds studied.
17. Document Analysis e. Descriptors

Coals, Strip-mine wastes, Water chemistry, Baseline studies, Regional analysis, Mineralogy
b. Identifiers/Open-Ended Terms

Water-quality regionalization, Northwestern Colorado
18. Availability Statemen:
No restriction on distribution


See Instructions on Reverse

| 21. No. of Pages |
| :--- | :--- |
| 100 |

OPTIONAL FORM 272 (4-77) (Formerly NTIS-35) Department of Commerce

WATER-QUALITY CHARACTERISTICS OF SIX SMALL, SEMIARID WATERSHEDS
IN THE GREEN RIVER COAL REGION OF COLORADO
By John T. Turk and Randolph S. Parker
U.S. GEOLOGICAL SURVEY

Water-Resources Investigations 81-19

Prepared in cooperation with the
U.S. BUREAU OF LAND MANAGEMENT

## UNITED STATES DEPARTMENT OF THE INTERIOR <br> JAMES G. WATT, Secretary <br> GEOLOGICAL SURVEY <br> Dallas L. Peck, Director

For additional information write to:
District Chief
U.S. Geological Survey

Box 25046, Mail Stop 415
Denver Federal Center Lakewood, CO 80225

## CONTENTS

Page
Abstract ..... 1
Introduction ..... 1
Physiographic setting. ..... 3
Data collection. ..... 4
Results and discussion ..... 4
Major dissolved constituents. ..... 4
Mineral saturation ..... 4
Ion/specific-conductance regressions ..... 6
Climatic effects ..... 9
Anthropogenic effects ..... 13
Regionalization. ..... 13
Trace dissolved constituents ..... 14
Stochastic approach and regionalization. ..... 14
Deterministic approach and regionalization ..... 21
Summary ..... 25
References ..... 26
Water-quality data ..... 27
ILLUSTRATIONS
Page
Figure 1. Map showing location of sampling sites. ..... 2
2-6. Graphs showing relationship of:
2. Regression slope of calcium concentration to specific con- ductance, as a function of the mean specific conductance. ..... 12
3. Sodium to specific conductance. ..... 16
4. Bicarbonate to specific conductance ..... 17
5. Sulfate to specific conductance ..... 18
6. Chloride to specific conductance. ..... 19
Page
Table 1. Description of sampling sites. ..... 3
2. Number of samples saturated or supersaturated with respect to minerals composed of major ions. ..... 5
3. Linear, least-squares relationships of individual major ions to specific conductance ..... 6
4. Statistical characteristics of the mean concentrations of major ions and specific conductance in streamflow. ..... 10
5. Linear, least-squares regression characteristics of individualions to specific conductance for sites not significantly differ-ent from one another15
6. Statistical characteristics of the mean of the logarithm (base 10) of dissolved trace metals ..... 20
7. Statistical characteristics of the mean of the logarithm (base 10)of dissolved trace-metal concentrations for sites not signifi-cantly different from one another at a probability of 0.05( 5 percent)21
8. Negative logarithm of the mean carbonate-ion activity, ( $\mathrm{CO}_{3}=$ ), the 95 -percent confidence interval of the mean metal concentration (C195), and the predicted maximum solubility of the metal carbonate at the indicated mean carbonate-ion activity24

METRIC CONVERSION

| Muztiply inch-pound unit | By | To obtain metric unit |
| :--- | :--- | :--- |
| inch (in.) | 25.40 | millimeter |
| mile (mi) | 1.609 | kilometer |
| square mile $\left(\mathrm{mi}^{2}\right)$ | 2.590 | square kilometer |
| cubic foot per second $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$ | 0.02832 | cubic meter per second |
| micromho (umho) | 1.000 | microsiemens |

# WATER-QUALITY CHARACTERISTICS OF SIX SMALL, SEMIARID WATERSHEDS IN THE GREEN RIVER COAL REGION OF COLORADO <br> By John T. Turk and Randolph S. Parker 


#### Abstract

Analysis of major and trace constituents in streams flowing through six semiarid watersheds indicates that the stream chemistry is characterized by saturation with respect to common carbonate minerals (calcium, magnesium, iron, manganese, and lead). The solubility of the carbonate minerals may be a major control on the absolute and relative concentrations of calcium, magnesium, bicarbonate, iron, manganese, and lead; however, other mechanisms probably control the concentrations of cadmium and zinc.

Statistical analyses indicated that the mean concentrations of the major ions in the two climatic areas studied are significantly ( $P=0.05$ ) different from one another, with larger mean concentrations in the more arid area. Trace-metal concentrations were similar from one area to another and indistinguishable ( $\mathrm{P}=0.05$ ) from site to site for lead, cadmium, and zinc. Linear regressions of major ion concentration to specific conductance are similar in both areas for sodium, bicarbonate, sulfate, and chloride.


Results of the study may be useful in providing a first approximation of stream chemistry in other watersheds with the same geologic setting, in selecting representative watersheds to allow investigation of geochemical controls, and in determining future changes in stream chemistry in the watersheds studied.

## INTRODUCTION

Increasing national needs for energy have resulted.in a significant increase in the production of coal in Colorado. From 1965 to 1975 coal production in Colorado has increased by 68 percent (Colorado Division of Mines, 1976). Much of the present and future coal mining in northwestern Colorado is and will be surface strip mining within small, semiarid watersheds. Few data are available to define the hydrology and water quality of such watersheds. Without such data and an understanding of the processes controlling the hydrology and water quality of these watersheds, it is impossible to predict the impact of mining. To obtain the data needed to define the hydrologic and water-quality processes within the watersheds, the U.S. Geological Survey, in cooperation with the U.S. Bureau of Land Management, has begun the study of small, semiarid watersheds in Colorado.


Figure 1.-- Location of sampling sites.

As data are collected, they will be used to define relationships among the individual chemical constituents and to compare these relationships among the monitored watersheds. Such comparisons will help to identify hydrochemical regions within which relationships can be transferred from watershed to watershed. Ultimately, these regions need to be identified and the transferability of individual chemical relations defined. Only in this way can a cost-effective method be established to predict the impact of mining on the innumerable small watersheds that may be mined. This report presents the data collected from six watersheds in northwestern Colorado and describes an initial step in the regionalization of water-quality characteristics and identification of transferability of data from individual, studied watersheds to unstudied watersheds in northwestern Colorado.

## PHYSIOGRAPHIC SETTING

The watersheds included in this study, Middle and Foidel Creeks near the town of Oak Creek and Taylor, Wilson, and Jubb Creeks near Axial, are located in a semiarid part of northwestern Colorado (fig. 1 and table 1). Precipitation near Oak Creek averages about 18 in . per year while precipitation near Axial averages about 12 in . per year (Hounslow and others, 1978). The watersheds are within the Green River coal region, in which coal occurs in the Mesaverde Group of Late Cretaceous age. The coal beds are interbedded with, and overlain by, sandstones and shales of Late Cretaceous and early Tertiary age. The deposits were formed in alternating marine, brackish, and freshwater environments coincident with rapid erosion caused by orogenic activity, initially to the west and later from the Rocky Mountain arch to the east (Del Rio and others, 1960).

Mineralogical analyses of the regolith are available only for the Foidel Creek area (Hounslow and others, 1978). Minerals identified in the Foidel Creek area that may undergo reactions proposed in this report include kaolinite, illite, dolomite, calcite, siderite, gypsum, and pyrite.

Table 1.--Description of sampling sites


Data were collected in each watershed from October 1975 to September 1978. Stream discharge at each station was monitored by continuously recording waterstage gages calibrated according to methods described by Buchanan and Somers (1968; 1969). Samples for water-quality analysis of major and minor constituents were collected by standard procedures (Brown and others, 1970) and analyzed by the U.S. Geological Survey Central Laboratory in Denver, Colo., using established methods (Skougstad and others, 1978). At the time the samples were collected, measurements also were made of pH , water temperature, and specific conductance.

RESULTS AND DISCUSSION
Major Dissolved Constituents
Mineral Saturation
One method that can be used to evaluate the effect of geologic terrane on the quality of ground water or surface water is to determine with which minerals the water is saturated. For example, it is likely that at one time water was in contact with the mineral gypsum if the concentrations of calcium and sulfate in a sample equal or exceed the concentrations predicted by equation 1:

$$
\begin{equation*}
\mathrm{Ca}^{+2} \cdot \mathrm{SO}_{4}^{-2}=10^{-4} .334, \tag{1}
\end{equation*}
$$

where:

$$
\begin{aligned}
& C a^{+2}=\text { the activity of the calcium ion }{ }^{1} \text {; } \\
& \mathrm{SO}_{4}^{-2}=\text { the activity of the sulfate ion }{ }^{1} \text {; and } \\
& 10^{-4} .334=\text { the product of the calcium and sulfate activities for a solution in } \\
& \text { equilibrium with the mineral gypsum, at } 25^{\circ} \text { Celsius. }
\end{aligned}
$$

By determining the minerals with which a water sample is saturated one can approximate the limits on the maximum concentrations of individual ions and the ratios of ions to each other.
${ }^{1}$ For a complete discussion of the calculation of mineral saturation in natural waters, and correction of ion concentrations with activity coefficients, see Garrels and Christ (1965).

The usefulness of mineral saturation as a means of predicting the water quality of an area has led to the development of rapid, computer techniques for the calculation of mineral saturation. One such technique, used in this study, is the computer program SOLMNEQ (Kharaka and Barnes, 1973). This program corrects the analytical concentrations of individual ions for the effects of ion-pair formation and ionic strength. The resulting ion activities are multiplied by one another and the product is compared to the thermodynamic-solubility product for an extensive library of minerals. For each mineral in the library the activity product for the sample and the activity product at saturation are shown in the output of the program. Minerals for which the activity product of major ions in the samples from this study equaled or exceeded the activity product at saturation are shown in table 2.

Table 2.--Number of samples saturated or supersaturated with respect to minerals composed of major ions

| Site | Number of samples analyzed using SOLMNEQ | Number of samples saturated or supersaturated with respect to |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Calcite | Dolomite | Magnesite |
| Middle Creek near Oak Creek----------- | 24 | 16 | 17 | 10 |
| Foidel Creek near Oak Creek----------- | 10 | 6 | 7 | 2 |
| Foidel Creek at mouth near Oak Creek-- | 5 | 5 | 5 | 1 |
| Taylor Creek at mouth near Axial------ | 8 | 8 | 8 | 6 |
| Wilson Creek near Axial--------------- | 31 | 31 | 31 | 31 |
| Jubb Creek near Axial------------------ | 15 | 14 | 14 | 14 |

The data presented in table 2 indicate that most samples from all six sites were saturated or supersaturated with respect to the minerals calcite and dolomite. Saturation with respect to magnesite was common for the samples from Jubb Creek and Wilson Creek and occurred to some extent at all six sites.

The number of samples collected during this study that were saturated or supersaturated with respect to calcite and dolomite, together with the secondary carbonate minerology of the study area, indicate that ground water recharging the streams is probably also saturated with calcite and dolomite. During most of the year, when minimal surface runoff is available to dilute the ground-water seepage, the smallest measured concentrations of calcium, magnesium, and carbonate will equal or exceed the concentrations predicted from the solubility products of calcite and dolomite. As will be shown in later sections, the minimum concentration of carbonate places a limit on the maximum predicted concentrations of dissolved heavy metals.

## Ion/Specific-Conductance Regressions

Specific conductance, defined as the electrical conductivity of water at $25^{\circ}$ Celsius, depends on both the relative and absolute concentrations of the major ions in solution. If the concentrations of the major ions relative to each other are controlled by the mineralogy of the source rocks, and if a steady-state condition exists among various processes that supply ions to and remove ions from solution, then specific conductance can be used to predict the absolute concentrations of the individual major ions. Typically, linear regressions between individual major ions and specific conductance are used to predict major-ion concentrations from specific conductance.

Regressions of the major-ion concentrations as a function of specific conductance were made for the data collected during this study using the following equation:

$$
\begin{equation*}
c=m(s c)+b, \tag{2}
\end{equation*}
$$

where:
$\mathcal{c}=$ concentration of an individual major ion, in milligrams per liter;
$m=s l o p e ~ o f ~ t h e ~ l i n e a r, ~ l e a s t-s q u a r e s ~ r e g r e s s i o n ~ e q u a t i o n, ~ i n ~ m i l l i g r a m s ~ p e r ~$
liter per micromho per centimeter;
$s c=s p e c i f i c$ conductance, in micromhos per centimeter; and
$b=i n t e r c e p t$ of regression line, in milligrams per liter.
The results of the regressions are summarized in table 3.

Table 3.--Linear, least-square relationships of individual major ions to specific conductance
[Site=site number in figure 1; n=number of data pairs used in analysis; m=slope
 $p=$ probability of obtaining a larger value of $r$ with $n$ pairs of randomly related data; S.G.=statistical grouping; regression equations for sites with the same letter designation are not significantly different from each other at a probability of 0.05 (5 percent)]

| Site | $n$ | $m$ | $b$ | $r$ | $p$ | S.G. |
| :---: | ---: | ---: | :---: | ---: | :---: | :---: |
|  |  |  | CALCIUM |  |  |  |
| 09243700 | 25 | 0.069 | 25.5 | 0.85 | 0.001 | A |
| 09243800 | 10 | .134 | -16.2 | .96 | .001 | B |
| 09243900 | 8 | .092 | 15.2 | .97 | .001 | C |
| 09250510 | 9 | .051 | 15.5 | .85 | .01 | D |
| 09250600 | 33 | .021 | 67.7 | .49 | .01 | E |
| 09250610 | 15 | .051 | 6.5 | .78 | .001 | D |

Table 3.--Linear, least-square relationships of individual major ions to specific conductance--Continued

| Site | $n$ | $m$ | $b$ | $r$ | $p$ | S.G. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MAGNESIUM |  |  |  |  |  |  |
| 09243700 | 25 | 0.032 | 8.0 | 0.86 | 0.001 | A |
| 09243800 | 10 | . 050 | . 72 | . 94 | . 001 | A |
| 09243900 | 8 | . 054 | -5.1 | . 92 | . 01 | A |
| 09250510 | 9 | . 092 | -15.6 | . 98 | . 001 | B |
| 09250600 | 33 | . 057 | 5.2 | . 82 | . 001 | C |
| 09250610 | 15 | . 093 | -6.7 | . 95 | . 001 | B |
| SODIUM |  |  |  |  |  |  |
| 09243700 | 25 | 0.047 | -2.6 | 0.86 | 0.001 | A |
| 09243800 | 10 | . 037 | -2.2 | . 90 | . 001 | A |
| 09243900 | 8 | . 045 | 2.7 | . 74 | . 05 | A |
| 09250510 | 9 | . 062 | -12.4 | . 92 | . 001 | A |
| 09250600 | 33 | . 060 | 52.2 | . 76 | . 001 | B |
| 09250610 | 15 | . 061 | -12.6 | . 89 | . 001 | A |
| POTASSIUM |  |  |  |  |  |  |
| 09243700 | 23 | . 003 | 1.8 | 0.48 | . 05 | A |
| 09243800 | 10 | . 003 | 1.4 | . 79 | . 01 | A |
| 09243900 | 8 | -. 004 | 7.8 | . 49 | . 1 | A |
| 09250510 | 9 | -. 002 | 10.8 | . 34 | . 1 | B |
| 09250600 | 33 | . 002 | 6.3 | . 46 | . 01 | C |
| 09250610 | 15 | . 001 | 4.7 | . 30 | . 1 | B |
| BICARBONATE |  |  |  |  |  |  |
| 09243700 | 25 | 0.289 | 99.7 | 0.78 | 0.001 | A |
| 09243800 | 10 | . 357 | 36.6 | . 82 | . 01 | A |
| 09243900 | 8 | . 24 | 32.8 | . 73 | . 05 | B |
| 09250510 | 9 | . 289 | 79.1 | . 90 | . 001 | A |
| 09250600 | 32 | . 135 | 215 | . 68 | . 001 | C |
| 09250610 | 15 | . 26 | 99.4 | . 93 | . 001 | A |
| SULFATE |  |  |  |  |  |  |
| 09243700 | 24 | 0.19 | -7.6 | 0.85 | 0.001 | A |
| 09243800 | 10 | . 320 | -90.3 | . 74 | . 02 | A |
| 09243900 | 8 | . 356 | -48.1 | . 90 | . 01 | B |
| 09250510 | 9 | . 315 | -68.9 | . 97 | . 001 | A |
| 09250600 | 33 | . 272 | -53.5 | . 81 | . 001 | C |
| 09250610 | 14 | . 37 | -105 | . 91 | . 001 | A |
| CHLORIDE |  |  |  |  |  |  |
| 09243700 | 22 | 0.007 | -0.05 | 0.77 | 0.001 | A |
| 09243800 | 10 | . 007 | -. 28 | . 83 | . 01 | A |
| 09243900 | 8 | . 004 | 3.3 | . 55 | . 1 | A |
| 09250510 | 9 | . 030 | -6.9 | . 90 | . 001 | A |
| 09250600 | 33 | . 021 | 112 | . 21 | . 1 | B |
| 09250610 | 15 | . 021 | 1.8 | . 72 | . 01 | A |

Development of regression relationships for water-quality constituents in a watershed, such as those summarized in table 3, allows water-quality characteristics of the watershed to be monitored by equipment that continuously records specific conductance. Changes in chemical interactions or the supply of dissolved ions in the watershed would be indicated by significant changes in specific conductance and resulting changes in the regression relationships.

Regression relationships also may be used to compare water quality between intensively studied watersheds and those in similar terrane for which few data are available. If the analysis of limited data from a watershed matches an existing regression analysis for an individual constituent, the geohydrologic mechanisms controlling the occurrence of that constituent in both watersheds within similar geologic terrane are probably similar. The greater the number of such matches, the more similar the water quality of the two watersheds.

Regression relationships summarized in table 3 serve several purposes in the assessment of water-quality conditions. For example, specific-conductance monitors can be used to continuously record fluctuations in water quality, including the short-term fluctuations associated with thunderstorm activity. Additionally, if changes in the regression coefficients occur over time, these changes can be used to demonstrate that major changes have occurred in chemical interactions or the supply of dissolved ions. Perhaps most important is the use of regression relationships to demonstrate the comparability of water quality among intensively studied basins and those for which few data are available. Thus, these relationships not only provide the capability of continuous data collection on selected streams, they also may make possible the transfer of data analysis from studies of model basins to basin assessments with critical time or monetary constraints.

Similarities or differences between the geohydrology of the six study watersheds were evaluated using a F-test (Graybill, 1976, p. 294). This evaluation tests the hypothesis that the six linear models (one for each station, table 3) for an individual constituent are identical at some pre-established probability-95 percent in this instance. By iterating the F -test results, sites may be statistically grouped as shown by the letter designations in table 3 . Ideally, if the geohydrologic mechanisms controlling the occurrence of a constituent were the same in all six watersheds, all six watersheds would have the same statistical grouping.

Results of the evaluation for the six study watersheds indicate that the geohydrologic mechanisms controlling the occurrence of sodium and chloride are the most similar and that the geohydrologic mechanisms controlling the occurrence of calcium are the least similar. These variations indicate that factors other than mineralogy are affecting the occurrence of the individual constituents in some watersheds.

## Climatic Effects

Differences in climate are the principal factors affecting water quality in areas with similar land use, geology, and mineralogy. In areas with a drier, warmer climate such as the Axial area, dilution is less and evaporation is more than in areas with a wetter, cooler climate such as the Oak Creek area. Therefore, mean concentrations of individual constituents in streamflow should be greater in the Axial area than in the Oak Creek area. The statistical characteristics of the mean concentration of the major ions and specific conductance in streams in the two areas are summarized in table 4; the statistical groupings shown were made using a simple analysis of variance.

The mean concentrations for all constituents except calcium are greater in the surface water in the Axial area than in the Oak Creek area. Streamflow within either the Oak Creek or the Axial areas tends to be within a statistical group and separate from the statistical group of the other area.

For calcium, however, the variation in concentration from one stream to another within a climatic area is greater than the variation between the two climatic areas. A possible explanation for the anomalous calcium concentrations is that calcium is actively precipitated in both climatic areas and, thus, does not react as a conservative ion. If this is true, then minor variations from one stream to another in pH , instream biological activity, transpiration, and temperature will be more important than will be the amount of concentration by evaporation attributable to climate only. This is because any tendency towards increased calcium concentration by evaporation could cause a corresponding increase in calcium removal by chemical precipitation, probably as the mineral calcite (table 2). Similarly, any tendency towards calcium dilution by snowmelt causes a corresponding increase in calcium dissolution from previously deposited calcite.

Although direct data verifying the precipitation of calcium in these streams are not available, changes in the slope of the regressions of calcium concentration to specific conductance (table 3) provide additional indirect evidence. If the ground-water discharge to these streams is of similar composition before evaporation, then increased evaporation should result in increased specific conductance. Further, precipitation of calcium caused by evaporation would cause calcium to account for a decreasing proportion of the specific conductance as the specific conductance increases due to evaporation. Thus, a plot of the regression slope of calcium concentration for individual sites as a function of the mean specific conductance for the site should show progressively smaller slopes with increased specific conductance. Data from the sites in this study plot in this manner, as shown in figure 2.

Table 4.--Statistical characteristics of the mean concentrations of major ions and specific conductance in streamflow
[Site=site number in figure 1 ; n=number of samples; $\bar{x}=$ mean concentration, in milligrams per liter (major ions) or micromhos per centimeter at $25^{\circ}$ Celsius (specific conductance); Sx=standard error, in miliigrams per liter (major ions) or micromhos per centimeter at $25^{\circ}$ Celsius (specific conductance); C195=95-percent confidence interval, in milligrams per liter (major ions) or micromhos per centimeter at $25^{\circ}$ Celsius (specific conductance); S.G.=statistical grouping, the means for sites with the same letter designation are not significantly different from each other at a probability of 0.05 ( 5 percent)]

| Site | $n$ | $\bar{x}$ | $S x$ | C195 | S.G. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CALCIUM |  |  |  |  |  |
| 09243700 | 26 | 68 | 2.7 | 62-74 | A |
| 09243800 | 10 | 89 | 7.9 | 71-107 | B |
| 09243900 | 8 | 109 | 7.0 | 92-126 | C |
| 09250510 | 9 | 68 | 5.9 | 54-82 | A |
| 09250600 | 35 | 106 | 3.8 | 98-114 | C |
| 09250610 | 15 | 87 | 7.3 | 71-103 | B |
| MAGNESIUM |  |  |  |  |  |
| 09243700 | 26 | 28 | 1.2 | 26-30 | A |
| 09243800 | 10 | 40 | 3.0 | 33-47 | A |
| 09243900 | 8 | 50 | 4.4 | 40-60 | B |
| 09250510 | 9 | 78 | 9.1 | 57-99 | C |
| 09250600 | 35 | 111 | 3.8 | 104-118 | D |
| 09250610 | 15 | 140 | 10.8 | 117-163 | E |
| SODIUM |  |  |  |  |  |
| 09243700 | 26 | 26 | 1.8 | 22-30 | A |
| 09243800 | 10 | 27 | 2.3 | 22-32 | A |
| 09243900 | 8 | 49 | 4.5 | 38-60 | B |
| 09250510 | 9 | 51 | 6.4 | 36-66 | B |
| 09250600 | 35 | 165 | 3.8 | 157-173 | C |
| 09250610 | 15 | 85 | 7.7 | 68-102 | D |
| POTASSIUM |  |  |  |  |  |
| 09243700 | 24 | 3.5 | 0.2 | 3.1-3.9 | A |
| 09243800 | 10 | 3.4 | . 2 | 2.9-3.8 | A |
| 09243900 | 8 | 4.1 | . 6 | 2.7-5.5 | A |
| 09250510 | 9 | 8.4 | . 7 | 6.8-10.0 | B |
| 09250600 | 35 | 9.6 | . 2 | 9.2-10.0 | C |
| 09250610 | 15 | 7.6 | . 7 | 6.1-9.1 | B |

Table 4.--Statistical characteristics of the mean concentrations of major ions and specific conductance in streamflow--Continued

| Site | $n$ | $\bar{x}$ | $S x$ | C195 | S.G. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CHLORIDE |  |  |  |  |  |
| 09243700 | 23 | 4.2 | 0.3 | 3.6-4.8 | A |
| 09243800 | 10 | 5.2 | . 5 | 4.1-6.3 | A |
| 09243900 | 8 | 7.7 | . 6 | 6.3-9.1 | A |
| 09250510 | 9 | 23 | 3.2 | 16-30 | B |
| 09250600 | 35 | 152 | 4.2 | 143-161 | C |
| 09250610 | 15 | 35 | 3.2 | 28-42 | B |
| SULFATE |  |  |  |  |  |
| 09243700 | 25 | 160 | 7.6 | 90-122 | A |
| 09243800 | 10 | 161 | 24 | 107-215 | A |
| 09243900 | 8 | 315 | 29 | 246-384 | B |
| 09250510 | 9 | 252 | 31 | 181-323 | B |
| 09250600 | 35 | 457 | 15 | 427-487 | C |
| 09250610 | 14 | 479 | 48 | 375-583 | C |
| BICARBONATE |  |  |  |  |  |
| 09243700 | 26 | 277 | 12 | 252-302 | A |
| 09243800 | 10 | 316 | 25 | 259-373 | A |
| 09243900 | 8 | 282 | 25 | 223-341 | A |
| 09250510 | 9 | 374 | 31 | 303-445 | B |
| 09250600 | 34 | 468 | 10 | 448-488 | C |
| 09250610 | 15 | 514 | 31 | 448-580 | C |
| SPECIFIC CONDUCTANCE |  |  |  |  |  |
| 09243700 | 29 | 628 | 27 | 573-683 | A |
| 09243800 | 10 | 784 | 56 | 657-911 | A |
| 09243900 | 14 | 1,050 | 60 | 921-1,180 | B |
| 09250510 | 26 | 1,050 | 77 | 885-1,210 | B |
| 09250600 | 35 | 1,870 | 44 | 1,780-1,960 | C |
| 09250610 | 17 | 1,560 | 99 | 1,350-1,770 | D |

## Anthropogenic Effects

Variations in the mean concentrations of some chemical constituents may be caused by anthropogenic effects, such as coal mining and oil-field brine disposal, in addition to natural causes. For example, coal mining upstream from station 09243900 would be expected to result in increased concentrations of sulfate from the dissolution of gypsum or pyrite oxidation. Hounslow and others (1978) indicate that gypsum and pyrite were ubiquitous in the overburden at the sites of eight mines they studied in the western United States, including the Energy Fuel Mine in the Foidel Creek basin. Similarly, oil exploration and subsequent brine disposal would be expected to result in increased concentrations of sodium and chloride at station 09250600, which is downstream from active oil-drilling operations. The data in table 4 indicate that sulfate concentrations are significantly larger at station 09243900 than at the other stations in the Oak Creek area, and that the sodium and chloride concentrations are significantly larger at station 09250600 than at the other stations in the Axial area. Anthropogenic effects such as these complicate the regionalization of data from model watersheds because they obscure or alter the natural geochemical trends that need to be regionalized.

## Regionalization

The lack of water-quality data for small, semiarid watersheds in the coalmining areas of the western United States makes regionalization of the available data desirable. Regionalization of data enables those assessing the water quality of these watersheds to do so in less time and at less expense but at greater risk of error. Also, watersheds that do not have the same geochemical characteristics as other watersheds in the region can be differentiated early in the selection process for mining or other land-use changes, and a more intensive study can be made to adequately describe their geochemical characteristics.

In the two study areas regionalization of geochemical characteristics using major ions and specific conductance was complicated primarily by climatic and anthropogenic effects, while similarity in physical geology and mineralogy aided in regionalization. Mean concentrations of individual major ions and measures of total mineralization indicated by specific conductance do not readily lend themselves to regionalization. The data in table 4 indicate that mean concentrations of major ions group together only within climatic areas. The Axial area, having a lesser amount of precipitation than the Oak Creek area, has significantly larger specific-conductance values. Thus, the use of such average values needs to be restricted to climatic areas that may be too precisely defined to allow regional application. This increases the data needed to adequately define the characteristics of large regions, such as those proposed for coal mining in the western United States. Anthropogenic effects of coal mining and oil exploration may be readily detected by changes in the chemistry of sulfate and sodium or chloride. Such land-use activities occupying only a small percentage of the surface area of a watershed may be sufficient to hinder the use of data for the purposes of regionalization, as seems to be the case in this study. Additional data are necessary to confirm this.

Similarity in the geology and mineralogy of the climatic areas in this study tends to establish consistent proportions of many of the major ions as indicated by statistical similarity in the regressions of ion concentration to specific conductance. By grouping together the data from stations for which the ion/specificconductance regressions were not significantly different from one another (table 3), a regionalized relationship can be obtained. For example, the sodium/ specific-conductance regressions in table 3 do not significantly differ from one another except for station 09250600, where oil-field brine disposal may locally increase concentrations. Characteristics of ion-concentration regressions to specific conductance for sites from both climatic areas where the regressions in table 3 did not differ significantly from one another are shown in table 5.

The grouped data identified in table 5, the regression line, and the 95percent confidence band for the regressions are shown in figures 3 to 6 . If these regression lines are valid throughout similar geologic terrane in northwestern Colorado, as might be established by a minimum of samples from each individual watershed, then predictions of water chemistry based on these regressions may be valid throughout the hydrochemical region. Deviations from these regressions could be expected for watersheds with significantly different geology or land use than occurs in the watersheds considered in this study. Similarly, changes in land use within the study watersheds may cause future changes in water-quality characteristics from those shown in figures 3 to 6 .

## Trace Dissolved Constituents

Concentrations of many trace dissolved constituents are of interest because of possible adverse effects on water use, such as for drinking supplies, aquatic habitat, or irrigation, even though many of these constituents are also necessary for life. In deciding whether or not a surface-water source meets promulgated standards for current or possible future uses, it is necessary to estimate the probable range of concentration of many trace constituents. These estimates may be made either stochastically by determining the mean and range of existing data or deterministically by postulating mechanisms that can limit the range of concentration. Both approaches will be discussed with mineral solubility as the proposed controlling mechanism for the deterministic assessment. Other mechanisms, such as ion exchange, may further restrict concentrations; however, the data necessary to evaluate such mechanisms are not available.

## Stochastic Approach and Regionalization

Statistical characteristics of the mean concentrations of iron, manganese, lead, cadmium, and zinc in streamflow are summarized in table 6. All data were transformed by taking the logarithm of the concentration before determination of the mean, standard error, 95 -percent confidence interval, and analysis of variance. The log-transformation was necessary to achieve a normally distributed data base for statistical testing.

Table 5.--Linear, least-squares regression characteristics of individual ions to specific conductance for sites not significantly different from one another
[Sites included=site numbers of sites grouped together for regression calculations; $n=$ number of data pairs used in the regression calculations; $m=s l o p e ~ o f ~$ the regression line, in milligrams per liter per micromho per centimeter at $25^{\circ}$ Celsius; $b=i n t e r c e p t ~ o f ~ t h e ~ r e g r e s s i o n ~ l i n e, ~ i n ~ m i l l i g r a m s ~ p e r ~ l i t e r ; ~ r=c o r r e l a-~-~$ tion coefficient of the regression; $p=$ probability of obtaining a larger value of $r$ with $n$ pairs of randomly related data]

| Sites included | $n$ | m | $b$ | $r$ | $p$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SODIUM |  |  |  |  |  |
| $\left.\begin{array}{l} 09243700 \\ 09243800 \\ 09243900 \\ 09250510 \\ 09250610 \end{array}\right\}$ | 67 | 0.061 | -13.4 | 0.95 | 0.0001 |
| BICARBONATE |  |  |  |  |  |
| $\left.\begin{array}{l} 09243700 \\ 09243800 \\ 09243900 \\ 09250510 \\ 09250610 \end{array}\right\}$ | 58 | 0.260 | 110.9 | 0.95 | 0.0001 |


| SULFATE |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\left.\begin{array}{l} 09243700 \\ 09243800 \\ 09243900 \\ 09250510 \\ 09250610 \end{array}\right\}$ | 56 | 0.372 | -124.8 | 0.96 | 0.0001 |
| CHLORIDE |  |  |  |  |  |
| $\left.\begin{array}{l} 09243700 \\ 09243800 \\ 09243900 \\ 09250510 \\ 09250610 \end{array}\right\}$ | 64 | 0.028 | -12.8 | 0.87 | 0.0001 |


Figure 3.-- Relationship of sodium to specific conductance.

Figure 4.-- Relationship of bicarbonate to specific conductance.

Figure 5.-- Relationship of sulfate to specific conductance.

Figure 6.-- Relationship of chloride to specific conductance.

Table 6.--Statistical characteristics of the mean of the logarithm (base 10) of dissolved trace metals
[Site=site number in figure $1 ; n=$ number of samples; $\bar{x}=$ mean concentration, in micrograms per liter; $S x=s t a n d a r d$ error, in micrograms per liter; Cl95=95 percent confidence interval, in micrograms per liter; S.G.=statistical grouping, sites with the same letter designation are not significantly different from each other at a probability of 0.05 ( 5 percent)]

| Site | $n$ | $\bar{x}$ | $S x$ | C195 | S.G. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IRON |  |  |  |  |  |
| 09243700 | 26 | 48 | 1.3 | 18-130 | A, B, C |
| 09243800 | 10 | 100 | 1.3 | 35-310 | A |
| 09243900 | 8 | 71 | 1.4 | 22-230 | A, B |
| 09250510 | 9 | 40 | 1.2 | 14-110 | A, B, C |
| 09250600 | 34 | 27 | 1.2 | 11-66 | C |
| 09250610 | 15 | 35 | 1.4 | 12-105 | B, C |
| MANGANESE |  |  |  |  |  |
| 09243700 | 26 | 110 | 1.1 | 50-260 | A |
| 09243800 | 10 | 120 | 1.5 | 36-410 | A |
| 09243900 | 8 | 93 | 2.1 | 19-460 | A |
| 09250510 | 9 | 7 | 1.7 | 2-28 | B |
| 09250600 | 35 | 65 | 1.1 | 29-140 | A |
| 09250610 | 15 | 12 | 1.4 | 4-39 | B |
| LEAD |  |  |  |  |  |
| 09243700 | 9 | 2 | 1.3 | 1-5 | A |
| 09243800 | 4 | 2 | 1.6 | 0-10 | A |
| 09243900 | 3 | 3 | 2.1 | 0-30 | A |
| 09250510 | 3 | 1 | 1.6 | 0-4 | A |
| 09250600 | 10 | 1 | 1.3 | 0-4 | A |
| 09250610 | 4 | 1 | 1.8 | 0-8 | A |
| CADMIUM |  |  |  |  |  |
| 09243700 | 9 | 1 | 1.2 | 0-2 | A |
| 09243800 | 4 | 1 | 1.3 | 0-4 | A |
| 09243900 | 3 | 2 | 1.7 | 0-14 | A |
| 09250510 | 3 | 1 | 1.6 | 0-8 | A |
| 09250600 | 10 | 1 | 1.1 | 0-2 | A |
| 09250610 | 4 | 1 | 1.1 | 0-4 | A |
| ZINC |  |  |  |  |  |
| 09243700 | 9 | 4 | 1.8 | 1-19 | A |
| 09243800 | 4 | 14 | 1.2 | 4-54 | A |
| 09243900 | 3 | 13 | 1.2 | 2-66 | A |
| 09250510 | 3 | 10 | 1.0 | 2-43 | A |
| 09250600 | 9 | 7 | 1.5 | 2-24 | A |
| 09250610 | 4 | 10 | 2.3 | 1-69 | A |

The summaries of log-transformed data listed in table 6 indicate that at a probability of 0.05 there is no significant difference in the mean concentrations of lead, cadmium, or zinc among the six stations. Similarly, the mean concentrations of iron are not significantly different among stations in either of the two areas studied, and there is some overlap among stations from both areas. For manganese, however, station 09250600 has a significantly larger mean concentration than the other two stations in the Axial area. Also, the mean concentration of manganese at station 09250600 is not significantly different from the mean concentrations at the three 0ak Creek stations.

The lack of statistically significant stochastic difference in the mean concentrations of the five trace ions among all or several stations makes it possible to combine the data for stations that are not significantly different (table 7). By combining data from the stations, it is possible to decrease the range of the 95-percent confidence interval of the mean, thus improving the estimate of mean concentrations of the five trace ions. Also, the means and range, if not significantly different between the two climatic areas, may provide a useful base with which to compare future data from these sites or to use for selecting other basins with similar geochemical characteristics.

Table 7.--Statistical characteristics of the mean of the logarithm (base 10) of dissolved trace-metal concentrations for sites not significantly different from one another at a probability of 0.05 (5 percent)
[Site=site number in figure $1 ; \bar{x}=$ mean concentration, in micrograms per liter; C195=95 percent confidence interval, in micrograms per liter]

| Site | IRON |  | MANGANESE |  | LEAD |  | CADMIUM |  | ZINC |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\bar{x}$ | C195 |
| 09243700 | 61 | 25-150 | 87 | 39-190 | 2 | 1-4 | 1 | 0-2 | 8 | 3-19 |
| 09243800 | 61 | 25-150 | 87 | 39-190 | 2 | 1-4 | 1 | 0-2 | 8 | 3-19 |
| 09243900 | 61 | 25-150 | 87 | 39-190 | 2 | 1-4 | 1 | 0-2 | 8 | 3-19 |
| 09250510 | 30 | 13-68 | 10 | 4-28 | 2 | 1-4 | 1 | 0-2 | 8 | 3-19 |
| 09250600 | 30 | 13-68 | 87 | 39-190 | 2 | 1-4 | 1 | 0-2 | 8 | 3-19 |
| 09250610 | 30 | 13-68 | 10 | 4-28 | 2 | 1-4 | 1 | 0-2 | 8 | 3-19 |

Deterministic Approach and Regionalization
Although stochastic approximations of the range of concentrations are simple and statistical procedures are readily available to determine whether or not approximations for one area are significantly different from those of another area, a sufficient data base does not always exist for this method. Also, readily applicable methods do not exist for predicting the effects of changes in land use upon the present data distribution. By comparison, a deterministic approach requires fewer data, less random approaches to data collection, and less need for
data at certain concentrations. In using mineral solubility as a limit on traceconstituent concentrations, for example, there is little or no need for data representing intermediate concentrations. Samples collected at times when concentrations generally are largest or smallest may be used to effectively delineate ranges of concentration.

In the systems considered in this study, it is logical to assume that most trace constituents will occur in the aquifer matrix as oxides, hydroxides, carbonates, or sulfide minerals, either pure or as impurities substituted for some major constituent. To some extent, trace constituents also can be adsorbed on ion exchangers such as clay minerals or may be dissolved in the ground water. Oxidation of organic compounds or pyrite within spoil piles, however, may sufficiently decrease the pH of the water to dissolve minerals or shift ion-exchange equilibria sufficiently to detectably change the concentration of the constituent dissolved in ground water. By consideration of the law of mass action, it is possible to show that decreasing the pH will generally result in a transfer of trace metals from the previously mentioned minerals or ion-exchange sites into solution. Addition of this altered ground water or spoil drainage to a stream in which ground-water seepage is the major source of dissolved trace metals will increase the concentration of these trace metals in the water of the stream.

Although there is an infinite number of possible combinations of native ground water and variably altered ground water, it is useful to consider the properties of limiting cases. For example, if the discharge of spoil drainage is sufficiently small to produce no measurable effects on the pH and major-ion distribution in the stream, then what are the maximum effects the spoil drainage can have on the trace-metal concentrations? This question is most appropriately answered by consideration of mineral-solubility relationships in the native surface water. Other factors, such as biological use or ion exchange, are not readily predictable and require extensive experimental work to define. The regionalization of basins into groups of similar geochemistry will allow the selection of a few representative experimental watersheds in which to evaluate other mechanisms.

Mineral equilibria, however, are readily predicted and may operate continuously to remove material from solution. Although some minerals such as dolomite may readily supersaturate, removal of kinetic constraints by processes such as nucleation, biological catalysis, or incorporation as impurities into mineral homologues causes precipitation from saturated or supersaturated solutions in many natural and laboratory systems. Therefore, prediction of equilibrium solubility may be used as a first approximation of how large a concentration can be attained before natural processes may begin to effectively counteract further increases.

The trace metals considered in this study (iron, manganese, lead, cadmium, and zinc) can form carbonate minerals which may limit the solubility of these metals. In the oxidizing environment of a stream, iron and manganese also may be precipitated by formation of hydrous oxides that may remove additional amounts of the other trace metals by coprecipitation or adsorption. The amount of removal that can be expected from this latter process, however, is not readily calculated.

In the systems studied here, the carbonate minerals siderite, rhodochrosite, cerussite, otavite, and smithsonite had the smallest solubility of the corresponding divalent ions of iron, manganese, lead, cadmium, and zinc as determined by SOLMNEQ. Of these minerals, only siderite has been shown to occur in measurable concentrations in the study area (Hounslow and others, 1978). As mentioned previously, the more oxidized iron and manganese species should be even less soluble as hydrous oxides. The results of the solubility calculation are summarized in table 8 . The negative logarithm of the mean carbonate ion activity ( $\mathrm{p}_{\mathrm{CO}}{ }_{3}=$ ) is shown for each site, along with the calculated maximum ion concentration assuming equilibrium with the corresponding carbonate mineral. The corresponding 95-percent confidence intervals of the mean concentrations from table 7 also are shown.

The data summarized in table 8 indicate good agreement between the predicted carbonate mineral solubility and the 95 -percent confidence interval of the mean measured concentration for iron, manganese, and lead. Water at only two sites was undersaturated with respect to manganese carbonate. All predicted iron concentrations occur within the 95 -percent confidence interval, as do all lead concentrations if the standard deviation of replicate, multiple laboratory standard reference sample determinations is applied to the predicted concentration. At the concentrations considered here, the standard deviation of replicate lead analyses is 2 micrograms per liter (Skougstad and others, 1978). The cadmium and zinc carbonate minerals are distinctly undersaturated, indicating that processes other than carbonate precipitation control concentrations in these systems. For example, ion exchange within the aquifer or even limited availability within the aquifer matrix may prevent supply of cadmium and zinc to the streams in concentrations large enough to cause carbonate-mineral precipitation. In the absence of direct data on alternative controls for cadmium and zinc within the streams themselves, the predicted solubilities can be considered as the maximum concentration limits, if other sources of these metals contribute additional cadmium or zinc to the streams at some future time.

The widespread occurrence of carbonate minerals (dolomite, calcite, and siderite) in the overburden of western coal areas (Hounslow and others, 1978) indicates that carbonate solubility may be a potential geochemical control on the concentrations of iron, manganese, and lead dissolved in many streams of this region. The range of carbonate-ion activity and the corresponding range of trace dissolved metals in equilibrium with the appropriate metal carbonate minerals may be readily approximated. From regressions of bicarbonate-ion concentration versus specific conductance and data on the pH characteristic to various ranges of specific conductance, the distribution of carbonate-ion activity with specific conductance may be determined for individual sites (Garrels and Christ, 1965). These ranges in carbonate-ion activity may, in turn, be used to predict metal solubility as a function of the specific conductance, at least for sites with chemistry similar to that of the streams studied here.
Table 8.--Negative Zogarithm of the mean carbonate-ion activity ( $\mathrm{C}_{\mathrm{CO}_{3}}=$ ), the 95-percent confidence interval of the mean metal concentration (CI95), and the predicted maximum solubility of the metal carbonate at the indicated mean carbonate-ion activity
$\begin{aligned} {\left[\mathrm{p}_{\mathrm{CO}_{3}-2}\right.} & =\text { negative logarithm of mean carbonate-ion activity; c } 195=\text { corresponding } 95 \text {-percent confidence } \\ & \text { interval of the mean metal concentration; } P=\text { predicted maximum solubility of the metal carbon- } \\ & \text { ate at the indicated mean carbonate-ion activity; concentrations given in micrograms per liter] }\end{aligned}$

|  | $p_{\mathrm{CO}_{3}{ }^{-2}}$ | I ron |  | Manganese |  | Lead |  | Cadmium |  | Zinc |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | C195 | P |
| Middle Creek near Oak Creek-- | 4.70 | 25-150 | 57 | 39-190 | 83 | 1-4 | 0.4 | 0-2 | 28 | 3-19 | 620 |
| Foidel Creek near Oak Creek-- | 5.04 | 25-150 | 130 | 39-190 | 180 | 1-4 | 0.8 | 0-2 | 56 | 3-19 | 1,360 |
| Foidel Creek at mouth near Oak Creek. | 4.90 | 25-150 | 91 | 39-190 | 130 | 1-4 | 0.6 | 0-2 | 45 | 3-19 | 980 |
| Taylor Creek at mouth near Axial. | 4.60 | 13-68 | 46 | 4-28 | 66 | 1-4 | 0.3 | 0-2 | 22 | 3-19 | 490 |
| Wilson Creek near Axial------ | 4.52 | 13-68 | 38 | 39-190 | 55 | 1-4 | 0.2 | 0-2 | 18 | 3-19 | 410 |
| Jubb Creek near Axial-------- | 4.47 | 13-68 | 34 | 4-28 | 49 | 1-4 | 0.2 | 0-2 | 18 | 3-19 | 370 |

## SUMMARY

Analysis of major and trace constituents in streams flowing through six semiarid watersheds indicates that the stream chemistry is characterized by saturation with respect to common carbonate minerals (calcium, magnesium, iron, manganese, and lead). Mineralogic analyses provided direct evidence of the presence of the carbonate minerals calcite, dolomite, and siderite in the same geologic formations. The solubility of the carbonate minerals may be a major control on the absolute and relative concentrations of calcium, magnesium, bicarbonate, iron, manganese, and lead in streamflow. Other mechanisms such as ion exchange within the aquifers may control the concentrations of cadmium and zinc.

Statistical analyses indicate that mean concentrations of the major ions are not similar from one climatic area to another, even within basins with the same mineralogy and size. Linear regressions of ion concentration to specific conductance, however, are similar for sodium, bicarbonate, sulfate, and chloride in the two climatic areas. Calcium regressions are not similar from one area to another. The probable cause of this is calcite precipitation.

Statistical analyses of trace-constituent data indicate that mean concentrations are indistinguishable among the six sites for lead, cadmium, and zinc; somewhat similar from one climatic area to the other for iron; and generally dissimilar from one climatic area to the other for manganese.

Surface-water chemistry at two of the six sites showed pronounced changes that may be attributed to effects of coal and oil development in the watersheds. The principal effect of coal mining on stream chemistry may be an increased relative concentration of sulfate; the principal effect of oil-field brine disposal may be increased relative concentrations of sodium and chloride.

The regionalized results of this study may be useful as a guide in providing a first approximation of stream chemistry in other small, semiarid watersheds in western coal fields with the same geologic setting. The results also may be used to determine which unstudied watersheds have geochemical controls similar to or dissimilar to those in this study and to determine future changes in stream chemistry of the six watersheds studied. Additional data from other stations need to be analyzed in order to refine this initial attempt at a regionalization of waterquality characteristics of streams in northwestern Colorado.

## REFERENCES

Brown, Eugene, Skougstad, M. U., and Fishman, M. J., 1970, Methods for collection and analysis of water samples for dissolved minerals and gases: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A1, 160 p.
Buchanan, T. J., and Somers, W. P., 1968, Stage measurement at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A7, 28 p. 1969, Discharge measurements at gaging stations: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter A8, 65 p.
Colorado Division of Mines, 1976, A summary of mineral industry activities in Colorado 1976--Part II--Metal-nonmetal: Denver, Colorado Department of Natural Resources, 105 p.
Del Rio, S. M. (compiler), and others, 1960, Mineral resources of Colorado, 1st sequel: Denver, Colo., Colorado Mineral Resources Board, 764 p.
Garrels, R. M., and Christ, C. L., 1965, Solutions, minerals, and equilibria: New York, Harper and Row, 450 p.
Graybill, F: A., 1976, Theory and application of the linear model: Belmont, Calif., Wadsworth Publishing Co., 704 p.
Hounslow, Arthur, Fitzpatrick, Joan, Cerrillo, Lawrence, and Freeland, Michael, 1978, Overburden mineralogy as related to ground-water chemical changes in coal strip mining: U.S. Environmental Protection Agency, 299 p.; available only from U.S. Department of Commerce, Hational Technical Information Service, Springfield, VA 22161, as report EPA-600/7-78-156.
Kharaka, Y. K., and Barnes, Ivan, 1973, SOLMNEQ--Solution-mineral equilibrium computations: Menlo Park, Calif., U.S. Geological Survey Computer Contributions, 81 p.; available only from U.S. Department of Commerce, National Technical Information Service, Springfield, VA 22161, as report PB-215 899.
Skougstad, M. W., Fishman, M. J., Friedman, L. C., Erdmann, D. E., and Duncan, S. S., 1978, Methods of analysis of water and fluvial sediments: U.S. Geological Survey Open-File Report 78-679, 1006 p.

WATER-QUALITY DATA


09243700 －MIDDLE CREEK NEAR OAK CREEK．CO．




 －品ご
邑，岂さら i i i i i N会号品ごき
运気気




 DATE
OCT
$22 \ldots .$.
NOV
$05 \ldots$.
DEC
$02 \ldots$.
$J A N$
$22 \ldots$.
FEB
$05 \ldots$.
MAR
$05 \ldots$.
$A P R$
$07 \ldots$
$08 \ldots$
$M A Y$
$07 \ldots$
$J U N$
$04 \ldots$
$J U L$
$16 \ldots$
$A U G$
$10 \ldots$






WATER-QUALITY DATA , WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977



i

water-ouality oata, hater vear october 1970 to september 1977


出出会出定


 $\begin{array}{llllllll}\infty & \infty & m & 0 \\ 0 & 0 & n & n & 0 & 0 & 0 & n \\ 0 & n & n & n & 0\end{array}$
09243700 －MIDDLE CREEK NEAR OAK CREEK．CO．
WATER－QUALITY DATA，WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

出
zn
09243700 - MIDDLE CREEK NEAR DAK CREEK. CO.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

| SPE- <br> CIFIC <br> CON- <br> DUCT - <br> ANCE <br> (MICROMHOS ) | OXYGEN. DIS SOLVED (MG/L) | $\begin{gathered} \text { PH } \\ \text { FIELD } \\ \text { (UNITS) } \end{gathered}$ | CARBON DIOXIDE DISSOLVED (MG/L AS CO2) | ALKALINITY <br> (MG/L AS <br> (ACO3) | BICAR- <br> BONATE <br> (MG/L AS <br> HCO3) | $\begin{gathered} \text { CAR- } \\ \text { BONATE } \\ \text { (MG/L } \\ \text { AS CO3) } \end{gathered}$ | $\begin{gathered} \text { NITRO- } \\ \text { GEN. } \\ \text { NO2 + NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N ) } \end{gathered}$ | PHOSPHORUS. ORTHOPH OSPHATE DISSOL. (MG/L AS PO4) | PHOS ${ }^{-}$ PHORUS. ORTHOPH OSPHATE DISSOL. (MG/L AS PI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 840 | $10.6$ | 8.1 | 4.1 | 260 | 320 | -- | $.26$ | .15 | .050 |
| 430 | -- | 8-3 | 1.3 | 130 | 160 | 0 | 2.3 | . 03 | .010 |
| -- | - | - - | -- | -- | -- | -- | - | - | - - |
| 420 | -- | 8.5 | 1.2 | 190 | 230 | 0 | . 08 | . 03 | .010 |
| 500 | -- | 8-0 | 4.5 | 230 | 280 | 0 | -02 | .03 | .010 |
|  |  |  |  |  |  |  |  |  |  |
| 592 | -- |  | -- | -- | -- | -- | -- | -- | -- |
| 592 | -- | 8.5 | 1.6 | 250 | 300 | 4 | 8.10 | .06 | .020 |
|  | - |  |  | - | -- |  | -- | -- | -- |
| 600 | -- | 8.1 | $4 \cdot 1$ | 260 | 320 | 0 | . 01 | .03 | .010 |
| 310 | -- | 8-2 | 1.4 | 110 | 140 | 0 | .01 | . 06 | .020 |

oñoñ

$$
\begin{aligned}
& 5 u \\
& \text { 免 } \\
& \text { a }
\end{aligned}
$$

$$
\begin{aligned}
& \text { HARD- } \\
& \text { NESS } \\
& \text { (MG/L } \\
& \text { AS } \\
& \text { CACO3) }
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{H} \\
\mathrm{~N} \\
\mathrm{NON} \\
\mathrm{BO} \\
1
\end{gathered}
$$

        \(\operatorname{lng} 5 \forall\)
    $7 / 901$
$7 \forall 101$
$\cdot y \exists d d 03$




WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
CADMIUM

各各
合

动告
ごき
BORON. CADMIUM

句名ぎき

ロ或ぎこ


09243700 - MIDDLE CREEK NEAR OAK CREEK. CO.



出

$\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}$
MOLYB-

- WnN3a
0
$\sum_{u}^{0}$
0
0
د
0
2
2





09243700 - MIODLE CREEK NEAR OAK CREEK, CO.
WATER-QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
- 



2 いこと




(3y $5 \forall$
$7 / 001$
$7 \forall 101$
4NO\&1

| $1 i$ | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

SUS-
PENDED
RECOV-
ERABLE
(UG/L
ii ii i ili ili il o





$$
\begin{array}{cc}
\begin{array}{cc}
\text { NITRO- } \\
\text { GEN. }
\end{array} & \begin{array}{c}
\text { PHOS- } \\
\text { PHORUS, }
\end{array} \\
\text { NO2+NO3 } & \text { ORTHOPH } \\
\text { DIS- } & \text { OSPHATE } \\
\text { SOLVED } & \text { DISSOL. } \\
\text { (MG/L } & \text { (MG/L } \\
\text { AS N) } & \text { AS PO4) } \\
.11 & .09 \\
.03 & .06 \\
.07 & .03 \\
\$ .10 & .31
\end{array}
$$

09243800 - FIDEL CREEK NEAR OAK CREEK, CO.


WATER-QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976


$$
\text { water-quality oata, water year october } 1975 \text { to September } 1976
$$


こ


WATER-QUALITY DATA, WATER YEAR UCTOBER 1975 TO SEPTEMBER 1976





| 00》 | OE\＆ | 15 | $1{ }^{12}$ | $0^{0 \cdot \varepsilon}$ | 0001 | $90^{*}$ | －－ | $0 \cdot 5$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 018 | 052 | $1 \varepsilon$ | $2^{\circ} \mathrm{L}$ | S＊9 | 058 | $80^{\circ}$ | －－ | $0 \cdot 5$ |
| 88¢ | 02E | 68 | 2＊2 | 0－n | OSOI | $01{ }^{*}$ | $01 *$ | $0 \cdot 1$ |
| $\begin{aligned} & \text { (£OכH } \\ & \text { SV } \\ & 7 / \Im W) \\ & \exists 1 \forall N O Q \\ & -\forall \forall כ I G \end{aligned}$ | $\begin{aligned} & \text { (EOJv) } \\ & \text { S* } \\ & \text { /SW) } \\ & \text { AIINI } \\ & -\forall \times 1 \% \end{aligned}$ | 1203 sv | $\begin{gathered} (S 11 N n) \\ 07 \exists 1 \pm \\ \text { Hd } \end{gathered}$ | $\begin{aligned} & (7 / 9 W) \\ & 03 \wedge 70 S \\ & -510 \\ & \text {-Nヨ9A×0 } \end{aligned}$ | 1 SOHW | （Sちつ） | $\begin{gathered} (S y 3) \\ \text { MO7y } \\ - \text { Wvヨy1s } \end{gathered}$ | $\begin{aligned} & \text { ( ) 9э0) } \\ & \forall \exists 1 \nabla M \\ & \bullet \exists y \cap 17 \\ & -8 \exists \mathrm{dW} \exists 1 \end{aligned}$ |
|  |  | 7／9w） |  |  | －08J1w） | Snojnvi |  |  |
|  |  | 0э＾า0S |  |  | 33NV | －NVISNI |  |  |
|  |  | －S10 |  |  | －1300 | －m07s |  |  |
|  |  | 301x010 |  |  | －NO3 | －wviyls |  |  |
|  |  | NOQ8vo |  |  | Jigl |  |  |  |
|  |  |  |  |  | －3dS |  |  |  |
| 2161 |  | 019161 | 8780100 | 8V3A 83IVm | －viva | 17 \％ก0－y |  |  |

$$
\begin{gathered}
\omega \\
\frac{\alpha}{4} \\
\frac{\alpha}{2}-\frac{\alpha}{4}=\frac{\alpha}{2}
\end{gathered}
$$


铬にな

09243800 －FOIDEL CREEK NEAR OAK CREEK．CO．
WATER－QUALITY DATA，WATER YEAR OCTOBER 1976 TO SEPTEMBER




$\begin{array}{lll}0 & 0 \\ n & 0 \\ 5\end{array}$




迫品



$\underset{\sim}{\omega}$ ：





09243800 - FOIDEL CREEK NEAR OAK CREEK, CO.


$\underset{0}{0} \hat{O}_{0}^{n} \quad$ O

WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

|  | 0 | 0 |
| :---: | :---: | :---: |
|  | 0 | $\stackrel{\circ}{\sim}$ |
|  | $\begin{aligned} & \text { O } \\ & \hline \end{aligned}$ | $\stackrel{0}{N}$ |
|  | $\stackrel{!}{\square}$ | $\underset{\sim}{\infty}$ |
|  | $\underset{\infty}{\text { N }}$ | $\underset{\infty}{\sim}$ |
|  | $\begin{aligned} & \text { in } \\ & j \end{aligned}$ | : |





$$
\begin{aligned}
& 0 \\
& 0 \\
& 0 \\
& 0
\end{aligned}
$$

$$
i \quad i \sim i
$$

$$
0 \therefore 01
$$

$$
\stackrel{\rightharpoonup}{\dot{0}}=1
$$





$$
2200
$$


WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

$\begin{array}{lll}0 & \hat{0} & 1 \\ \vdots & 0 \\ 0\end{array}$

$$
\text { in } m i N
$$

$$
\frac{1}{2} \quad 1 \quad 1 \quad: 1
$$

$$
09243800 \text { - FIDEL CREEK NEAR OAK CREEK. CO. }
$$

$$
\underset{\sim}{E} \underset{\sim}{\sim}
$$

$$
\underset{\sim}{0} \underset{\sim}{0} 0001
$$

$$
0
$$

No inv



$$
1 \quad 1 \quad 10010
$$

$$
\infty
$$

$$
\text { HATER-QUALITY DATA, WATER YEAR OCTOBER } 1975 \text { TO SEPTEMBER } 1976
$$

$$
\underbrace{4}_{\infty} \sum_{\infty}^{4} \sum_{i}^{0} \text { 《 }
$$

$$
\stackrel{i n}{N}
$$

$$
1 \quad 1 \quad 1 \quad 1 \quad 9
$$



$$
09243900 \text { - FOIDEL CREEK AT MOUTH. NEAR DAK CREEK. CO. }
$$

WATER－DUALITY DATA，WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976



品
いこ


$\propto$





$$
09243900 \text { - FOIDEL CREEK AT MOUTH. NEAR DAK CREEK, CO. }
$$

$$
\text { WATER-QUALITY DATA, WATER YEAR OCTOBER } 1975 \text { TO SEPTEMBER } 1976
$$

¢00

09243900 - FOIDEL CREEK AT MOUTH, NEAR OAK CREEK. CO.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977
我出蕆
0010



$$
\begin{aligned}
& \text { 독 } \\
& \stackrel{8}{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \text { エ2发品 } \\
& \text { 只号 } \\
& \begin{array}{l}
\text { HARD } \\
\text { NESS } \\
\text { (MG/L } \\
\text { AS } \\
\text { CACO3 }
\end{array}
\end{aligned}
$$


家系岂边


－ii i


09243900 －FOIDEL CREEK AT MOUTH．NEAR OAK CREEK，CO．

|  | WATER－QUALITY DATA，WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977 |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CHLO－ RIDE， | SULFATE | FLUO- RIDE, | SILICA, | ARSENIC | BORON． | CADMIUM | COPPER． |
| OIS－ | DIS－ | DIS－ | SOLVED | DIS－ | OIS－ | DIS－ | DIS－ |
| SOLVED | SOLVED | SOLVED | （MG／L | SOLVED | SOLVED | SOLVED | SOLVED |
| （MG／L | （MG／L | （MG／L | AS | （UG／L | （UG／L | （UG／L | （UG／L |
| AS CL） | AS SO4） | AS F） | SIO2） | AS AS） | AS B） | AS CD） | AS CU） |
| 7.1 | 150 | ． 1 | 7.1 | 2 | 60 | 3 | 8 |
| 11 | 370 | ． 2 | 6.4 | －－ | 80 | －－ | －－ |
|  |  |  |  | －－ | －－ | －－ | －－ |
| 8.6 | 290 | ． 2 | 8.4 | －－ | 50 |  |  |

$$
\text { WATER-QUALITY OATA, WATER YEAR OCTOBER } 1977 \text { TO SEPTEMBER } 1978
$$

$$
\begin{aligned}
& \text { SPE- } \\
& \text { CIFI } \\
& \text { CON } \\
& \text { DUCT } \\
& \text { ANCE } \\
& \text { MICR } \\
& \text { MHS }
\end{aligned}
$$

$$
470
$$


09243900 - FIDEL CREEK AT MOUTH. NEAR OAK CREEK. CO.
WATER-OUALITY DATA, WATER YEAR OC TUBER 1977 TO SEPTEMBER 1978




1．•－－


新岂兑












WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
$\begin{array}{ccc}\text { SOLIDS, } & & \\ \text { SUM OF } & \text { SOLIDS, } & \text { SOLIDS, } \\ \text { CONSTI- } & \text { DISS- } & \text { DIS- } \\ \text { TUENTS, } & \text { SOLVED } & \text { SOLVED } \\ \text { DIS- } & \text { (TONS } & \text { (TONS } \\ \text { SOLVED } & \text { PER } & \text { PER } \\ \text { (M GIL) } & \text { DAY) } & \text { AC-FT) }\end{array}$
11: M
$\begin{array}{lll} & \text { ANTI- } & \text { SERE- } \\ \text { ZINC, } & \text { MONK, } & \text { NIUM, } \\ \text { DIS- } & \text { DIS- } & \text { DIS- } \\ \text { SOLVED } & \text { SOLVED } & \text { SOLVED } \\ \text { (UG/L } & \text { (UG/L } & \text { (UG/L } \\ \text { AS ZN) } & \text { AS SB) } & \text { AS SSE) }\end{array}$
ii i i - i
SER.
SUSA.
SIEVE
DIAM.
\% FINER
THAN
.062 MM
Nが心! ! ! !
09243900 - FIDEL CREEK AT MOUTH, NEAR OAK CREEK, CO.

ヘヘN゙

MERCURY
DIS-
SOLVED
(UG/L
-
Ii io !
111

$\begin{array}{lllll}1 & 1 & 1 & 1 & 1\end{array}$
SOLIDS,
DIS-
SOLVED
(TONS
PER
AC-FT)
92
LIDS,
DIS-
SOLVED
(TONS
PER
DAY)

~

iii I oi
AS SE)

$\stackrel{M}{\infty}$.


$$
\begin{aligned}
& \text { 気氙 } \\
& \text { WATER-QUALITY DATA. WATER YEAR OCTOBER } 1975 \text { TO SEPTEMBER } 1976 \\
& \text { SOOIUM }
\end{aligned}
$$

$$
\begin{aligned}
& \text { }
\end{aligned}
$$

$$
\begin{aligned}
& \text { i ili! a i ioili i i i ili }
\end{aligned}
$$

$$
\begin{aligned}
& \text { N : : : : : : : : : : : : : : : : }
\end{aligned}
$$

09250510 －TAYLOR CREEK AT MOUTH NEAR AXIAL，CO．
WATER－QUALITY DATA．WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976





$$
\begin{aligned}
& \text { 家話ぎ, }
\end{aligned}
$$

が品こそ品口号こと




㟥





water-ouality data, water year october 1975 to september 1976











WATER-QUALITY DATA, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

| DATE | Phorus. ORTHOPH OSPHATE OISSOL. (MG/L AS P) | HARDNESS <br> (MG/L AS <br> CACO3) | HARDNESS. NONC ARBONATE <br> (MG/L (ACO3) | CALCIUM DISSOLVED (MG/L AS CA) | MAGNE- <br> SIUM. <br> DIS- <br> SOLVED <br> (MG/L <br> AS MGI | $\begin{aligned} & \text { SODIUM, } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS NA) } \end{aligned}$ | $\begin{aligned} & \text { SOOIUM } \\ & \text { AD- } \\ & \text { SORP- } \\ & \text { TION } \\ & \text { RATIO } \end{aligned}$ | $\begin{aligned} & \text { SODIUM } \\ & \text { PERCENT } \end{aligned}$ | POTAS- <br> SIUM. <br> DIS- <br> SOLVED <br> (MG/L <br> AS K) | CHLORIDE. DISSOLVED (MG/L AS CLI | SULFATE <br> DIS- <br> SOLVED <br> (MG/L <br> AS SO4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OCT |  |  |  |  |  |  |  |  |  |  |  |
| 15... | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |  |
| 15... | -- | -- | -- | -- | -- | -- | -- |  | -- |  | -- |
| 15... | . 020 | 680 | 270 | 92 | 110 | 74 | 1.2 | 19 | 9.2 | 39 | 350 |
| nov |  |  |  |  |  |  |  |  |  |  |  |
| 05... | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |  |
| 05... | . 010 | 570 | 200 | 78 | 90 | 57 | 1.0 | 18 | 7.8 | 25 | 300 |
| MAR |  |  |  |  |  |  |  |  |  |  |  |
| 23... | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 23.0. | . 040 | 240 | 51 | 34 | 37 | 24 | . 7 | 17 | 7.2 | 12 | 92 |
| 24... |  |  | -- | -- |  | -- |  |  | -- | -- |  |


09250600 - WILSON CREEK NEAR AXIAL, CO.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976


 ~







09250600 －WILSON CREEK NEAR AXIAL．CO．
WATER－QUALITY DATA．WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976






 응 울 in 0
0
0 웅 $\underset{\sim}{\circ}$岩这发 $811 i$ $\because$ ！ ！ ！：1 ：1：14 ， ： ！ ！ ！ ＋ ；
今
09250600 - WILSON CREEK NEAR AXIAL. CO.
WATER-QUALITY DATA. WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976




 WATER-QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976


 (UG/L i! ii i i i i i i i i i i 1 i i i i io i $\star$ $i$保 - : 09250600 - WILSON CREEK NEAR AXIAL. CO.


WATER-QUALITY DATA, WATER VEAR OCTOBER 1976 TO SEPTEMBER 1977

| DATE | TEMPERATURE. WATER (DEG C) | STREAMFLOW. INSTANTANEOUS (CFS) | SPECIFIC CON-DUCTANCE (MICROMHOS) | $\begin{aligned} & \text { OXYGEN. } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L) } \end{aligned}$ | $\begin{gathered} \text { PH } \\ \text { FIELD } \\ \text { (UNITS) } \end{gathered}$ | CARBON DIDXIDE DISSOLVED (MG/L AS CO2) | $\begin{aligned} & \text { ALKA- } \\ & \text { LINITY } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { CACO3) } \end{aligned}$ | BICARBONATE (MG/L AS HCO3) | CARBONATE <br> (MG/L <br> AS CO3) | $\begin{gathered} \text { NITRO- } \\ \text { GEN, } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { MSG/L } \\ \text { AS N) } \end{gathered}$ | PHOSPHORUS. ORTHOPH OSPHATE DISSOL. <br> (MG/L AS PO4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OCT |  |  |  |  |  |  |  |  |  |  |  |
| 15... | 6.5 | . 42 | 2100 | 10.5 | 8.2 | 5.0 | 404 | 493 | 0 | . 40 | . 06 |
| NOV |  |  |  |  |  |  |  |  |  |  |  |
| 05... | 10.0 | - 36 | 1900 | 9.5 | 8.0 | 7.6 | 388 | 473 | 0 | . 33 | . 06 |
| DEC |  |  |  |  |  |  |  |  |  |  |  |
| 09.... | 3.5 | . 47 | 2100 | 9.8 | 8.2 | 5.3 | 431 | 526 | 0 | . 52 | . 00 |
| JAN |  |  |  |  |  |  |  |  |  |  |  |
| 06... | . 5 | . 12 | 2050 | 10.6 | 8.1 | 6.8 | 440 | 536 | 0 | . 46 | . 03 |
| FEB |  |  |  |  |  |  |  |  |  |  |  |
| 07... | 2.0 | . 63 | 1990 | 8.7 | 8.2 | 5.1 | 414 | 505 | 0 | - 36 | . 03 |
| MAR |  |  |  |  |  |  |  |  |  |  |  |
| 10... | 3.0 | . 70 | 1800 | 12.8 | 8.1 | 6.2 | 399 | 486 | 0 | . 25 | . 09 |
| APR |  |  |  |  |  |  |  |  |  |  |  |
| 07... | 10.0 | .93 | 1750 | 10.4 | 8.2 | 4.3 | 350 | 430 | 0 | . 26 | . 12 |
| MAY |  |  |  |  |  |  |  |  |  |  |  |
| 05... | 14.0 | . 34 | 2100 | 9.6 | 8.2 | 4.8 | 390 | 480 | 0 | - 19 | . 12 |
| Jun |  |  |  |  |  |  |  |  |  |  |  |
| 08.... | 16.0 | . 36 | 2000 | 8.2 | 8.1 | 6.4 | 410 | 500 | 0 | . 43 | . 03 |
| JUL |  |  |  |  |  |  |  |  |  |  |  |
| 08... | 16.0 | - 38 | 1900 | 9.9 | 8.1 | 6.0 | 390 | 470 | 0 | - 32 | . 03 |
| AUG |  |  |  |  |  |  |  |  |  |  |  |
| 18... | 15.0 | . 37 | 1910 | 11.0 | 8.2 | 4.6 | 380 | 460 | 0 | -18 | . 03 |
| SEP |  |  |  |  |  |  |  |  |  |  |  |
| 19... | 15.5 | . 36 | 2000 | 11.2 | 8.2 | 4.9 | 400 | 490 | 0 | . 25 | . 03 |



$$
\begin{array}{lll}
\infty & \pm \\
\stackrel{y}{n} & 0 \\
i & \vdots
\end{array}
$$

$$
\begin{array}{cc}
n \\
\vdots \\
\vdots \\
\vdots
\end{array}
$$

$$
\left\{\begin{array}{l}
\sim \\
\underset{\sim}{n} \\
\stackrel{y}{n}
\end{array}\right.
$$

$$
\begin{aligned}
& \pm \\
& \infty \\
& \dot{\sim}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{\sim}{\square} \\
& \vdots
\end{aligned}
$$

$$
\begin{gathered}
\underset{\sim}{0} \\
\underset{-1}{2} \\
\hline
\end{gathered}
$$

$$
\underset{\sim}{N}
$$

$$
\begin{array}{llll}
0 & 0 \\
\underset{\sim}{\infty} & 0 & 0 \\
\sim & \underset{\sim}{\sim} & \underset{\sim}{\sim}
\end{array}
$$

$$
\begin{array}{lll}
\underset{\sim}{2} & \stackrel{0}{\infty} & \vdots \\
& \\
\hline
\end{array}
$$

$$
\stackrel{\circ}{\underset{\sim}{e}}
$$

$$
\begin{aligned}
& \mathbf{N} \\
& \mathbf{N} \\
& \sim
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{\circ}{\mathbf{~}} \\
& \underset{\sim}{2}
\end{aligned}
$$

$$
\stackrel{0}{2}
$$

$$
\begin{array}{ll}
0 \\
\stackrel{\circ}{\sim} \\
\sim & 0 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { SELE- } \\
& \text { NIUM, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { (UG/L } \\
& \text { AS SE) }
\end{aligned}
$$

$$
i \quad i \infty \quad i \quad i \quad i \quad n \quad i \quad i \infty \quad i \quad i
$$

$$
\begin{aligned}
& (U G / L \\
& A S S B)
\end{aligned}
$$



$$
1
$$

$$
1 \rightarrow 1
$$

$$
\vec{a} \quad 1
$$

,

$$
0
$$

$$
\begin{aligned}
& \text { ZINC, } \\
& \text { DIS- } \\
& \text { SOLVED } \\
& \text { YUG/L }
\end{aligned}
$$

$$
1 \quad 1 \underset{\sim}{0} 1 \underset{\sim}{0} 1 \quad 1 \quad \underset{0}{0} 11 i \frac{0}{2} 11
$$

09250600 - WILSON CREEK NEAR AXIAL. CO.
WATER-QUALITY OATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

| DATE | TEMPERATURE, WATER (OEG C) | STREAMFLOW. INSTANTANEOUS (CFS) | $\begin{aligned} & \text { SPE- } \\ & \text { CIFIC } \\ & \text { CON- } \\ & \text { OUCT- } \\ & \text { ANCE } \\ & \text { (MICRO- } \\ & \text { MHOS) } \end{aligned}$ | OXYGEN. 01SSOLVED (MG/L) | $\begin{gathered} \text { PH } \\ \text { FIELD } \\ \text { (UNITS) } \end{gathered}$ | CARBON DIOXIDE OISSOLVED (MG/L AS CO2) | $\begin{aligned} & \text { ALKA- } \\ & \text { LINITY } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { CACO3) } \end{aligned}$ | BICARBONATE <br> (MG/L AS HCO3) | CAR BONATE <br> (MG/L AS CO3) | $\begin{gathered} \text { NITRO- } \\ \text { GEN } \\ \text { NO2+NO3 } \\ \text { OIS- } \\ \text { SOLVED } \\ \text { (MG/L } \\ \text { AS N) } \end{gathered}$ | PHOS PHORUS. ORTHOPH OSPHATE OISSOL. <br> (MG/L AS PO4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OCT |  |  |  |  |  |  |  |  |  |  |  |
| 27... | 7.0 | . 39 | 2000 | 11.2 | 8.3 | 4.0 | 410 | 500 | 0 | . 44 | .03 |
| NOV |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{aligned} & 28 \ldots \\ & \text { JAN } \end{aligned}$ | 6.0 | . 37 | 2000 | -- | 8.2 | 5.0 | 410 | 500 | 0 | . 41 | . 03 |
|  |  |  |  |  |  |  |  |  |  |  |  |
| 05... | 4.0 | . 36 | 1800 | 10.6 | 8.1 | 6.4 | 410 | 500 | 0 | -- | . 00 |
| FEB |  |  |  |  |  |  |  |  |  |  |  |
| 02... | 5.0 | . 35 | 1900 | -- | 8.1 | 6.1 | 390 | 480 | 0 | . 28 | . 03 |
| MAR |  |  |  |  |  |  |  |  |  |  |  |
| O8... | 8.0 | . 38 | 2000 | 10.2 | 8.1 | 6.4 | 410 | 500 | 0 | . 39 | . 00 |
| APR |  |  |  |  |  |  |  |  |  |  |  |
| 17... | 9.0 | . 53 | 1900 | 10.2 | 8.1 | 6.6 | 430 | 520 | 0 | . 33 | . 03 |
| May |  |  |  |  |  |  |  |  |  |  |  |
| 15... | 18.5 | 6.3 | 1200 | 7.0 | 8.3 | 2.2 | 230 | 280 | 0 | 1.1 | . 03 |
| JUL |  |  |  |  |  |  |  |  |  |  |  |
| 05... | 21.0 | 1.1 | 1700 | 8.9 | 8.5 | 1.8 | 290 | 350 | 1 | . 22 | . 06 |
| 24.0. | 21.5 | . 73 | 1700 | 9.4 | 8.2 | -- | -- | -- | 0 | . 13 | .03 |
| AUG |  |  |  |  |  |  |  |  |  |  |  |
| 17... | 20.5 | . 34 | 1850 | 9.3 | 8.3 | 3.6 | 370 | 450 | 0 | - 19 | . 03 |
| StP |  |  |  |  |  |  |  |  |  |  |  |
| 30... | 12.5 | . 26 | 1880 | 12.2 | 8.2 | 4.7 | 390 | 470 | 0 | . 16 | . 00 |

09250600 －WILSON CREEK NEAR AXIAL．CO．
8L6I yヨghaides 01 LL6I yヨgoljo yvヨa yヨivm＇viva Allvino－yヨivm


$\left.\begin{array}{lllllllllll}\dot{B} & 0 & \overline{4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \vdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$
MAGNE－




 エて筸
S

$$
\begin{aligned}
& \text { HARD- } \\
& \text { NESS } \\
& \text { (MG/L } \\
& \text { AS } \\
& \text { MACO3) }
\end{aligned}
$$

M $\stackrel{0}{\wedge}$ 옹 0
0
0
 PHOS－
PHORUS，
 1
2
2
$\vdots$
$\vdots$
$\vdots$
$\begin{array}{lllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0\end{array}$



$$
\begin{aligned}
& 09250600 \text { - WILSON CREEK NEAR AXIAL. CO. } \\
& \text { WATER-QUALITY DATA, WATER YEAR OCTOBER } 1977 \text { TO SEPTEMBER } 1978
\end{aligned}
$$

<compat>ᄅ<compat>ᅳ<compat>ᄂ<compat>ᄒ<compat>ᅳ<compat>ᄂ i i i i i i i ii i ar
茺台员导に

$$
09250600 \text { - WILSON CREEK NEAR AXIAL, CO. }
$$



$$
\begin{aligned}
& \text { LEAD. } \\
& \text { SUS: }
\end{aligned}
$$

$$
\begin{aligned}
& \text { MANGA } \\
& \text { NESE, } \\
& \text { DIS }- \\
& \text { SOLVE } \\
& \text { AS MN }
\end{aligned}
$$

MANGA-
water－quality data，hater year october 1977 to September 1978

$$
i \quad 1 \quad 1 \quad 1 \quad 1 \quad 1 \quad i 1 \quad 1 \quad n
$$

،




WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978


这送 i i i i i i i i i i o NICKE
TOTAL
CUG
AS N







发莡ごこ



water－quality data，water year october 1977 to September 1978

WATER-QUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

| DATE. | TEMPERATURE, WATER (DEG C) | STREAMFLO'N (CFS) | STREAMFLOW. INSTANTANEOUS (CFS) | SPECIFIC CON-DUCTANCE (MICROMHOSI | $\begin{gathered} \text { OXYGEN, } \\ \text { OIS- } \\ \text { SOLVED } \\ \text { (MG/L) } \end{gathered}$ | $\begin{gathered} \text { PH } \\ \text { FIELO } \\ \text { (UNITS) } \end{gathered}$ | $\begin{gathered} \text { CARBON } \\ \text { DIOXIDE } \\ \text { DIS- } \\ \text { SOLVEO } \\ \text { (MG/L } \\ \text { AS CO2I) } \end{gathered}$ | $\begin{aligned} & \text { ALKA- } \\ & \text { LINITY } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { CACO3) } \end{aligned}$ | BICARBONATE <br> (MG/L AS HCO3) | CARBONATE <br> (MG/L <br> AS CO3) | $\begin{gathered} \text { NITRO- } \\ \text { GEN } \\ \text { NO2+NO3 } \\ \text { DIS- } \\ \text { SOLVED } \\ \text { (MGGLL } \\ \text { AS NI } \end{gathered}$ | PHOSPHORUS. ORTHOPH OSPHATE OISSOL. (MG/L AS PO4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OCT |  |  |  |  |  |  |  |  |  |  |  |  |
| 09... | 8.0 | -- | . 12 | 2000 | 9.8 | 7.8 | 15 | 499 | 608 | 0 | 6.10 | . 00 |
| NOV |  |  |  |  |  |  |  |  |  |  |  |  |
| 12... | . 5 | . 05 | . 05 | 2100 | 10.1 | 8.4 | 4.3 | 556 | 678 | 0 | . 06 | . 03 |
| FEB |  |  |  |  |  |  |  |  |  |  |  |  |
| 09... | . 5 | -- | 5.5 | 420 | 12.4 | 8.1 | 1.8 | 116 | 142 | 0 | . 44 | . 46 |
| 13... | . 5 | -- | - 80 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 26... | 2.0 | -- | . 05 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| Miar |  |  |  |  |  |  |  |  |  |  |  |  |
| 01... | 5:0 | -- | -38 | 950 | 10.4 | 8.2 | 4.0 | 325 | 396 | 0 | . 06 | . 15 |
| 10... | 1.0 | -- | . 09 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 16... | . 5 | -- | . 05 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 25... | .5 | -- | . 08 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| APR |  |  |  |  |  |  |  |  |  |  |  |  |
| 01... | 1.0 | -- | . 11 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 14... | 11.0 | -- | . 07 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 22... | 10.0 | -- | . 07 | 1500 | -- | -- | -- | -- | -- | -- | -- | -- |
| 28... | 16.0 | -- | . 07 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| MAY |  |  |  |  |  |  |  |  |  |  |  |  |
| 06... | 10.0 | -- | . 06 | 1500 | 9.0 | 8.1 | 6.9 | 442 | 539 | 0 | -- | -- |
| 14... | 27.0 | -- | . 07 | -- | -- | - | -- | -- | -- | -- | -- | -- |
| 21... | 10.0 | -- | . 10 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 27... | 17.0 | -- | .14 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| JUN |  |  |  |  |  |  |  |  |  |  |  |  |
| 10... | 14.0 | -- | -16 | 1450 | 6.9 | 8.2 | 5.5 | 445 | 543 | -- | . 05 | . 00 |
| 17... | 17.0 | -- | . 22 | 1325 | -- | -- | -- | -- | -- | -- | -- | -- |
| 23... | 20.0 | -- | . 22 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 30... | 28.0 | -- | . 34 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| JUL |  |  |  |  |  |  |  |  |  |  |  |  |
| 06... | 17.0 | -- | . 12 | 1700 | 6.0 | 8.1 | 6.0 | 390 | 475 | 0 | . 02 | . 00 |
| 30... | 20.0 | -- | . 07 |  | -- | -- | -- | -- | -- | -- | -- | -- |
| AUG |  |  |  |  |  |  |  |  |  |  |  |  |
| 09... | 14.0 | -- | . 11 | 1550 | 7.6 | 8.2 | 5.4 | 439 | 535 | 0 | . 01 | . 06 |
| 19... | 13.5 | -- | . 07 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| SEP |  |  |  |  |  |  |  |  |  |  |  |  |
| 01... | 10.0 | -- | . 05 | 1620 | 7.8 | 8.1 | 6.7 | 433 | 528 | 0 | . 01 | . 09 |
| 09... | 16.0 | -- | .07 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| 22... | 10.0 | -- | . 07 | -- | -- | - | -- | -- | - | -- | -- | -- |




09250610 －JUBB CREEK NEAR AXIAL．CO．
WATER－QUALITY DATA，WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976

|  | $\sim \underbrace{\circ} \underline{\sim}^{11}$ | $3^{11}$ |  | $\otimes^{1!}$ | $m^{11}$ |  | $:^{1}{ }^{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\underline{\square}$ | $2{ }^{11}$ | 1！ | $8^{1: 1}$ | $\underbrace{11}$ |  | $9_{9} \underbrace{\text { g }}$ |
|  | －$\square^{\circ} \mathrm{c}^{11}$ | $2{ }^{11}$ | 111 | $2^{111}$ | $\%^{111}$ | $\sim^{1}$ | ® |
|  | 呂号年1 | ¢1： | 11： | O： $1:$ | 号： 11 |  | $\stackrel{\circ}{\circ} 1$ |
|  | \％号号 | ¢1： | 1111 | \％1： | 号：1 | 〇！ | 8 |
|  | $\stackrel{\square}{\square} \mathrm{l}: 1!$ | 11： | 11： | 1： 1 | ： 11 | ！ | 1 |
|  | F＇：11 | $\stackrel{\sim}{\dot{\omega}}$ | 111 | 111 |  | ！ | 1 \％¢ |
|  | $=1111$ | $\stackrel{\circ}{\dot{\circ}} 1: 1$ | 111 | 1：11 | $z^{1:}$ | ！ | H ${ }_{\text {¢ }}$ |
|  | 哀哀号号！ | 号： 1 | 11： | ！ 11 | 号： | $\stackrel{\circ 口 力}{\circ}$ |  |

皆
09250610 - JUBB CREEK NEAR AXIAL. CO.
WATER-UUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976


|  |  |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |



WATER-OUALITY DATA, WATER YEAR OCTOBER 1975 TO SEPTEMBER 1976


いいごは
产








宸
WATER-QUALITY DATA, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977

| DATE | TEMPERATURE. WATER (DEG C) | STREAMFLOW. INSTANTANEOUS (CFS) | SPECIFIC CON-OUCTANCE (MICROMHOS) | OXYGEN. DISSOLVED (MG/L) | $\begin{gathered} \text { PH } \\ \text { FIELD } \\ \text { (UNITS) } \end{gathered}$ | CARBON DIOXIDE DISSOLVED (MG/L AS CO2I | $\begin{aligned} & \text { ALKA- } \\ & \text { LINITY } \\ & \text { (MG } / \mathrm{L} \\ & \text { AS } \\ & \text { CACO3) } \end{aligned}$ | BICARBONATE <br> (MG/L AS HCO3) | CAR BONATE <br> (MG/L AS CO3) | $\begin{aligned} & \text { NITRO- } \\ & \text { GEN } \\ & \text { NO2 + NO } \\ & \text { OIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS N) } \end{aligned}$ | PhosPHORUS. ORTHOPH OSPHATE OISSOL. <br> (MG/L AS PO4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| oct |  |  |  |  |  |  |  |  |  |  |  |
| 15... | . 5 | . 07 | 1600 | 11.0 | 8.2 | 5.1 | 418 | 510 | 0 | . 02 | . 03 |
| NOV |  |  |  |  |  |  |  |  |  |  |  |
| 05... | 2.0 | . 05 | 1600 | 10.6 | 8.1 | 7.1 | 459 | 560 | 0 | . 02 | . 03 |
| 05... | -- | . 05 |  | - | -- | -- | -- | -- | -- | -- | -- |
| 12... | . 5 | . 05 | -- | -- | -- | -- | -- | -- | -- | -- | -- |




WATER-QUALITY OATA, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977








읓

11







09250610 - JUBB CREEK NEAR AXIAL. CO.
WATER-QUALITY OATA, WATER YEAR OCTOBER 1976 TO SEPTEMBER 1977





ジ華代
呙に号ごこ


~
09250610 - JUBB CREEK NEAR AXIAL. CO.
WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

| DATE | TEMPERATURE, WATER (DEG C) | STREAM- <br> FLOW. <br> INSTAN- <br> TANEOUS <br> (CFS) | SPECIFIC CON-OUCTANCE (MICROMHOS | OXYGEN. DISSOLVED (MG/L) | PH <br> FIELO (UNITS) | CARBON DIOXIDE DISSOLVED (MG/L AS CO2) | $\begin{aligned} & \text { ALKA- } \\ & \text { LINITY } \\ & \text { (MG/L } \\ & \text { AS } \\ & \text { CACO3) } \end{aligned}$ | BICARBONATE <br> (MG/L AS <br> HCO3) | CARBONATE <br> (MG/L <br> AS CO3) | $\begin{aligned} & \text { NITRO- } \\ & \text { GEN } \\ & \text { NO2+NO3 } \\ & \text { DIS- } \\ & \text { SOLVED } \\ & \text { (MG/L } \\ & \text { AS N) } \end{aligned}$ | PHOSPhorus. ORTHOPH OSPHATE DISSOL. <br> (MG/L <br> AS PO4) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OCT |  |  |  |  |  |  |  |  |  |  |  |
| 21... | -- | -- | -- | -- | -- | -- | -- | -- | -- |  | -- |
| 21... | 6.0 | . 01 | 1700 | 9.3 | 8.5 | 2.8 | 450 | 520 | 13 | . 04 | . 03 |
| NOV |  |  |  |  |  |  |  |  |  |  |  |
| 28... | - 5 | 9.01 | 2120 | -- | 8.1 | 12 | 500 | 610 | 0 | - 10 | 15 |
| 28... | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
| APR |  |  |  |  |  |  |  |  |  |  |  |
| 17.... | 9.0 | . 01 | 1625 | 10.0 | 8.1 | 6.9 | 440 | 540 | 0 | . 02 | . 03 |
| May |  |  |  |  |  |  |  |  |  |  |  |
| 15... | 16.0 | 9.01 | 1800 | 7.9 | 8.5 | 2.8 | 450 | 530 | 12 | 5.10 | . 09 |


 a 品
WATER-QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

|  | 1 N | $\stackrel{ \pm}{\infty}$ | $\vec{\sim}$ |
| :---: | :---: | :---: | :---: |
|  | $19$ | $\stackrel{-}{-}$ | $\because$ |
|  | $10$ | $\stackrel{\sim}{2}$ | $\stackrel{\infty}{\circ}$ |
|  | - | $\stackrel{\square}{\circ}$ | in |






WATER-QUALITY DATA. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978
SOLIDS.
SUM DF






