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Protein design for improving enzymatic activity remains a challenge in biochemistry,
especially to identify target amino-acid sites for mutagenesis and to design beneficial
mutations for those sites. Here, we employ a computational approach that combines
multiple sequence alignment, positive selection detection, and molecular docking
to identify and design beneficial amino-acid mutations that further improve the
intramolecular-cyclization activity of a chalcone–flavonone isomerase from Glycine
max (GmCHI). By this approach, two GmCHI mutants with higher activities were
predicted and verified. The results demonstrate that this approach could determine the
beneficial amino-acid mutations for improving the enzymatic activity, and may find more
applications in engineering of enzymes.

Keywords: enzyme engineering, positive selection, protein design, molecular modeling, chalcone–flavonone
isomerase

INTRODUCTION

Flavonoids are widespread secondary products in plants, especially in leguminous plants. They play
important roles in plant physiology and ecology (Mol et al., 1998; Mahajan and Yadav, 2014), and
are also important source of medicine and drug development (Dixon and Steele, 1999; Martens and
Mithofer, 2005). Thus enzymes in the flavonoid biosynthetic pathways are of considerable value
in biotechnological practices (Liu and Dixon, 2001; Liu et al., 2002, 2003). Of them, chalcone–
flavonone isomerase (CHI) is an important enzyme in the biosynthetic pathway that catalyzes the
intramolecular cyclization of a chalcone into a (2S)-flavonone (Figure 1, Supplemenatary Figure
S1). According to their catalytic features, CHIs could be divided into two groups: type-I and type-
II, respectively (Shimada et al., 2003). The type-II CHIs exist only in legumes and have broader
substrate acceptability than the type-I enzymes (Figure 1), which are found in both non-legumes
and legumes (Kimura et al., 2001; Shimada et al., 2003).

Because of their unique properties, there is a great demand of the flavonoids and their
derivatives in biotechnology and medicine. However, the flavonoid production from natural
plants could not fulfill such a demand. Therefore, it is desirable to develop biochemical and
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FIGURE 1 | The flavonoid pathway. CHS, chalcone synthase; CHR, chalcone reductase; IFS, isoflavone synthase; IOMT, 2′-hydroxyisoflavanone
4′-O-methyltransferase; I2′H, isoflavone 2′-hydroxylase; I3′H, isoflavone 3′-hydroxylase (Liu and Dixon, 2001; Liu et al., 2002, 2003; Shimada et al., 2003).
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biotechnological methods to synthesize novel derivatives and
increase their production by improving the corresponding
biosynthetic enzymes, such as the CHIs. Thus, the improvement
of the CHI activity is not only important for understanding
the molecular determinants of the enzymatic activity, but also
significant for biotechnological applications. Currently, rational
design and directed evolution are two major strategies (Barak
et al., 2008; Damian-Almazo and Saab-Rincon, 2013). Based
on structural information, rational design usually identifies
target amino acids near the active site, and then carries
out site-directed mutagenesis to obtain protein mutants with
enhanced activity. As an alternative, directed evolution mimics
the process of nature evolution or/and recombination to obtain
better mutants of the enzymes (Barak et al., 2008). Although
both methods have proven to be useful in protein design,
they also have certain limitations (Grove et al., 2003; Chica
et al., 2005; Chen et al., 2009). Therefore, it is necessary
to use combined approaches in order to overcome such
limitations (Funke et al., 2005; Damian-Almazo and Saab-
Rincon, 2013).

In practice, it is very laborious and costly to experimentally
test a large number of candidate mutants. Therefore, it is
very important to accurately identify residue sites for the
mutagenesis. To the end, both sequence-based and structure-
based methods were used. A common sequence-based approach
is the multiple sequence alignment (MSA) that is effective for
identification of conserved sites, some of which are the target
mutation sites toward better activity. For example, one could
build a correlation between the sequence pattern observed in
the MSA and enzymatic property (Damian-Almazo and Saab-
Rincon, 2013), e.g., the analysis of subfamily specific positions
(SSPs) (Suplatov et al., 2012). Another way is to examine the
ancestral relationship among the homologous sequences by
combing the MSA with phylogenetic information (Di Giulio,
2001, 2003). On the other hand, structure-based approaches
usually focus on those sites that are in the vicinity of the
catalytic residues or the substrates (Morley and Kazlauskas,
2005; Park et al., 2006; Paramesvaran et al., 2009). However,
because these approaches usually identify too many mutagenesis
sites, it is still hard to experimentally test all those sites. In
addition, mutants with reduced activity are often generated
using these approaches, and it is very difficult to design and
generate mutants with enhanced activity, especially for those
which wild-type enzymes exhibit high efficiency. Therefore, to
accurately identify the mutagenesis sites and predict proper
amino-acid types on those sites, it is necessary to develop new
strategies.

In this study, we employed a computational approach
that combines the MSA, evolutionally positive selection
detection (PSD), and structure-based molecular docking to
identify the beneficial amino-acid mutations for enhancing the
intramolecualr-cyclization activity of a CHI from Glycine
max (GmCHI, GI: 351723101), which is a type-II CHI
and possesses high catalytic proficiency (kcat/Km is about
5 × 106 M−1 s−1). In the present study, as shown in Figure 2,
candidate mutation sites in CHI enzyme were firstly identified
using the MSA and PSD. Then, those candidate sites were

FIGURE 2 | Flowchart of the computational approach used in this
study.

investigated and further screened by analyzing the structural
information and reaction mechanism. Next, the selected sites
were further studied using molecular docking that determines
the lowest-energy binding poses of the substrate in the active
sites of the mutant enzymes. Finally, by in vitro assay using
recombinant mutant enzymes, we identified beneficial amino-
acid substitutions that improve the activity of GmCHI enzyme.
Taken together, we demonstrate that our approach should
be useful in designing of enzymes with improved enzyme
activity.

MATERIALS AND METHODS

Expression and Enzyme Assay of GmCHI
Proteins
The ORF of GmCHI gene was cloned into an expression vector
pET28a+ (Novagen1) and then expressed in Escherichia coli
strain BL21 (DE3). The protein expression was induced by
IPTG (1 mM) at 20◦C, 180 rpm for 6–12 h. After expression,
the cells were harvested and the protein was purified with
Ni2+-NTA agarose (Bio-Rad2). The activities of the GmCHI
proteins were measured according to the reaction kinetics of CHI

1http://www.novagen.com
2http://www.bio-rad.com
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enzymes. The substrate was incubated at 25◦C, 90 s with total
500 µl reaction buffer (50 mM Tris, 500 mM NaCl, 1.0 mM
DTT, pH 7.8) containing 5 ng of purified GmCHI protein.
We performed the enzyme assays in a gradient concentration
of 2–100 µM for isoliquiritigenin. After the reaction, the
reaction mixtures including isoliquiritigenin and liquiritigenin
were analyzed on an Agilent HP1100 HPLC with eclipse plus
C-18 column. The eluents, consisting of 35% (v/v) acetonitrile
and 0.1% (v/v) trifluoroacetic acid in water, were monitored at
276 and 372 nm (at constant flow rate of 1 ml per minute).
The UV absorption values at 276 and 372 nm were used
for quantifying liquiritigenin and isoliquiritigenin, respectively
(He and Dixon, 2000; Liu and Dixon, 2001; Liu et al., 2002,
2003).

Site-Directed Mutagenesis of GmCHI
The site-directed mutagenesis was performed using a
mutagenesis kit from SBS Genetech3 and by following the
manufacturer’s instructions. The primers used for the site-
directed mutagenesis are listed in Supplementary Table S1. The
mutants were confirmed by sequencing and then expressed in
Escherichia coli according to the methods described above for the
wild-type enzyme.

Homology Modeling and Molecular
Docking
We used the MODELLER program (Eswar et al., 2007) to build
the all-atom structural models of the wild-type GmCHI protein
and its mutants, with the crystal structure of MsCHI (PDB
code: 1F7M) (Jez et al., 2000) as the template. Then, 2,000
independent, standard high-resolution refinement runs with the
Rosetta program (Das and Baker, 2008) were carried out to
generate refined atomic models with low free-enenrgies. For each
GmCHI protein (the wild-type or the mutant), the 3D structure
with the lowest free-energy from the 2,000 refined models was
selected as the receptor structure for the subsequent molecular
docking.

Hydrated ligand docking using the program AutoDock
4.2 (Forli and Olson, 2012) was conducted to predict the
binding poses of the substrate in the active-sites of the wild-
type GmCHI protein and its mutants. The hydration state
of the substrate for the docking was determined and treated
according to the reported method (Forli and Olson, 2012). All
other docking parameters for the proteins and the substrate
were set to the default values of AutoDock (Morris et al.,
2009), with a size of the grid box around the active-site as
70 Å × 70 Å × 70 Å. The Lamarckian genetic algorithm was
employed to search for the native-like binding pose, with a
population number of 150, a maximum of 27,000 generations,
and a maximum of 1,500,000 energy evaluations. To construct
the binding energy landscape of the substrate in the active site
of a GmCHI protein, 2,000 independent docking runs were
performed, and thereby 2,000 binding poses were obtained
for analysis and generating the RMSD-binding free energy
plot.

3http://www.sbsgene.com

RESULTS

Identification of Amino-Acid Sites for
Site-Directed Mutagenesis
Multiple Sequence Alignment (MSA)
Identification of the amino-acid sites for the site-directed
mutagenesis is the first step toward the improvement of the
GmCHI activity. To this end, we collected the sequences of 14
homologous CHIs (Supplementary Table S2), including seven
type-II CHIs (group 1) and seven type-I CHIs (group 2),
respectively. Then, we carried out the MSA for these CHIs, and
thereby identified nine SSPs (Figure 3). On each of these sites,
the wild-type amino acids are conserved within either the type-
I or type-II group, but different between the type-I and type-II
groups. Because the type-I and type-II CHIs are different in the
catalysis (Kimura et al., 2001; Shimada et al., 2003), some of
these sites might directly affect the reaction mechanisms and
thus the enzymatic activity. Therefore, we considered them as the
candidate sites for introducing beneficial amino-acid mutations.

Positive Selection Detection (PSD)
Besides the moderate conserved sites identified in the MSA,
some particular unconserved sites under selection pressure (i.e.,
the positively selected sites) may also play a critical role in
the evolution of protein function, because positive selection
was considered to drive the fixation of advantageous mutations
(Yang, 2006). Therefore, PSD was performed to further identify
candidate sites for the mutagenesis. Firstly, we used RaxML 7.04
(Stamatakis, 2006; Stamatakis et al., 2008) under the GTR+0+I
model to infer a phylogenetic tree of 15 CHI genes from 13
species, including eight type-I and seven type-II CHI genes.
Then, based on this tree topology (Supplementary Figure S2)
and branch-site model (Yang and Nielsen, 2002), the posterior
probability of every site under positive selection was calculated
with PAML 4.4 (Yang, 1997, 2007; Yang et al., 2005). Two sites
(Val109 and Ile197) were identified as the positively selected
sites, and then considered as the candidate mutation sites for
improving the activity.

Screening by Structural and Reaction Information
By the above sequence-based methods, we have identified 11
potential sites for the mutagenesis. We further analyzed their
spatial positions in the 3D structure obtained by homology
modeling, and their effects on the hydrogen-bonding network
in the active site required for the catalysis (Supplementary
Figure S3). By manual inspection with the structural model
(Supplementary Figures S4–S7), four target mutation sites were
chosen, namely, Glu107, Ala110, Glu196 and Ile197, including
conserved and unconserved sites (Supplementary Figure S8).

Amino-Acid Mutation Design by
Molecular Docking
For the candidate mutation sites identified above, we further
performed molecular docking studies to determine the types of
amino acids for the substitution toward improving activity. For
each site, we predicted the activities of the mutants with about
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FIGURE 3 | The MSA of the CHI core regions. The seven sequences in group 1 are type- II CHIs and another seven sequences in group 2 are type-I CHIs. The
sequence positions are numbered according to GmCHI. The subfamily specific positions (SSPs) are marked in green.

five representative amino acids according to the physicochemical
properties of their side chains, namely, a non-polar, an aromatic,
a non-charged polar, an alkaline, and an acidic amino acid (for
Glu196 and Ile197 on the loop, we predicted the acticity of
the proline mutant). To predict the best amino-acid type at a
given candidate site, we firstly constructed the 3D structure of
a GmCHI mutant by the same homology modeling method for
the wild-type enzyme. Then, we used the program AutoDock to
dock the substrate (i.e., isoliquiritigenin) into the active site of
the mutant by the protocols as described in Section “Materials
and Methods.” Two thousand independent docking runs were
conducted for each amino-acid mutation. Eventually, the RMSD
values of the 2000 docking poses with respect to the product
(i.e., liquiritigenin) (Figure 4A) were calculated and analyzed to
identify the most likely amino-acid mutation.

To select the amino-acid type at the candidate sites, we
firstly analyzed the RMSD-energy plot of the wild-type GmCHI
obtained by molecular docking. As shown in Figure 4A, we
found that the lowest-energy docking poses in the active site
could be clustered into four main groups: groups I, II, III, and
IV, respectively. For a given group, we selected the docking
pose with the lowest binding energy in the group as the
representative pose of the group. As indicated by the RMSD
values, the representative binding poses of groups I, II, and III
are very similar to that of the product revealed by the crystal
structure (Figures 4B–D), whereas that of group IV possess an
almost opposite orientation with a RMSD > 6.0 Å (Figure 4E).
Moreover, the binding energies of the representative poses in
groups II, III, and IV are lower than that of group I. Therefore,
considering the binding to the active site is the initial step of the
reaction, the most likely binding conformation of the substrate
in the initial phase of the reaction is the representative pose of
group I. Because of their similarity in the binding conformation

of the product, the representative poses of groups II and III
could be considered as intermediate conformations from the
substrate to the product. Considering the order of the binding
energy in three groups: group I > group II > group III, we
may regard them as a transition states from the reactant to
the product (Figures 4B–D). Thus, we hypothesized that, if an
amino-acid mutation could further lower the binding energy of
the representative pose of group III, the enzymatic activity of
the mutant may be improved with respect that of the wild-type
GmCHI.

Based on the above hypothesis, we generated the RMSD-
binding free energy plots for the wild-type enzyme and all
possible GmCHI mutants. Interestingly, we found that the
binding energy of the I197P mutant with the representative pose
of group III is significantly lower than that of the wild-type
enzyme (Figure 5A), suggesting that this mutant might have
higher activity than the wild-type enzyme. On the contrary, the
corresponding energy of the R110H mutant is higher than that of
the wild-type (Figure 5B), suggesting a decrease in the enzymatic
activity with respect to the wild-type. Similarly, three mutants
(E107D, R110A, and I197P) were also predicted to have higher
activities than the wild-type (Supplementary Figures S9–S11).

Molecular Cloning, Mutagenesis, and
Enzyme Assay
According to the computational predictions, we carried out
experiments to verify the activities of three beneficial GmCHI
mutants (E107D, R110A, and I197P), as shown in Supplementary
Figure S12. To the end, the wild-type GmCHI was cloned,
and the site-directed mutagenesis was conducted on the target
mutation sites. To examine the accuracy of the docking results,
we also tested other mutants that represent various amino-acid
types. We expressed the wild-type and mutant enzymes in
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FIGURE 4 | Representative docking poses of the substrate in the
active site of GmCHI. (A) The RMSD-binding energy plot for GmCHI.
According to the RMSDs with respect to the binding pose of the product, the
docking poses could be divided to four groups: I, II, III, and IV. (B–E) The
representative poses for groups I, II, III, and IV, respectively (binding pose of
the product is shown in gray).

E. coli expression system with BL21 (DE3) cells and purified
them for the activity measurement (see Materials and Methods).
The activities of all tested mutants are listed in Table 1 (for
more details see Supplementary Figures S13–S15). Compared
with the wild-type enzyme, two mutants (R110A and I197P)
do possess relatively higher activities, other mutants do not.
This is consistent with the computational predictions (Figure 5,
Supplementary Figures S9–S11). Significantly, the increase in
the activity by the I197P mutation is about 53.3%, in good
agreement with the prediction (Figure 5A). Thus, by using the
computational approach in Figure 2, we identified two GmCHI
mutants with higher activities.

DISCUSSION

In this study, we have used a computational approach
that integrates sequence-based analysis (MSA, PSD)
and structure-based docking to identify the amino-
acid hot spots for the site-directed mutagenesis, and

FIGURE 5 | The RMSD-binding energy plots of 2,000 docking poses of
the wild-type enzyme (in blue dots) and the mutants (in red dots).
(A) I197P; (B) R110H.

then to predict the beneficial amino-acid mutations
at those hot spots. The results demonstrate that the
used approach could identify the beneficial amino-acid

TABLE 1 | Activities of the GmCHI mutants with respect to that of the
wild-type.

Enzyme kcat/Km

(106 M−1 s−1)
Change in
activity (%)

p-value∗

Wild-type 4.963 ± 0.306 0.0 –

E107D 4.773 ± 0.336 −3.8 0.686

E107Q 3.715 ± 0.221 −25.1 8.82 × 10−4

R110A 7.0477 ± 0.412 42.0 3.24 × 10−3

R110E 4.142 ± 0.316 −16.6 0.046

R110H 3.345 ± 0.173 −32.6 2.98 × 10−6

I197P 7.608 ± 0.574 53.3 5.90 × 10−4

∗Calculated by covariance analysis using R software (http://www.R-project.org).
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mutations that further improve the intramolecular-cyclization
activity of GmCHI. Usually, when the catalytic proficiency of
an enzyme (kcat/Km) reaches about 107 M−1 s−1, diffusion
rate becomes the main limition factor in the catalysis (Nelson
and Cox, 2000). Then, it becomes difficult to further improve
the catalytic proficiency. As mentioned, though the wild-
type GmCHI has evolved to possess high catalytic proficiency
(kcat/Km = 5 × 106 M−1 s−1.), the two GmCHI mutants
predicted by our approach could further display a 50% increase
in catalytic proficiency. Earlier researchers have employed
bioinformatics methods for identifying potential target sites to
be used for introducing mutations. These methods were very
successful in the identification of those sites that stabilize enzymes
(Damborsky and Brezovsky, 2014), e.g., thermostability (Sullivan
et al., 2011; Anbar et al., 2012; Blum et al., 2012). However, they
led to limited sucess in the identification of activity-related sites,
because it is difficult to find out the functionally related sites based
on sequence information alone.

Typically, to identify such sites, bioinformatics approaches
are used for the analysis of moderately conserved sites, such as
the SSPs (Suplatov et al., 2012). In our study, nine SSPs were
identified in the MSA analysis, but only one of them was found
to improve the enzymatic activity. Due to the natural selection,
usually the wild-type amino acid at the conserved sites possesses
the best activity, for example, mutations at site Glu107 do not
improve the activity. Therefore, it remains very interesting to
develop new methods that could identify functionally related sites
from the unconserved sites.

The positively selected sites (Yang, 2006) are probably the most
interesting unconserved sites, because they drive the functional
divergence of many enzyme families during the evolution
(Barkman et al., 2007; Lan et al., 2009, 2013; Huang et al., 2012),
and could affect the activity or specificity of an enzyme (Kapralov
and Filatov, 2007; Hao et al., 2010; Huang et al., 2012; Lan et al.,
2013). Thus, PSD offers a way to predict the functionally related
sites. In this study, two positively selected sites were detected, and
the mutation at one of them was found to improve the enzymatic
activity. Indeed, PSD is also able to identify functionally related
sites that are not restricted in the vicinity of the active site, but
distant away from the active site (Gillespie, 1991; Yang, 2006), e.g.,
Ile197.

On the other hand, to predict beneficial amino-acid mutations
at the hot spots for the mutagenesis, here we used molecular
docking as a fast method to search for such mutations, instead
of using the computation intensive QM/MM methods. As
demonstrated by the results, the predictions for almost all the

six mutants are consistent with the experimental results (Table 1;
Supplementary Materials see Enzyme assay). No doubt, this
design strategy could also be used to improve other enzymes
whose complex structures with the products have already been
solved.

CONCLUSION

To improve the GmCHI activity, we used a computational
approach that combines sequence-based analysis with structure-
based docking to identify the hot spots for amino-acid mutations
and deign beneficial mutations at those sites. We successfully
discovered two GmCHI mutants display higher activities than
that of the wild-type enzyme. Because of its simplicity and low
computational cost, this approach may find more applications in
the design and engineering of enzymes.
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