# Magnitude and Frequency of Floods in Eastern Oregon

By D. D. Harris and Lawrence E. Hubbard

U. S. GEOLOGICAL SURVEY Water Resources Investigations Report 82-4078

Prepared in cooperation with the Oregon Department of Transportation, Highway Division



Portland, Oregon 1983 UNITED STATES DEPARTMENT OF THE INTERIOR JAMES G. WATT, Secretary GEOLOGICAL SURVEY Dallas L. Peck, Director

| For additional information write to:<br>U.S. GEOLOGICAL SURVEY<br>847 N.E. 19th Ave., Suite 300 | Copies of this report may be purchased from:                                                                                                    |  |  |  |  |
|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Portland, OR 97232                                                                              | Open-File Services Section<br>Western Distribution Branch<br>U.S. Geological Survey<br>Box 25425, Denver Federal Ctr.<br>Denver, Colorado δ0225 |  |  |  |  |

# Page

| ABSTRACT                                         | 1  |
|--------------------------------------------------|----|
| INTRODUCTION                                     | 1  |
| Purpose and scope                                | 2  |
| Previous studies                                 | 2  |
| GENERAL DESCRIPTION OF THE AREA                  | 3  |
| ANALYTICAL TECHNIQUE                             | 6  |
| Drainage-basin characteristics                   | 6  |
| Magnitude and frequency of floods at gaged sites | 7  |
| Regression analysis                              | 9  |
| APPLICATION OF RESULTS                           | 10 |
| Method used                                      | 10 |
| Evaluation of estimates                          | 16 |
| Illustrative problems                            | 17 |
| Limitations                                      | 22 |
| EFFECTS OF URBANIZATION                          | 23 |
| ALTERNATIVES FOR FUTURE STUDIES                  | 24 |
| SUMMARY                                          | 25 |
| SELECTED REFERENCES                              | 26 |

### ILLUSTRATIONS

| Figure | 1. | Map showing locations of gaging stations,<br>and boundaries of flood frequency regions<br>and geomorphic provinces in eastern<br>Oregon | 4  |
|--------|----|-----------------------------------------------------------------------------------------------------------------------------------------|----|
|        | 2. | Map showing average precipitation in eastern<br>Oregon                                                                                  | 5  |
|        | 3. | Map showing mean minimum January air temperature<br>in eastern Oregon                                                                   | 8  |
|        | 4. | Graph showing variation of flood discharge with<br>channel distance upstream from the mouth for<br>Grande Ronde River                   | 14 |
|        | 5. | Graph showing variation of flood discharge with<br>channel distance upstream from mouth for John<br>Day River                           | 15 |
|        | 6. | Graph showing maximum observed peak discharges<br>in relation to drainage areas                                                         | 16 |
|        | 7. | Graph showing flood-frequency curve developed by<br>regional analysis for a site in the Southeast<br>Region                             | 20 |

# TABLES

| Table 1. | Regional flood frequency equations                                                      | 11 |
|----------|-----------------------------------------------------------------------------------------|----|
| 2.       | Basin characteristics used in multiple regression                                       | 29 |
| 3.       | Discharges for selected flood frequencies at gaging stations                            | 33 |
| 4.       | Maximum discharge at gaging stations used in eastern<br>Oregon flood-frequency analysis | 37 |

Page

Conversion factors for inch-pound system and International System Units (SI)

[For use of those readers who may prefer to use metric units rather than inch-pound units, the conversion factors for the terms used in this report are listed below:]

| Multiply inch-pound units                  | Ву                       | To obtain metric unit                          |
|--------------------------------------------|--------------------------|------------------------------------------------|
|                                            | Length                   |                                                |
| inch (in.)<br>foot (ft)<br>mile (mi)       | 25.40<br>0.3048<br>1.609 | millimeter (mm)<br>meter (m)<br>kilometer (km) |
|                                            | Area                     |                                                |
| square mile (mi²)                          | 2.590                    | square kilometer (km²)                         |
|                                            | Specific combinations    |                                                |
| cubic foot per second (ft <sup>3</sup> /s) | 0.0283                   | cubic meter per second<br>(m³/s)               |

By D. D. Harris and Lawrence E. Hubbard

#### ABSTRACT

A method for estimating the magnitude and frequency of floods at ungaged sites is presented for unregulated streams in eastern Oregon. Equations relating flood magnitude to basin characteristics were developed for exceedance probabilities of 0.5 to 0.01 (2- to 100-year recurrence intervals). Flood characteristics were found to be best defined by dividing eastern Oregon into four geographic regions: Southeast, Northeast, North Central, and Eastern Cascades. Separate equations are presented for each region.

Also presented are values of maximum discharges, of flood discharges for selected exceedance probabilities, and of basin characteristics for all gaging stations used in the analysis. Included are data for 148 stations in Oregon, 3 stations in northern California, 3 stations in western Idaho, 4 stations in northern Nevada, and 4 stations in southern Washington. Drainage areas used in the analysis range from 0.47 to 11,300 square miles.

#### INTRODUCTION

The increasing emphasis on flood plain zoning and the collection of new flood data in eastern Oregon provides a basis to update the flood frequency analysis for that area. Although some parts of the area are still deficient of data, this analysis makes use of the most recent data available. Little flood data for streams with drainage areas less than 10 mi<sup>2</sup> were available when flood frequency reports were last prepared (Thomas and others, 1963; Hulsing and Kallio, 1964; Butler and others, 1966: Young and Cruff. 1967). A small-stream flood data program for drainage areas generally less than 10 mi<sup>2</sup> was begun in 1952, in cooperation with the Oregon Department of Transportation, Highway Division. then the Oregon State Highway Commission. The small-stream program was expanded in 1965 through funds provided by the U.S. Forest Service, to include many previously ungaged streams in national forests. In 1969 six small-stream, peak- flow gaging stations were installed in cooperation with the U.S. Bureau of Land Management. Now, with at least 10 years of data collected at many new sites on small streams and with added data at the old sites, the data base can be used to re-evaluate magnitude and frequency statistics.

This analysis is limited to eastern Oregon. Another flood frequency report has been recently prepared for the western part of the State (Harris and others, 1979).

In describing flood frequency in this report, the term "exceedance probability" is used in preference to the term "recurrence interval." However, both terms are used in most tables, graphs, and illustrative problems. For example, a flood with a 0.01 exceedance probability is a flood that has one chance in a hundred of being exceeded in any one year. This is a 100-year flood under the "recurrence interval" terminology.

#### **Purpose and Scope**

This report describes methods for estimating the magnitude and frequency of floods at ungaged sites on streams with unregulated flow in eastern Oregon. The purpose is to provide a method to estimate flood magnitude and frequency and to present the supporting data. The report is based on data from nearly all unregulated streams (or data from regulated streams prior to their regulation) where gaging stations have been operated for at least 10 years.

Records at the gaging stations provided the basis for estimating flood-peak discharges and frequency of occurrence at ungaged sites. Stations used in this analysis have records ranging from 10 to 75 years. Data used to evaluate peak flows were for 162 gaging stations in eastern Oregon, and adjacent states. Of that total, 62 were crest-stage gaging stations. A crest-stage gage records only the peak stages of a stream. Drainage areas ranged in size from 0.47 mi<sup>2</sup> to 11,300 mi<sup>2</sup>. Locations of gaging stations used are shown in figure 1.

The magnitude of a flood is influenced by physiographic characteristics of the drainage basin. These characteristics, which include basin size, climate, topography, geography, soils, and vegetation, are referred to as basin characteristics throughout this report.

Multiple-regression analysis was used to correlate flood discharges with selected basin characteristics and to develop appropriate regional relation equations shown in table 1. Although many basin characteristics were tried as independent variables in regression analysis, the number retained in the equations was reduced for practicality and simplicity, with little effect on the accuracy of the flow estimate.

#### **Previous Studies**

Previous flood frequency reports by Thomas and others (1963), Hulsing and Kallio (1964), Butler and others (1966), Young and Cruff (1967), and Kjelstrom (1981), covered parts of eastern Oregon. Those reports contained peak-flow data for 93 stations in eastern Oregon. For those reports, the smallest drainage basin sampled was about 9 mi<sup>2</sup>.

Regression equations for flood-peak discharge are presented in a report "Evaluation of the streamflow data program in Oregon" (Lystrom, 1970), which are based on data through water year 1967 (October 1966 through September 1967) from all stations with 10 or more years of record of unregulated flow through the 1967 water year.

Because of the inclusion of data from many small drainage basins and the addition of data for long-term stations, the equations presented in this report are probably more reliable than those presented in previous Geological Survey reports for eastern Oregon.

#### **GENERAL DESCRIPTION OF THE AREA**

The area studied includes all that part of Oregon east of the crest of the Cascade Range. According to Dicken (1965), the principal geomorphic features in eastern Oregon include the east slope of the Cascade Range, the Deschutes-Umatilla Plateau, the Blue Mountains, the High Lava Plains, the Basin and Range, and the Owyhee Upland (fig. 1).

High flows on streams in eastern Oregon are caused by generalized rains, snowmelt, and cloudburst storms. The largest flows on most streams result from heavy winter rains accompanied by snowmelt on frozen ground.

The east slope of the Cascade Range is primarily comprised of Pliocene and Pleistocene flows of basalt and andesite along with volcanic tuff and ash deposits resting on older volcanic rocks. Much of this volcanic material in the eastern part of the Oregon cascades is highly permeable. Annual precipitation, most of which occurs as snow, ranges from less than 20 inches along the eastern edge of the area to more than 100 inches in the high elevations as shown in figure 2. Peak stream flows in this area most commonly result from snowmelt. The permeable volcanic materials tend to dampen the snowmelt runoff, and in many areas are the source of prominent springs. In some places, the flat terrain produced by recent lava flows that cover highly permeable pumice and ash beds make the contributing drainage area boundaries impractical to determine.

The Deschutes-Umatilla Plateau lies north and west of the Blue Mountains and is bounded by the Cascade Range on the west, and the Columbia River on the north. High stream flows in this area are caused by snowmelt runoff or rainstorms, including summer cloudburst storms. Winter flooding is greatest when the ground is frozen. Annual precipitation in this area ranges from less than 10 to more than 25 inches.

The Blue Mountains lie in the northeast part of Oregon. High stream flows result from snowmelt sometimes in combination with direct rainfall. Cloudburst storms are common. Average annual precipitation ranges from less than 10 inches along the perimeter to more than 80 inches in the Wallowa Mountain area.

The High Lava Plains, Basin-Range, and Owyhee Upland areas in the southeastern part of the state are mostly covered by sagebrush and scattered juniper trees, and include several local mountain ranges. Annual precipitation ranges from less than 10 to about 30 inches. High streamflows in these provinces result from the same causes as those in the Blue Mountains.



FIGURE 1. – Gaging stations, flood-frequency regions, and geomorphic provinces.





#### ANALYTICAL TECHNIQUE

Discharges at selected exceedance probabilities were related to basin characteristics for gaged sites by the multiple- regression technique to define regional flood magnitude-frequency relations for use at ungaged sites.

#### **Drainage Basin Characteristics**

Drainage-basin characteristics computed for each gaging station used in the study are listed in table 2 at the back of the report and are defined as follows:

- 1. <u>Drainage area (A)</u>, in square miles, the total contributing area upstream from the gaging-station site, as shown in the latest Geological Survey water-resources data reports.
- 2. <u>Main-channel slope (S)</u>, in feet per mile, determined from elevations at points 10 and 85 percent of the distance along the channel from the gaging station to the basin divide (Benson, 1962b and 1964).
- 3. <u>Main-channel length (L)</u>, in miles, from the gaging station to the basin divide, measured in accordance with guidelines given by the U.S. Water Resources Council (1968) or taken in part from the various River Mile Index publications prepared by the Columbia Basin Inter-Agency Committee (1963, 1965, 1966) and by the Pacific Northwest River Basins Commission (1976).
- 4. <u>Mean basin elevation (E)</u>, in feet above mean sea level, determined by the grid method from quadrangle map of a practical scale by laying a grid over the map, recording the elevation at each grid intersection, and averaging those elevations. The grid spacing was selected to give at least 25 intersections within the basin boundary.
- 5. <u>Area of lakes and ponds (ST)</u>, expressed as a percentage of the drainage area, determined from the most recent quadrangle maps available.
- 6. Forest cover (F), expressed as the percentage of the drainage area covered by forest, as shown on the most recent quadrangle maps available.
- 7. Soils index (SI), determined from a map compiled from computed values of soil indexes according to procedures described by the Soil Conservation Service (1959, 1964). Soils index values are a function of soil permeability. Data for these computations were derived from soils-association and land-use maps included in a Columbia North-Pacific Framework report (1970a, 1970b). Data were also furnished by the Soil Conservation Service staff, State office, Portland, OR.
- 8. <u>Latitude at gage (LAT)</u>. Latitude of stream-gaging station in decimal degrees.

- 9. Longitude (LONG). Longitude of stream-gaging station in decimal degrees.
- 10. <u>Mean annual precipitation (P)</u>, in inches, determined from an isohyetal map prepared by the National Weather Service, River Forecast Center, Portland, OR, (U.S. Weather Bureau, 1964), using adjusted climatological data (1930-57) and values derived by correlation with other physiographic factors (figure 2).
- 11. Precipitation intensity (1), defined as the maximum 24-hour rainfall having a recurrence interval of 2 years (2-year, 24-hour rainfall), expressed in inches. These values were determined using an isopluvial map of 2-year, 24-hour precipitation prepared by U.S. National Oceanic and Atmospheric Administration (1973).
- 12. <u>Temperature index (TI)</u>, the mean minimum January air temperature, in degrees Fahrenheit, in the basin. This value was determined from the U.S. Weather Bureau map shown in figure 3 (Sternes, 1960). The mapped air temperature provides an available indicator of areas susceptible to snow and frozen ground.

#### Magnitude and Frequency of Floods at Gaged Sites

Methods for estimating flow frequencies at gaged sites, presented in "Guidelines for Determining Flood Flow Frequency," published by the U.S. Water Resources Council (1981) were used in this study. Data from 148 gaging stations in Oregon, 3 in California, 3 in Idaho, 4 in Nevada, and 4 in Washington, representing basins that have virtually no regulation of flow, and 10 years or more of record, provided the basic dependent variables (annual peak discharge). For each station, the logarithms of the annual peaks were used to compute the mean, standard deviation, and skew coefficient that describe a log-Pearson Type-III distribution. The log-Pearson Type III frequency distribution was used to determine discharges for selected exceedance probabilities. Adjustments to the frequency distributions were made using methods described in Water Resources Council Bulletin 17B (1981).

Data from the log-Pearson Type-III frequency curve for each station are presented in table 3 at the back of the report. It lists flows for selected exceedance probabilities between 0.5 and 0.01, ie:

$$Q_{0.5}^{(2 \text{ yr})}, Q_{0.2}^{(5 \text{ yr})}, Q_{0.10}^{(10 \text{ yr})}, Q_{0.04}^{(25 \text{ yr})},$$
  
 $Q_{0.02}^{(50 \text{ yr})}, \text{ and } Q_{0.01}^{(100 \text{ yr})}.$ 

The figures in parentheses are the corresponding recurrence intervals. To explain exceedance probability the following example is used: A flow of 900 ft<sup>3</sup>/s with an exceedance probability of 0.5 means that there is a 50 percent chance that the flow will exceed 900 ft<sup>3</sup>/s in any one year. Another way of describing the same probability is that a 900-ft<sup>3</sup>/s flow has a 2-year recurrence interval. A flow with an exceedance probability of 0.01 has a 1 percent chance of being exceeded in any one year. It could also be described as having a 100-year recurrence interval, on the average.



A few streams had no flow during some years. Gaged streams which have had such "zero" event years are identified in table 3. For these sites, adjustments have been made in the flood frequency relations by using methods described by the U.S. Water Resources Council (1981). Of the 162 gaging stations used in this analysis, 19 had some years with "zero" events.

Historic flood information was used, when available, to supplement the systematic gaging-station record.

Where two or more gaging stations have been operated on a stream and the drainage area of one is not more than 25 percent different from that at another, only the station with the longest record was used.

Discharges taken directly from a flood frequency distribution for a gaging station are generally considered to be applicable to any site on a stream within 5 percent drainage area of the gaged site (written communication, Hodges and others).

Reasonable discharge estimates can be made at nearby sites on the same stream by adjusting gaged discharge on basis of drainage basin characteristic ratios. The fundamental relation most often used in flood formulas is that discharge varies as a function of basin characteristics that significantly influence stream runoff (Jarvis and others, 1936). For this report "nearby sites" on the same stream are arbitrarily considered to be within 25 percent drainage area (or channel length) of that for the gaged site.

#### **Regression Analysis**

Multiple linear regression analyses were used to define equations expressing the logarithm of flood discharge for selected exceedance probabilities as a function of the logarithm of various basin characteristics. This relation may be expressed by the mathematical model:

$$LogQ_T = LogK + aLogC_1 + bLogC_2 + cLogC_3 \dots + zLogC_n$$
 (1)

which transformed becomes:

$$Q_{T} = KC_{1}^{a}C_{2}^{b}C_{3}^{c}\cdots C_{n}^{z}$$

in which  $Q_T$  is the discharge for a selected exceedance probability, T; K is a regression constant; C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>, and C<sub>n</sub> are basin characteristics; and a, b, c, and z are regression coefficients.

A stepwise regression analysis of the logarithm of variables was made using a SAS (Statistical Analysis System) data set. An evaluation of the various steps of the stepwise regression was made based on improvement of standard error and coefficient of determination to select the most suitable regional equation. Data for the 148 gaging stations in eastern Oregon were used for the "first try" of regression equations. The residuals (the difference between the logarithms of the flood discharges estimated from the gaging station record and the logarithms of the flood discharges computed from the regression equations) were plotted on a map of eastern Oregon (not shown in report). The plotted residuals were examined for groupings of similiar magnitudes. Four general areas of similiar values became apparent. The boundaries of these areas of similiar residuals, along with the boundaries of the geomorphic provinces and drainage basins, were used as a guide in delineating the boundaries of the four flood-frequency regions. These four regions (Southeast, Northeast, North Central, and Eastern Cascades) are shown in figure 1. Using the same regression techniques as above, basins were assigned to the region in which the gaging station was located and flood-frequency equations were then developed for each region.

Oregon data were supplemented by using data from near-by gaging stations in California, Idaho, Nevada, and Washington. To determine the flood-frequency equations for the Southeast Region, data from 32 stations in Oregon, four in Nevada, two in California, and one in Idaho were used in the regression analysis. For the Northeast Region, data from two Idaho stations were used to supplement data for 58 stations in Oregon. Four Washington stations were used to supplement data from 39 Oregon stations for the North Central Region. Data from 19 Oregon stations were supplemented by data from one additional California station to develop the equations for the Eastern Cascade Region.

The final regression equations for each of the four regions are shown in table 1. These equations relate floods having exceedance probabilities of 0.5, 0.2, 0.10, 0.04, 0.02, and 0.01 to selected basin characteristics in each of the flood-frequency regions shown in figure 1. Standard errors of estimate are also shown in table 1.

#### **APPLICATION OF RESULTS**

#### Method Used

The design flow or peak discharge for selected exceedance probabilities (or recurrence intervals) can be estimated for sites on unregulated streams in eastern Oregon by using the method described below.

- Determine the region in which the site is located and whether or not flood frequency data are available for a gaging station on the stream.
- 2. If the location is at one of the gaged sites used in this analysis or is on the same stream and has a drainage area or channel length (in the eastern Cascades region) within 5 percent of that at the gaged site, USE THE GAGING-STATION DATA DIRECTLY FROM TABLE 3. In using channel length, the drainage pattern needs to be examined to evaluate the effect of any major, intervening tributary between the ungaged and gaged sites. If in the user's judgement, the intervening tributary provides a large contribution to peak flow, then regional flood frequency equations need to be used (table 1).

. 30

# Table 1. - Regional flood-frequency equations

General form of equation QT=KA<sup>a</sup>L<sup>b</sup>TI<sup>c</sup>P<sup>d</sup>(1+F)<sup>e</sup> where:

- Q<sub>T</sub> = discharge for selected exceedance probability, K = regression constant,
- A = drainage area, in square miles,
- L = channel length, in miles,
- TI = temperature index, the mean minimum January temperature, in degrees Fahrenheit, in the basin,
- Ρ = mean annual precipitation, in inches, in the basin,
- F = forest cover in percent.

| Exceedance                      |           |                                                             | S      | tandard | error , |               |  |
|---------------------------------|-----------|-------------------------------------------------------------|--------|---------|---------|---------------|--|
| Probability<br>(Recurrence      | interval) | Equation                                                    | 1.00   | un i ts | Per     | cent<br>minus |  |
|                                 |           |                                                             |        |         |         |               |  |
|                                 | (1) (     | SOUTHEAST REGION (39 st                                     | ations | )       | .=      |               |  |
| 0 <sub>0.5</sub> (2)            | =         | 0.105A <sup>0.79</sup> TI <sup>1.67</sup>                   |        | 0.317   | 107     | 52            |  |
| Q <sub>0.2</sub> <sup>(5)</sup> | =         | .328A <sup>0.77</sup> TI <sup>1.52</sup>                    |        | .283    | 92      | 48            |  |
| Q <sub>0.1</sub> (10)           | =         | .509A <sup>0.77</sup> TI <sup>1.50</sup>                    |        | •283    | 92      | 48            |  |
| Q <sub>0.04</sub> (25)          | =         | .723A <sup>0.75</sup> TI <sup>1.52</sup>                    |        | • 29 1  | 95      | 49            |  |
| Q <sub>0.02</sub> (50)          | =         | .872A <sup>0.76</sup> TI <sup>1.52</sup>                    |        | .313    | 106     | 52            |  |
| Q <sub>0.01</sub> (100)         | =         | .960A <sup>0.75</sup> TI <sup>1.57</sup>                    |        | •323    | 110     | 52            |  |
|                                 | (2) N     | IORTHEAST REGION (60 sta                                    | ations | )       |         |               |  |
| Q <sub>0.5</sub> (2)            | =         | 0.508A <sup>0.82</sup> P <sup>1.36</sup> (1+F) <sup>-</sup> | .27    | 0.259   | 82      | 45            |  |
| Q <sub>0.2</sub> (5)            | =         | 2.44A <sup>0.79</sup> P <sup>1.09</sup> (1+F) <sup>3</sup>  | 30     | .254    | 79      | 44            |  |
| 0 <sub>0.1</sub> (10)           | =         | 5.28A <sup>0.78</sup> P <sup>0.96</sup> (1+F) <sup>3</sup>  | 32     | •262    | 83      | 45            |  |
| Q <sub>0.04</sub> (25)          | =         | 11.8A <sup>0.77</sup> P <sup>0.83</sup> (1+F) <sup>3</sup>  | 35     | .277    | 89      | 47            |  |
| Q <sub>0.02</sub> (50)          | · =       | 19.84 <sup>0.76</sup> P <sup>0.75</sup> (1+F) <sup>3</sup>  | 36     | .280    | 90      | 48            |  |
| Q <sub>0.01</sub> (100)         | = '       | 30.7A <sup>0.76</sup> P <sup>0.68</sup> (1+F) <sup>3</sup>  | 38     | .303    | 101     | 50            |  |

\* Revised 1/26/84

| Exceedance              |           |                                                              | St    | fandard | error | ~           |
|-------------------------|-----------|--------------------------------------------------------------|-------|---------|-------|-------------|
| Probability             |           |                                                              | •     |         | Per   | <u>cent</u> |
| (Recurrence             | interval) | ) Equation                                                   | Log   | units   | plus  | minus       |
| <u></u>                 | (3) N     | NORTH CENTRAL REGION (43 st                                  | atior | ns)     |       |             |
|                         |           | 0.00017.0.80-1.24-, 2.53                                     |       | 740     | 100   |             |
| Q <sub>0.5</sub> (2)    | =.        | 0.00013A P 11                                                |       | •342    | 120   | 22          |
| Q <sub>0.2</sub> (5)    | =         | .00068A <sup>0.76</sup> P <sup>0.90</sup> TI <sup>2.64</sup> |       | .279    | 90    | 47          |
| Q <sub>0.1</sub> (10)   | =         | .00134A <sup>0.74</sup> P <sup>0.73</sup> TI <sup>2.73</sup> |       | .281    | 91    | ،48         |
| Q <sub>0.04</sub> (25)  | =         | .00325A <sup>0.72</sup> P <sup>0.55</sup> T1 <sup>2.78</sup> |       | .293    | 96    | 49          |
| Q <sub>0.02</sub> (50)  | =         | .00533A <sup>0.70</sup> P <sup>0.44</sup> TI <sup>2.83</sup> |       | .315    | 107   | 52          |
| Q <sub>0.01</sub> (100) | =         | .00863A <sup>0.69</sup> P <sup>0.35</sup> TI <sup>2.86</sup> |       | .340    | 119   | 54          |
|                         | (4) EA    | STERN CASCADES REGION (20                                    | stati | ons)    |       |             |

# Table 1. - Regional flood - frequency equations - continued

------

· ---

.

ę.

| Q <sub>0.5</sub> <sup>(2)</sup> | =<br>= | 0.017L <sup>1.72</sup> P <sup>1.32</sup><br>.118L <sup>1.59</sup> P <sup>1.01</sup> | 0.275<br>.234 | 88<br>71 | 47<br>42 |
|---------------------------------|--------|-------------------------------------------------------------------------------------|---------------|----------|----------|
| Q <sub>0.1</sub> (10)           | =      | .319L <sup>1.55</sup> P <sup>0.85</sup>                                             | .235          | 72       | 42       |
| Q <sub>0.04</sub> (25)          | =      | .881L <sup>1.46</sup> P <sup>0.68</sup>                                             | •254          | 79       | 44       |
| Q <sub>0.02</sub> (50)          | =      | 1.67L <sup>1.42</sup> P <sup>0.58</sup>                                             | •276          | 89       | 47       |
| Q <sub>0.01</sub> (100)         | =      | 2.92L <sup>1.39</sup> P <sup>0.49</sup>                                             | •299          | 99       | 50       |

•

3. If the site is on a stream that has a gaging station listed in this report but has a drainage area or channel length estimated at 5 to 25 percent different from that at the gaging station, adjust the peak discharges of the gaged site (table 3) on the basis of drainage area (or channel length if intervening tributaries are not a factor) by using the following equation:

$$Q_u = Q_g (Au/Ag)^a$$
, or  $Q_u = Q_g (L_u/L_g)^b$ 

where

 $\rm Q_u$  and  $\rm Q_g$  are the discharges at the ungaged and gaged sites, Au and Ag are the drainage areas,  $\rm L_u$  and  $\rm L_g$  are channel lengths, and

"a" and "b" are exponents. The values for "a" and "b" for a given region can be approximated from the exponents for drainage area (A) and channel length (L) given in the equation in table 1.

- 4. If the site is on an ungaged stream or if the site is on a gaged stream shown in table 3 but the drainage area (or channel length) at the site differs by more than an estimated 25 percent from that at the gaging station, then,
  - a. Inspect the applicable regional equations in table 1 and identify which basin characteristics are needed to estimate discharge for selected exceedance probabilities.
  - b. Determine the appropriate basin-characteristic values as follows:
    - Drainage area (A) Compute the drainage area, in square miles, within the surface-water divide upstream from the desired site on the stream, using the best available topographic map, generally U.S. Geological Survey 7 1/2- or 15-minute quadrangle maps. Determine the drainage area by use of accepted engineering equipment, eg: mechanical planimeter, electronic graphic calculator, digitizer, etc. Drainage areas for two stations used in this analysis (14079500 and 14080500) included areas identified as non-contributing. Such areas do not contribute to direct surface runoff and are measured separately and subtracted from the total area to obtain the contributing area.
    - Channel Length (L) Compute the channel length, in miles for the stream as determined from U.S. Geological Survey maps by use of accepted engineering equipment. If U.S. Geological Survey maps have not been prepared for an area, use the best maps available.

- Forest-cover index (F) Compute the percentage of the total drainage area covered by brush or trees, as indicated by the extent of green overprint (vegetation) shown on U.S. Geological Survey topographic maps. The value of 1+F is used in the equation for the Northeast Region to avoid having "zero" values.
- Mean annual precipitation (P) Determine the precipitation, in inches, for the basin from figure 2.
- Temperature index (TI) Determine the mean minimum January air temperature, in degrees Fahrenheit, for the basin from figure 3.
- c. Compute the peak discharge for the desired exceedance probabilities, or recurrence intervals, directly through the use of the appropriate regional equations.
- d. Compare, for reasonableness, the estimated peak discharge values particularly those for small probabilities (long recurrence intervals) with (1) maximum peak discharges for nearby streams, shown in table 4 at the back of the report, and (2) other maximum observed discharges (fig.6)



FIGURE 4. – Variation of flood discharge with channel distance upstream from mouth of Grande Ronde River.

Peak discharges for exceedance probabilities between 0.5 and 0.01, other than those shown in the equations, can be determined either by plotting station values from table 3 or by plotting computed values from the equations on probability paper and drawing a smooth curve through the points. Peak discharges for other exceedance probabilities can then be estimated from the curve.

Extrapolation of peak discharges for exceedance probabilities greater than 0.01 (the 100-year flood) exceeds the limits of this study. Extropolated values should be qualified and used judiciously.

For consistency, it may be necessary to deviate from the above methods when determining discharges for long reaches of streams.

Figures 4 and 5 show variation of flood discharge with channel distance for the Grande Ronde and John Day Rivers, respectively. Flood frequency relations on some reaches of both streams deviate from the relations depicted by the equations. Large peak flows on the Grande Ronde River attenuate through the wide flat Grande Ronde valley (river mile 160 to 100). On the John Day River, large peak flows attenuate slightly by normal flood wave deformation processes, where litte contributing inflow occurs from river mile 160 to the mouth.



FIGURE 5. - Variation of flood discharge with channel distance upstream from mouth of John Day River.

#### **Evaluation of Estimates**

Peak discharges estimated from the regression equations can be evaluated for credibility by comparison to maximum observed peak discharges for streams with similar drainage areas in the same regions. Maximum observed peak discharges for all gaging stations used in the analysis are listed in table 4. Figure 6 shows the maximum observed peak discharges for long-term gaging stations in eastern Oregon in relation to drainage area. Figure 6 also shows a maximum envelope curve developed by Matthai (1969). For drainage areas between 1 and 200 mi<sup>2</sup>, the equation for the Matthai curve is

$$Q = 11,000A^{0.61}$$



FIGURE 6. - Maximum observed peak discharges in relation to drainage areas.

Also shown are the observed discharges that have the highest unit runoff measured in Oregon and the highest peak discharges observed throughout the United States. Figure 6 can be used to judge the reasonableness or uniqueness of flood-peak discharges estimated from log Pearson Type III distributions. For example, if the 0.02 (50-year) flood discharge estimated from a log Pearson Type III distribution at a gaged site with a drainage area of 5 mi<sup>2</sup> was 13,000 ft<sup>3</sup>/s, a comparison with figure 6 indicates the discharge could be too high. The user might then examine the distribution to determine if any extreme events have biased the computation.

The standard error (table 1) provides an assessment of accuracy of the regionalized estimates of peak flow. It is a measure of the departure of estimated flood magnitudes from those observed. About 70 percent of the observed discharge values can be expected to be within one standard error of the estimated value.

In the Eastern Cascade Region, "channel length" was found to be significant, whereas, "drainage area" was not. Possibly the high permeabilities of the recent volcanics and uncertain drainage boundaries could be reasons why "drainage area" was not significant. Many of the streams in this region are fed by large springs and have very little seasonal variation of flow. The areas of highly permeable ash and other volcanic materials as identified on the geologic map by Wells and Peck (1961) could help explain why specific flood peaks might differ markedly from those calculated by regional equations.

Annual flood peaks on streams are caused by either heavy winter rains (with or without frozen ground), cloudbursts, or snow melt. Cloudburst storms are common in parts of the North Central, Northeast, and Southeast Regions. All Regions can have snowmelt peaks. Data used in this analysis may represent a combination of any of the above events.

The Southeast and North Central Regions have large areas where little flood peak data are available (fig. 1). Consequently flood frequency relationships are poorly defined. These areas lack well defined stream channels or have stream channels where there is no flow for many years. Flood frequency estimates for these areas where flood data are lacking are to be used with particular caution.

#### **Illustrative Problems**

The method for estimating discharges of selected exceedance probabilities (recurrence intervals) is shown by the following examples:

Example 1. (Determining magnitude of flood for a given exceedance probability in an ungaged area)

Determine the discharge for an exceedance probability of 0.01 (100-year flood) for a site in the Northeast Region, where the drainage area is  $25 \text{ mi}^2$ . According to the precipitation map (fig. 3) the average annual precipitation in the drainage basin is 32 inches. The forest cover in the basin is found to be 65 percent.

From the Northeast Region equation (table 1), the 0.01 exceedance probability is:

$$Q_{0.01} = 30.7A^{0.76}P^{0.68}(1 + F)^{-0.38}$$
  
= (30.7)(25)^{0.76}(32)^{0.68}(1 + 65)^{-0.38}  
= (30.7)(11.5)(10.6)  
(4.91)  
= 762 ft<sup>3</sup>/s

Example 2. (Determining two floods in an ungaged area)

Determine the discharge for exceedance probabilities of 0.5 and 0.04 (2- and 25-year floods) for a site on a stream in the Eastern Cascades Region. The channel length is 12.6 miles, and average precipitation in the basin is 54 inches. From the Eastern Cascades Region equation, the 0.5 exceedance probability flood is:

$$Q_{0.5} = 0.017L^{1.72}P^{1.32}$$
  
= (0.017)(12.6)^{1.72}(54)^{1.32}  
= (0.017)(78.1)(194)  
= 258 ft^{3}/s

From the Eastern Cascade Region equation, the 0.04 exceedance probabili, ty flood is:

$$Q_{0.04} = 0.881L^{1.46}P^{0.68}$$
  
= (0.881)(12.6)^{1.46}(54)^{0.68}  
= (0.881)(40.4)(15.1)  
= 537 ft<sup>3</sup>/s

Example 3. (Developing a flood frequency curve)

Develop a flood-frequency curve for a site in the Southeast Region. The drainage area is 35 mi<sup>2</sup> and the mean minimum air temperature in the basin for January is 15 degrees Fahrenheit.

Based on the above information, develop a flood-frequency curve by computing the flood discharges for

exceedance probabilities, as shown below:

$$\begin{aligned} \varphi_{0.5} &= 0.105A^{0.79}TI^{1.67} \\ &= (0.105)(35)^{0.79}(15)^{1.67} \\ &= (0.105)(16.6)(92.1) \\ &= 161 \text{ ft}^3/\text{s} \end{aligned}$$

$$\begin{aligned} \varphi_{0.2} &= 0.328A^{0.77}TI^{1.52} \\ &= (0.328)(35)^{0.77}(15)^{1.52} \\ &= (0.328)(15.5)(61.3) \\ &= 312 \text{ ft}^3/\text{s} \end{aligned}$$

$$\begin{aligned} \varphi_{0.1} &= 0.509A^{0.77}TI^{1.50} \\ &= (0.509)(35)^{0.77}(15)^{1.50} \\ &= (0.509)(15.5)(58.1) \\ &= 458 \text{ ft}^3/\text{s} \end{aligned}$$

$$\begin{aligned} \varphi_{0.04} &= 0.723A^{0.75}TI^{1.52} \\ &= (0.723)(35)^{0.75}(15)^{1.52} \\ &= (0.723)(14.4)(61.3) \\ &= 638 \text{ ft}^3/\text{s} \end{aligned}$$

$$\begin{aligned} \varphi_{0.02} &= 0.872A^{0.76}TI^{1.52} \\ &= (0.872)(35)^{0.76}(15)^{1.52} \\ &= (0.872)(35)^{0.76}(15)^{1.52} \\ &= (0.872)(14.9)(61.3) \\ &= 796 \text{ ft}^3/\text{s} \end{aligned}$$

$$\begin{aligned} \varphi_{0.01} &= 0.960A^{0.75}TI^{1.57} \\ &= (0.960)(35)^{0.75}(15)^{1.57} \\ &= (0.960)(14.4)(70.2) \end{aligned}$$

Plot the flood discharges on probability paper at the respective exceedance positions and draw a smooth curve through the points, as shown in figure 7.

Example 4. (Determining the exceedance probability or recurrence interval for a selected discharge)

Using the curve developed in Example 3 (fig. 7), determine exceedance probability and recurrence interval for a peak discharge of 700 ft<sup>3</sup>/s. At the 700 ft<sup>3</sup>/s discharge magnitude on the graph, project horizontally to the frequency curve. Project up vertically at the intersection with the curve and read an exceedance probability of 0.03 and project down vertically and read a recurrence interval of 33 years.

Example 5. (Determining a flood discharge on a stream near an existing gaging station)

a.) Determine the discharge for an exceedance probability of 0.02 (the 50-year flood) for a site downstream from the existing gaging station on Mosier Creek near Mosier (No. 14113200) in the North Central Region. The gaged site has a drainage area of 41.5  $mi^2$ , and the selected site has a drainage area of 45  $mi^2$ .



FIGURE 7. – Flood-frequency curve developed by regional analysis for an example computation at an ungaged site in the Southeast Region (example 3).

Therefore, the drainage areas differ by more than 5 percent but less than 25 percent. The flood for an exceedance probability of 0.02 at the gaged site (table 3) is 5,470 ft<sup>3</sup>/s. Use the relationship

$$Q_u = Q_g (A_u / A_g)^a$$
.

The exponent "a" (table 1) for an exceedance probability of 0.02 in the North Central Region is 0.70.

$$Q_{u} = Q_{g} (A_{u}/A_{g})^{a}$$

$$= 5,470 (45/41.5)^{0.70}$$

$$= (5,470)(1.08)^{0.70}$$

$$= (5,470)(1.06)$$

$$= 5,800 \text{ ft}^{3}/\text{s}$$

•

b.) Determine the discharge for an exceedance probability of 0.1 (10-year recurrance interval) for a site upstream from the existing gaging station on Brown Creek near La Pine (No. 14054500) in the Eastern Cascades Region. The gaged site has a channel length of 9.8 mi and the selected site has a channel length of 8.9 mi. The discharge for an exceedance probability of 0.1 at the gaged site (table 3) is 77.2 ft<sup>3</sup>/s. The exponent "a" for an exceedance probability of 0.1 in the Eastern Cascades Region is 1.53.

$$Q_{u} = Q_{g}(L_{u}/L_{g})^{1.53}$$
  
= (77.2)(8.9/9.8)^{1.53}  
= (77.2)(.91)^{1.53}  
= (77.2)(.91)^{1.53}  
= (77.2)(.87)  
= 67 ft^{3}/s

Example 6. (Determining a flood on the Grande Ronde River)

Determine the discharge for an exceedance probability of 0.01 (100-year flood) for a site at mile 130 on the Grande Ronde River.

From the profiles in fig. 4 the flood for an exceedance probability of 0.01 at mile 130 is found to be  $8,500 \text{ ft}^3/\text{s}$ .

#### Limitations

The procedures in this report developed through regional analysis, are usable, under certain limitations, for estimating flood magnitudes of selected exceedance probabilities or recurrence intervals at ungaged sites in eastern Oregon. The equations are based on data representing unregulated flood conditions and are not applicable to streams where storage or artifical structures have modified the flow appreciably such as sites downstream from large reservoirs. In general, the equations are not applicable at any site where flow from 10 percent or more of the runoff is regulated.

Ranges of basin characteristics used for defining equations for each region are:

|    |                  | Drainage<br>Area | Mean Annual<br>Precipitation | Forest<br>Cover  | Temperature<br>Index | Length      |
|----|------------------|------------------|------------------------------|------------------|----------------------|-------------|
|    | Region           | (A)<br>(mi²)     | (P)<br>(in)                  | (F)<br>(percent) | (TI)<br>(F)          | (L)<br>(mi) |
| 1. | Southeast        | 1.4-11,300       |                              |                  | 10-21                |             |
| 2. | Northeast        | 0.47-5,090       | 10-50                        | 0-100            |                      |             |
| 3. | North Central    | 0.68-7,580       | 11-100                       |                  | 13-27                |             |
| 4. | Eastern Cascades |                  | 20-68                        |                  |                      | 1.6-100.4   |

Extrapolation beyond the limits of the data used for defining relationships is not advisable. Such extrapolations could produce erroneous discharge values. However, if extrapolations are made, they should be used judiciously and qualified accordingly.

No weighting of regional equations is warranted, when a basin falls in more than one region. Basins are assigned to the region in which the site is located to be consistent with the method used in the regression analysis.

To accomodate drainage basins that originate in adjacent states, isolines in figure 3 have been extended.

For a few stations discharges determined from the flood-frequency equations will differ markedly from those values obtained from the station flood frequency relation. Such large differences could be caused by too short a period for sampling of flood peaks or by local physiographic anomalies.

#### EFFECT OF URBANIZATION

The regional analysis presented in this report is primarily based on peak flow data that is unaffected by urbanization. Urbanization can alter the hydrology of a basin. No specific studies have been made in eastern Oregon to evaluate the effects of urbanization on the hydrology. However, Sauer and others (1981) developed general equations that adjust the rural peak discharge to an equivalent urban condition. The equations are based on data collected across the entire United States, but only scattered data were available for the western part of the country. The following equations can be used for eastern Oregon:

| UQ2   | = $13.24^{-21}(13-BDF)^{43}RQ2^{73}$                                 | SE = <u>+</u> 43 percent |
|-------|----------------------------------------------------------------------|--------------------------|
| UQ5   | = 10.6A <sup>.17</sup> (13-BDF) <sup>39</sup> RQ5 <sup>.78</sup>     | SE = <u>+</u> 40 percent |
| UQ10  | = 9.51A <sup>.16</sup> (13-BDF) <sup>36</sup> RQ10 <sup>.79</sup>    | SE = <u>+</u> 41 percent |
| UQ25  | = 8.68A •15(13-BDF) -•34 RQ25 •80                                    | SE = <u>+</u> 43 percent |
| UQ 50 | = 8.04A <sup>.15</sup> (13-BDF) <sup>32</sup> RQ50 <sup>.81</sup>    | SE = <u>+</u> 44 percent |
| UQ100 | = 7.70A · <sup>15</sup> (13-BDF) <sup>32</sup> RQ100 · <sup>82</sup> | SE = <u>+</u> 46 percent |

where: A = Drainage area, in mi<sup>2</sup>

- BDF = Basin Development Factor. This is derived by subdividing the drainage basin into the upper, middle, and lower thirds. Values are then assigned to each third of the drainage basin by using a one (1) if more than 50 percent of the drainage channels have been improved, or a zero (0) if not; another one (1) if more than 50 percent of the drainage channels have been lined with impervious material, or a zero (0) if not; another one (1) if more than 50 percent of the secondary tributaries consist of enclosed storm drains or storm sewers, or a zero (0) if not; another one (1) if more than 50 percent of the streets and highways have curbs and gutters, or a zero (0) if not. The BDF value is a summation of values for all parts of the basin and can range from 0 to 12. For more details on BDF refer to the report by Sauer and others (1981).
- RQ = The rural discharge in ft<sup>3</sup>/s (or the flood discharge determined from the equations in Table 1). The number following these letters represent the recurrance interval ie: RQ2 = 2 year, RQ5 = 5 year, etc.
- UQ = The equivalent urban discharge in  $f^3/s$ .
- SE = The average standard error, in percent.

An example of use of the equations would be to determine the equivalent urban peak runoff for a 10-year flood (UQ10) for a drainage basin of 10 mi<sup>2</sup>, and a RQ10 of 500 ft<sup>3</sup>/s. Assume that more than 50 percent of the drainage channels have been improved throughout the entire drainage basin; more than 50 percent of the drainage channels have been improved in the lower third of the drainage basin; more than 50 percent of the drainage channels have been lined with impervious material in the lower third of the drainage basin; and more then 50 percent of the streets and highways have curbs and gutters in the lower third of the drainage basin. The summation of values for these improvements gives a BDF of 6:

$$UQ10 = 9.51A^{\cdot 16}(13-BDF)^{-.36}RQ10^{\cdot 79}$$
  
= (9.51)(10)^{\cdot 16}(13-6)^{-.36}(500)^{\cdot 79}  
= (9.51)(1.4)(.5)(136)  
= 900 ft^{3}/s

This shows that a basin with an increase in urbanization of approximately 50 percent would have a corresponding peak flow increase of about 80 percent.

The average standard error shown for the urbanization adjustment equation needs to be considered in conjunction with the standard error of the flood frequency equation.

#### **ALTERNATIVES FOR FUTURE STUDIES**

Future studies to estimate magnitude and frequency of floods in eastern Oregon will involve revising the equations with additional peak flow data and basin characteristic information as they become available. New technological methods will be used to help reduce the standard error of estimates. Use of channel geometry measurements could be considered as a means of estimating flood magnitudes for streams lacking reliable peak flow data. This method is described in a report by Harenberg (1980). Periodically, the available data, revised flood frequency methods, and need for flood information will be evaluated to determine the feasibility for making a new analysis.

#### SUMMARY

The study describes a method for estimating the magnitude and frequency of floods on unregulated streams in eastern Oregon. Equations were developed by multiple-regression analysis using flood-frequency data for 162 gaging stations. An evaluation of the differences between the flood discharges determined from the gaging-station records and the discharges estimated from the general regression equation along with topographic and geologic information were used to delineate boundaries for four flood-frequency regions in eastern Oregon.

Drainage area size was the most significant basin characteristic in three of the four flood frequency regions. Channel length was found to be the most significant basin characteristic in the Eastern Cascades Region. Mean annual precipitation was a significant basin characteristic in all but the Southeast Region. The temperature index (mean minimum January temperature) was a significant basin characteristic in the Southeast and North Central Regions. Percent of forest cover was found to be a significant basin characteristic in the Northeast Region.

Standard errors ranged from the smallest of a plus 71 and a minus 42 percent in the Eastern Cascade Region to the largest of a plus 120 and a minus 55 percent in the North Central Region. Lowest standard errors were related to the

 $Q_{0,2}$  (5-year) flood, and

the highest standard errors were generally related to the

 $Q_{0.01}$  (100-year) flood in all regions.

Estimates of discharge determined through the use of the flood-frequency equations are accurate within the standard errors and within the limits of the data used in developing the equations.

Estimates of peak discharge can be adjusted for the effects of urbanization.

#### SELECTED REFERENCES

- Benson, M. A., 1962a, Evalution of methods for evaluating the occurrence of floods: U.S. Geological Survey Water-Supply Paper 1580-A, 29 p.
- 1962b, Factors influencing the occurrence of floods in a humid region of diverse terrain: US. Geological Survey Water-Supply Paper 1580-B, 64 p.
- \_\_\_\_1964, Factors affecting the occurrence of floods in the Southwest: U.S. Geological Survey Water-Supply Paper 1580-D, 72 p.
- Butler, E., Reid, J. K., and Berwick, V. K., 1966, The Great Basin Part 10, of Magnitude and frequency of floods in the United States: U.S. Geological Survey Water-Supply Paper 1684, 256 p.
- Columbia Basin Inter-Agency Committee, 1963, River mile index-John Day River, Columbia River basin, Oregon: Hydrology Subcommittee report, 6 p.
- \_\_\_\_\_1965, River mile index Snake River, Columbia River basin, Oregon, Washington, Idaho, Nevada, Utah, Wyoming: Hydrology Subcommittee report, 90 p.
- 1966, River mile index Klaskanine, Sandy, Hood, Umatilla, Walla Walla Rivers and minor left bank Columbia River tributaries, Columbia River basin, Oregon and Washington: Hydrology Subcommittee report, 18 p.
- Columbia North Pacific Region, 1970a, Comprehensive framework study--Appendix IV, Volume 1, Land and mineral resources: Pacific Northwest River Basins Comm. Rept., 202 p.

1970b, Comprehensive framework study--Appendix IV, Volume 2, Land and mineral resources: Pacific Northwest River Basins Comm. Rept., p. 203-383.

- Dicken, S. N., 1965, Oregon geography, 4th Edition: Ann Arbor, Mich., Edwards Bros. Inc., 104 p.
- Friday, John, 1974, Crest-stage gaging stations in Oregon, A compilation of peak data collected from October 1952 to September 1974: U.S. Geological Survey open-file report, 160 p.
- Hardison, C. H., 1971, Prediction error of regression estimates of streamflow characteristics at ungaged sites, in Geological Survey Research, 1971: U.S. Geological Survey Professional Paper 750-C, p. C228-C236.
- Harenberg, W. A., 1980, Using channel geometry to estimate flood flows at ungaged sites in Idaho: U.S. Geological Survey Water Resources Investigations Report 80-32, 39 p.

- Harris, D. D., Hubbard, L. L., and Hubbard, L. E., 1979, Magnitude and frequency of floods in western Oregon: U.S. Geological Survey open-file report 79-553, 35 p.
- Hulsing, Harry, and Kallio, N. A., 1964, Pacific slope basins in Oregon and lower Columbia River basin, part 14 of Magnitude and frequency of floods in the United States: U.S. Geological Survey Water-Supply Paper 1689, 320 p.
- Jarvis, C. S. and others, 1936, Floods in the United States, magnitude and frequency: U.S. Geological Survey Water-Supply Paper 771, p.28-64.
- Kjelstrom, L. C., and Moffat, R. L., 1981, A method of estimating flood-frequency parameters for streams in Idaho: U.S. Geological Survey open-file report 81-909, 99 p.
- Lystrom, D. J., 1970, Evaluation of the streamflow-data program in Oregon: U.S. Geological Survey open-file report, 28 p.
- Matthai, H. F., 1969, Floods of June 1965 in South Platte River basin, Colorado: U.S. Geological Survey Water-Supply Paper 1850-B, 64 p.
- Pacific Northwest River Basins Commission, 1976, River mile index -Deschutes River, Columbia River basin, Oregon: Hydrology and Hydraulics Committee report, 8 p.
- Riggs, H. C., 1968, Some statistical tools in hydrology: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. A1, 39 p.

1968, Frequency curves: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. A2, 15 p.

1973, Regional analyses of streamflow characteristics: U.S. Geological Survey Techniques of Water-Resources Investigations, book 4, chap. B3, 15 p.

- Sauer, V. B., Thomas, W. O. Jr., Stricker, V. A., and Wilson K. V., 1981, Flood characteristics of urban watersheds in the United States, Techniques for estimating magnitude and frequency of urban floods: U.S. Geological Survey Water-Supply Paper 2207, in press.
- Sternes, G. L., 1960, Climates of the States, Oregon, in Climatography of the United States: U.S. Weather Bureau, no. 60-35, p. 17.
- Thomas, C. A., Broom, H. C., and Cummans, J. E., 1963, Snake River basin, Part 13, of Magnitude and frequency of floods in the United States: U.S. Geological Survey Water-Supply Paper 1688, 250 p.
- Thomas, D. M., and Benson, M. A., 1970, Generalization of streamflow characteristics from drainage-basin characteristics: U.S. Geological Survey Water-Supply Paper 1975, 55 p.

U.S. Dept. of Agriculture, Soil Conservation Service, 1959, State engineering handbook, Oregon, sec. 4 in Hydrology: 10 p.

\_\_\_\_1964, Watershed planning, pt. 1 in Watershed planning, sec. 4 in Hydrology: U.S. Dept. Agriculture SCS Handbook

U.S. National Oceanic and Atmospheric Administration, 1965, Climates of the States-Washington, of Climatology of the United States no. 60-45: Washington, D. C., 27 p.

\_\_\_\_1973, Precipitation-frequency atlas of the Western United States, NOAA Atlas 2, volume X - Oregon: Silver Spring, Md., 43 p.

U.S. Water Resources Council, 1967 [rev. 1977], A uniform technique for determining flood flow frequencies: Washington, D. C., U.S. Water Resources Council Bulletin 15, 15 p.

\_\_\_\_1968, River mile measurement: Washington, D. C., U.S. Water Resources Council Bulletin 14 (1968 revision), 17 p.

\_\_\_\_\_1977, Guidelines for determining flood flow frequency: Washington, D.C., Water Resources Council Bulletin 17B, 28 p.

- 1981, Estimating peak flow frequencies for natural ungaged watersheds, A proposed nationwide test: Washington, D.C., A report by the Hydrology Committee.
- U.S. Weather Bureau, 1964, Mean annual precipitation, 1930-57, State of Oregon: Portland, Oreg., U.S. Soil Conservation Service Map M-4161.
- Walker, G. W., 1977, Geologic map of Oregon east of the 121st meridian: U.S. Geological Survey Miscellaneous Investigation Map 1-902, scale 1:500,000.
- Wells, F. G., and Peck, D. L., 1961, Geologic map of Oregon west of the 121st meridian: U.S. Geological Survey Miscellaneous Investigations Map 1-325, scale 1:500,000.
- Young, L. E., and Cruff, R. W., 1967, Pacific slope basins in California, Part 11, Vol. 2, of Magnitude and frequency of floods in the United States: U.S. Geological Survey Water-Supply Paper 1685, 308 p.

|                                                          |                                     |                                         | 1                                    |                                      |                                   |                                       |                                        |                                           |                                                |                                   |                                 | <u> </u>                             |
|----------------------------------------------------------|-------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|----------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------|---------------------------------|--------------------------------------|
| Station number                                           | Drainage area<br>(mi <sup>2</sup> ) | Main channel<br>slope (ft/mi)           | Main channel<br>Iength (mi)          | Mean basin<br>elevation (ft)         | Area of lakes and ponds (percent) | Forest cover<br>(percent)             | Soils index                            | Latitude<br>(degrees)                     | Longitude<br>(degrees)                         | Mean annual<br>precipitation (in) | Precipitation<br>intensity (in) | Temperature<br>index (°F)            |
|                                                          | A                                   | S                                       | L                                    | E                                    | ST                                | F                                     | SI                                     | LAT                                       | LONG                                           | Р                                 |                                 | <u></u>                              |
|                                                          |                                     |                                         |                                      | (1) 5                                | SOUTHE                            | AST RE                                | GION                                   |                                           |                                                |                                   |                                 |                                      |
| 10352300<br>10352500<br>10353000<br>10353500<br>10366000 | 6.6<br>225<br>140<br>1100<br>194    | 200.0<br>68.0<br>68.0<br>29.0<br>120.0  | 3.5<br>27.3<br>23.8<br>51.5<br>20.0  | 5400<br>5375<br>6081<br>5498<br>5800 | 0.0<br>0.0<br>0.0<br>0.0<br>3.0   | 0.0<br>0.0<br>12.0<br>9.3<br>20.0     | 3.50<br>3.90                           | 42.23<br>41.96<br>41.98<br>41.78<br>42.07 | 117.74<br>117.83<br>117.57<br>117.80<br>119.96 | 10<br>11<br>9<br>9<br>15          | 1.2<br>1.1<br>1.3<br>1.0<br>1.4 | 12.0<br>12.0<br>12.0<br>12.0<br>12.0 |
| 10370000<br>10371000<br>10371500<br>10378500<br>10384000 | 63.0<br>67.0<br>249<br>170<br>275   | 111.0<br>76.2<br>96.9<br>93.3<br>33.3   | 12.0<br>14.0<br>22.0<br>20.0<br>32.0 | 6210<br>5880<br>6110<br>5910<br>6050 | 0.0<br>0.7<br>1.7<br>0.3<br>0.1   | 68.0<br>10.0<br>44.9<br>20.4<br>82.9  | 7.00<br>3.50<br>5.60<br>4.60<br>9.50   | 42.22<br>42.20<br>42.19<br>42.42<br>42.68 | 120.10<br>120.01<br>120.00<br>119.92<br>120.57 | 20<br>15<br>17<br>20<br>18        | 1.4<br>1.5<br>1.4<br>1.4<br>1.5 | 17.0<br>18.0<br>17.0<br>18.0<br>17.0 |
| 10390400<br>10392300<br>10392800<br>10393500<br>10396000 | 10.6<br>18.4<br>8.50<br>934<br>200  | 288.0<br>98.0<br>210.0<br>12.3<br>97.8  | 9.5<br>5.6<br>4.5<br>65.0<br>22.5    | 6170<br>5530<br>5790<br>5200<br>6160 | 0.0<br>0.0<br>0.0<br>0.0<br>0.1   | 98.0<br>95.0<br>100.0<br>63.6<br>10.7 | 12.20<br>7.90<br>7.90<br>5.80<br>3.50  | 43.02<br>44.17<br>43.90<br>43.72<br>42.79 | 121.20<br>119.21<br>119.50<br>119.18<br>118.37 | 25<br>30<br>25<br>19<br>14        | 1.5<br>1.4<br>1.4<br>1.3<br>1.4 | 10.0<br>14.0<br>18.0<br>11.0<br>13.0 |
| 10397000<br>10403000<br>10406500<br>11340500<br>11341000 | 30.0<br>228<br>38.0<br>32.9<br>30.0 | 196.7<br>41.7<br>151.5<br>246.4<br>70.6 | 12.2<br>25.6<br>22.0<br>6.5<br>17.0  | 5890<br>5180<br>5920<br>6208<br>6033 | 0.2<br>0.1<br>0.0<br>0.3<br>0.0   | 18.5<br>71.4<br>8.3<br>92.0<br>90.3   | 3.50<br>7.10<br>3.30<br>2.90<br>3.10   | 42.84<br>43.69<br>42.16<br>42.23<br>42.27 | 118.85<br>119.66<br>118.46<br>120.50<br>120.45 | 12<br>20<br>14<br>15<br>15        | 1.2<br>1.4<br>1.2<br>1.6<br>1.5 | 14.0<br>15.0<br>13.0<br>17.5<br>17.5 |
| 11341100<br>11341200<br>11434000<br>11438700<br>11489350 | 5.62<br>11.4<br>270<br>1.74<br>9.98 | 212.0<br>613.0<br>39.0<br>48.0<br>56.0  | 5.4<br>4.2<br>30.8<br>2.7<br>5.8     | 5620<br>6340<br>5140<br>4300<br>5000 | 0.0<br>0.1<br>0.5<br>0.0<br>0.0   | 69.0<br>76.0<br>40.0<br>5.0<br>90.0   | 2.50<br>7.90<br>4.90                   | 42.29<br>42.12<br>42.11<br>41.67<br>41.69 | 120.35<br>120.29<br>121.21<br>121.26<br>122.05 | 18<br>18<br>18<br>17<br>16        | 1.4<br>1.6<br>1.5<br>1.1<br>1.8 | 18.0<br>16.0<br>15.0<br>16.0<br>21.0 |
| 11491800<br>11494800<br>11497500<br>11497800<br>13178000 | 2.63<br>2.20<br>513<br>2.46<br>440  | 67.0<br>468.0<br>52.0<br>179.0<br>33.0  | 3.4<br>4.3<br>37.2<br>4.7<br>40.6    | 5090<br>6610<br>5490<br>6660<br>5780 | 0.7<br>0.0<br>0.6<br>0.0<br>0.0   | 99.3<br>94.0<br>65.2<br>92.0<br>30.0  | 17.30<br>2.70<br>9.60<br>17.80<br>4.30 | 43.09<br>42.43<br>42.45<br>42.72<br>42.37 | 121.55<br>120.84<br>121.24<br>120.88<br>116.95 | 20<br>13<br>17<br>24<br>15        | 1.6<br>1.6<br>1.5<br>1.7<br>1.3 | 10.0<br>15.0<br>14.0<br>13.0<br>15.0 |
| 13182100<br>13182150<br>13184000<br>13214000<br>13216500 | 3.09<br>1.38<br>11300<br>910<br>355 | 675.0<br>270.0<br>14.9<br>44.7<br>67.4  | 3.1<br>1.5<br>259.0<br>49.2<br>34.4  | 4560<br>5030<br>5120<br>4900<br>5360 | 0.0<br>0.0<br>0.4<br>0.2<br>0.0   | 8.0<br>0.0<br>3.5<br>29.4<br>49.8     | 5.00<br>5.20<br>4.40<br>5.30<br>4.90   | 43.29<br>43.32<br>43.73<br>43.78<br>43.95 | 117.25<br>117.19<br>117.07<br>118.33<br>118.17 | 12<br>12<br>11<br>16<br>19        | 1.0<br>1.0<br>1.5<br>1.6        | 15.0<br>16.0<br>13.0<br>12.0<br>12.0 |
| 13226500<br>13228000<br>13228300<br>13229400             | 539<br>3830<br>6.46<br>1.86         | 43.0<br>14.6<br>126.0<br>138.0          | 43.7<br>154.8<br>5.2<br>2.8          | 4230<br>3940<br>2700<br>4050         | 0.0<br>0.1<br>0.0<br>0.1          | 1.1<br>7.0<br>0.0<br>0.0              | 5.00<br>4.90<br>2.50<br>5.20           | 44.02<br>43.93<br>43.96<br>44.31          | 117.46<br>117.24<br>117.23<br>117.90           | 17<br>14<br>10<br>10              | 1.3<br>1.3<br>1.0<br>1.0        | 14.0<br>15.0<br>18.0<br>12.0         |

Table 2. – Basin characteristics used in multiple regressions

| Table 2. | — Basin | characteristics | used in | n multiple | regressions - | – continued |
|----------|---------|-----------------|---------|------------|---------------|-------------|
|          |         |                 |         |            | -             |             |

| Station number                                                       | Drainage area<br>(mi <sup>2</sup> )  | Main channel<br>slope (ft/mı)            | , Main channel<br>length (mi)       | Mean basin<br>elevation (ft)         | Area of lakes and<br>Ponds (percent)   | Forest cover<br>(percent)             | 2 Soils Index                        | Latitude<br>degrees)                      | Longitude<br>(degrees)                         | Mean annual<br>precipitation (in) | Precipitation<br>intensity (in) | femperature<br>index (°F)                    |
|----------------------------------------------------------------------|--------------------------------------|------------------------------------------|-------------------------------------|--------------------------------------|----------------------------------------|---------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------|-----------------------------------|---------------------------------|----------------------------------------------|
|                                                                      | A                                    | 5                                        | L                                   | (2) N                                | OBTHE                                  | AST REC                               |                                      | LAI                                       | LONG                                           | Р                                 | 1                               |                                              |
| 13267100<br>13269200<br>13269300<br>13270800<br>13272300             | 4.60<br>0.90<br>110<br>38.5<br>0.48  | 242.0<br>211.0<br>69.2<br>370.0<br>108.0 | 3.9<br>1.6<br>19.3<br>7.5<br>1.0    | 3210<br>2830<br>4870<br>5820<br>3980 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | 0.0<br>0.0<br>90.0<br>92.0<br>0.0     | 5.20<br>5.30<br>6.90<br>1.50         | 44.39<br>44.17<br>44.60<br>44.40<br>44.47 | 116.88<br>117.13<br>118.25<br>118.30<br>118.20 | 25<br>10<br>24<br>23<br>10        | 1.4<br>1.2<br>1.5<br>1.7<br>0.9 | 16.0<br>18.0<br>9.0<br>11.0<br>11.0          |
| 13274600<br>13275500<br>13286300<br>13288200<br>13289100             | 1.80<br>219<br>0.96<br>156<br>5.64   | 323.0<br>56.9<br>167.0<br>142.9<br>275.0 | 2.6<br>28.6<br>2.0<br>26.4<br>6.4   | 2960<br>5170<br>2950<br>5791<br>3600 | 0.0                                    | 0.0<br>74.7<br>0.0<br>59.2<br>0.7     | 2.00<br>5.80<br>2.00<br>3.40<br>2.50 | 44.58<br>44.66<br>44.83<br>44.88<br>44.79 | 117.45<br>117.87<br>117.55<br>117.25<br>117.14 | 10<br>25<br>15<br>45<br>15        | 1.2<br>1.7<br>0.9<br>2.0<br>1.1 | 15.0<br>12.0<br>12.0<br>12.0<br>12.0<br>14.0 |
| 13290150<br>13291200<br>13292000<br>13318100<br>13318500             | 2.89<br>4.00<br>622<br>1.80<br>505   | 513.0<br>621.0<br>72.6<br>136.0<br>70.1  | 1.9<br>3.5<br>56.0<br>2.8<br>35.2   | 5110<br>5250<br>5690<br>4480<br>4800 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 85.0<br>88.0<br>50.8<br>92.0<br>86.0  | 5.60<br>2.20<br>3.70<br>5.60<br>5.90 | 45.09<br>45.20<br>45.56<br>45.33<br>45.32 | 116.89<br>116.87<br>116.83<br>118.45<br>118.27 | 32<br>31<br>28<br>25<br>24        | 1.6<br>1.5<br>1.8<br>1.9<br>1.6 | 8.0<br>10.0<br>13.0<br>17.0<br>17.0          |
| 13319000<br>13320000<br>13320400<br>13321300<br>13322300             | 678<br>105<br>15.8<br>15.5<br>1.37   | 26.8<br>113.6<br>454.0<br>134.0<br>400.0 | 44.8<br>26.4<br>8.1<br>6.6<br>1.6   | 4640<br>5320<br>5160<br>4140<br>4460 | 0.0<br>0.0<br>0.3<br>0.0               | 84.5<br>83.3<br>93.0<br>27.0<br>83.0  | 5.60<br>2.80<br>1.40<br>6.00<br>5.60 | 45.35<br>45.16<br>45.21<br>45.19<br>45.64 | 118.12<br>117.77<br>117.73<br>118.01<br>118.11 | 24<br>25<br>25<br>18<br>28        | 1.7<br>1.8<br>1.4<br>1.2<br>2.3 | 19.0<br>17.0<br>20.0<br>21.0<br>19.0         |
| 13323500<br>13323600<br>13324150<br>13325000<br>13325500             | 1250<br>22.0<br>0.99<br>10.3<br>43.0 | 35.3<br>231.0<br>192.0<br>422.0<br>310.0 | 63.0<br>11.6<br>2.0<br>6.0<br>10.4  | 4193<br>5520<br>3550<br>7890<br>7520 | 0.1<br>0.0<br>0.0<br>0.9<br>1.9        | 62.5<br>98.7<br>27.0<br>50.5<br>56.5  | 4.20<br>4.60<br>1.80<br>2.30<br>2.30 | 45.51<br>45.43<br>45.62<br>45.27<br>45.28 | 117.93<br>117.82<br>117.80<br>117.21<br>117.20 | 23<br>32<br>25<br>47<br>50        | 1.6<br>1.8<br>1.5<br>2.2<br>2.2 | 19.0<br>20.0<br>17.0<br>11.0<br>11.0         |
| 13329500<br>13329750<br>13330000<br>13330500<br>13331500             | 29.6<br>4.38<br>70.9<br>68.0<br>240  | 296.0<br>128.0<br>139.0<br>177.5<br>69.0 | 10.8<br>4.3<br>20.1<br>18.4<br>45.5 | 7460<br>4140<br>6820<br>5810<br>5760 | 0.2<br>0.0<br>0.4<br>0.0<br>0.7        | 53.0<br>0.0<br>80.3<br>84.8<br>80.0   | 2.30<br>1.50<br>2.80<br>2.50<br>1.60 | 45.34<br>45.44<br>45.44<br>45.53<br>45.62 | 117.29<br>117.23<br>117.43<br>117.55<br>117.72 | 43<br>15<br>38<br>38<br>40        | 2.2<br>1.2<br>1.9<br>1.7<br>1.3 | 13.0<br>13.0<br>14.0<br>15.0<br>18.0         |
| 13332500<br>13333000<br>13333050<br>13333100<br>14036800             | 2555<br>3275<br>0.47<br>5.49<br>17.4 | 25.1<br>22.6<br>100.0<br>197.0<br>250.0  | 87.6<br>120.4<br>0.9<br>5.6<br>5.6  | 4449<br>4460<br>4440<br>4520<br>6320 | 0.2<br>0.1<br>0.0<br>0.0<br>0.0        | 60.5<br>66.2<br>36.0<br>70.0<br>96.0  | 3.90<br>4.30<br>2.50<br>7.90<br>4.00 | 45.73<br>45.95<br>45.89<br>45.75<br>44.32 | 117.78<br>117.45<br>117.28<br>117.02<br>118.56 | 26<br>25<br>12<br>15<br>28        | 1.7<br>1.6<br>1.2<br>1.2<br>1.7 | 18.0<br>18.0<br>16.0<br>18.0<br>18.0         |
| 14037500<br>14038530<br>14038550<br>14038600<br>14038600<br>14038750 | 7.00<br>386<br>24.3<br>6.54<br>1.94  | 523.1<br>75.0<br>215.0<br>439.0<br>409.0 | 5.2<br>32.2<br>9.1<br>3.5<br>2.7    | 3900<br>4900<br>5780<br>5030<br>5190 | 1.1<br>0.0<br>0.0<br>0.0<br>0.0        | 67.1<br>55.0<br>84.0<br>90.0<br>33.0  | 5.60<br>1.50<br>5.60<br>2.20<br>7.90 | 44.34<br>44.42<br>44.25<br>44.29<br>44.57 | 118.66<br>118.90<br>118.91<br>118.93<br>119.11 | 37<br>25<br>25<br>20<br>20        | 1.7<br>1.6<br>1.5<br>1.4<br>1.6 | 18.2<br>14.0<br>8.0<br>8.0<br>8.0            |
| 14038900<br>14039200<br>14040500<br>14040700<br>14041500             | 17.5<br>11.9<br>1680<br>2.22<br>525  | 280.0<br>233.0<br>27.3<br>323.0<br>73.0  | 6.7<br>5.3<br>78.1<br>4.0<br>46.0   | 5310<br>5510<br>4530<br>4270<br>5450 | 0.0<br>0.0<br>0.0<br>0.0<br>0.1        | 76.0<br>39.0<br>43.3<br>35.0<br>97.0  | 7.90<br>7.90<br>5.20<br>2.50<br>4.70 | 44.39<br>44.00<br>44.52<br>44.52<br>45.00 | 119.31<br>119.28<br>119.62<br>119.92<br>118.94 | 22<br>25<br>22<br>24<br>27        | 1.5<br>1.3<br>1.5<br>1.4<br>1.6 | 14.0<br>15.0<br>12.0<br>22.0<br>10.6         |
| 14041900<br>14042000<br>14042500<br>14043300<br>14043850             | 2.27<br>60.7<br>121<br>6.93<br>3.89  | 225.0<br>66.6<br>60.7<br>249.0<br>297.0  | 3.8<br>10.4<br>16.9<br>3.8<br>3.4   | 4580<br>4630<br>4630<br>5350<br>5130 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 97.0<br>73.8<br>77.7<br>100.0<br>95.0 | 2.20<br>2.70<br>2.90<br>2.20<br>7.90 | 44.17<br>45.17<br>45.16<br>44.54<br>44.65 | 118.71<br>113.73<br>118.82<br>118.54<br>118.36 | 20<br>24<br>24<br>30<br>22        | 1.4<br>1.4<br>1.4<br>1.6<br>1.5 | 14.0<br>14.0<br>13.0<br>9.0<br>8.0           |
| 14043900<br>14044000<br>14044100<br>14044500<br>14044500             | 1.90<br>515<br>3.50<br>90.2<br>2520  | 161.0<br>26.3<br>4.5<br>59.0<br>24.9     | 1.3<br>65.7<br>3.6<br>15.6<br>99.6  | 4130<br>4300<br>4490<br>4830<br>4580 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 60.0<br>80.5<br>45.0<br>40.0<br>70.1  | 7.90<br>4.60<br>2.50<br>3.50<br>4.90 | 44.89<br>44.89<br>44.72<br>44.62<br>44.81 | 119.01<br>119.14<br>119.13<br>119.26<br>119.43 | 20<br>23<br>18<br>21<br>22        | 1.4<br>1.4<br>1.4<br>1.6<br>1.5 | 10.0<br>3.0<br>10.0<br>10.0<br>14.3          |
| 14046250<br>14046300<br>14046400<br>14046500<br>14046500<br>14047350 | 2.73<br>5.56<br>1.35<br>5090<br>6.25 | 590.0<br>335.0<br>419.0<br>20.0<br>136.0 | 3.5<br>3.8<br>2.5<br>143.0<br>4.3   | 3460<br>3380<br>2380<br>4400<br>4100 | 0.0<br>0.0<br>0.0<br>0.0<br>0.0        | 43.0<br>93.0<br>20.0<br>57.3<br>94.0  | 4.10<br>7.90<br>1.90<br>4.90<br>2.20 | 44.86<br>44.89<br>44.77<br>44.79<br>45.03 | 119.71<br>120.07<br>120.00<br>120.01<br>119.57 | 18<br>18<br>16<br>21<br>20        | 1.3<br>1.4<br>1.2<br>1.5<br>1.4 | 22.0<br>20.0<br>21.0<br>16.0<br>22.0         |

| Station number | Drainage area<br>(mi²) | Main channel<br>slope (ft/mi) | Main channel<br>length (mi) | Mean basin<br>elevation (ft) | Area of lakes and ponds (percent) | Forest cover<br>(percent) | Soils Index | Latıtude<br>(degrees) | Longitude<br>(degrees) | Mean annual<br>precipitation (in) | Precipitation<br>intensity (in) | Temperature<br>index (°F) |
|----------------|------------------------|-------------------------------|-----------------------------|------------------------------|-----------------------------------|---------------------------|-------------|-----------------------|------------------------|-----------------------------------|---------------------------------|---------------------------|
|                | A                      | s                             | L                           | ε                            | ST                                | F                         | SI          | LAT                   | LONG                   | Р                                 | I                               | TI                        |
|                |                        | 1                             |                             | (3) NOR                      | TH CEN                            | TRAL B                    | EGION       |                       | 1                      | 1                                 |                                 |                           |
|                |                        |                               | 4.72 0                      |                              |                                   | 26.2                      | 5 (0        |                       | 1.4.1 1/7              |                                   |                                 | 10 0                      |
| 14010000       | 03.0                   | 189.5                         | 11.0                        | 4260                         | 0.0                               | 30.3                      | 5.00        | 45.05                 | 118.17                 | 33                                | 2.0                             | 19.0                      |
| 14010800       | )4·4<br>112 2          | 166 6                         | 15.5                        | 3500                         | 0.0                               | 67 1                      | 3.10        | 45.00<br>15 30        | 118 28                 | 34                                | 2.2                             | 21.0                      |
| 14011000       | 43.0                   | 160.0                         | 12 2                        | 3360                         | 0.0                               | 87 0                      | 5.40        | 45.95                 | 118 12                 | 40                                | 2.4                             | 20.0                      |
| 14013500       | 17.0                   | 294.0                         | ر در ا<br>م. ل              | 3140                         | 0.0                               | 33.0                      |             | 45.06                 | 118.14                 | 36                                | 2.4                             | 21.0                      |
|                |                        |                               |                             | 5                            | •••                               | 55.0                      |             |                       |                        | 5-                                |                                 |                           |
| 14016030       | 1.22                   | 239.0                         | 2.2                         | 1660                         | 0.0                               | 0.0                       | 2.50        | 45.38                 | 118.39                 | 15                                | 1.2                             | 24.0                      |
| 14013500       | 1657                   | 60.0                          | 59.4                        | 1600                         | 0.2                               | 25.0                      |             | 46.04                 | 118.77                 | 22                                | 1.5                             | 19.0                      |
| 14019400       | 0.68                   | 972.0                         | 1.4                         | 3410                         | 0.0                               | 54.0                      | 5.60        | 45.71                 | 113.20                 | 15                                | 1.8                             | 20.0                      |
| 14020000       | 131                    | 137.3                         | 17.8                        | 3390                         | 0.0                               | 58.7                      | 5.60        | 45.72                 | 118.32                 | 19                                | 1.9                             | 20.0                      |
| 14020800       | 4.45                   | 401.0                         | 4.5                         | 2820                         | 0.0                               | 13.0                      | 1.70        | 45.63                 | 118.02                 | 15                                | 1.3                             | 23.0                      |
| 14021000       | 637                    | Щ7 1                          | 453                         | 3120                         | 0.0                               | 37 Ц                      | 3 30        | 45 67                 | 112 79                 | 1.8                               | 1.5                             | 21.0                      |
| 14022500       | 180                    | 114.7                         | 26.5                        | 3210                         | 0.0                               | 29.3                      | 2.30        | 45.55                 | 118.77                 | 19                                | 1.7                             | 19.4                      |
| 14025000       | 291                    | 64.2                          | 35.3                        | 3030                         | 0.0                               | 13.8                      | 1.90        | 45.65                 | 118.83                 | 13                                | 1.2                             | 21.0                      |
| 14026000       | 1280                   | 32.1                          | 62.3                        | 2920                         | 0.0                               | 29.1                      | 2.80        | 45.68                 | 119.03                 | 17                                | 1.4                             | 21.0                      |
| 14032000       | 291                    | 78.5                          | 37.2                        | 3150                         | 0.0                               | 10.7                      | 2.30        | 45.54                 | 119.31                 | 15                                | 1.2                             | 23.2                      |
| 1              |                        | 500 0                         |                             | 1010                         | ~ ^                               |                           |             |                       | 110 10                 | 20                                | 1 11                            | 22.0                      |
| 14034370       | 3.7 0                  | 117 2                         | 1.0                         | 4310                         | 0.0                               | 01.0                      | 4.00        | 45.25                 | 119.12                 | 20                                | 1.4                             | 23.0                      |
| 14034500       | 120                    | 106 0                         | 17 0                        | 3760                         | 0.0                               | 24.0                      | 2.00        | 45.35                 | 119.55                 | 15                                | 1.2                             | 24.0                      |
| 14034500       | 850                    | 45 0                          | 70 1                        | 2200                         | 0.0                               | 50.0                      | 2.00        | 45.20                 | 120 01                 | 14                                | 1 1                             | 24.0                      |
| 14048000       | 7530                   | 12.0                          | 278.8                       | 3330                         | 0.0                               | 41.3                      | 4.20        | 45.59                 | 120.41                 | 19                                | 1.4                             | 20.0                      |
|                |                        | _                             |                             |                              |                                   |                           |             |                       |                        |                                   |                                 |                           |
| 14048300       | 8.05                   | 5.0                           | 5.0                         | 1560                         | 0.0                               | 0.0                       | 2.50        | 45.59                 | 120.69                 | 11                                | 1.1                             | 24.0                      |
| 14077500       | 04.4                   | 132.4                         | 13.5                        | 4670                         | 0.0                               | 42.9                      | 8.40        | 44.17                 | 119.73                 | 20                                | 1.4                             | 22.0                      |
| 14077800       | 2.10                   | 200.0                         | 22 6                        | 5150                         | J.U                               | 10.0                      | 7.90        | 44.20<br>hu 16        | 119.02                 | 20                                | 1.5                             | 22.0                      |
| 14070000       | 10 6                   | 200 0                         | 55.0                        | 5000                         | 0.4                               | 21.2                      | 10 00       | 12 60                 | 119.92                 | 15                                | 1.4                             | 13 0                      |
| 14070200       | 19.0                   | 290.0                         | 5.5                         | 2000                         | 0.0                               | 0.0                       | 10.00       | - 2 • 23              | 119.95                 | 1.5                               | · • <del>·</del>                | 13.0                      |
| 14078400       | 7.53                   | 291.0                         | 5.7                         | 5ó70                         | 0.0                               | 92.0                      | 7.50        | 44.31                 | 120.24                 | 25                                | 1.5                             | 20.0                      |
| 14078500       | 159                    | 41.7                          | 19.2                        | 5130                         | 0.0                               | 70.7                      | 7.00        | 44.33                 | 120.03                 | 21                                | 1.5                             | 19.0                      |
| 14079500       | 1660                   | 34.2                          | 56.2                        | 4650                         | 0.3                               | 22.6                      | 5.50        | 44.12                 | 120.25                 | 20                                | 1.4                             | 18.0                      |
| 14080500       | 2200                   | 4.2                           | 120.2                       | 4650                         | 0.3                               | 26.0                      | 5.10        | 44.11                 | 120.79                 | 20                                | 1.4                             | 18.0                      |
| 14081800       | 2.28                   | 400.0                         | 2.0                         | 5130                         | 0.0                               | 97.0                      | 7.90        | 44.43                 | 120.35                 | 25                                | 1.5                             | 20.0                      |
| 14033000       | 200                    | 92.6                          | 21.6                        | 4654                         | 0.0                               | 50.9                      | 5.40        | 44.31                 | 120.64                 | 21                                | 1.4                             | 17.5                      |
| 14083500       | 73.8                   | 83.2                          | 17.5                        | 4440                         | 0.0                               | 35.0                      | 7.40        | 44.34                 | 120.67                 | 22                                | 1.5                             | 16.0                      |
| 14093700       | 1.42                   | 409.0                         | 3.4                         | 3210                         | 0.1                               | 51.0                      | 2.30        | 44.74                 | 120.27                 | 12                                | 1.2                             | 16.0                      |
| 14097200       | 40.7                   | 203.0                         | 15.7                        | 4110                         | 0.0                               | 95°J                      | 1.90        | 45.18                 | 121.58                 | 31                                | 4.2                             | 20.0                      |
| 14100300       | 9.01                   | 316.0                         | 8.7                         | 3930                         | 0.0                               | 99.J                      | 1.20        | 45.34                 | 121.35                 | 40                                | 2.0                             | 20.0                      |
| 14101500       | 417                    | 81.7                          | 44.4                        | 2940                         | 0.2                               | 69.7                      | 2.20        | 45.24                 | 121.09                 | 45                                | 2.7                             | 20.0                      |
| 14104100       | 3.87                   | 231.0                         | 6.3                         | 3920                         | 0.0                               | 97.0                      | 1.20        | 45.40                 | 121.37                 | 38                                | 2.2                             | 20.0                      |
| 14105850       | 23.0                   | 130.0                         | 14.7                        | 2330                         | 0.0                               | 95.0                      | 1.30        | 45.54                 | 121.32                 | 34                                | 2.5                             | 24.0                      |
| 14113000       | 1297                   | 46.0                          | 33.7                        | 3140                         | 0.1                               | 77.0                      | -           | 45.76                 | 121.21                 | 36                                | 2.5                             | 21.0                      |
| 14113200       | 41.5                   | 261.8                         | 13.8                        | 2220                         | 0.3                               | 91.0                      | 1.50        | 45.65                 | 121.38                 | 28                                | 1.7                             | 25.0                      |
| 11112100       |                        | 119 2                         | F 1                         | 5160                         | 0.0                               | 05 0                      | 1 20        | h 1 11 1              | 101 50                 | 비통                                | JL O                            | 22 N                      |
| 14118500       | 4.50<br>95 K           | 410.3                         | 12 4                        | 3170                         | 0.0                               | 35.0                      | 3,20        | 45.60                 | 121.63                 | 100                               | 4.0                             | 27.0                      |
| 14120000       | 279                    | 270.0                         | 20.5                        | 3340                         | 0.2                               | 89.0                      | 3.30        | 45.66                 | 121.40                 | 73                                | 3.5                             | 26.0                      |
|                | /                      |                               |                             |                              |                                   |                           |             |                       |                        |                                   |                                 | -                         |

.

Table 2. Basin characteristics used in multiple regressions - continued

.

| Station number  | rainage area<br>(mi <sup>2</sup> ) | ain channel<br>lope (ft/mi) | ain channel<br>ength (mi) | ean basin<br>levation (ft) | rea of lakes and<br>onds (percent) | orest cover<br>percent) | oils index  | atitude<br>degrees) | ongitude<br>degrees ) | ean annual<br>rrecipitation (in) | ecipitation<br>ntensity (in) | emperature<br>ndex (°F) |
|-----------------|------------------------------------|-----------------------------|---------------------------|----------------------------|------------------------------------|-------------------------|-------------|---------------------|-----------------------|----------------------------------|------------------------------|-------------------------|
|                 | Ō                                  | ∑ °                         | <u>Σ</u> -                | Σ°                         | < ₫                                | u =                     | Ň           | Ľ,                  | ΞĽ                    | Σu                               | <u>ہ</u> ۔                   | F                       |
|                 | A                                  | S                           | L                         | A FACT                     | ST ST                              | F                       | SI<br>DECIO | LAT                 | LONG                  | Р                                | 1                            |                         |
|                 |                                    |                             |                           | (4) EAST                   | ERNCA                              | SCADES                  | REGIU       | V                   |                       |                                  |                              |                         |
| 11493500        | 1290                               | 20.1                        | 59.6                      | 5020                       | 6.1                                | 74.3                    | 13.80       | 42.74               | 121.83                | 24                               | 2.0                          | 12.0                    |
| 11501000        | 1580                               | 4.9                         | 95.2                      | 5318                       | 1.5                                | 64.8                    | 10.90       | 42.58               | 121.85                | 20                               | 1.6                          | 13.0                    |
| 11501300        | 5.77                               | 328.0                       | 5.2                       | 5070                       | 0.0                                | 97.0                    | 13.80       | 42.56               | 121.84                | 21                               | 1.7                          | 15.0                    |
| 11502500        | 3000                               | 2.0                         | 100.4                     | 5164                       | 3.4                                | 69.7                    | 12.20       | 42.57               | 121.88                | 22                               | 1.8                          | 12.0                    |
| 11504000        | 90.0                               | 130.4                       | 18.4                      | 5684                       | 0.0                                | 34.2                    | 11.30       | 42.70               | 121.98                | 28                               | 2.6                          | 16.0                    |
|                 |                                    |                             |                           |                            |                                    |                         |             |                     |                       |                                  |                              |                         |
| 11505550        | 13.2                               | 158.0                       | 4.9                       | 6040                       | 1.2                                | 97.0                    | 5.60        | 42.49               | 122.19                | 45                               | 3.2                          | 24.0                    |
| 11509400        | 1.02                               | 315.0                       | 1.6                       | 4500                       | 0.0                                | 99.0                    | 5.60        | 42.13               | 121.96                | 20                               | 1.8                          | 21.0                    |
| 11517340        | 2.9                                | 520.0                       | 4.5                       | 3200                       | 0.0                                | 100.0                   |             | 41.84               | 122.92                | 35                               | 2.4                          | 24.0                    |
| 14050000        | 132                                | 327.7                       | 22.4                      | 5850                       | 1.4                                | 74.0                    | 11.90       | 43.81               | 121.78                | 49                               | 2.5                          | 20.0                    |
| 14050500        | 16.5                               | 120.4                       | 11.3                      | 5230                       | 1.0                                | 98.2                    | 9.60        | 43.82               | 121.79                | 40                               | 3.3                          | 17.0                    |
| 4 4 9 7 4 9 9 9 |                                    |                             |                           |                            |                                    |                         |             |                     |                       |                                  | _                            |                         |
| 14051000        | 33.2                               | 90.9                        | 8.8                       | 5270                       | 7.2                                | 92.2                    | 13.30       | 43.82               | 121.82                | 45                               | 2.8                          | 13.0                    |
| 14052000        | 21.5                               | 187.5                       | 6.4                       | 5290                       | 2.8                                | 94.4                    | 13.80       | 43.80               | 121.34                | 31                               | 2.6                          | 17.0                    |
| 14054500        | 19.7                               | 126.5                       | 9.8                       | 5150                       | 0.2                                | 99.2                    | 13.30       | 43.71               | 121.80                | 35                               | 2.5                          | 16.0                    |
| 14055500        | 39.0                               | 185.9                       | 10.4                      | 5540                       | 14.1                               | 83.3                    | 13.30       | 43.55               | 121.96                | 60                               | 3.5                          | 17.0                    |
| 14057500        | 45.1                               | 20.8                        | 9.6                       | 4695                       | 0.0                                | 98.2                    | 13.10       | 43.80               | 121.57                | 36                               | 1.9                          | 13.5                    |
| 14072000        | <i>1</i>                           | 200 0                       | 17 0                      | <b>F</b> ( ) 0             | 0 1                                | ( )                     | 15 00       |                     | 101 07                | 20                               |                              |                         |
| 14075000        | 4(•)                               | 200.0                       | 16 7                      | 5030                       | 0.1                                | 00.9                    | 15.80       | 44.09               | 121.31                | 20                               | 1.1                          | 10.0                    |
| 14073000        | 24.8                               | 250.4                       | 10./                      | 2040                       | 0.2                                | 11.0                    | 12 00       | 44.23               | 121.57                | 40                               | 2.1                          | 20.0                    |
| 14000000        | 22.2                               | 230.0                       | 0.4<br>70 H               | 4440                       | 4.9                                | 93.1                    | 13.80       | 44.43               | 121.12                | 07                               | <b>ن.</b> 4                  | 20.0                    |
| 1002000         | 10                                 | 40.0                        | 30.4                      | 4320                       | 0.7                                | 91.4                    | 4.70        | 44.03               | 121.40                | 08                               | 3.5                          | 19.0                    |
| 14093000        | 104                                | 102.9                       | 29.D                      | 3450                       | 0.2                                | 0.00                    | 3.50        | 44.70               | 121.23                | うつ                               | 2.2                          | 13.0                    |

Table 2. - Basin characteristics used in multiple regressions - continued

|                     | Peak discharge, in cubic feet per second for selected exceedance probabilities |         |           |         |         |          |  |  |  |  |
|---------------------|--------------------------------------------------------------------------------|---------|-----------|---------|---------|----------|--|--|--|--|
| Station number      | 0.50                                                                           | 0.20    | 0.10      | 0.04    | 0.02    | 0.01     |  |  |  |  |
|                     | (2-yr)                                                                         | (5-yr)  | (10-yr)   | (25-yr) | (50-yr) | (100-yr) |  |  |  |  |
|                     |                                                                                | (1) SOU | THEAST RE | GION    |         |          |  |  |  |  |
| 10352300            | 4.9                                                                            | 11.1    | 17.1      | 27.0    | 36.4    | 47.7     |  |  |  |  |
| 10352500            | 515                                                                            | 1230    | 1940      | 3130    | 4250    | 5600     |  |  |  |  |
| 10353000            | 412                                                                            | 723     | 937       | 1200    | 1400    | 1580     |  |  |  |  |
| 10353500            | 224                                                                            | 728     | 1260      | 2140    | 2930    | 3830     |  |  |  |  |
| 10353500            | 1300                                                                           | 2240    | 2890      | 3710    | 4310    | 4890     |  |  |  |  |
| 10370000            | 472                                                                            | 821     | 1130      | 1630    | 2100    | 2660     |  |  |  |  |
| 10371000            | 482                                                                            | 1270    | 2140      | 3780    | 5480    | 7700     |  |  |  |  |
| 10371500            | 1210                                                                           | 2440    | 3540      | 5280    | 6840    | 3650     |  |  |  |  |
| 10378500            | 437                                                                            | 1160    | 1950      | 3410    | 4910    | 6830     |  |  |  |  |
| 10384000            | 902                                                                            | 1540    | 2060      | 2820    | 3470    | 4200     |  |  |  |  |
| 10390400            | 71.0                                                                           | 119     | 159       | 221     | 276     | 338      |  |  |  |  |
| 10392300            | 68.3                                                                           | 118     | 153       | 193     | 232     | 266      |  |  |  |  |
| 10392800            | 49.5                                                                           | 72.1    | 87.2      | 106     | 120     | 134      |  |  |  |  |
| 10393500            | 1280                                                                           | 2130    | 2760      | 3620    | 4310    | 5030     |  |  |  |  |
| 10393500            | 1270                                                                           | 2030    | 2570      | 3270    | 3810    | 4350     |  |  |  |  |
| 10397000            | 85.0                                                                           | 174     | 251       | 369     | 471     | 537      |  |  |  |  |
| 10403000            | 552                                                                            | 1030    | 1430      | 2020    | 2530    | 3090     |  |  |  |  |
| 10406500            | 109                                                                            | 182     | 237       | 314     | 376     | 442      |  |  |  |  |
| 11340500            | 229                                                                            | 299     | 341       | 390     | 425     | 458      |  |  |  |  |
| 11341000            | 185                                                                            | 341     | 462       | 631     | 766     | 909      |  |  |  |  |
| 11341100            | 52.7                                                                           | 80.7    | 101       | 123     | 149     | 171      |  |  |  |  |
| 11341200            | 95.1                                                                           | 149     | 187       | 233     | 278     | 319      |  |  |  |  |
| 11484000            | 2300                                                                           | 3410    | 4210      | 5300    | 6160    | 7070     |  |  |  |  |
| 11488700            | 50.4                                                                           | 117     | 178       | 274     | 359     | 455      |  |  |  |  |
| 11489350            | 45.9                                                                           | 116     | 198       | 365     | 553     | 817      |  |  |  |  |
| 11491800 1/         | 14.6                                                                           | 27.8    | 37.8      | 51.5    | 62.1    | 72.8     |  |  |  |  |
| 11494800            | 30.5                                                                           | 41.3    | 49.0      | 59.3    | 67.5    | 76.1     |  |  |  |  |
| 11497500            | 1230                                                                           | 2290    | 3170      | 4490    | 5630    | 6900     |  |  |  |  |
| 11497800            | 54.2                                                                           | 130     | 196       | 296     | 378     | 467      |  |  |  |  |
| 13178000            | 1970                                                                           | 3120    | 3990      | 5200    | 6190    | 7240     |  |  |  |  |
| 13182100 <u>1</u> / | 9.2                                                                            | 45.8    | 96.4      | 200     | 308     | 447      |  |  |  |  |
| 13182150 <u>1</u> / | 4.1                                                                            | 9.9     | 15.3      | 31.0    | 24.0    | 39.0     |  |  |  |  |
| 13184000            | 11400                                                                          | 20000   | 26100     | 34200   | 40300   | 46500    |  |  |  |  |
| 13214000            | 1970                                                                           | 3830    | 5420      | 7850    | 9980    | 12400    |  |  |  |  |
| 13215500            | 859                                                                            | 1350    | 1730      | 2270    | 2710    | 3180     |  |  |  |  |
| 13226500            | 1560                                                                           | 4110    | 6570      | 10600   | 14200   | 18300    |  |  |  |  |
| 13228000            | 7730                                                                           | 14900   | 20900     | 29900   | 37600   | 46200    |  |  |  |  |
| 13228300            | 100                                                                            | 152     | 188       | 232     | 266     | 299      |  |  |  |  |
| 13229400 <u>1</u> / | 9.2                                                                            | 30.2    | 52.5      | 90      | 125     | 164      |  |  |  |  |

|         | D1           | C            | C1 1 C .    |           |                 |
|---------|--------------|--------------|-------------|-----------|-----------------|
| able 3. | - Discharges | tor selected | tiood-treau | encies at | dading stations |
|         |              |              |             |           |                 |

|                                                                      | Peak discharge, in cubic feet per second for selected exceedance probabilities |                                       |                                       |                                      |                                      |                                      |  |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|--|--|--|
| Station number                                                       | 0.50                                                                           | 0.20                                  | 0.10                                  | 0.04                                 | 0.02                                 | 0.01                                 |  |  |  |
|                                                                      | (2-yr)                                                                         | (5-yr)                                | (10-yr)                               | (25-yr)                              | (50-yr)                              | (100-yr)                             |  |  |  |
| • • • • • • • • • • • • • • • • • • •                                |                                                                                | (2) NORT                              | HEAST REG                             | ION                                  |                                      |                                      |  |  |  |
| 13267100                                                             | 67.1                                                                           | 106                                   | 135                                   | 174                                  | 204                                  | 236                                  |  |  |  |
| 13269200                                                             | 17.3                                                                           | 41.0                                  | 63.0                                  | 98.0                                 | 130                                  | 167                                  |  |  |  |
| 13269300                                                             | 664                                                                            | 985                                   | 1130                                  | 1420                                 | 1580                                 | 1740                                 |  |  |  |
| 13270800                                                             | 76.2                                                                           | 115                                   | 142                                   | 175                                  | 200                                  | 226                                  |  |  |  |
| 13272300                                                             | 12.3                                                                           | 24.6                                  | 36.2                                  | 55.5                                 | 73.3                                 | 96.0                                 |  |  |  |
| 13274600                                                             | 18.5                                                                           | 49.5                                  | 80.0                                  | 132                                  | 181                                  | 240                                  |  |  |  |
| 13275500                                                             | 725                                                                            | 1050                                  | 1250                                  | 1480                                 | 1640                                 | 1800                                 |  |  |  |
| 13286300 <u>1</u> /                                                  | 36.0                                                                           | 148                                   | 304                                   | 631                                  | 1010                                 | 1520                                 |  |  |  |
| 13288200                                                             | 2050                                                                           | 2790                                  | 3320                                  | 4030                                 | 4580                                 | 5170                                 |  |  |  |
| 13289100                                                             | 98.2                                                                           | 139                                   | 167                                   | 205                                  | 233                                  | 263                                  |  |  |  |
| 13290150                                                             | 70.3                                                                           | 136                                   | 189                                   | 266                                  | 331                                  | 401                                  |  |  |  |
| 13291200                                                             | 72.1                                                                           | 103                                   | 123                                   | 148                                  | 167                                  | 136                                  |  |  |  |
| 13292000                                                             | 2720                                                                           | 4150                                  | 5210                                  | 6690                                 | 7890                                 | 9180                                 |  |  |  |
| 13318100                                                             | 13.4                                                                           | 21.2                                  | 26.9                                  | 34.7                                 | 41.0                                 | 47.7                                 |  |  |  |
| 13318500                                                             | 2190                                                                           | 3010                                  | 3590                                  | 4340                                 | 4920                                 | 5510                                 |  |  |  |
| 13319000                                                             | 3180                                                                           | 4800                                  | 6000                                  | 7670                                 | 9020                                 | 10500                                |  |  |  |
| 13320000                                                             | 764                                                                            | 1020                                  | 1170                                  | 1360                                 | 1490                                 | 1610                                 |  |  |  |
| 13320400                                                             | 115                                                                            | 182                                   | 227                                   | 283                                  | 323                                  | 362                                  |  |  |  |
| 13321300                                                             | 96.3                                                                           | 141                                   | 170                                   | 205                                  | 231                                  | 256                                  |  |  |  |
| 13322300                                                             | 36.6                                                                           | 47.4                                  | 54.2                                  | 62.6                                 | 68.7                                 | 74.8                                 |  |  |  |
| 13323500                                                             | 3430                                                                           | 4650                                  | 5390                                  | 6280                                 | 6890                                 | 7480                                 |  |  |  |
| 13323600                                                             | 424                                                                            | 589                                   | 698                                   | 836                                  | 938                                  | 1040                                 |  |  |  |
| 13324150 <u>1</u> /                                                  | 21.0                                                                           | 37.2                                  | 50.0                                  | 66.0                                 | 79.0                                 | 91.0                                 |  |  |  |
| 13325000                                                             | 103                                                                            | 153                                   | 189                                   | 240                                  | 281                                  | 325                                  |  |  |  |
| 13325500                                                             | 833                                                                            | 1190                                  | 1420                                  | 1720                                 | 1930                                 | 2150                                 |  |  |  |
| 13329500                                                             | 541                                                                            | 736                                   | 858                                   | 1010                                 | 1110                                 | 1220                                 |  |  |  |
| 13329750 <u>1</u> /                                                  | 26                                                                             | 54                                    | 78                                    | 115                                  | 146                                  | 180                                  |  |  |  |
| 13330000                                                             | 1570                                                                           | 1940                                  | 2160                                  | 2420                                 | 2600                                 | 2780                                 |  |  |  |
| 13330500                                                             | 907                                                                            | 1200                                  | 1390                                  | 1620                                 | 1790                                 | 1950                                 |  |  |  |
| 13331500                                                             | 3300                                                                           | 4480                                  | 5250                                  | 6220                                 | 6930                                 | 7640                                 |  |  |  |
| 13332500<br>13333000<br>13333050<br>13333100<br>13333100<br>14036800 | 9570<br>15100<br>12.5<br>40.1<br>72.7                                          | 12900<br>21400<br>22.0<br>71.4<br>115 | 15000<br>25500<br>29.4<br>96.7<br>144 | 17700<br>30700<br>39.7<br>134<br>180 | 19500<br>34600<br>48.1<br>165<br>207 | 21400<br>38400<br>57.1<br>200<br>234 |  |  |  |
| 14037500<br>14038530<br>14038550<br>14038600<br>14038600<br>14038750 | 86.9<br>1630<br>171<br>17.7<br>13.2                                            | 125<br>2890<br>242<br>27.8<br>20.5    | 151<br>3960<br>285<br>35.2<br>25.6    | 185<br>5580<br>335<br>45.2<br>32.2   | 211<br>7000<br>369<br>53.1<br>37.3   | 238<br>8620<br>401<br>61.4<br>42.5   |  |  |  |
| 14038900 1/                                                          | 65.0                                                                           | 118                                   | 155                                   | 204                                  | 246                                  | 282                                  |  |  |  |
| 14039200                                                             | 53.8                                                                           | 76.0                                  | 89.8                                  | 106                                  | 117                                  | 128                                  |  |  |  |
| 14040500                                                             | 2640                                                                           | 4280                                  | 5500                                  | 7170                                 | 8520                                 | 9930                                 |  |  |  |
| 14040700 1/                                                          | 30.0                                                                           | 72.0                                  | 117                                   | 195                                  | 269                                  | 372                                  |  |  |  |
| 14041500                                                             | 3080                                                                           | 4500                                  | 5410                                  | 6530                                 | 7330                                 | 8100                                 |  |  |  |
| 14041900                                                             | 28.8                                                                           | 46.1                                  | 58.7                                  | 75.9                                 | 89.4                                 | 103                                  |  |  |  |
| 14042000                                                             | 634                                                                            | 994                                   | 1280                                  | 1680                                 | 2020                                 | 2400                                 |  |  |  |
| 14042500                                                             | 1050                                                                           | 1590                                  | 1990                                  | 2560                                 | 3010                                 | 3500                                 |  |  |  |
| 14043800                                                             | 39.5                                                                           | 58.8                                  | 72.5                                  | 90.7                                 | 105                                  | 119                                  |  |  |  |
| 14043850                                                             | 47.6                                                                           | 68.0                                  | 81.9                                  | 99.8                                 | 113                                  | 127                                  |  |  |  |
| 14043900                                                             | 20.8                                                                           | 39.0                                  | 53.5                                  | 74.3                                 | 91.4                                 | 110                                  |  |  |  |
| 14044000                                                             | 1590                                                                           | 2370                                  | 2900                                  | 3600                                 | 4140                                 | 4680                                 |  |  |  |
| 14044100                                                             | 12.3                                                                           | 39.3                                  | 69.9                                  | 126                                  | 182                                  | 250                                  |  |  |  |
| 14044500                                                             | 400                                                                            | 791                                   | 1150                                  | 1720                                 | 2240                                 | 2860                                 |  |  |  |
| 14046000                                                             | 8580                                                                           | 13500                                 | 17300                                 | 22600                                | 27100                                | 31900                                |  |  |  |
| 14046250 <u>1</u> /                                                  | 17                                                                             | 47                                    | 76                                    | 123                                  | 165                                  | 214                                  |  |  |  |
| 14046300                                                             | 4.1                                                                            | 6.8                                   | 3.9                                   | 11.9                                 | 14.4                                 | 17.0                                 |  |  |  |
| 14046400 <u>1</u> /                                                  | 4.8                                                                            | 19                                    | 36                                    | 71                                   | 110                                  | 155                                  |  |  |  |
| 14046500                                                             | 11700                                                                          | 18700                                 | 23800                                 | 30300                                | 36300                                | 42000                                |  |  |  |
| 14047350                                                             | 53.9                                                                           | 91.8                                  | 118                                   | 153                                  | 178                                  | 203                                  |  |  |  |

|                                                                                                           | Peak   | discharge, in cub | ic feet per secon | d for selected e | xceedance proba | bilities |
|-----------------------------------------------------------------------------------------------------------|--------|-------------------|-------------------|------------------|-----------------|----------|
| Station number                                                                                            | 0.50   | 0.20              | 0.10              | 0.04             | 0.02            | 0.01     |
|                                                                                                           | (2-yr) | (5-yr)            | (10-yr)           | (25-yr)          | (50-yr)         | (100-yr) |
|                                                                                                           |        | (3) NORTI         | H CENTRAL         | REGION           |                 |          |
| 14010000                                                                                                  | 800    | 1220              | 1550              | 2010             | 2410            | 2840     |
| 14010800                                                                                                  | 547    | 811               | 986               | 1210             | 1370            | 1530     |
| 14011000                                                                                                  | 492    | 814               | 1080              | 1470             | 1800            | 2180     |
| 14013000                                                                                                  | 918    | 1490              | 1930              | 2560             | 3070            | 3630     |
| 14013500                                                                                                  | 324    | 551               | 719               | 947              | 1130            | 1310     |
| 14016080 <u>1</u> /                                                                                       | 22     | 73                | 133               | 254              | 382             | 550      |
| 14018500                                                                                                  | 6860   | 12100             | 16500             | 23000            | 28700           | 35100    |
| 14019400                                                                                                  | 57.6   | 76.6              | 89.5              | 106              | 119             | 132      |
| 14020000                                                                                                  | 1980   | 2860              | 3510              | 4400             | 5120            | 5880     |
| 14020800                                                                                                  | 53.7   | 97.2              | 126               | 166              | 197             | 230      |
| 1 4021000                                                                                                 | 5280   | 8470              | 10900             | 14400            | 17300           | 20400    |
| 1 4022500                                                                                                 | 1350   | 2410              | 3280              | 4570             | 5680            | 6920     |
| 1 4025000                                                                                                 | 549    | 1010              | 1380              | 1930             | 2390            | 2890     |
| 1 4026000                                                                                                 | 6400   | 9940              | 12600             | 16200            | 19000           | 22100    |
| 1 4032000                                                                                                 | 310    | 586               | 848               | 1290             | 1730            | 2270     |
| $\begin{array}{c} 14034370 \\ 14034500 \\ 2/ \\ 14034300 \\ 14036000 \\ 14036000 \\ 14048000 \end{array}$ | 7.6    | 14.8              | 20.4              | 28.2             | 34.7            | 41.7     |
|                                                                                                           | 190    | 533               | 997               | 2040             | 3340            | 5320     |
|                                                                                                           | 276    | 693               | 1090              | 1750             | 2350            | 3040     |
|                                                                                                           | 986    | 4510              | 9760              | 21900            | 36500           | 57500    |
|                                                                                                           | 12200  | 18900             | 23700             | 30100            | 35100           | 40200    |
| 14048300 <u>1</u> /                                                                                       | 27     | 234               | 631               | 1620             | 2820            | 4470     |
| 14077500                                                                                                  | 612    | 781               | 385               | 1010             | 1100            | 1180     |
| 14077800                                                                                                  | 68.1   | 115               | 156               | 218              | 274             | 338      |
| 14078000                                                                                                  | 1370   | 2750              | 4060              | 6270             | 8390            | 11000    |
| 14078200 <u>1</u> /                                                                                       | 14     | 66                | 138               | 295              | 467             | 724      |
| 14078400 <u>1</u> /                                                                                       | 42     | 79                | 78                | 145              | 174             | 204      |
| 14078500                                                                                                  | 1390   | 1780              | 2040              | 2370             | 2620            | 2870     |
| 14079500                                                                                                  | 3910   | 6460              | 8350              | 10900            | 13000           | 15100    |
| 14080500                                                                                                  | 3530   | 5290              | 6630              | 8300             | 9580            | 10800    |
| 14081300 <u>1</u> /                                                                                       | 33     | 59                | 85                | 120              | 148             | 178      |
| 14083000                                                                                                  | 337    | 575               | 742               | 958              | 1120            | 1280     |
| 14083500                                                                                                  | 138    | 248               | 331               | 443              | 531             | 621      |
| 14093700 <u>1</u> /                                                                                       | 1.1    | 6.4               | 16                | 46               | 92              | 172      |
| 14097200                                                                                                  | 1460   | 2360              | 2980              | 3800             | 4430            | 5060     |
| 14100800                                                                                                  | 103    | 260               | 431               | 753              | 1090            | 1540     |
| 14101500                                                                                                  | 2980   | 5190              | 6960              | 9530             | 11700           | 14100    |
| 14104100                                                                                                  | 50     | 103               | 155               | 247              | 337             | 452      |
| 14105850                                                                                                  | 171    | 441               | 746               | 1340             | 1980            | 2850     |
| 14113000                                                                                                  | 8130   | 14500             | 19600             | 27000            | 33100           | 39800    |
| 14113200                                                                                                  | 776    | 1730              | 2630              | 4100             | 5470            | 7090     |
| 14113400                                                                                                  | 36.7   | 55.7              | 69.2              | 87.3             | 101             | 116      |
| 14118500                                                                                                  | 6520   | 9520              | 11600             | 14300            | 16300           | 18400    |
| 14120000                                                                                                  | 11400  | 18000             | 22700             | 28900            | 33600           | 38400    |

.

Table 3. - Discharges for selected flood-frequencies at gaging stations - continued

|                | Peak di                               | scharge, in cubic | feet per second | for selected exc | eedance probab  | oilities         |
|----------------|---------------------------------------|-------------------|-----------------|------------------|-----------------|------------------|
| Station number | 0.50<br>(2-yr)                        | 0.20<br>(5-yr)    | 0.10<br>(10-yr) | 0.04<br>(25-yr)  | 0.02<br>(50-yr) | 0.01<br>(100-yr) |
|                | · · · · · · · · · · · · · · · · · · · | (4) EASTER        | N CASCADE       | S REGION         |                 |                  |
| 11493500       | 533                                   | 956               | 1150            | 1400             | 1590            | 1800             |
| 11501000       | 2020                                  | 3830              | 5400            | 7850             | 10000           | 12500            |
| 11501300       | 24.2                                  | 39.5              | 51.5            | 69.1             | 83.9            | 10               |
| 11502500       | 2890                                  | 4820              | 6410            | 8800             | 10900           | 1320             |
| 11504000       | 371                                   | 435               | 475             | 522              | 555             | 53               |
| 11505550       | 86                                    | 132               | 164             | 204              | 234             | 26               |
| 11509400 1/    | 0.8                                   | 3.9               | 8.8             | 20.4             | 35              | 5                |
| 11517340 -     | 11.9                                  | 27.4              | 42.5            | 68.0             | 92.4            | 12               |
| 14050000       | 262                                   | 360               | 416             | 481              | 524             | 56               |
| 14050500       | 89.1                                  | 114               | 129             | 148              | 161             | 17               |
| 14051000       | 103                                   | 168               | 214             | 274              | 319             | 36               |
| 14052000       | 49.8                                  | 80.5              | 102             | 132              | 154             | 17               |
| 14054500       | 52.4                                  | 67.7              | 77.2            | 83.6             | 96.7            | 10               |
| 14055500       | 236                                   | 345               | 430             | 556              | 662             | 78               |
| 14057500       | 193                                   | 221               | 237             | 254              | 265             | 27               |
| 14073000       | 477                                   | 643               | 755             | 899              | 1010            | 112              |
| 14075000       | 519                                   | 302               | 1030            | 1370             | 1670            | 201              |
| 14088000       | 158                                   | 235               | 293             | 373              | 439             | 50               |
| 14091500       | 2540                                  | 3430              | 4100            | 5010             | 5750            | 655              |
| 14093000       | 524                                   | 934               | 1280            | 1830             | 2310            | 286              |

Table 3. - Discharges for selected flood-frequencies at gaging stations - continued

1/ Adjusted for "zero" events.

2/ Adjusted for historic peak.

| Station<br>number | Station name                                  | -lood region 1/ | Years of record | Drainage area<br>(mi <sup>2</sup> ) | Discharge (cfs) | Date     |
|-------------------|-----------------------------------------------|-----------------|-----------------|-------------------------------------|-----------------|----------|
| 0352300           | JACKSON CREEK TRIBUTARY NEAR MCDERMITT, NV 2/ | SE              | 10              | <br>6.ó                             |                 | 09-01-/3 |
| 0352500           | MODERMITT CREEK NEAR MODERMITT NV             | SE              | 31              | 225                                 | 3970            | 02-01-63 |
| 0353000           | FAST FORK OLLINN RIVER NEAR MODERNITT NV      | SE              | 31              | 140                                 | 12700           | 01-15-56 |
| 03535000          | CHINN DIVED NEAD MODERNITT NV                 | 0L<br>0L        | 30              | 1100                                | 15800           | 04-27-52 |
| 0393900           | QUINN RIVER NEAR MODERMITI, AV                | 3E<br>CE        | 10              | 104                                 | 3670            | 12-23-64 |
| 0366000           | IWENIIMILE CREEK NEAR ADEL, OR                | SE              | 49              | 194                                 | 010             | 12-23-04 |
| 0370000           | CAMAS CREEK NEAR LAKEVIEW, OR                 | SE              | 26              | 63.0                                | 3190            | 12-23-64 |
| 0371000           | DRAKE CREEK NEAR ADEL, OR                     | SE              | 26              | 67.0                                | 6210            | 12-23-64 |
| 0371500           | DEEP CREEK ABOVE ADEL, OR                     | SE              | 51              | 249                                 | 9420            | 12-23-64 |
| 0378500           | HONEY CREEK NEAR PLUSH, OR                    | SE              | 57              | 170                                 | 11000           | 12-23-64 |
| 0384000           | CHEWAUCAN RIVER NEAR PAISLEY, OR              | SE              | б5              | 275                                 | 6490            | 12-22-64 |
| 0390400           | ADINGE OPEEK NEAR THOMPSON RESERVIOR OR 2/    | SE              | 14              | 10.6                                | 218             | 12-22-64 |
| 03030400          | SHIVES DIVED NEAD SENECA OD 2/                | 0L<br>0L        | 13              | 18 /                                | 152             | 05-15-75 |
| 0392300           | SILVIES RIVER MEAR SENECR, OR $\frac{2}{2}$   | <br>C⊏          | 14              | 9 50                                | 20              | 05-15-75 |
| 0392800           | CRUWSFOUT CREEN NEAR BURNS, OR 2/             | 35              | 14              | 0.70                                | 1060            | 01-05-52 |
| 0393500           | SILVIES RIVER NEAR BURNS, UR                  | 3E              | 15              | 954                                 | 4900            | 04-00-02 |
| 0396000           | DONNER AND BLITZEN RIVER NEAR FRENCHOLEN, OR  | 25              | 22              | 200                                 | 4270            | 04-20-78 |
| 0397000           | BRIDGE CREEK NR FRENCHGLEN, OR                | SE              | 39              | 30.0                                | 301             | 05-19-53 |
| 0403000           | SILVER JREEK NEAR RILEY, OR                   | SE              | 28              | 228                                 | 1810            | 12-22-64 |
| 0406500           | TROUT CREEK NEAR DENIO, NV                    | SE              | 58              | 88.J                                | 470             | 08-01-33 |
| 1340500           | COTTONWOOD CREEK NEAR LAKEVIEW, OR            | SE              | 10              | 32.9                                | 337             | 03-30-11 |
| 1341000           | THOMAS CREEK NR LAKEVIEW, OR                  | SE              | 25              | 30.0                                | 790             | 12-22-55 |
| 1341100           | SALT OPEEK NEAR LAKEVIEW DR 2/                | SE              | 16              | 5.62                                | 118             | 01-21-72 |
| 1341200           | CRANE CREEK NEAR LAKEVIEW OR 2/               | SE              | 14              | 11.4                                | 190             | 01-23-70 |
| 1484000           | MILLER OREEK NEAR LORELLA OR                  | 50              | 11              | 270                                 | 5000            | 03-01-10 |
| 1/00700           | NOV LAKE TOIRIITADY AT DEDET (A               | 55<br>65        | 11              | 1 74                                | 164             | 01-23-70 |
| 1489350           | HORSETHIEF CREEK NR MACDOEL, CA 2/            | SE              | 11              | 9.98                                | 635             | 12-22-64 |
|                   |                                               |                 | ••              |                                     |                 |          |
| 1491800           | MOSQUITO CREEK NEAR SHEVLIN, OR 2/            | SE              | 15              | 2.63                                | 42              | 12-22-64 |
| 1493500           | WILLIAMSON RIVER NEAR KLAMATH AGENCY, OR      | EC              | 26              | 1290                                | 1590            | 03-13-10 |
| 1494800           | BROWNSWORTH CREEK NEAR BLY, OR 2/             | SE              | 12              | 2.20                                | 66              | 12-22-64 |
| 1497500           | SPRAGUE RIVER NEAR BEATTY, OR                 | SE              | 34              | 513                                 | 6980            | 12-23-64 |
| 1497800           | CURRIER CREEK NEAR PAISLEY, OR $2/$           | SE              | 14              | 2.46                                | 178             | 05-10-67 |
| 1501000           | SPRAGUE RIVER NEAR CHILDOULN OR               | FC              | 59              | 1580                                | 14900           | 12-26-64 |
| 1501300           | CRYSTAL CREEK NEAR CHILOOULN OF 2/            | FC              | 15              | 5.77                                | 65              | 12-22-64 |
| 1502500           | WHILLAMON PRI CODACHE DAR CHILOCHIM OD        | EC              | 63              | 3000                                | 16100           | 12-26-64 |
| 1504000           | MILLINGUN R DE SERNOUE R NR UNILUQUIN, UR     |                 | 24              | 0000                                | 520             | 11_17_20 |
| 1505550           | NULL RIVER AL FI REAMAIN, UR                  | EC              | 14              | 13 0                                | 176             | 05-10-66 |
| 1000000           | LUST UREEN NEAR RUUNT PUTINT, UK 2/           | EU              | 14              | 12.2                                | 170             | 00-10-00 |
| 1509400           | KLAMATH RIVER TRIBUTARY NEAR KEND, OR 2/      | FC              | 16              | 1.02                                | 18              | 12-23-64 |

11517840 DONA CREEK NEAR KLAMATH RIVER, CA 2/ 13178000 JORDAN C AB LN TREE C NR JORDAN VALLEY, OR 7530 12-24-64 SE 24 440 13182100 DAGO GULCH NEAR ROCKVILLE, OR 2/ SE 10 3.09 46 09-11-79 13182150 LONG GULCH NEAR ROCKVILLE, OR  $\overline{2}/$ 09-01-79 10 18 SE 1.38 13184000 OWYHEE RIVER NEAR OWYHEE, OR SΕ 16 11300 35000 03-02-10 13214000 MALHEUR RIVER NEAR DREWSEY, OR SΕ 54 910 12000 12-23-64 12-23-64 13216500 N FK MALHEUR R AB BEULAH RES NR BEULAH, OR SΞ 43 355 3970 13226500 BULLY CREEK AT WARMSPRINGS NR VALE, OR 13228000 MALHEUR R AT VALE, OR 12800 12-22-64 SE 35 539 12 3880 22800 03-02-10 SE 220 01-17-71 13228300 LYTLE CREEK NEAR VALE, OR 2/ 6.46 SE 11 13229400 LOST VALLEY CREEK TRIB. NEAR IRONSIDE, OR 2/ 41 03-31-69 SE 12 1.80 13267100 DEER CREEK NEAR MIDVALE, ID 2/ 13269200 MOORES HOLLOW TRIBUTARY NR WEISER, ID 2/ 13269300 NORTH FORK BURNT RIVER NR WHITNEY, OR 4.60 156 01-27-70 NE 10 08-10-65 NF 13 0.90 98 NE 15 110 1190 04-06-71 13270800 SO FK BURNT RIVER NR UNITY, OR NE 16 38.5 186 04-29-65 13272300 JOB CREEK TRIBUTARY NEAR UNITY, OR  $\underline{2}/$ NE 13 0.48 96 04-15-75 13274600 BURNT RIVER TRIBUTARY AT DURKEE, OR 2/ NE 12 1.80 98 01-17-71 13275500 POWDER RIVER NEAR BAKER, OR 219 03-20-10 15 1820 NE 208 13286300 WATERSPOUT CREEK NEAR BAKER, OR 2/ 0.96 07-10-70 ΝE 11

EC

13

2.9

83

12-22-64

| Station<br>number                                                | Station name                                                                                                                                                                                                                 | Flood region 1       | Years of record                    | Drainage area<br>(mi²)               | Discharge (cfs)                            | Date                                                     |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------------------------------|
| 1 3288200<br>1 32891 00<br>1 32901 50<br>1 3291 200<br>1 3292000 | EAGLE CR AB SKULL CR NR NEW BRIDGE, OR<br>IMMIGRANT GULCH NR RICHLAND, OR 2/<br>NORTH PINE CREEK NR HOMESTEAD, OR 2/<br>MAHOGANY CREEK NR HOMESTEAD, OR 2/<br>IMNAHA RIVER AT IMNAHA, OR                                     | NE<br>NE<br>NE<br>NE | 22<br>15<br>14<br>11<br>51         | 156<br>6.64<br>2.89<br>4.00<br>622   | 5310<br>205<br>226<br>134<br>10100         | 07-12-75<br>02-20-68<br>04-30-65<br>05-07-71<br>01-17-74 |
| 13318100<br>13318500<br>13319000<br>13320000<br>13320400         | MCINTYRE CREEK NEAR STARKEY, OR 2/<br>GRANDE RONDE R NR HILGARD, OR<br>GRANDE RONDE R AT LA GRANDE, OR<br>CATHERINE CREEK NEAR UNION, OR<br>LITTLE CR AT HIGH VALLEY NR UNION, OR 2/                                         | NE<br>NE<br>NE<br>NE | 14<br>19<br>71<br>58<br>26         | 1.80<br>505<br>678<br>105<br>15.8    | 34<br>5060<br>14100<br>1740<br>330         | 05-07-79<br>05-08-56<br>01-30-65<br>05-27-48<br>05-27-48 |
| 1 3321 300<br>1 3322300<br>1 3323500<br>1 3323600<br>1 33241 50  | LADD CANYON NR HOT LAKE, OR 2/<br>DRY CREEK NEAR BINGHAM SPRINGS, OR 2/<br>GRANDE RONDE RIVER NEAR ELGIN, OR<br>INDIAN CREEK NEAR IMBLER, OR<br>RYSDAM CANYON TRIBUTARY NEAR MINAM, OR 2/                                    | NE<br>NE<br>NE<br>NE | 16<br>14<br>24<br>13<br>13         | 15.5<br>1.37<br>1250<br>22.0<br>0.99 | 6 182<br>60<br>6480<br>818<br>62           | 03-12-72<br>01-25-75<br>02-02-65<br>05-27-48<br>01-13-74 |
| 1 3325000<br>1 3325500<br>1 3329500<br>1 3329750<br>1 3330000    | EAST FORK WALLOWA RIVER NR. JOSEPH, OR<br>WALLOWA R AB WALLOWA LAKE NR JOSEPH, OR<br>HURRICANE CREEK NEAR JOSEPH, OR<br>TROUT CREEK TRIBUTARY AT ENTERPRISE, OR <u>2</u> /<br>LOSTINE RIVER NEAR LOSTINE, OR                 | NE<br>NE<br>NE<br>NE | 54<br>1 <i>3</i><br>56<br>11<br>55 | 10.3<br>43.0<br>29.6<br>4.38<br>70.9 | 6 450<br>1630<br>6 1110<br>6 116<br>9 2550 | 07-25-37<br>06-26-27<br>06-09-48<br>06-15-67<br>06-16-74 |
| 1 3330500<br>1 3331 500<br>1 3332500<br>1 3333000<br>1 3333050   | BEAR CREEK NEAR WALLOWA, OR<br>MINAM RIVER AT MINAM, OR<br>GRANDE RONDE R AT RONDOWA, OR<br>GRANDE RONDE RIVER AT TROY, OR<br>BUFORD CREEK NEAR FLORA, OR <u>2/</u>                                                          | NE<br>NE<br>NE<br>NE | 57<br>15<br>52<br>35<br>13         | 68.0<br>240<br>2555<br>3275<br>0.47  | 1730<br>6260<br>24700<br>42200<br>36       | 06-15-74<br>06-16-74<br>01-30-65<br>12-23-64<br>04-28-78 |
| 13333100<br>14010000<br>14010800<br>14011000<br>14013000         | DOE CREEK NEAR IMNAHA, OR 2/<br>SO FK WALLA WALLA R NR MILTON, OR<br>NF WALLA WALLA R NR MILTON FREEWATER, OR<br>NO FK WALLA WALLA RIVER NR MILTON, OR<br>MILL CREEK NEAR WALLA WALLA, WA                                    | NE<br>NC<br>NC<br>NC | 15<br>58<br>10<br>38<br>44         | 5.49<br>63.0<br>34.4<br>43.8<br>59.6 | 78<br>2530<br>1040<br>2050<br>3680         | 04-30-65<br>01-29-65<br>01-25-75<br>01-30-65<br>01-29-65 |
| 14013500<br>14016080<br>14018500<br>14019400<br>14020000         | BLUE CREEK NEAR WALLA WALLA, WA<br>DRY CREEK TRIB. NEAR MILTON-FREEWATER, OR 2/<br>WALLA WALLA RIVER NEAR TOUCHET, WA<br>ELBOW CREEK NEAR BINGHAM SPRINGS, OR 2/<br>UMATILLA R AB MEACHAM CR NR GIBBON, OR                   | NC<br>NC<br>NC<br>NC | 31<br>13<br>29<br>14<br>47         | 17.0<br>1.22<br>1657<br>0.68<br>131  | 1 320<br>348<br>33400<br>105<br>5930       | 01-06-69<br>05-26-71<br>12-22-64<br>01-25-75<br>01-25-75 |
| 14020800<br>14021000<br>14022500<br>14025000<br>14026000         | MISSION CREEK AT ST. ANDREWS MISSION, OR <u>2</u> /<br>UMATILLA RIVER AT PENDLETON, OR<br>MCKAY CREEK NEAR PILOT ROCK, OR<br>BIRCH CREEK AT RIETH, OR<br>UMATILLA RIVER AT YOAKUM, OR                                        | NC<br>NC<br>NC<br>NC | 18<br>47<br>53<br>49<br>22         | 4.45<br>637<br>180<br>291<br>1280    | 5 170<br>15400<br>7400<br>2200<br>20000    | 01-30-65<br>02-22-49<br>01-30-65<br>01-30-65<br>05-30-06 |
| 14032000<br>14034370<br>14034500<br>14034800<br>14036000         | BUTTER CREEK NEAR PINE CITY, OR<br>WILLOW CREEK TRIBUTARY NEAR HEPPNER, OR <u>2/</u><br>WILLOW CR AT HEPPNER, OR<br>RHEA CREEK NEAR HEPPNER, OR<br>WILLOW CREEK NEAR ARLINGTON, OR                                           | NC<br>NC<br>NC<br>NC | 50<br>20<br>30<br>19<br>19         | 291<br>1.11<br>87.0<br>120<br>850    | 2740<br>26<br>36000<br>1280<br>16900       | 01-30-65<br>01-30-65<br>06-14-03<br>06-10-69<br>01-14-74 |
| 14036800<br>14037500<br>14038530<br>14038550<br>14038550         | JOHN DAY RIVER NR PRAIRIE CITY, OR<br>STRAWBERRY C AB SLIDE C NR PRAIRIE CITY, OR<br>JOHN DAY RIVER NEAR JOHN DAY, JR<br>EAST FORK CANYON CREEK NR CANYON CITY, OR <u>2</u> /<br>VANCE CREEK NEAR CANYON CITY, OR <u>2</u> / | NE<br>NE<br>NE<br>NE | 14<br>49<br>11<br>15<br>14         | 17.4<br>7.00<br>386<br>24.8<br>6.54  | 155<br>274<br>5830<br>8285<br>39           | 12-22-64<br>06-14-64<br>06-09-69<br>12-21-64<br>12-21-64 |

| Station<br>number                                        | Station name                                                                                                                                                                                                            | Flood region 🧃             | Years of record            | Drainage area<br>(mi²)               | Discharge (cfs)                     | Date                                                     |
|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------|--------------------------------------|-------------------------------------|----------------------------------------------------------|
| 14038750<br>14038900<br>14039200<br>14040500<br>14040700 | BEECH CREEK NEAR FOX, OR 2/<br>FIELDS CREEK NEAR MOUNT VERNON, OR 2/<br>VENATOR CREEK NEAR SILVIES, OR 2/<br>JOHN DAY R AT PICTURE GORGE NR DAYVILLE, OR<br>WHISKY CREEK NEAR MITCHELL, OR 2/                           | NE<br>NE<br>NE<br>NE       | 12<br>13<br>13<br>52<br>11 | 1.94<br>17.5<br>11.9<br>1680<br>2.22 | 23<br>240<br>108<br>8170<br>143     | 01-03-65<br>01-22-70<br>05-10-74<br>12-22-64<br>01-17-74 |
| 14041500<br>14041900<br>14042000<br>14042500<br>14043800 | NF JOHN DAY RIVER NR DALE, OR<br>LINE CREEK NEAR LEHMAN SPRINGS, OR <u>2</u> /<br>CAMAS CREEK NR. LEHMAN, OR<br>CAMAS CREEK NEAR UKIAH, OR<br>BRIDGE CREEK NEAR PRAIRIE CITY, OR <u>2</u> /                             | NE<br>NE<br>NE<br>NE       | 29<br>15<br>20<br>55<br>16 | 525<br>2.27<br>60.7<br>121<br>6.93   | 8170<br>90<br>1880<br>3840<br>98    | 05-26-48<br>01-30-65<br>12-21-55<br>01-30-65<br>05-15-75 |
| 14043850<br>14043900<br>14044000<br>14044100<br>14044500 | COTTONWOOD CREEK NEAR GALENA, OR <u>2</u> /<br>GRANITE CREEK NEAR DALE, OR <u>2</u> /<br>MF JOHN DAY R AT RITTER, OR<br>PAUL CREEK NEAR LONG CREEK, OR <u>2</u> /<br>FOX CREEK AT GORGE NR FOX, OR                      | NE<br>NE<br>NE<br>NE       | 15<br>11<br>50<br>11<br>28 | 3.89<br>1.90<br>515<br>3.50<br>90.2  | 98<br>66<br>4730<br>56<br>1860      | 04-01-78<br>04-07-79<br>01-30-65<br>01-23-70<br>03-25-52 |
| 14046000<br>14046250<br>14046300<br>14046400<br>14046500 | MF JOHN DAY RIVER AT MONUMENT, OR<br>IVES CANYON NEAR SPRAY, OR 2/<br>BIG SERVICE CREEK NEAR SERVICE CREEK, OR 2/<br>DONNELY CREEK TRIB. NEAR SERVICE CREEK, OR 2/<br>JOHN DAY RIVER AT SERVICE CREEK, OR               | NE<br>NE<br>NE<br>NE       | 55<br>12<br>11<br>16<br>51 | 2520<br>2.73<br>5.56<br>1.85<br>5090 | 33400<br>86<br>11<br>42<br>40200    | 01-30-65<br>06-30-78<br>03-16-72<br>07-02-78<br>12-23-64 |
| 14047350<br>14048000<br>14048300<br>14050000<br>14050500 | ROCK CREEK TRIBUTARY NEAR HARDMAN, OR <u>2</u> /<br>JOHN DAY R AT MCDONALD FERRY, OR<br>SPANISH HOLLOW AT WASCO, OR <u>2</u> /<br>DESCHUTES RIVER BL SNOW CR NR LA PINE, OR<br>CULTUS RIVER AB CULTUS CR NR LA PINE, OR | NE<br>NC<br>EC<br>EC       | 14<br>75<br>21<br>42<br>45 | 6.25<br>7580<br>8.05<br>132<br>16.5  | 117<br>42800<br>585<br>480<br>178   | 01-30-65<br>12-24-64<br>12-21-64<br>08-19-74<br>05-31-56 |
| 14051000<br>14052000<br>14054500<br>14055500<br>14057500 | CULTUS CR AB CRANE PRAIRIE RES NR LA PINE, OR<br>DEER CR AB CRANE PRAIRIE RES NR LA PINE, OR<br>BROWN CREEK NEAR LA PINE, OR<br>ODELL CREEK NEAR CRESCENT, OR<br>FALL RIVER NEAR LA PINE, OR                            | EC<br>EC<br>EC<br>EC<br>EC | 43<br>43<br>44<br>44<br>42 | 33.2<br>21.5<br>19.7<br>39.0<br>45.1 | 336<br>200<br>104<br>1100<br>254    | 12-25-64<br>12-25-64<br>08-04-56<br>12-25-64<br>06-05-65 |
| 14073000<br>14075000<br>14077500<br>14077800<br>14077800 | TUMALO CREEK NEAR BEND, OR<br>SQUAW CREEK NEAR SISTERS, OR<br>NF BEAVER CR NR PAULINA, OR<br>WOLF CREEK TRIBUTARY NEAR PAULINA, OR <u>2/</u><br>BEAVER CREEK NEAR PAULINA, OR                                           | EC<br>EC<br>NC<br>NC       | 66<br>64<br>13<br>15<br>33 | 47.3<br>54.8<br>64.4<br>2.15<br>450  | 1140<br>1980<br>955<br>300<br>12800 | 11-29-68<br>12-23-64<br>03-25-52<br>12-22-64<br>12-22-64 |
| 14078200<br>14078400<br>14078500<br>14079500<br>14080500 | LIZARD GULCH TRIBUTARY NEAR HAMPTON, OR 2/<br>LOOKOUT CREEK NEAR POST, OR 2/<br>NF CROOKED R AB DEEP CREEK, OR<br>CROOKED RIVER AT POST, OR<br>CROOKED R NR PRINEVILLE, OR                                              | NC<br>NC<br>NC<br>NC       | 15<br>14<br>11<br>27<br>26 | 19.6<br>7.53<br>159<br>1660<br>2200  | 177<br>85<br>2500<br>11500<br>8410  | 12-21-64<br>01-20-72<br>03-26-43<br>01-18-71<br>03-26-52 |
| 14081800<br>14083000<br>14083500<br>14088000<br>14091500 | AHALT CREEK NEAR MITCHELL, OR 2/<br>OCHOCO CR AB MILL CREEK NR PRINEVILLE, OR<br>MILL CREEK NEAR PRINEVILLE, OR<br>LAKE CREEK NEAR SISTERS, OR<br>METOLIUS R NR GRANDVIEW, OR                                           | NC<br>NC<br>NC<br>EC<br>EC | 23<br>13<br>12<br>61<br>59 | 2.28<br>200<br>78.8<br>22.2<br>316   | 122<br>821<br>314<br>556<br>7530    | 12-21-64<br>03-19-32<br>02-04-25<br>12-15-77<br>12-24-64 |
| 14093000<br>1409370J<br>14097200<br>14100800<br>14101500 | SHITIKE CREEK AT WARM SPRINGS, OR<br>WOODS HOLLOW AT ASHWOOD, OR 2/<br>WHITE RIVER NR GOVERNMENT CAMP, OR<br>JORDAN CREEK NEAR TYGH VALLEY, OR 2/<br>WHITE RIVER BELOW TYGH VALLEY, OR                                  | ec<br>NC<br>NC<br>NC       | 12<br>20<br>10<br>14<br>62 | 104<br>1.42<br>40.7<br>9.01<br>417   | 2300<br>140<br>3650<br>700<br>13300 | 01-15-74<br>02-07-79<br>12-13-77<br>12-22-64<br>01-06-23 |
| 14104100<br>14105850<br>14113000<br>14113200<br>14113400 | RAMSEY CREEK NEAR DUFUR, OR 2/<br>SOUTH FORK MILL CR NEAR THE DALLES, OR<br>KLICKITAT R NR PITT, WA<br>MOSIER CREEK NEAR MOSIER, OR<br>DOG RIVER NEAR PARKDALE, OR                                                      | NC<br>NC<br>NC<br>NC       | 14<br>16<br>54<br>16<br>12 | 3.87<br>28.0<br>1297<br>41.5<br>4.50 | 380<br>1250<br>47400<br>4790<br>100 | 01-14-74<br>01-15-74<br>01-15-74<br>12-23-64<br>05-29-69 |
| 14118500<br>14120000                                     | WEST FORK HOOD RIVER NEAR DEE, OR<br>HOOD RIVER AT TUCKER BRIDGE, NR HOOD RIVER, OR                                                                                                                                     | NC<br>NC                   | 49<br>20                   | 95•6<br>279                          | 20000<br>33200                      | 01-20-72<br>12-22-64                                     |
| 1/ 05                                                    |                                                                                                                                                                                                                         |                            |                            |                                      |                                     |                                                          |

| Table 4. – Maximum | discharges at gagi | ng stations used | in eastern C | Dregon f | lood- | frequency | analysis | <ul> <li>– continued</li> </ul> |
|--------------------|--------------------|------------------|--------------|----------|-------|-----------|----------|---------------------------------|
|--------------------|--------------------|------------------|--------------|----------|-------|-----------|----------|---------------------------------|

1/ SE: Southeast NE: Northeast NC: North Central EC: Eastern Cascades

<u>2/</u> Crest-stage gage