

UNIVERSITY OF

p - 1952

NEW MEXICO LIBRARY

ABWR-PL-2 DESIGN REPORT

October 15, 1960

Nuclear Division Combustion Engineering, Inc. Windsor, Connecticut

metadc957867

UNITED STATES ATOMIC ENERGY COMMISSION . DIVISION OF TECHNICAL INFORMATION

Other issues of this report may bear the No. CEND-103(Vol. I).

LEGAL NOTICE

This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.

This report has been reproduced directly from the best available copy.

Printed in USA. This report consists of 2 volumes, total price \$7.00. Available from the Office of Technical Services, Department of Commerce, Washington 25, D. C.

IDO-19021(Vol. I)

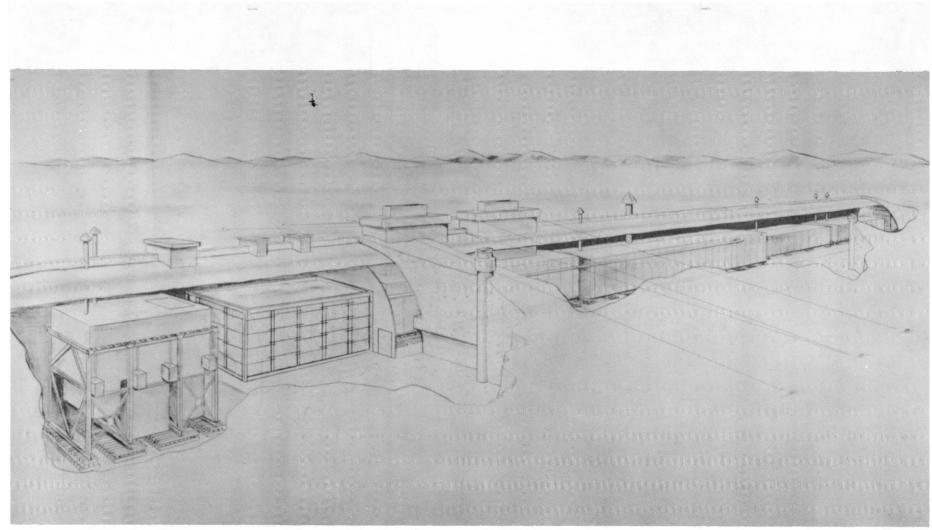
REACTOR TECHNOLOGY

ABWR PL-2 DESIGN REPORT

October 15, 1960

Contract Number AT(10-1)-967 U.S. Atomic Energy Commission and Contract DA-44-192-ENG-11 U.S. Army Engineer Research and Development Laboratories

Approved:


B. Gitlow Supervisor, Plant Design

Varick Schwartz Ass't Project Manager

Windsor

COMBUSTION ENGINEERING, INC. NUCLEAR DIVISION

Connecticut

PL-2 SNOW TUNNEL

PREFACE

ABWR - PL-2 DESIGN REPORT

This report is presented in partial fulfillment of the requirements of ERDL Contract DA-44-192-ENG-11 and USAEC Contract AT(10-1)-967.

A separate report covers the PL-1 design.

This report satisfies the quarterly progress report requirements for PL-1 and PL-2 plant design work for the period ending September 30, 1960. At present time a SL-1 Core II is under construction. This is a replacement core for SL-1 (ALPR) and will be identical to a PL-2 core; a PL condenser is under test at the SL-1 facility; final construction plans for PL components and modules which are not site sensitive will be completed in March 1961.

CONTENTS

		rage
I.	SUMMARY	1
II.	PLANT DATA	3
	A. Reactor B. Electrical C. Environmental D. Numerical Data E. Main Steam System	3 3 3 3 4 5 6 7 8
	 F. Condensate System G. Feedwater System H. Purification System I. Shield Cooling J. Raw Water Purification K. Lube Oil Cooling L. High Pressure Drain System M. Low Pressure Drain System N. Plant Heating O. Service Water P. Shipping 	56 77 88 8 99 11
III.	PLANT DESCRIPTION	13
	A. Arrangements B. Mechanical Systems C. Electrical Systems	13 30 50
IV.	REACTOR DESIGN	67
	 A. Summary of Design and Performance Characteristics B. Reactor Core C. Control Rod Drive Mechanism D. Reactor Vessel Assembly 	67 67 81 83
APPEN	DIX A - PL-2 GUIDELINES	88
APPEN	DIX B - WEIGHT REPORT	95
APPEN	DIX C - ONE-QUARTER SCALE MOCKUP	114
FIGUR	ES	115

Page

ILLUSTRATIONS

Figure No.	Subject
1	General Arrangement
2	Reactor Complex-Plan
3	Reactor Complex-Section
4	Reactor Complex-Elevation
5	Reactor Complex Foundations
6	Reactor Complex Structural Steel
7	Reactor Vessel and Head Shipping Pack
8	Reactor Elevation
9	Core Elevation
10	Core Cross Section
11	Control Rod Mechanism Actuator
12	Control Rod Blade
13	Fuel Assembly
14	Head Assembly
15	Half Scale Core Structure Mockup
16	Half Scale Core Structure Mockup
17	Half Scale Core Structure Mockup
18	Shield Assembly
19	Spent Fuel Tank and Plant Drain Tank Shipping Assembly
20	Spent Fuel Shipping Cask
21	Spent Fuel Cask Shipping Assembly
22	Transfer Cask Assembly
23	Refueling Plate Assembly

ILLUSTRATIONS (Cont'd)

Figure No.	Subject
24	Condenser Building Foundation
25	Condenser Exhaust and Inlet Stack Assembly
26	Power Plant and Personnel Building Foundations
27	Purification Skid Machinery Arrangement
28	Shielded Demineralizer Assembly
29	Feed and Condensate Skid Machinery Arrangement
30	Electrical Skid Machinery Arrangement
31	Personnel Building Plan and Elevation
32	Service Building Foundation
33	Spent Fuel Tank Assembly
34	Plant Drain Tank Assembly
35	Shipping Arrangement for Instrument Wells
36	Nuclear Detector Well, BF3
37	Nuclear Detector Well, Ion Chamber
38	Condenser Assembly
39	Turbine Generator Skid Machinery Arrangement
40	Plant Control Console Assembly
41	Heat Balance Diagram
42	Main Steam System Diagram
43	Main Steam System-Process Instrumentation Diagram
44	Condensate System Diagram
45	Condensate System Process Instrumentation-One Line Diagram
46	Feed System
47	Feed System Process Instrumentation-One Line Diagram

ILLUSTRATIONS (Cont'd)

Figure No.	Subject
48	Coolant Purification
49	Coolant Purification Process Instrumentation-One Line Diagram
50	Raw Water Purification
51	Raw Water Purification Process Instrumentation-One Line Diagram
52	High-Pressure Drain
53	Low-Pressure Drain
54	Low-Pressure Drain Process Instrumentation-One Line Diagram
55	Lube-Oil Service System
56	Lube-Oil Service System Process Instrumentation-One Line Diagram
5 7	Service Water System
58	Service Water System Process Instrumentation-One Line Diagram
59	Plant Heating System
60	Plant Heating System Process Instrumentation-One Line Diagram
61	Electric Power Load Analysis
62	Electric Power-One Line Diagram
63	Electric Power High Voltage-Multiline Diagram
64	Auxiliary and Emergency Power-Multiline Diagram
65	Plant Utility Electric Power Low Voltage-Multiline Diagram
66	Plant Motor Supply Electric Power Low Voltage-Multiline Diagram
67	Nuclear Instrumentation Block Diagram
68	Conduit and Cable Diagram for Nuclear Instrumentation
69	Radiation Monitoring Block Diagram
70	Conduit and Cable Diagram for Radiation Monitoring

viii

ILLUSTRATIONS (Cont^ad)

Figure No.	Subject	
71	Core Quarter Cross Section	
72	Axial Power Distribution in PL-2 Core	
73	Snow Tunnel Isothern Calculational Model	
74	Snow Tunnel Isotherm, Tunnel Temperature O ^O F	
75	Snow Tunnel Isotherm, Tunnel Temperature -15 ⁰ F	
76	Snow Tunnel Isotherm, Tunnel Temperature C ^O F, Heat Generation x 2	
77	Snow Tunnel Isotherm, Tunnel Temperature 0° F, Heat Generation x 4	
78	Snow Tunnel Isotherm, Tunnel Temperature O ^O F, Heat Generation x 4, with Heat Sink	
79	SL-1 Condenser Installation	
80	SL-1 Condenser Installation	
81	SL-1 Condenser Installation	
82	PL=2 One-Quarter Scale Mockup	
83	PL-2 One-Quarter Scale Mockup	
84	PL=2 One-Quarter Scale Mockup	
85	PL-2 One-Quarter Scale Mockup	
86	PL-2 One-Quarter Scale Mockup	
87	PL-2 One-Quarter Scale Mockup	
88	PL-2 One Quarter Scale Mockup	

TABLES

I.	WASTE WATER AND PLANT MAKEUP WATER REQUIREMENTS	42
II.	DOSE RATES IN REACTOR COMPLEX, OPERATING	47
III.	DOSE RATES AFTER SHUTDOWN	48
IV.	PL-2 REACTOR DATA	62
V .	BEGINNING OF LIFE EIGENVALUES	71
VI.	PL-2 HYDRAULIC CHARACTERISTICS	74

SCHEDULES

A 。	SHIPPING ARRANGEMENT FOR PLANT MACHINERY AND FURNISHINGS	19
B。	SHIPPING ARRANGEMENT FOR FOUNDATIONS, STRUCTURAL STEEL AND ENCLOSURES	22
C.	ERECTION SCHEDULE	29

I. SUMMARY

PL-2 is a natural circulation, boiling water reactor plant designed to deliver 1000 KW of net electrical power and 1,365,000BTU/Hr. of net thermal power for space heating. The plant is similar in design to the SL-1 (ALPR) which has been operating at NRTS as a power demonstration plant, test and training facility since late 1958.

Modular construction is employed to minimize field erection. All modules can be transported by C130A aircraft and are suitable for all types of surface transport.

In this report the installation of PL-2 in a snow tunnel is developed. PL-2 is, however, suitable for installation on permafrost and conventional underburdens. The plant will deliver design output for elevations up to 10,000 feet and for ambient temperatures up to 60° F. The PL-2 plant does not require a source of cooling water to reject cycle heat and is suitable for installation at arid sites.

The reactor is conservatively designed and relies on proven techniques for the fabrication of cores for power reactors. The first production core is now being fabricated and will be installed in the SL-1 in the summer of 1961. The core has a design life of three full power years.

The PL-2 plant is designed for continuity of power operation. Installed spares are provided wherever practical and automatic transfer to standby equipment is provided where immediate transfer is mandatory for continuous operation. All equipment required for power generation is accessible for maintenance during power operation with the exception of the control rod drives. The leveling jacks in the reactor complex are not operated when the reactor is critical.

Steam is generated in the reactor at 600 psig and discharged through a 4" steam main to a geared turbine generator set rated at 1250 KW gross electrical power. The turbine exhausts to two aircooled condensers, which are designed to condense at 15" Hg absolute and subcool to 100°F when the ambient temperature is 60°F. The first production unit of this type is now installed at SL=1, Figures 79, 80 and 81. Proof tests were initiated in October 1960 and will be completed by March, 1961. The condenser is mounted in an enclosure and control of inlet air temperature is accomplished by recirculation of hot exhaust air. The condensers drain to a common hotwell where one of two installed condensate pumps discharge to the auxiliary cooling water supply header which distributes water to the various auxiliary heatexchangers. The auxiliary heat exchangers discharge through a common header to the reserve feed tank. A three-way valve in this discharge header recirculates condensate to the subcooling section of the main condenser during low load operation to maintain adequate cooling water flow. One of two installed feed pumps supplies water to the reactor through the feed regulating valve which is controlled by reactor water level.

A bypass purification system continuously maintains reactor water chemistry. Reactor water is cooled, demineralized and then pumped back to the reactor through the feed line by one of two canned rotor pumps.

Plant drain water is processed by an evaporator and demineralizer so that drains may be returned to the plant or meet the discharge activity concentration without dilution.

All instrumentation and rod drive power is supplied from a 3 section DC bus. The first section supplies nuclear instrumentation power; the second section, rod drive power, process instrumentation, radiation monitoring and communications; the third section supplies the circuit breaker tripping power. Each section is isolated by a blocking rectifier. One of two rectifier regulators provides DC power. In the event of interruption of AC power the batteries take up the load.

A 200 KW auxiliary diesel is provided for plant startup and shutdown.

8.0 MW

33,000 7,650

600 psig 489⁰F

24,724 lbs/hr

134.0 Btu/1b.

60 to -125⁰F

125 Knots

0-10,000 ft

3

A. Reactor:

Thermal Power Core Lifetime, full power years Maximum Burnup, MWd/metric ton of U Average Burnup, MWd/metric ton of U Steam Production Operating Pressure Operating Temperature Feedwater Enthalpy

B. Electrical:

Net Output Voltage	1000 KW 2400/4160
Frequency	60 cycles
Phase	3
Power Factor	0.8
Standby Power (diesel-generator)	200 <u>k</u> w
Phase Power Factor	3 0.8

C. Environmental:

Ambient Temperature Wind Velocity (Sustained) Altitude

- D. PL-2 Core Numerical Data:
 - 1. Fuel Element:

UO2 1.145 Fuel Composition Fuel Loading, Metric Tons U Fuel Enrichment 4.5% UO₂ Pellet Diameter 0.420 inches UOp Pellet Density $10.30 \, \mathrm{gm/cm}$ AISI 348 SS, 0.05 w/o Co. Clad Material Clad Thickness 0.020 inches Fuel Tube Inner Diameter 0.428 inches Number of Fuel Tubes Per Assembly 60 Number of Poison Rods Per Subassembly 2 1440 Number of Fuel Elements In Core Number of Poison Rods in Core 48

2. Core Geometry:

Equivalent Core Diameter Active Core Length Number of Assemblies Fuel Assembly Width Fuel Assembly Length Tube Spacing (pitch) Riser Height

3. Control:

Number of Rods Rod Type Overall Length Overall Span Overall Thickness Length of Travel Control Material Clad Material Length of Active Section Span of Active Section Thickness of Active Section

4. Thermal and Hydraulic:

Average Power Density, KW/liter of Active Core Average Power Density, KW/liter of Coolant in Active Core Heat Transfer Area Average Heat Flux Maximum Heat Flux Burnout Heat Flux (Conservative estimate)

E. Main Steam System:

Total Steam Flow Steam Pressure Steam Temperature Turbine-Generator Steam Flow TG Steam Inlet Pressure TG Steam Exhaust Pressure TG Extraction Steam Flow

Space Heat Exchanger Steam Flow Space Heat Exchanger Steam Pressure Heat Transferred

Air Ejector Steam Flow Air Ejector Steam Pressure 35.5 inches 38.3 inches 24 5.592 inches (square) 46.3 inches 0.732 inches 3 feet

9 Cruciform 58-5/8 inches 11.44 inches 0.250 inches 39.0 inches Ag-In-Cd AISI 348 SS, 0.05 w/o Co 39-3/4 inches 10.578 inches 0.135 inches

13.3

26.6 564 ft² 48,400 Btu/hr-ft² 279,000 Btu/hr-ft² 1,000,000 Btu/hr-ft²

24,724 lb/hr 600 psig 4890r 24,211 lbs/hr 590 psig 15" Hg. Abs. 1895 lbs/hr 1895 lbs/hr

25 psig 1.715 x 10⁶ Btu/hr

314 1bs/hr 150 psig

Service Water System Evaporator Steam Flow Service Water System Evaporator	149 lbs/hr
Steam Pressure	150 psig
Turbine Seal Steam Flow Turbine Seal Steam Pressure	100 lbs/hr 2-3 psig
Condensate System:	
<pre>Air Cooled Condenser & Subcooler Steam Flow Steam Pressure Steam Temperature, In Condensate Temperature, Out Condensate Recirculated Condensate Recirculated Condensate Recirculation Temp- erature Air Flow (Two Units) Air Temperature, In Heat Transferred (Two Units) Number of Fans (Two Units) H. P. per Fan Fan Head</pre>	22,410 lbs/hr 15" Hg.Abs. 179° F 100° F 8,756 lbs/hr 150°F 2.95 x 10 ⁵ cfm @ 60°F & 6000 ft. 60°F 21.41 x 10 ⁶ Btu/hr 8 20 1.77" H ₂ 0 @ STP
Precooler & After Condenser Motive Steam Flow Motive Steam Pressure	314 lbs/hr 150 psig
To Precooler Steam Air Temperature	100.2 lbs/hr 70 lbs/hr 185° F
From Precooler Steam Air Condensate Temperature	6.4 lbs/hr 70 lbs/hr 93.8 lbs/hr 120 ⁰ F
To After Condenser Steam Air Decomposition Gases Temperature	414.3 lbs/hr 90 lbs/hr 3.2 lbs/hr 208°F

F۰

From After Condenser	
Condensate	396.2 lbs/hr
Temperature	170°F
Vent	210 1
Steam	18.1 1bs/hr
Air	90 lbs/hr
Decomposition Gases	3.2 lbs/hr
Temperature	140°F
Coolant	1-0 1
Flow Rate	10,000 lbs/hr
Temperature, In	100°F
Temperature, Out	152°F
Heat Transferred	516,340 Btu/hr
neat Transferred	510,540 Bcu/IIr
Hotwell	
Condensate Flow	31,052 lbs/hr
Makeup Water Flow	18 lbs/hr
Makeup Water Temperature	40°F
Condensate Pumps	
Capacity	60 GPM
Suction Pressure	-8.3 psig
Discharge Pressure	40 psig
Total Head	48.3 psig
Condensate Temperature	100°F
Motor Horsepower	5
-	·
G. <u>Feedwater System</u> :	
Reserve Feed Tank	
Condensate Flow	22,314 lbs/hr
Condensate Temperature, In	150°F
Condensate Temperature, Out	153 ⁰ F
Feedwater Recirculation Flow	2500 lbs/hr
Feedwater Recirculation Temp-	•
erature	153 ⁰ F
Low Pressure Drains Flow	2660 lbs/hr
Low Pressure Drains Temperature	179 ⁰ F
Feedwater Pumps	
Capacity	54 GPM
Suction Pressure	0 psig
Discharge Pressure	700 psig
Feedwater Temperature	153°F
Motor Horsepower	60
TO OAT TAT POLARCY	00

H. Purification System:

	First Stage Heat Exchanger Purification Flow Temperature, In Temperature, Out Coolant Flow Coolant Temperature, In	2476 lbs/hr 489 ⁰ F 331 ⁰ F 2476 lbs/hr 120 ⁰ F
	Coolant Temperature, Out Heat Transferred	291 ⁰ F 427,880 Btu/hr
	Second Stage Heat Exchanger Purification Flow Temperature, In Temperature, Out Coolant Flow Coolant Temperature, In Coolant Temperature, Out Heat Transferred	2476 lbs/hr 331 ⁰ F 120 ⁰ F 6575 lbs/hr 100 ⁰ F 181 ⁰ F 529,740 Btu/hr
	Demineralizer Purification Flow Water Temperature Resin Capacity	2476 lbs/hr 120 ⁰ F 2.8 ft ³
	Purification Pumps Type Capacity, Normal Flow Suction Pressure Discharge Pressure Water Temperature Motor Horesepower	Canned rotor 5 GPM 590 psig 645 psig 120°F 1.5
	Eductor Motive Water Lift Water Total Operating Head Motive Water Temperature Lift Water Temperature Total Discharge Head NPSH	7.2 GPM 5 GPM 67 psig 120°F 170°F 15 psig 13.7 ft.
I.	Shield Cooling System:	
	Shield Cooler Coolant Flow Coolant Temperature, In Coolant Temperature, Out Heat Transferred	3155 lbs/hr 100 ⁰ F 141 ⁰ F 127,800 Btu/hr

J. Raw Water Purification System:

Makeup Water Storage	50 gals.
Makeup Water Pump	
Capacity	5 GPM
Suction Pressure	atms.
Discharge Pressure	34.0 psig
Motor Horsepower	0.50
Motor Horsepower	0.90
Raw Water Demineralizer	
Flow Rate	5 GPM
Water Temperature	$40 - 70^{\circ}_{3}F$
Resin Capacity	3.0 ft.
Lube Oil Cocling System:	
L. O. System Intercooler	
Fluid Flow	6010 lbs/hr
Fluid Temperature, In	140 ⁰ f
Fluid Temperature, Out	115°F
Coolant Flow	5860 lbs/hr
Coolant Temperature, In	100°F
Coolant Temperature, Out	126°F
Heat Transferred	150,000 Btu/hr
L. O. Cooler	
Lube Oil Flow	12 (10 12-/2-
	13,910 lbs/hr
L. O. Temperature, In	157 ⁰ F
L. O. Temperature, Out	130 ⁰ F
Coolant Flow	6010 lbs/hr
Coolant Temperature, In	115 ⁰ F
Coolant Temperature, Out	140 ⁰ F
Heat Transferred	150,000 Btu/hr
Lube Oil Coolant Pump	
Capacity	12.5 GPM
Head	25 psig
Fluid Temperature	115 ⁰ F
Motor Horsepower	0. 50
HP Drain System:	
Capacity	2094 lbs/hr
Low Pressure Drain System:	
LP Drain Pump	
Capacity	20 GPM
Suction Pressure	-6.8 psig
	-0.0 PPTP

	LP Drain Pump (Continued)	
	Discharge Pressure	10.5 psig
	Total Head	17.3 psig
	Drain Temperature	179 ⁰ F
	Motor Horsepower	0.5
N.	Plant Heating System:	
	Operating	
	Air Flow to Plant	1600 cfm
	Ambient Temperature	$0^{O}F$ (tunnel)
	Room Temperature	60° F 6 (
	Heat Transferred	1.715×10^6 Btu/hr
	Space Heating Supplied	1.365 x 106 Btu/hr 0.350 x 10 ⁶ Btu/hr
	Plant Heating Supplied	0.350 x 10° Btu/hr
	Shutdown	
	Air Flow to Plant	3260 cfm
	Ambient Temperature	$O^{O}F$ (tunnel)
	Room Temperature	60°F 6
	Heat Transferred	1.913 x 10 ⁶ Btu/hr 1.365 x 10 ⁶ Btu/hr 0.548 x 10 ⁶ Btu/hr
	Space Heating Supplied	$1.365 \times 10^{\circ}$ Btu/hr
	Plant Heating Supplied	0.548 x 10° Btu/hr
	Space Heat Exchanger	
	Steam Flow	1895 lbs/hr
	Steam Temperature, In	294 ⁰ F
	Condensate Flow, Out	1895 lbs/hr
	Condensate Temperature, Out	250 ⁰ F
	Vent Flow	Negligible
	Coolant Water Flow	56,825 lbs/hr
	Coolant Temperature, In	190 ⁰ F
	Coolant Temperature, Out	220°F 6
	Heat Transferred	1.715×10^6 Btu/hr
	Plant Heating Pump	
	Capacity	35 GPM
	Suction Pressure	0 psig
	Discharge Pressure	15 psig
	Fluid Temperature	190 ⁰ F
	Motor Horsepower	0.75
o .	Service Water System:	
	Spent Fuel Tank Cooler	
	Spent Fuel Tank Cooler Flow	3670 lbs/hr
	Temperature, In	160 ⁰ F
	Temperature, Out	119 ⁰ F
	Coolant Flow	3489 lbs/hr
	Coolant Temperature, In	100°F
	Coolant Temperature, Out	143°F
	Heat Transferred	150,000 Btu/hr

Demineralizer Flow Water Temperature Resin Capacity Evaporator Capacity Overhead Purity Bottom Solids Concentration Overhead Condensate Temperature to Storage Drain Tank Pump Type Capacity Suction Pressure Discharge Pressure Fluid Temperature Motor Horsepower Spent Fuel Tank Pump Type Capacity Suction Pressure Discharge Pressure Fluid Temperature Motor Horsepower Waste Tank Pump Type Capacity Suction Pressure Discharge Pressure Fluid Temperature Motor Horsepower Disposal Tank Pump Type Capacity Suction Pressure Discharge Pressure Fluid Temperature Motor Horsepower

3670 lbs/hr $120^{\circ}F$ 2.8 ft³ 200 GPD Not more than 1x10⁻⁸ uc/cc Not less than 50% solids by weight 120⁰F Sump 7.5 GPM Atm 29.4 psig $40 - 120^{\circ}F$ 0.5 Sump 7.5 GPM Atm 29.4 psig 40 - 120°F 0.5 Sump 2 GPM Atm 14.2 psig 40 - 120⁰F 0.5 Centrifugal 10 GPM Atm 21.6 psig $40 - 120^{\circ}F$ 0.5

P.	Shipping (Snow Tunnel)				
	Foundation,Structural and Enclosures Airlift Loads (C 130A)	236 tons 16			
	Plant Components Airlift Loads (C130A) Primary System Secondary System Interconnects plus Off skid	242 tons 18 3 loads 7 loads 8 loads			

III. PLANT DESCRIPTION

A. ARRANGEMENTS

1. Snow Tunnel Design and Construction

The general arrangement, Figure 1. of the PL-2 reactor plant for an inland Antarctic site, utilizes a large snow tunnel with all the buildings and facilities arranged in a straight line within the tunnel. Many problems of construction and operation encountered at surface installations where severe climatic conditions exist are thereby eliminated.

Construction of the plant will be greatly facilitated by ramping the tunnel at both ends. This will allow construction of the plant to proceed simultaneously in the Reactor and Power Plant areas and reduce total construction time. Two mechanized snow plows, such as the Peter Snow Miller will be required because of the two levels of tunnel depth. For the portion of tunnel at the Reactor Complex some additional equipment will be required to remove the snow excavated at the lower depths.

The tunnel will be roofed with corrugated metal arches, seated on a snow ledge approximately ten feet below the ground surface. The floor will extend to a depth of twenty-four feet in the tunnel section housing all buildings except the Reactor Complex. The tunnel section for the Reactor Complex will be excavated to approximately forty-one feet below the surface. Snow will be backfilled over the arches to a depth of approximately three feet by the snow plows to obtain an insulating blanket.

A decrease in tunnel height, as a function of time, due to the differential settlement rates of the tunnel floor and the roof arch, is anticipated. The depth of tunnel has been established to allow for an initial clearance of two feet six inch minimum between the top of the buildings and the roof arch. Experience at Camp Century will be evaluated to determine what allowance for settling of the tunnel arch is required.

The tunnel is sealed for weather tightness at the base of the ramp with a timber bulkhead. Large steel roll-up doors in the bulkhead will provide for the entry of vehicles.

Penetrations of the corrugated metal roof arch will be limited to the intake and exhaust ducts of the air cooled steam condensers, the hatch openings above the snow shield, the ventilation ducts for the buildings, and the various exhaust stacks from machinery. Emergency escape hatches are provided at locations shown in Figure (1). The hatches will be offset from the main tunnel and consist of either vertical ladder shafts or spiral stairwells projecting several feet above the snow surface and conmected at the base to the main tunnel by means of small access tunnels.

A thirty foot tunnel width provides five feet minimum clearance between the building wall and the tunnel wall. The snow floor of this space will be covered over with two inch planking and utilized as a walkway. Tunnel lighting for the walkways will consist of fixtures mounted on the exterior walls of the buildings.

All steam, water, drainage and steam condensate piping carried within the tunnel will be insulated and electrically traced. Piping within buildings will be insulated only.

A biological shield is provided between the Reactor Complex and the remainder of the plant by means of a fifty foot section of snow shielding within the tunnel. There is no direct line of sight between the Reactor and the portion of the tunnel housing stations for the operating personnel. The snow shield comprises backfilled snow compacted to a minimum density of .50 grams per cubic centimeter and contained within a timber retaining bin held together with steel tension rods. Two hatches are provided in the metal arch roof directly above to allow the snow to be blown into the bin from the surface by the Peter Plow.

The snow shield is flanked on two sides with small accessways, connecting the two tunnel sections, for personnel, piping and utilities.

Separate buildings for Condensers. Power Plant Equipment, Personnel and Service are provided in that order, starting from the snow shield.

These buildings will be carried on a structural steel floor framing system supported on heavy timber cribbing foundations. The steel was sized to provide a relatively rigid support level for jacking. All building and equipment loads, except the turbine generator, will be mounted on separate cribbing foundations, independent of the building. Foundations for the Reactor Complex structure consist of heavy timber forming raft type foundations resting on the tunnel floor.

Maximum snow bearing pressures do not exceed 1000 pounds per square foot on any foundation. The foundation timber has been designed and proportioned to obtain, within practical limits, equal snow bearing pressures under all foundations during operation. Operating weights of various plant equipment and the resulting bearing pressures beneath their foundation are as follows:

Purification skid	40,000 lbs.	625 psf
Feed & Condensate skid	50,000 lbs.	655 psf
Turbine Generator skid	40,000 lbs.	660 psf
Electrical skid	30,000 lbs.	`625 <u>p</u> sf
Auxiliary Boiler	11,000 lbs.	635 psf
Diesel Generator	6,500 lbs.	630 psf
Condenser skid	30,000 lbs.	680 psf
Reactor	200,000 lbs。)	
Spent Fuel Tank	165,000 lbs。)	635 to 650 psf
Drain Tank	48,000 lbs.)	

Differential settlement can be expected between foundations but the anticipated amount has been greatly minimized by the following features:

(1) Foundations are symmetrical.

(2) Comparatively equal bearing pressures are obtained under operating loads.

(3) Maximum bearing pressures do not exceed the weight of the excavated snow.

(4) A relatively rigid steel floor framing system under the building tends to equalize loadings to the foundations.

However, differential settlement is possible. Control will be obtained with a central manometer system installed at various critical locations and a simple maintenance procedure can be established for jacking and leveling using the steel floor framing and low height ball bearing journal jacks, in all buildings except the Reactor Complex structure.

The Reactor Complex structure contains eight jack screws located at the operating level, of approximately 60 and 130 ton capacity, for leveling the upper portion of the steel structure. Sensitive adjustments of vertical height in the steel structure are possible with the motor operated jacks and reduction gears. Corrections of height as small as .1 inch per minute can be obtained with this mechanism.

Piping runs will be designed to provide flexibility far in excess of that necessary to allow for the maximum anticipated differential settlement between piping support points. 2. Enclosures

The PL-2 plant may be housed in any enclosure with adequate width, height, and length. The T-5 building has been used in developing these plans.

The panels will be fabricated to provide for pipe penetrations between buildings.

The steel structure for the Reactor Complex will be enclosed with the same T=5 type of panels except for the main columns.

3. Machinery Arrangement

The PL-2 machinery arrangement incorporates factory assembled modules. These modules permit great latitude in adjusting the overall machinery arrangement to specific site requirements without changing the basic machinery modules. The arrangement selected for the snow tunnel minimizes tunnel construction work, and maintains adequate room for maintenance and operation. The arrangement permits routine operation by one man. Startup will require two men.

The Reactor Complex, Figures 2, 3, 4, 5 and 6 contains the reactor vessel and shield tank, the spent fuel tank, the waste tank, and the plant drain tank. A 15 ton overhead crane is provided to remove the pressure vessel head, transfer fuel elements from the reactor vessel head, transfer fuel elements from the reactor vessel to the spent fuel tank and to load the spent fuel shipping cask. The entire reactor complex is supported at eight jacking points. The lifting mechanism is designed so as to allow the upper complex structure to move up 6 feet. The jacks are supported on eight stationary columns which distribute the load to the reactor complex foundation, Figure 3. Pipe ways and wire ways are run under removable sections of the floor plates to the complex wall so that the operating floor is clear for refueling and maintenance operations. The control rod drive trains are protected by a raised section of floor grating. The grating is removable in sections for access to the mechanisms which are in a well ventilated space and will not be subject to excessive temperatures.

The condensers are housed in a separate building which is modified to accept the intake and exhaust ducts, Figure 1. The floor of the condenser building is 2 feet above the power plant building floor to facilitate draining.

The power plant building houses, in order, the purification module, the feed and condensate module, the turbine generator module and the electrical module. The arrangement provides for a continuous operating aisle 5 feet wide on one side of the building. On the other side are the pipe and wire ways for interconnecting piping. All equipment is accessible for operation and pull space is provided so that maintenance on any one component will not require disassembly of operable equipment. All pipe connections are anchored at the skids and connected with a flexible pipe configuration to the interconnecting piping. This flexible configuration is designed to facilitate field interconnection and will not require extremely precise skid location in order to make up the flanged connections.

The Service building has two compartments and houses a small maintenance shop and equipment for emergency power. The shop contains a lathe, grinder, work bench, welding machine, pipe threader and parts bin. The power equipment consists of a diesel generator, fuel tank and auxiliary boiler. For boiler maintenance, work space is provided by opening the door connecting to the shop, and pulling the tubes into the shop area.

The Personnel building contains office space, toilet, laboratory, decontamination shower, washer, and lockers. The layout allows entry from the operating area directly into the lab and decontamination area without passage through the office space.

4. Shipping

The PL-2 plant shown in Figure (1) can be shipped by 3 aircraft in a total of 34 loads, transporting a total of 478 tons within a 22 day period.

The shipping arrangements are prepared within the limitations of the PL-2 Guidelines, Appendix A, and the C130A aircraft load-space limits of 30,000 pounds within an envelope not to exceed 30 feet in length, $8^{\circ}8^{\circ}$ in width and $8^{\circ}6^{\circ}$ in height.

All principal components are skid mounted, and with the exception of foundation timber and structural steel, all components (including skids) are seal-crated in 3/8" plywood with hoisting, buttressing and tiedown provisions adequate for both aircraft and surface transportation.

a. Plant Equipment

Schedule (A) presents the shipping arrangement for the nuclear plant machinery and furnishings. Exclusive of spare parts and special tools, the plant comprises 242 tons, air transportable in 18 loads. The items tabulated are noted on the Figure indicated in the "figure" column.

It should be noted that 8 fuel assemblies and 3 control rod blades are shipped in each of the 3 spent fuel cask shipping assemblies, Figure 21. Schedule A is generally applicable and will not change significantly for other installations which have similar requirements for refuelling and waste disposal. Where spent fuel may be abandoned or accommodated by mobile equipment, a reduction in shipping of two to three loads may be anticipated.

It should be noted that this shipping list includes everything required to complete the erection, startup and operation of the plant. The equipment required for the generation of power including provisions for storing spent fuel is:

Primary Loop

C130A Loads

Reactor	1
Spent Fuel & Drain Tanks	1
Shield Tank	1
Total	

Secondary Loop

2 Condensers	4
Purification and Waste Disposal	1
Feed and Condensate	1
Turbine Generator	1
Electrical and Control	1
Total	8

Interconnecting plumbing and wiring and items such as the spent fuel shipping casks, auxiliary diesel and shutdown boiler account for the remaining 7 packages. The loads for the two condensers include the combined inlet and exhaust stacks required to penetrate the tunnel arch.

SCHEDULE A

SHIPPING ARRANGEMENT FOR NUCLEAR PLANT MACHINERY AND FURNISHINGS

Load	<u>Box</u>	Contents	Wt (lbs)	<u>Size (ft)</u>	Figure
1	1	Feed and Condensate Skid	29,874	30 x8.5x 8	29
2	2 21Ъ	Purification Skid 5 CIC-UIC Ion Chambers	29,836 <u>132</u> 29,968	14x7x8 1.5x1x1	27 37
3	6f 15b 3	Wiring, Outlets, Lighting Fixtures Transfer Cask Mechanism Turbine Generator Skid	733 82 <u>29,262</u> 30,077	4x4x6 lxlxl l7x7x6	31 22 39
4	4 6i	Electrical Skid Bench	29,730 <u>257</u> 29,987	26x8.5x8.5 7x2x2	30 31
5	7 19ъ1	React. Vessel, Hd.&Hd. Shielding Cont. Rod Mechanism Actuator	29,280 <u>732</u> 30,012	20x6x8 5x1x1	7 11
6	13f 19b2	Condenser Skid Crane Assy Provisions Cont. Rod Mechanism Actuator Cont. Rod Drive Package	23,758 558 732 <u>213</u> 25,261	25x8x8 6x4x3 5x1x1 2x1.5x1.5	38 3/4 11 4
7	5b 6g 61 6k	Condenser Skid Heating, Piping, Radiator, Controls Fire Protection Equip. and Control Toilet, Sink, Lavatory, Plumbing	23,758 1.112 913 <u>1.035</u> 26,818	25x8x3 8x3x3 4x4x8 5x4x3	38 31 31 31
8	8 12 16d 5c 26	Core Waste Tank Switch Gear, Welder, Grinder, Tools (2) Sets Dampers and Supports Source	2,006 1,892 1,764 15,900 <u>471</u> 22,033	7x4x4 8x4x2 4x4x3 25x8x8 4x1x1	15 2/3/4
9	9a 13d	Spent Fuel Shipping Assy Crane Drive Unit	29,305 <u>697</u> 30,002	10x5x7 6x3.5x3	21** 3/4/5

** Includes 8 Fuel Assemblies and 3 Control Rods

SCHEDULE A (Contid)

<u>Load</u>	Box	<u>Contents</u>	Wt (lbs)	<u>Size (ft)</u>	Figure
10	9b 16h	Spent Fuel Shipping Assy Lathe	29,305 <u>619</u> 29,924	10x5x7 6x4x2	21**
11	9c 19b3	Spent Fuel Shipping Assy Cont. Rod Mechanism Actuator	29 ,305 <u>732</u> 30,037	10x5x7 5x1x1	21** 11
12	10	Shield Tank Assy	29,978	21x8.5x8.5	18
13	11 19d	Spent Fuel, Plant Drain Tanks Shipp. Cont. Rod Drive Connectors	29,512 <u>503</u> 30,015	27x8.5x8.5 6x2x2	19 3
14	15a 16b 6j 6k 6b 6c	Transfer Cask Assy Auxiliary Boiler Shower, Plumbing, Stool Washer, Dryer (4) File Cabinets (6) Personnel Lockers	11,874 8,000 648 559 <u>830</u> 22,599	6x3x3 10x8。5x5 3x3x5 4x4x4 8x3x6 6x6x7	22 31 31 31 31 31
15	5d1 13a 13b 14f 14g 14h 15c 18 24 20	Cond. Stack Girders, Beams Bracke (2) Crane Trusses (2) Crane Rail Beams Ratiometer Jack Ratiometer Jack Ratiometer Jack Transfer Cask Ext. Racks (3) Refueling Plate Assy Off Skid Heating Provisions Instrument Well Shipping Pack	ts 4,442 1,825 3,625 1,808 1,808 1,808 272 6,519 593 <u>6,697</u> 28,397	13x4.5x1.5 21x2x3 21x2x3 14x1x1 14x1x1 14x1x1 7x1x1 5.5x5.5x1 6x2x2 17x4x3.5	25 3/4 3/4 3 22 23 59 35
16	5d2 5d3 13c 14a 14b 14c 14d 14e 19b4 19b5	Cond. Stack Panels Cond. Stack Panels (2) Crane End Beams Ratiometer Jack Ratiometer Jack Ratiometer Jack Ratiometer Jack Ratiometer Jack Cont. Rod Mechanism Actuator Cont. Rod Mechanism Actuator	3,442 3,442 1,252 1,858 1,858 1,858 1,858 1,858 1,808 732 732	13x7x6 13x7x6 12x2x2 14x1x1 14x1x1 14x1x1 14x1x1 14x1x1 5x1x1 5x1x1	25 25 3/4 3 3 3 3 3 11 11

** Includes 8 Fuel Assemblies and 3 Control Rods

SCHEDULE A (Cont'd)

Load	Box	Contents	<u>Wt (lbs)</u>	<u>Size (ft)</u>	Figure
16 (cont [*] d)					
	1966 1967 1968 1969	Cont. Rod Mechanism Actuator Cont. Rod Mechanism Actuator Cont. Rod Mechanism Actuator Cont. Rod Mechanism Actuator	732 732 732 <u>732</u> 21,968	5xlxl 5xlxl 5xlxl 5xlxl 5xlxl	11 11 11 11
17	5d4 5d5 6n 6a 6d 13e	Cond. Stack Panels Cond. Stack Cowling, Covers, Deck (2) Desks, (2) Chairs Radiation Counter Contaminated Clothes Bin, Waste Bo Table Crane Trolley, Motor, Reducer	3,442 2,218 1,074 673 9x 431 589 <u>1,843</u> 10,270	13x7x6 14x7x6 9x6x3 2x2x6 4x2x4 7x3x2 8x7x2.5	25 25 31 31 31 31 31 3/4
18	6e 16a 16c 16e 16f 16g 16i	 (4) Internal Partitions Auxiliary Diesel Generator Fuel Tank Pipe Thread. Drill Press Wiring Lights, Bins Bench Boiler Piping Heating and Fire System Internal Partitions 	1,012 1,237 1,898 1,723	12x3x4 9.5x3.5x6.5 6x4x4 6x6x3 6x6x3 12x4x4 11x4x2	31
	17 19c2 19c3 19c4 19c5 19c6 19c7 19c8 19c9 19e 21a 22 23 25a 25ъ	Spent Fuel Storage Rack Cont. Rod Drive Package Cont. Rod Extension Shafts (2) BF ₂ Instruments Portable Radiation Monitoring Fixed Radiation Monitoring Feed Pump Motor Feed Pump Motor	1,763 213 213 213 213 213 213 213 21	4x4x2.5 2x1.5x1.5 2x1.5x1.5 2x1.5x1.5 2x1.5x1.5 2x1.5x1.5 2x1.5x1.5 2x1.5x1.5 2x1.5x1.5 6x1x1 4x1x1 4x3x3 4x3x3 4x4x4 4x4x4	33 4 4 4 4 4 4 11 36 69 29 29

b. Foundations and Enclosures - (Snow Tunnel Installation)

Foundation timber, structural steel and building panels for the entire plant weigh a total of 236 tons and will require a total of sixteen plane loads. The timber and steel can be bundled into packages convenient for handling and shipping. The T-5 building panels are stacked flat on a wooden skid, encased in plywood sheathing and wrapped in heavy Manila paper. The crates are fastened to the skid with metal straps. The weight per crate varies from 2800 to 3300 pounds and can be easily handled with a fork lift truck. The sizes of crates vary in length from 9 to 16 feet, in width from $2^{\circ}-6^{\circ}$ to $4^{\circ}-6^{\circ}$ and in height from $4^{\circ}-0^{\circ}$ to $5^{\circ}-0^{\circ}$. There will be a maximum of 50 crates for building panels. The delivery of material to the site will be arranged so that timber and floor steel are followed by building panels and equipment, according to the erection requirements.

The following schedule (B) presents the shipping arrangement for foundation timber, structural steel and enclosures. Schedule B is applicable to a snow tunnel installation. Significant reductions can be expected for surface installations.

SCHEDULE B

SHIPPING ARRANGEMENT FOR FOUNDATION TIMBER, STRUCTURAL STEEL (including Reactor Complex) AND ENCLOSURES

Lgad No.	<u>No.</u>	Item	Wi .
1.	2 -	16 x 3 x 5 Crates	6600.#
	2 - 2 -	13 x 3-6 x 5 Crates	6600。
	15 -	$12 \pm 12 = 26 \text{ ft}$	16500.
	-		29700.#
		Steel	180
			29880.#
2.	2 -	16 x 3 x 5 Crates	6600。
	1 -	13 x 3-6 x 5 Crates	3300。
	1 -	11 x 4-6 x 5 Crates	3200.
	8 -	12 x 12-24 Ft.	8000.
	1 -	12 x 12-26 Ft.	1100.
	7 -	18 WF50 20 Ft.	7000.
			29200.#
		Steel	<u>565</u>
			29765.#
3.	2 🛥 2 🗕	16 x 3 x 5 Crates	6600.
		13 x 3-6 x 5 Crates	5400。
	15 -	12 x 12 - 3 Ft.	1 880 .
	8 -	18 WF 50 20 Ft.	8000.
	26 -	$6 \times 12 - 13 Ft$.	<u>7150.</u> 29030.#
		Steel	
		76641	<u>910</u> 2994 0#
4.	2 -	16 x 3 x 5 Crates	6600.
r *	ī -	$11 \times 4-6 \times 5$ Crates	3200.
	26 -	$6 \times 12 - 11' - 0$	5650

SCHEDULE B (Cont.)

Load No.	Nc	Item	Wt. (1bs.)
4.	8 - 13 - 15 -	18 WF 50 - 16 Ft. 16 WF 40 - 12 Ft. 12 x 12 3 Ft.	6400. 6240. <u>1880</u> . 29970.
5.	4 - 13 - 7 - 4 - 13 - 1 -	<pre>11 x 4-6 x 5 Crates 12 x 12 5'6" Crates 18 WF 50 20 Ft. 8 WF17 16 Ft. 16 WF 40 10 Ft. 10 WF 25 15 Ft. Steel</pre>	12800. 3000. 7000. 1090. 5200. <u>375</u> . 29465. <u>515</u> . 29950.
6.	2 - 3 - 4 - 8 - 12 -	<pre>11 x 4-6 x 5 Crates 9 x 4-6 x 5 Crates 16 x 16 10 Ft. 12 U 20.7 12 Ft. 8 U 11.5 12 Ft. Timber</pre>	6400. 3460. 3000. 2000. 1660. <u>8000</u> . 29520.
7.	2 - 2 - 46 - 15 - 15 -	9 x 5 x 5 Crates 11 x 4 x 5 Crates 8 WF17 89 Ft. 12 x 12-3-0 Ft. 12 x 12-3-0 Ft. Timber	6250. 5860. 6260. 1880. 1880. <u>7140</u> . 29270.
8.	1 - 4 - 3 -	9 x 5 x 5 Crates 11 x 4 x 5 Crates 8 WF17 12 Ft. Timber Timber	3125. 11720. 615. 7280. <u>7350.</u> 30090.
9.	2 - 1 - 1 -	ll x 4 x 5 Crates ll x 2-6 x 5 Crates 9-6 x 3-6 x 5 Crates Timber Steel	5860. 1900. 1900. 16800. <u>3525</u> . 29985.

SCHEDULE B (Cont.)

Load No.	No.	Item	Wt. (1bs.)
10.	1 -	l2 x 4 x 4 Crates Timber Timber Steel Timber	3500. 3360. 18000. 2900. 2200. 29960.
11.		Timber Reactor Steel	19195. <u>10800.</u> 29995.
12.	3 -	Flooring Reactor Steel Crates	5000. 15000. <u>10000.</u> 30000.
13.	3 -	Reactor Steel Crates	20000. <u>10000.</u> 30000.
14.	3 -	Reactor Steel Crates Flooring	15770. 10000. <u>4000</u> . 29770.
15.	3 -	Reactor Steel Crates	20000. <u>10000.</u> 30000.
16.		Checker Plate Grating Flooring Snow Shield	2310. 2655. 3000. <u>20000.</u> 27965.
	5. Erection and	Assembly Schedule - Snot	Tunnel Installation

5. Erection and Assembly Schedule - Snow Tunnel Installation

a. Procedure

The Construction Procedure in the Reactor area is based on having access from a ramp adjacent to the Reactor and the availability of equipment for lifting a maximum of 20 tons. The sequence of construction will proceed as follows:

(1) Construct foundation cribbing on column lines 4 and 3, Figure 5.

(2) Erect temporary timber support for Spent Fuel Tank and place four 10 ton hydraulic jacks in position.

(3) Install Spent Fuel Tank in temporary position on jacks.

(4) Erect steel columns at column line intersections 4x, 4y, 3x, and 3y, Figure 5.

(5) Erect steel framing and bracing of lower steel structure between columns 4x, 4y, 3x and 3y, Figure 5.

(6) Install jacking devices near column line 4 and attach 21 WF 73 at bottom of jacks.

(7) Construct foundation cribbing on column line 2 and repeat step 2 for supporting Shield Tank and Reactor between column line 2 and 3, Figure 5.

(8) Install Shield Tank in temporary position on jacks.

(9) Install Reactor in Shield Tank.

(10) Jack Shield Tank and Reactor so that support brackets are higher than the final position.

(11) Erect steel columns and framing of lower steel structure between column lines 2 and 3.

(12) Install jacking devices near column lines 2 and 3 and attach 30 WF 108 and 27 WF 94 at bottom of jacks.

(13) Construct foundation cribbing on column line 1, Figure 5.

(14) Erect temporary timber support for Drain Tank and place four 5 ton hydraulic jacks in position.

(15) Install Drain Tank in temporary position on jacks.

(16) Erect columns at column line 1 and complete lower steel structure framing and bracing.

(17) Install last two jacking devices and attach 16 WF 58 at bottom.

25

(18) Lower Reactor and Shield Tank to proper final position, erect supporting level of steel and fasten to Shield Tank.

(19) Remove temporary hydraulic jacks and supporting timber under Shield Tank to transfer loading to structure.

(20) Jack Spent Fuel Tank into proper final position, erect supporting level of steel and fasten to Tank.

(21) Jack Drain Tank into proper final position, erect supporting level of steel and fasten to Tank.

(22) Remove temporary hydraulic jacks and supporting timber under Spent Fuel Tank and Drain Tank, to transfer loading to structure.

(23) Erect upper steel structure above elevation $84^{\circ} - 0^{\circ}$.

(24) Install 15 ton crane.

- (25) Install Waste Tank beside Spent Fuel Tank.
- (26) Proceed with housing enclosure of entire complex.
- (27) Install electrical power and lighting.

(28) Level equipment and upper steel structure to proper elevation by means of eight jacking devices.

- (29) Install piping and insulation.
- (30) Install exhaust stacks and ventilation system.

b. Sequence

The sequence of construction procedure in the machinery area is based on having a power winch in the tunnel capable of pulling equipment into position.

(1) Construct foundation cribbing for Condenser and Power Plant buildings to same elevation. Top two layers of cribbing under condenser building will not be erected at this time. Place temporary timber for jacking purpose under condenser building.

- (2) Erect steel floor framing.
- (3) Erect floor panels.
- (4) Place 2 x 12 flooring in Power Plant building

floor.

(5) Mark location of equipment on floors of both Condenser and Power Plant buildings. (6) Construct temporary timber bridge between Power Plant and Condenser buildings to span opening between. (7)Install condensers by rolling on pipe rollers across Power Plant building, over bridge and onto Condenser building floor. Louver assembly will be mounted on condensers before installation. (8) Jack Condenser building to final elevation and insert top two layers of cribbing on foundations. (9)Erect walls and rafters of Condenser building. (10) Remove temporary timber and jacks from beneath condenser building. (11)Erect structural steel supports for stacks in Condenser building. (12)Dismantle timber bridge between buildings. (13) Install equipment in Power Plant building in this order - 1. Purification skid 2. Feed and Condensate skid 3. Turbine Generator 4. Electrical skid. (14)Erect walls, rafters and roof of Power Plant building and roof of Condenser building. (15)Construct foundations for Personnel and Service buildings. (16)Level all equipment skids. (17) Install pipe supports in buildings. (18)Erect condenser stacks in condenser building and exhaust stacks in power plant building. (19)Install electrical power and lighting Condenser and Power Plant buildings. (20) Install piping and insulation Condenser and Power Plant buildings.

(21) Erect steel floor framing for Personnel and Service buildings.

27

(22)Install heating & ventilation system in Power Plant and Condenser buildings. (23) Install stairs at all buildings. (24) Erect floor panels in Personnel and Service building. (25) Construct timber for Snow Shield. (26) Erect walls, rafters and roof Personnel building. (27)Install plumbing, toilet fixtures, etc. in Personnel building. (28) Place 2 x 12 flooring in Service building. (29)Install Diesel Generator and Auxiliary Boiler in Service building. (30)Install piping in Service building. (31) Install piping in tunnel. (32)Erect walls, interior and exterior, rafters and roof of Service building. (33) Install electrical power and lighting in Personnel and Service buildings. (34)Install shop equipment and lab. (35) Install Heating and Ventilation system in Personnel and Service buildings. (36) Install Fire Protection system all buildings. (37) Check levels of all equipment and buildings. (38) Backfill Snow Shield. (39) Painting all areas. (40) Install Office furniture and equipment. (41) Testing.

c. Schedule

The Erection Schedule, Schedule C, is based on the following work being completed and work proceeding in the Reactor and Machinery areas simultaneously:

(1) Tunnel excavation, roofing and bulkheading.

(2) Penetrations in metal roof arch reinforced with structural steel members and protected with temporary coverings.

(3) Emergency escape hatches and connecting access-

ways.

- (4) Tunnel lighting.
- (5) Survey work for location of foundations.
- (6) All material and equipment delivered at site.

PL-2 PLANT SNOW TUNNEL,	ERECTION SCHEDULE
-------------------------	-------------------

	FIRST MONTH	SECOND MONTH	THIRD MONTH
FOUNDATIONS, TIMBER			
FOUNDATIONS, EXCAVATION			
FOUNDATIONS, STEEL FRAMING			
BUILDING ERECTION, PANELS			
EQUIPMENT INSTALLATION			
STRUCTURAL STEEL ERECTION			
TEMPORARY TIMBER WORK			
LEVELING AND JACKING			
DUCTWORK AND STACKS			
PIPING IN BUILDING			
PIPING IN TUNNELS			
INSULATION			
CARPENTRY: SHIELD, STAIRS ETC.			
PIPE SUPPORTS AND MISC. STEEL			
ELECTRICAL POWER AND GROUNDING			
ELECTRIC LIGHTING			
FIRE PROTECTION SYSTEM			
PLUMBING (TOILET FIXTURES AND LABORATORY)			
BACKFILL SNOW SHIELD			
HEATING AND VENTILATION			
PAINTING			
INSTALL OFFICE FURNITURE AND EQUIP.			
TESTING			

SCHEDULE C

B. MECHANICAL SYSTEMS

1. Plant Heat Balance

The heat balance, Figure 41, for the PL-2 plant indicates that 8.0 MW, thermal, of reactor power will produce a gross electrical output of 1235 KW plus a gross heating load of 502 KW. The net electrical power is 1000 KW at a power factor of not less than .8, while 235 KW is required for the plant load. The net heating load is 400 KW with the remaining heating load providing space heat for the plant. The turbine engine efficiency is 64.7%.

Steam flow from the reactor is 24,724 pounds per hour of which 24,211 goes to the turbine, 463 pounds per hour goes to the reducing station, and 50 pounds per hour is assumed to be condensed due to piping losses and is drained to the low pressure drain tank. Space heat is obtained from turbine extraction steam of 1895 pounds per hour at 93% quality.

The air cooled condenser load₆ is 19.332×10^6 BTU/hr. The load on the subcooler is 2.076×10^6 BTU/hr. The total flow through the subcooler is 31,051.9 pounds per hour of which 8,756 pounds per hour is continually by-passed to provide the required capacity for auxiliary cooling.

For this heat balance the following assumptions were made:

(a) Gross output of the turbine generator is 1235 KW.

(b) Turbine steam rate is 24,211 pounds per hour at 590 psig, throttle.

- (c) Turbine extraction steam 7.8%.
- (d) Turbine exhaust quality is 87% at 15" Hg absolute.
- (e) Space heat load is 1.715×10^6 BTU/hr.
- (f) Reactor operating pressure is 600 psig.
- (g) Air leakage into the system is at 60° F.
- (h) Heat losses from the liquid system are neglected.

(i) Heat losses from the steam system are represented by steam condensation of 50 lbs/hr.

(j) Friction heating in the pumps and pump work is neglected.

2. System Descriptions

a. Process Systems

1) Main and Auxiliary Steam System

The Main and Auxiliary Steam System, Figure 42, distributes steam generated in the reactor vessel to the following equipment and systems:

> Turbine Turbine gland seal system Steam reducing station Service water system Air ejectors Space heat exchangers Air cooled condenser

Main steam flow passes through a motor-operated stop valve, main steam valve, combination trip and hand operated throttle valve and governor valves into the turbine. Exhaust steam from the turbine is distributed to two air cooled condenser units. The remotely operated stop valve along with the stop valve in the feedwater line back to the reactor are located within the reactor complex. Their purpose is to isolate the reactor from the plant under various emergency conditions. The main steam valve is located just inside the power plant building and is furnished with a small by-pass for system warm up.

The trip throttle is normally held open by oil pressure from the turbine lube oil system, and will trip shut on low oil pressure or turbine overspeed. When the throttle valve is closed as a result of a trubine trip, it is necessary to manually reset by turning the handwheel to the closed position. The governor valves which are controlled by the hydraulically operated governing system, automatically regulate steam flow to the first stage nozzles of the turbine.

The turbine is a multi-valve, multi-stage geared unit rated at 1,250 KW. A single point of extraction is provided where 7.8% of steam turbine flow is taken at 50 psig for the space heat exchanger.

A motor operated by-pass valve is furnished at the turbine. It will operate as a back-up for the reactor rod control system. Normally, the by-pass will be closed. In the event that maintenance is required on a rod control system, the by-pass may be opened, exhausting steam directly into the main condenser. The by-pass valve will control steam pressure by maintaining constant reactor steam flow. A reducing station is provided which takes 600 psig steam from the main steam line, at a point between the flow nozzle and the turbine isolation valve, and reduces the pressure to 150 psig. The 150 psig steam is then distributed between the space heat exchanger, air ejector motive steam, and the service water system. Under normal operating conditions the space heat exchanger receives its steam supply from the turbine generator extraction stage. However, the controls are so arranged that during low load turbine operation, when the extraction steam will not be sufficient for space heat requirements, steam is drawn from the reducing station to provide additional capacity. Space heat can be supplied from the reducing station in the event the turbine is shut down for any reason provided the reactor can be operated.

Service steam for the turbine gland seal system is taken from the main steam line upstream of the main steam strainer. The gland seal system is included as part of the turbine generator skid. The system includes a gland seal regulator and a gland seal back pressure regulating valve. The two valves maintain steam pressure in the gland seal system between 2 and 3 psig. When system pressure falls below 2 psig, the gland seal regulator opens allowing the pressure to rise. When the system pressure is above 3 psig, the back pressure regulating valve will vent steam to main condenser.

Two steam relief values are connected to the main steam line between the reactor and the motor operated stop value. They provide over-pressure protection for the reactor, and discharge directly to the atmosphere through the reactor - complex exhaust stack. Steam piping downstream of the main steam reducing station is also protected by a relief value. This value discharges to atmosphere through the power plant exhuast stack. Condensate from both the reactor complex stack and power plant stack is drained through steam traps to the waste tank in the service water system.

2) Condensate System

The Condensate System, Figure 44, condenses exhaust steam, provides cooling water for the auxiliary heat exchangers throughout the plant, and supplies the condensate to the feedwater system. Specifically, the condensate system performs the following functions:

(a) Condenses exhaust steam from the turbine and flash steam vented from the low pressure tank and return the condensate to the reserve feed tank.

(b) Maintains a partial vacuum at the turbine exhaust.

(c) Sub-cools the condensate sufficiently to permit using it for auiliary cooling.

(d) Supplies condensate to the auxiliary heat exchangers throughout the plant for use as a coolant.

(e) Condenses the gland exhaust and seal leak-off vapors and returns the condensate to the low pressure drain system.

The condensate system contains two air cooled finnedtube condensers, a hotwell tank, two condensate pumps, two condenser air ejector sets, two gland exhaust air ejector sets, an after condenser to condense the exhaust from the condenser and gland exhaust air ejectors, and a precooler to condense the gland exhaust and seal leak-off vapors.

Steam exhausted from the turbine and flash steam vented from the low pressure drain tank enters the tube side of the two condensers where it is condensed and the condensate sub-cooled by air forced over the outside of the condenser tubes by eight propeller type fans, four per condenser. The sub-cooled condensate drains by gravity and is collected in a separate hotwell tank located on the feed and condensate skid. A control valve in the condensate drain line from each condenser automatically maintains a preset level of condensate in the sub-cooling portion of the condenser.

One of the two condensate pumps, taking suction from the hotwell, delivers condensate through a discharge header to a heat exchanger supply header. Loss of discharge pressure will automatically transfer service to the standby pump. The heat exchanger supply header distributes condensate for use as a coolant to the following heat exchangers:

(a) After condenser and precooler which are connected in series.

- (b) Shield water coolers.
- (c) L. O. Intercooler.
- (d) 2nd stage regenerative heat exchanger.
- (e) Spent fuel tank cooler.
- (f) Evaporator condenser.
- (g) Shield tank coolers.

Condensate from the heat exchangers is delivered to the reserve feed tank through a return header. A three-way valve in the line to the reserve feed tank automatically maintains a constant level in the reserve feed tank by by-passing part or all of the condensate back to the sub-cooling portion of the condenser. Makeup water can be added to the hotwell manually by a vacuum drag connection from the makeup feed tank or a connection from the makeup pump discharge header.

One of the two sets of condenser air ejectors is normally operating to remove air and other non-condensible gases from the tube side of the two air coolea condensers and thus helps to maintain the design condensing pressure, 15 inches Hg absolute at full power. The other air ejector is manually started if the operating ejector fails.

One of the two sets of gland exhaust air ejectors is normally operating to remove air and other non-condensible gases from the shell side of the precooler and thus help to maintain the design vacuum of 3 inches Hg. The other air ejector is manually started if the operating unit fails.

The two air-cooled condensers are connected in parallel and are located in a single T-5 building. The condensers are designed to condense the turbine exhaust steam and maintain the design pressure of 15 inches Hg absolute in the turbine exhaust line at full power when the ambient air is 60° F. The condensers are also designed to sub-cool the condensate from 180° F to 100° F. The two condensers have a total thermal capacity of 21.4 x 10° BTU/hr.

Cooling air is supplied to each condenser by four 20 horsepower propeller type fans mounted under the condensing and subcooling surfaces. The fans take suction from inside the building and discharge through the condenser tube bank, a control plenum, and a 5 feet by 15 feet exhaust stack to ambient above grade. Intake air is supplied to the condenser building through a duct which completely encloses the exhaust stack on all four sides and serves to insulate the snow tunnel roof from the hot, exhaust air. The intake air is directed through vertical, fixed storm louvers open on all four sides of the stack. A sheet metal shield protects these louvers from direct blowing snow. Manually operated single bladed dampers are provided in the intake duct outlets on either side of the condenser inside the T-5 building. A flexible connection is provided between the control plenum and the stack to isolate the stack from any vibration generated by the condenser. Provision is made for the addition of 3 feet extensions in the air intake and exhaust stacks above grade to compensate for snow accumulation.

Freezing in the condenser is prevented by recirculation of part of the hot exhaust air to temper cold intake air and maintain safe inlet air temperature to the fans. This is accomplished by the control plenum located on top of each condenser. The plenum contains two automatically controlled sets of dampers, exhaust and bypass, which control the proportion of recirculated air to maintain a constant inlet air temperature to the fans. The condensers drain completely on shut down and space heat is recorded in the condenser buildings to provide protection against freeze up.

Figure 38 shows the arrangement of a single condenser for application in a snow tunnel. Figure 25 shows details of the intake and exhaust stack.

3) Feedwater System

The Feedwater System, Figure 46, delivers feedwater to the reactor. The feedwater system also performs the following secondary functions:

(a) Supplies sealing water to the control rod drive seals.

(b) Collects the plant steam drains and returns them to the reactor.

(c) Returns the purified water from the purification system to the reactor.

The feedwater system contains a reserve feed tank, two feed pumps, and a control rod drive seal water filter.

Condensate from the condensate system and steam drains from the low pressure drain system are delivered to the reserve feed tank. The water level in the reserve feed tank is maintained constant by the condensate control valve in the condensate system. An overflow connection to the hotwell is provided to prevent loss of the condensate from the system if the condensate control valve fails. The reserve feed tank provides a positive suction head to the feed pumps and approximately a ten minute reserve feedwater supply in the event of a condensate system failure. The reserve feed tank is vented to the after condenser to prevent escape of vapors to the plant spaces.

One of the two feed pumps is operated to transfer feedwater from the reserve feed tank through a discharge header to the reactor and the control rod drive seals. An automatic feedwater control valve controls the feedwater supply to the reactor to maintain a constant water level in the reactor. A connection ahead of the feedwater control valve provides seal water to the control rod drive seals. A replaceable cartridge type filter protects the control rod drive seals from damage due to foreign materials.

An orifice meter is provided downstream of the feedwater control valve to indicate the feedwater flow rate to the reactor. The purification system discharges into the feedwater line downstream of the orifice meter. A check valve is provided in the feedwater line ahead of the purification system connection to prevent backup of the purification flow into the feedwater system. A fine screen strainer is located in the feedwater line after the purification system connection to protect the reactor from any foreign material which might be carried by the feedwater or the purification water. A motor operated stop-check valve is provided near the reactor to prevent any reverse flow from the reactor and permit remote isolation of the reactor from the control console.

A by-pass line, with an orifice, is provided from the feed pump discharge to the reserve feed tank to protect the feed pumps from overheating during operation at or near shutoff conditions. Loss of discharge pressure will automatically transfer service to the standby pump.

4) Coolant Purification System

The Coolant Purification System, Figure 48, removes soluble and insoluble impurities from the reactor coolant by continuously passing a portion of the coolant through a demineralizer column. The soluble materials are removed by ion exchange and the insoluble materials are removed by the filtering action of the resin bed.

A purification flow of 5 gpm (at 120°F) flows from the reactor to a holdup section (enlarged section of pipe) where the fluid is held up to allow N⁻⁶ radioactivity to decay. The flow is then cooled to 120°F by the 1st and 2nd stage heat exchangers. Passing through the demineralizer, the purified water is pumped by the coolant purification pump into the reactor feedwater line upstream of the feedwater strainer. This strainer provides secondary protection against demineralizer resin entering the reactor vessel. Primary protection is provided by filters integral to the demineralizer. Before the fluid is returned to the feedwater line, it passes through the 1st stage heat exchanger and acts as a cooling medium for the purification flow coming from the reactor. Sub-cooled steam condensate is used as a cooling medium in the 2nd stage heat exchanger.

Sampling taps are located upstream and downstream of the demineralizer to allow coolant samples to be taken for analysis purposes. A resistance thermometer is located in the inlet line to the demineralizer and provides alarm and control functions to protect the demineralizer resin from high coolant temperature. Should the coolant temperature rise above 140°F, a signal from the resistance thermometer will de-energize the coolant purification pump, thus stopping flow to the demineralizer. A thermocouple is also installed in the inlet line to the demineralizer to provide temperature indication at the plant control panel. The pressure switch located downstream of the purification pumps will transfer service to the standby pump on low pump discharge pressure. A flow measuring orifice is located in the purification return line to the reactor to provide indication of the purification flow rate.

The Coolant Purification System is utilized to cool down the plant after a reactor shutdown and also to remove decay heat from the reactor. An eductor is used to pull water from the reactor during a shutdown when sufficient head is not available to make water flow to the purification system. Eductor motive water is provided by recirculating a portion of the purification pump discharge through the eductor.

A packaged demineralizer, Figure 28, is employed to remove soluble and insoluble materials from the reactor water. The unit is a completely shielded shipping package designed to permit shipment of a spent unit without exceeding ICC shipping regulations. The demineralizer is located on the purification skid in the machinery building and is fitted with unions for connection to the piping system. Replacement of the demineralizer can be accomplished without interrupting power operation.

5) High Pressure Drain System

The High Pressure Drain System, Figure 52, operates to continuously drain any condensation from the main and auxiliary steam lines, the space heat exchanger, and relief valve discharge lines (except main steam relief valve discharge lines). The main and auxiliary steam lines drain through impulse steam traps having integral strainers to a common return header. Stop-check valves are provided in the discharge line from each trap to prevent reverse flow. The return header is drained to the low pressure drain tank through a float trap. The casing of the float trap is vented to the reserve feed tank. Isolation and by-pass valves are provided for each trap to permit maintenance and repair of the traps without interrupting plant operation.

6) Low Pressure Drain System

The Low Pressure Drain System, Figure 53, operates to:

(a) Collect the seal leak-off from the control rod drive seals and reactor vessel head seal, and the gland exhaust from the turbine shaft seals, drain the condensate to the low pressure drain tank, and vent the vapors and non-condensible gases to the precooler in the condensate system.

(b) Collect the condensate from the high pressure drain system, the turbine casing drains, and the after condenser and precooler.

(c) Return the collected drains to the reserve feed tank for re-use as feedwater.

The leak-off connections from the control rod drive seals and the reactor vessel head seal and the gland seal erhaust connections from the turbine high and low pressure shaft seals join to a common return header. This header is drained to the low pressure drain tank through a float trap and vented to the precooler. The precooler condenses any vapors and is maintained at 3 inch Hg vacuum by the gland exhaust jet.

Condensate from the shell side of the after condenser and precooler, drains to the low pressure drain tank through a duplex drainer. The turbine steam chest and exhaust casing is drained to the low pressure drain tank through a common header. An impulse trap is provided in the steam chest drain line and a stop-check valve is provided in the line from the exhaust casing to prevent reverse flow.

The condensate is collected in the low pressure drain tank. The low pressure drain tank is maintained at turbine exhaust pressure, 15 inches Hg absolute, by a vent to the turbine exhaust line which allows vapors and non-condensible gases to pass to the main condensers. Condensate is transferred from the low pressure drain tank to the reserve feed tank by one of two low pressure drain pumps. The pump is operated by a level signal from the low pressure drain tank water level. If the operating pump fails to start on the high level signal, a high level alarm will be sounded at the control console and the operator will manually transfer service to the standby pump. A stop-check valve in the discharge line from each low pressure drain pump prevents reverse flow through the standby pump.

7) Lube Oil Service System

The Lube Oil Service System, Figure 55, consists of the following major components:

- (a) Lube oil sump.
- (b) Lube oil strainer.
- (c) Main lube oil pump.
- (d) Standby lube oil pump.
- (e) Duplex lube oil cooler (one standby).
- (f) Lube oil purifier.
- (g) Two lube oil coolant pumps (one standby).
- (h) Lube oil intercooler.
- (i) Coolant surge tank.

All of the above items except the lube oil intercooler and the coolant surge tank are located on the turbine generator skid. The lube oil intercooler is carried on the feed and condensate skid. The coolant surge tank is a two feet long six inch schedule 40 pipe.

The main lube oil pump is driven from the main gear and takes oil from the lube oil sump located in the turbine generator skid base, pumps it through the lube oil strainer, through one side of the duplex cooler, and to the turbine generator bearings and reducing gears. A portion of the lube oil is taken just after the strainer and is sent to the turbine generator governor. Oil to the duplex coolers is controlled by a manual duplex 3-way valve. An intermediate cooling system is provided which minimizes the possibility of oil from the lube oil system mixing directly with primary water. The intermediate cooling system includes the intercooler, surge tank and coolant pumps. The coolant pump circulates water to the lube oil coolers, where it picks up heat from the oil, then to the intercooler where the heat is given up to the condensate system. The surge tank allows for the necessary expansion volume in this system.

A turbine lube oil purifier, complete with corrosion resistant bowl, integrally mounted inlet and discharge pumps is provided. Both the centrifuge and the pumps are driven by a single splash proof motor. The purifier and the lube oil sump are furnished with immersion heaters.

b. Utility Systems

1) Raw Water Purification System

The Raw Water Purification System, Figure 50, changes base water to reactor grade quality by use of an ion exchange demineralizer. The system is operated intermittently, dependent on makeup water requirement.

Raw Water (5 gpm) from the base water main passes through a mixed resin bed demineralizer. Soluble ionic impurities such as Ca⁺, Mg⁺, CO₂⁻⁻, Cl⁻ are removed by ion exchange with a hydrogen-hydroxyl form⁺ resin. Insoluble non-ionic impurities are removed by the filtering action of the resin bed. Since the resin will not remove dissolved non-ionic impurities such as chlorine gas, the raw water is tapped off the base water main upstream of the chlorinator. The demineralizer is sized to contain three cubic feet of resin. It is a cartridge type unit, that is, the resin is contained in a cartridge which can be inserted into the demineralizer by removal of its head. Since it is not intended to regenerate the resin on site, the cartridge type unit eliminates regeneration facilities which would require acid and caustic handling and storage. The demineralized water then flows to a storage tank. Water from the storage tank can be pumped to the following plant locations:

- (a) Main condenser hotwell.
- (b) Spent fuel pit.
- (c) Shield water tank.

Provision is also made so that makeup water from the storage tank can be vacuum dragged to the main condenser hotwell during plant operation.

A conductivity cell is located in the demineralizer effluent line. The cell will initiate an alarm signal at the plant control panel when the conductivity of the water rises to 1.7μ mhos. The cell also gives an indication of conductivity level at the plant control panel. A conductivity level of 2 μ mhos is an indication that the resin is expended. Another conductivity cell is located downstream of the storage tank to determine the quality of the water leaving the tank. If the water stored in the tank does not meet required quality it can be recirculated through the demineralizer through a recirculation line, which runs from the pump discharge to the demineralizer inlet line. The recirculation will improve the water quality and insure that the water supplied to the system meets specifications of:

рĦ

6월 - 7월

Conductivity 2 µmhos, max.

Provision is made to reuse water previously rejected from the plant. Processed water of reactor grade quality from the Service Water System is pumped, as required, to the makeup tank.

The makeup pump is utilized to provide a head for cooldown flow to the Coolant Purification System during a reactor shutdown operation. When cooling the reactor below 201°F, prior to putting the Coolant Purification System eductor into service, the makeup pump runs at shutoff head to provide the required head. A recirculation line around the pump is provided to prevent damage to the pump when it is operating at shutoff head. The pump discharge is connected to the feedwater line during this operation.

2) Service Water System

The Service Water System, Figure 57, collects all plant radioactive water and processes this water so that (1) it meets maximum permissible activity limits for disposal, (2) it meets reactor grade specification for reuse in the plant. A spent fuel tank is also included in the system to store spent fuel elements.

Waste Tank

The waste tank located in the reactor complex collects all plant contaminated wastes and radioactive drains. The following locations discharge to the waste tank:

- (a) All power plant building skid drains.
- (b) Radioactive laboratory drain.
- (c) Radioactive shower drain.
- (d) Reactor complex exhaust stack drain.
- (e) Contaminated laundry waste.
- (f) Decontamination fluid.
- (g) Relief valve drain.
- (h) Shield water tank.

The tank capacity is 64 cubic feet and is sized to contain the total wash and rinse volumes from a decontamination operation. Water from this tank will be processed in a 200 gallon per day evaporator.

Evaporator

A 200 gallon per day evaporator which processes radioactive water from the waste tank is located on the purification skid in the power plant building. The overhead condensate will gravity drain to the disposal tank also located on the purification skid. The evaporator will concentrate the feed to about a 50-50% water-solid mixture. It is estimated the evaporator can operate for one year or more before it is required to dump the bottoms product. The bottoms product will be packaged for shipment to a disposal area.

The following is a tabulation of normal liquid makeup and activity concentrations from the evaporator.

	<u>Gal/wk</u>	<u>Mc/cc</u>
Evaporator Overhead	427.7	1×10^{-8} 4.57 x 10 ⁻¹
Evaporator Bottoms	1.3	(activity level at end of one
The evenemeter besting redius is 150 mounds -	-toon from the	year) Naim Steam

The evaporator heating medium is 150 pounds steam from the Main Steam System. The steam condensate will drain to the High Pressure Drain System.

Disposal Tank

The disposal tank which primarily stores evaporator overhead acts as a holdup reservoir prior to disposing of this water. If it is desired to dispose of the water to the base sewer, samples can be taken to insure the water meets permissible radioactivity dumping limits. If for any reason the water doesnot meet the permissible limits, it can be pumped back to the waste tank for another pass through the evaporator. If it is desired to utilize disposal tank water for reactor plant makeup, the water is pumped to the drain tank to await further processing through the spent fuel tank demineralizer. This processing will insure water of reactor grade quality. A disposal tank recirculation line is provided to insure that a representative sample is taken during a sampling operation. The disposal tank is located on the purification skid and has a capacity of 35 cubic feet.

The following table is an estimate of plant waste water volumes, and plant makeup water requirements.

TABLE I

	Gal/day	<u>Gal/week</u>
Laboratory drains (from sampling) and laboratory equipment cleaning	10	70
Plant Leakage	5	35
Radioactive laundry wastes Gross Plant Waste Water		<u> </u>
Plant makeup water requirements		
Water loss through plant air ejectors Sampling and leakage losses	58 10	
Radiolysis of reactor water	5	
Makeup water requirements from	73	511
Raw Water Purification System		82

Drain Tank

The drain tank located in the reactor complex is provided to store the total amount of operational reactor plant water. Water from the reactor plant will be stored in this tank if it becomes necessary to pump out the plant during a plant maintenance period. Reactor plant water can be pumped to the tank either from the Coolant Purification System or Condensate System. During operation of the plant, plant makeup water from the disposal tank will be stored in the drain tank prior to circulation through the spent fuel tank demineralizer. Circulation of this water through the demineralizer will insure water of reactor grade quality for re-use in the plant. Water from this tank can also be pumped back to the disposal tank. The drain tank has a capacity of 467 cubic feet.

Spent Fuel System Demineralizer

The spent fuel system demineralizer is utilized to purify water from the spent fuel tank. A cooler located upstream of the demineralizer cools the cirulating water to 120°F to insure the demineralizer resin does not suffer thermal damage. Water can also be circulated through the cooler to take excess heat away from the water due to heat generation from spent fuel elements. During this operation the demineralizer is by-passed.

Reactor plant makeup water requirements can partially be satisfied by re-using evaporator overhead condensate. Disposal tank water is thus pumped to the drain tank for eventual reuse. When makeup water is required, the drain tank water is circulated through the spent fuel system demineralizer to insure water of reactor grade quality.

> pH 6.5 - 7.5 Conductivity 2 µmhos, max.

Reactor grade water is then pumped to the makeup water storage tank on the feed and condensate skid. Sample taps are provided upstream and downstream of the demineralizer for water analyses purposes. The demineralizer is of the packaged type, and is identical to that used in the Coolant Purification System. It is also located on the purification skid.

Spent Fuel Tank

The spent fuel tank is a large open top tank in the reactor complex utilized to store spent fuel elements under water.

3) Plant Heating and Ventilating System

The plant heating system, Figure 59, is operated to supply the thermal equivalent of 400 KW net for site heating and to provide sufficient additional heat to maintain the machinery and associated spaces at 60°F. The system consists of a unit heater in the boiler room and the machine shop; wall fin convectors in the reactor complex, condenser, power plant and personnel buildings and piping connections to supply site heating. A steam to water heat exchanger (space heat exchanger) is connected in parallel with an oil fired hot water heater (shutdown boiler) and two hot water circulating pumps and surge tank are provided.

The shutdown boiler and the space heat exchanger are connected to common inlet and outlet headers such that either unit can supply the plant heating load and the 400 KW (t) net site heat load. The space heat exchanger is used during normal operation and the shutdown boiler is operated whenever reactor steam is not available. Water at 190° F is supplied to the inlet header and either heat exchanger by the circulating pumps. The water is heated to 220° F and distributed via the outlet header to the plant heaters and to the site heating system. Equipment necessary for site distribution is not included in this system. Water from the plant heaters and site heating system is returned to the pump suction where a surge tank provides storage and surge capacity.

Hot water from the heat exchanger outlet header to the plant heating system passes through a three-way tempering valve which senses the outside ambient temperature and mixes cold water from the plant heating pump discharge with the hot water to vary the supply water temperature to the heating system. The heating system consists of two parallel loops, one loop supplies the condenser and reactor complex and the other loop supplies the power plant, personnel and service building. An orifice connects the supply and return legs of each loop and insures a minimum flow of approximately 1 gpm through each loop to prevent freezing.

The reactor complex, condenser building, and power plant building are heated by two parallel wall fin convectors mounted along each side wall of the building. Common supply and return headers connect the convectors to the supply and return legs of the heating loop. A thermostatically controlled valve installed in the return header and operated by a self-contained temperature pilot regulates the flow through the wall fin convectors to maintain 60°F in the building. Normal ventilation of each building is provided by manually operated wall louvers and an insulated gravity exhaust stack which discharges through the roof of the building. A manually controlled exhaust fan in the exhaust stack of the reactor complex and the power plant building permits forced purging of these buildings, if required.

During normal plant operation, the condenser building is heated by recirculated air from the condenser exhaust stack. During shutdown conditions, natural circulation through the condenser and ducts will provide adequate ventilation.

The service building is heated by two unit heaters, one in the boiler room and the other in the machine shop, which recirculates air within the space. Ventilation is provided by manually operated wall louvers and an insulated gravity exhaust stack to the ambient above grade. Temperature in the building is controlled by a thermostat in each space which starts and stops its respective heater fan.

Spring loaded dampers with fusible links are provided in each exhaust stack to provide automatic closure in the event of fire.

4) Fire Protection System

The fire protection system consists of two major parts, the fire extinguishing system and the detection and alarm system.

The fire extinguishing system is made up of a separate fixed total-flooding carbon dioxide system for each building, backed up by portable hand extinguishers. The fixed flooding systems are designed for manual operation from the plant control station and from a local station immediately outside each building. Automatic devices are provided to shut ventilation openings and stop any fans in the event of a fire.

The detection and alarm system performs two principle functions:

(a) Warns the plant operator of an excessive temperature condition in any building.

(b) Sounds an audible alarm in the affected space to warn personnel to leave when the fixed flooding system is actuated.

Temperature detectors will be located throughout each building in the vicinity of major fire hazards. Two alarm points are provided at each detection station, one at 85°F and the second at 130°F. The normal procedure is to send an investigation team to the scene at the lower alarm point to determine if fire or a malfunction of the heating system is the cause and take remedial action as necessary. This early warning will normally permit extinguishing the fire with portable hand extinguishers while it is small and before it does extensive damage. At the higher alarm point the automatic closure devices operate and, if an investigating team is not at the scene, the operator should immediately actuate the fixed flooding system. When an investigating team is at the scene, actuation of the fixed flooding system should normally be left to their discretion.

When the fixed flooding system is actuated, an audible alarm will warn personnel to evacuate the space and will delay release of the gas a pre-set time interval to permit evacuation. Carbon dioxide is a smothering agent and therefore dangerous to personnel. Care must be exercised after release of the gas to use proper protection, such as oxygen or fresh air breathing apparatus, for personnel entering the space. After the fire is extinguished, the space will be thoroughly purged to remove the carbon dioxide gas.

Suitable provisions to permit testing of the fire protection system without release of the carbon dioxide gas are built into the system.

3. Shielding

a. Operating

The functions of the PL-2 reactor shielding may be divided into two categories: One, its function during periods of reactor operation and two, its function during periods of reactor shutdown. Because the reactor complex (Figure 3) is located in a snow tunnel, the shielding must not only take biological effects into account but also the heat generation in the tunnel walls and floor. When the reactor is operating, therefore, the shielding must:

1) Limit the exposure of plant personnel to a dose rate not exceeding 100 mr per work week of 84 hours during normal plant operation.

2) Limit the heat generation in the snow to a value consistent with foundation requirements.

It is not anticipated that access to the reactor complex will be permitted during reactor operation.

Attenuation of the reactor core gammas and escape neutrons is accomplished along the core mid-plane by the following materials, in sequence from the core surface:

(a)	Reactor coolant, water,	8.3	inches
(b)	Pressure vessel wall, steel,	1.3	inches
(c)	Thermal insulation,	2.5	inches
(d)	Support, steel,	.12	25 inches
(e)	Space,	1.5	inches
(f)	Inner shield tank wall, steel,	.25	inches
(g)	Lead,	3.5	inches
(h)	Shield water,	15.5	inches
(i)	Outer shield tank wall, steel,	•3	inches

The shield tank is surrounded by insulated panels about 3.5 inches thick. A space of about two feet exists between the tank and panels. These panels serve to minimize thermal radiation from the reactor complex to the surrounding snow in the tunnel and reduce the heating requirements of the reactor complex.

Interposed between the shield assembly, Figure 18, and the power plant buildings is the spent fuel tank containing water, eight feet front to back, and about fifty feet of snow. In addition, the tunnel floor is offset about seventeen feet below the access tunnel floor. Computation of the dose rate at the plant buildings, using only the effect of the fifty feet of snow, gives a level of less than 1 mr/hr during full power reactor operation. Table II below gives anticipated dose rates at selected locations in the reactor complex. These are the total of neutron and gamma contributions from an 8 MW(th) reactor core and include absorption gammas, i.e., gammas emitted when a thermal neutron is absorbed in a material.

TABLE II

DOSE RATES IN REACTOR COMPLEX, OPERATING

Location		<u>Dose Rate</u>	<u>Notes</u>
Lead Shield: outside surface	2.5	x 10 ⁵ R/hr	
Shield Tank: outside surface	6.8	x 10 ⁴ R/hr	
Spent Fuel Tank: outside surface	-	mr/hr	opposite core, 24 hrs. after insertion of spent fuel
Operating Floor:	2.9	$x 10^3 $ R/hr	directly over core

b_o Shutdown

The reactor shielding must allow access to the reactor floor for refueling and maintenance after the reactor is shutdown. Refueling is done after the reactor has been cooled down and the system depressurized. Water level in the reactor vessel is raised during this process to a point below the vessel flange. The fuel is transferred (by means of a shielded transfer cask) from the core structure to the storage section in the spent fuel tank. Here the activity of the fuel elements is allowed to decay to a level facilitating shipment in shielded containers to a reprocessing plant. The transfer cask is designed to give a dose rate of 50 mr/hr during fuel transfer from the pressure vessel to the spent fuel tank.

Spent fuel in the spent fuel tank is covered by about twelve and a half feet of water which is recirculated to remove the heat generated by the spent fuel. When this heat generation has decreased to a level allowing shipment, the spent fuel shipping cask can be lowered alongside the storage section and the fuel transferred to it.

Table III lists the expected dose rates at the mentioned locations after shutdown:

TABLE III

DOSE RATES AFTER SHUTDOWN (MR/HR)

Location	۰5h	4h	12h	24h	Notes
Operating Floor: Above Core		1	l	l	
Water Surface	74	43	29	26	Inside pressure vessel
Refueling Station	n -	-	-	-	Alongside transfer cask
Operating Floor; Above Tank	1	1	1	7*	*With spent fuel in storage

c. Foundation Heating, Reactor Complex

When the reactor is in operation, a continuous stream of neutrons and gamma photons leaves the core. The gammas are attenuated or debilitated in energy as the gamma stream passes through the structural materials and shielding. Energy absorbed appears as heat and affects a temperature rise in the material. The attenuated gammas finally reach the snow and become absorbed. Neutrons leaving the core are predominantly fast neutrons. In passing through the materials surrounding the core, these neutrons are gradually thermalized and absorbed. The absorption of thermal neutrons is accompanied by the release of gamma photons which are in turn gradually absorbed as they proceed through the structural materials. Thus there is a shower of released gammas that joins the core gammas and neutrons and helps generate heat when absorbed in the snow. A computer study has been made to determine the effects of heat generation in the snow surrounding the reactor structure. Figure 73 depicts the model used in the study. A section was taken across the tunnel. With the core centerline as the axis, a cylindrical geometry was assumed. Heat transfer was taken as zero across the centerline and across the snow at a height of 9 feet above the tunnel floor. Heat sinks were assumed at 49 feet below the tunnel floor and 52 feet from the tunnel wall. These distances were selected on the assumption that they would not vary greatly with time. The tunnel wall and floor were maintained at a constant temperature. A sink temperature of -30° F was selected as representative of the temperatures found in the snow at the plant site.

The snow volume under consideration was divided into two major sections: A heat-generating section and a simple conducting section. In turn, the heat-generating section was subdivided into 18 regions, each with its own rate of heat generation. Other assumptions made were:

- (1) Snow density is constant at 0.5 g/cc.
- (2) Snow conductivity is constant at .4116 BTU/ hr-ft²-F/ft.
- (3) Heat generation is constant in each of 18 regions.
- (4) Heat generation varies with radial as well as axial regions.
- (5) Heat sinks are not affected by heat flow.
- (6) Snow is the only material of foundation.
- (7) Induced activity in the snow is negligible.

As a comparison, two tunnel temperatures were selected: $0^{\circ}F$ and $-15^{\circ}F$. Figure 74 shows the resulting isotherms when the temperature is $0^{\circ}F$. A "hot spot" appears about two feet below the floor but the rise is only three degrees above the tunnel temperature. When $-15^{\circ}F$ is assumed in the tunnel, the spot is at a depth of three feet and at five degrees above the base temperature. Figures 76 and 77 are the result of assuming that the heat generation has been increased by a factor of two and four respectively. As expected, the maximum temperature increases and the isotherm tends to appear at a greater depth. The value of the maximum temperature, however, is not a linear function of heat generation. At a tunnel temperature of $0^{\circ}F$, the maximum temperature follows the approximation: $T = T_{o}(Q/Q_{o})^{n}$ where T = uax. T, deg. F $T_{o} = max$. T, with Q_{o} , deg. F $Q_{o} = reference heat generation,$ BTU/hr-ft³ Q = heat generation, BTU/hr-ft³ $n = 1.65 \stackrel{+}{-} .15$

The effect of using an added heat sink to control temperature rise can be seen in Figure 78 where an additional O^OF sink was established two feet below the tunnel floor. Its effect was to lower the maximum temperature by a factor of 0.65 but it drove the "hot spot" to a greater depth. To circumvent this, it is suggested that any heat sink be used at a depth greater than that at which the original maximum temperature is expected to appear. This would not only depress the temperature rise but also limit its movement.

In comparing Figures 77 and 78, it should be noted that the addition of another heat sink as shown has a limited influence upon the surrounding snow structure. The change is a shift of a few inches in the isotherms below five degrees when the tunnel is at 0° F. Most of the variation in isotherms above 5 degrees occurs within a few feet of the heat sink.

The boundary value temperatures selected for the study are conservative for Byrd Station. The resulting maximum temperatures at the indicated "hot spots" are far below the range of temperatures that can be considered to affect the stability of the snow surfaces.

C. ELECTRICAL SYSTEMS

1. Electrical Power Load Analysis, Figure 61

An analysis of plant electrical loads under various operating conditions was made to size the components in the power system.

The analysis, Figure 61, shows that the total 480 volt load at design full power is 218 KW or 240 Kva. This represents a conservative load for the 300 Kva plant load center.

During startup conditions, the sum of the loads is shown to be 122.5 KW. The shutdown power required is 91 KW. On this basis, the auxiliary AC power source to supply startup and shutdown power must be rated in excess of 125 KW. The maximum power transient during startup conditions occurs when the feed pump is started. Using reduced voltage, autotransformer (65% taps) starters for the feed pumps, the starting Kva of these motors is 145. An 1800 rpm generator with a fast response exciter requires a rating of 170%, of applied starting Kva to keep the minimum terminal voltage above 85% during the transient A 200 KW diesel generator unit is used for the auxiliary supply.

The analysis shows that the highest load on the DC bus occurs during shutdown conditions with a peak of 3860 watts. To supply this demand 5 KW converters are used.

- 2. Main Electrical System, Figure 63
 - a. Main Generator
 - 1) Description

The gross electrical power is generated by a synchronous generator of the open dripproof, horizontal, separately excited revolving field type. The principal generator characteristics are: speed-1200 rpm, capacity-1250 KW continuous, 3 phase, 4160/2400 volt, 60 cycle, insulation-Class B. Generator equipment includes: a direct connected exciter, amortisseur windings in each field pole, six thermocouples embedded in the stator with leads brought out to a terminal board, a ventilating fan bolted to the rotor shaft, and an end shield bearing.

The turbine prime mover, the reduction gear and the generator are mounted on a common skid base which, with a protective enclosure for the equipment, is suitable for shipment on an operational base.

2) Auxiliary Equipment

Control and protective equipment for the main generator is housed in equipment cabinets on the electrical skid. Generator protection is provided for overcurrent, undervoltage, and directional differential current conditions. When the trip points in any of these areas are exceeded, a lockout relay is actuated. This, in turn, trips a power circuit breaker, 4.16Kv, 1200 ampere, metal-clad type, in the generator output line and a field breaker in the generator field circuit.

Current and potential transformers in the high voltage feeder lines provide signals of voltage, current, frequency and power which are indicated on the front of the control cabinets and on the secondary control board at the console. A synchroscope is provided to enable the turbine-generator to be

* At an estimated constant current initial load of 20 KW

synchronized with an outside power source or with the plant diesel generator.

3) Maintenance

The power circuit breakers are roll out components to facilitate access for inspection and servicing. Cabinet access from both front and rear makes the other components available for service in addition to providing a compact arrangement.

- b. High Voltage and Distribution
 - 1) Description

The gross generator output is fed from the generator output breaker, ME-CB-02, to two utilization points. The first is the plant load center, ME-T-Ol, which is located on the electrical skid adjacent to the generator control cabinets. The generator output is also fed to the station load through a power circuit breaker, ME-CB-03, (oilless metal-clad type) which is located on the electrical skid.

2) Ratings

The generator and station load breakers are 4.16 KV class with an interrupting rating of 75 MVA. Stored energy operating mechanisms provide rapid (5 to 8 cycles) closure and trip which prolongs breaker life and reduces maintenance. The available energy is sufficient to close the contacts under full short circuit conditions.

- c. Plant Load Center
 - 1) Description

The load center is a coordinated equipment arrangement for stepping down from the generation voltage of 4160 Y/2400 to the plant supply voltage of 480 Y/277 and for protecting and switching the low voltage power distribution circuit. The assembly is enclosed in a freestanding, three section, metal cabinet. The first section contains a fused, air-interrupter switch for disconnecting the center from the primary and for protecting the transformer. The center section contains a three-phase, 4160 to 480 Y/277 volt, open dry-type transformer. The low voltage section contains a low voltage power circuit breaker for protecting the plant distribution bus. A parallel breaker (not shown) is provided as backup to increase system reliability. 2) Ratings

The incoming line section fused switch is rated at 4160V and an interrupting capacity of 60,000 amperes (asymetrical) RMS. The 4160: 480 Y/277 volt transformer has a rated capacity of 300 KVA. The secondary breaker is rated at 600 volts, 600 amperes continuous, and 60,000 amperes (asymetrical) RMS interrupting.

3) Maintenance

Access to the interrupter switch cabinet is from the side of the skid. The access door is key interlocked with the secondary breaker for safety to personnel and protection to service continuity. The air break type switch has an air insulating medium which does not leak or require maintenance and has contacts readily available for inspection and testing.

The transformer taps and connections are available through a panel in the front of the transformer cabinet. Periodic cleaning of the coils and core structure is required. The silicone insulation minimizes drying times required before reenergizing after a shutdown period.

The secondary breakers are dead-front switch board mounted in the low voltage cabinet and are accessible from the side of the skid.

3. Auxiliary and Emergency Electrical System, Figure 64

a. Diesel-Generator

An auxiliary source of AC power is required in the plant for several operating conditions. Because the plant is an isolated, self-powered unit, an alternate source of power is necessary during plant startup, plant shutdown or emergency outages. To fulfill these requirements a diesel powered generator is provided.

1) Description

The generator is a horizontal, open-dripproof assembly utilizing a fabricated steel housing and a single ball bearing. A plate type coupling at the front of the generator attaches the generator motor to the engine flywheel. The excitor is top mounted and belt driven. The magnetic amplifier type voltage regulator is located in a housing on top of the generator. The engine is a 4-cycle diesel unit with the following characteristics:

- 6 cylinders - 1800 rdm - #2, gear type transfer pump fuel oil type governor - flyball type, right side, engine mounted starting - electric standard accessories which includes: aftercooler air cleaner, dry type full flow filters, fuel and lube oil flexible fuel lines gauges: fuel pressure, oil pressure, water temperature lifting eyes lube oil cooler, water cooled

pumps: fuel transfer, packet water, lube oil
service meter
mounting brackets
thermostats and housing
turbo charger

2) Rating

Generator capacity is 200 KW continuous. The voltage regulator will maintain a steady state voltage within $\frac{1}{3}$ 1/2% of rated voltage. Minimum generator voltage during the maximum starting transient is 85% of rated load voltage.

3) Auxiliary Equipment

Accessories provided with the generator include:

Amortisseur windings in the field pole faces.

A wall mounted control panel which house a voltmeter, an ammeter with selector switch and a circuit breaker.

An automatic transfer - starting unit to start the diesel upon failure of the turbine generator supply and transfer the electrical load to the diesel generator. The following equipment is supplied with the

diesel unit 8

overhead silencer

radiator and shaft mounted fan

4) Operation

The diesel generator is located in the service building and is connected to the 480 volt plant power distribution but through the automatic starting-transfer unit.

During plant startup, the diesel unit supplies power to the plant loads, pumps, lighting, etc. As the turbine generator is started, the load is transferred to it and the diesel unit is stopped. In the event of failure of main electrical power, the diesel unit is automatically started and transferred to the line within, for normal operation, 10 seconds. The utility loads and emergency power loads are picked up immediately and the desired pumps may be started manually.

b. Emergency System

An emergency electrical supply is provided for the plant to provide electrical power for critical equipment in the event of an interruption of power from other sources.

1) Description

The emergency bus is a DC bus which is fed from two sources. During normal plant operation with AC power supplied to the low voltage distribution bus, a pair of AC to DC converters supply 78 volts, to the DC bus. Three load sections are fed from this bus, each section being isolated from the bus by a power rectifier. A bank of storage batteries is connected to each section and floated on the line when DC power is supplied from the converters. The batteries continue to supply current to the loads, during AC power interruptions, for a period of 5 hours.

Battery Section A supplies the nuclear instrumentation with +25 volts and - 25 volts, Section B supplies the control rod drive system, the process instrumentation and the communications and alarm system with +65 volts, and Section C supplies the power circuit breaker trip circuits with +64 volts DC. Series regulators in each section supply circuit keep the output voltage to the load within 0.75% of the preset value for input voltage variations along the battery discharge curve. The power supplied to the control rod drives from Section B is 208 Y/120 volt, 3 $\not 0$ 60 cps. Dual inverters are used to supply this output from the convertor or battery input.

2) Ratings

(a) Converter

	input voltage capacity output	480 volt, three phase 5KW 78 VDC adjustable from 65 to 85 volts
(ъ)	Rectifier	
	type current inverse voltage	silicon, power 100 amps rating 300 volt
(c)	Batteries	
	type no. cells per section capacity	nickel-cadmium 59
	(section)	60 ampere hour
(d)	Inverters	
	input voltage output voltage phases frequency capacity type	78 to 65 VDC 208 Y/120 volt 3 60 cps 3 Kw static

3) Reliability

Operation of the instrumentation, communications and switch gear trips from the DC bus affords a high degree of reliability since the equipment can be powered directly by the primary DC source, i.e. the batteries. The dual, static converters, which supply DC during normal plant operation, provide a reliable source and require little maintenance.

4. Plant Motor Supply

From the plant load center, power is fed, Figure 66, to plant loads through a plug-in bus which is carried into all plant areas. At skid and/or equipment locations, feeders, connected

56

to the bus through plug-in breakers, conduct the power to the motor locations. The number, application and location of the plant motors is summarized as follows:

Location	Application	No. Installed	<u>Hp</u>
Service building	oil pump	1	3/4
	blower	1	3
Condenser building	condenser fan	8	20
	louver	4	3/4
	valve	2	1/3
Turbine gen. skid	standby lube-oil	1	7-1/2
	lube oil cooling pu	mp 2	1/2
	lube oil purifier	1	1/2
Feed & Condensate skid.	feed pump	2	60
	cond. pump	2	5
	plant heating pump	2	3/4
	low press. drain pu	mp 2	1/2
	make up pump valve	1	1/2
Purification skid	purification pump	2	1-1/2
	disposal tank pump	2	1/2
Reactor complex	waste tank pump	2	1/2
	spent fuel tank pum	p 2	1/2
	drain tank pump	2	1/2

The motors are supplied through combination starters with circuit breakers and overload relays. In accordance with JIC standards, size 1 starters are used on all motors through 7 1/2 horsepower. The starters for the 20 horsepower motors are NEMA size 2, full voltage and the 60 horsepower motor starters are NEMA size 4, reduced voltage, auto transformer type. Local starting stations are provided for all motors at convenient locations on the skids or in the various areas. In selected cases, a secondary or remote station is provided at the plant control console for starting the motors.

In critical applications, two motors are provided (one operating and one standby) to insure a higher degree of service continuity. To further this arrangement, dual feeders are run to these skids or areas and each feeder supplies one motor of the pair used for a particular application.

5. Plant Utility System, Figure 65

a. Plant Lighting

Area lighting for the various buildings is supplied to I.E.S. recommended lighting levels by fluorescent units suspended from the ceilings. The supply voltage to these lights is 277 volts, 60 cps, single phase. Power is taken from the 480 volt plant distribution bus to lighting distribution boxes mounted on the building walls. The numbering of individual light circuits (line to neutral) is balanced on the three phase supply to reduce the unbalance currents that may exist in the bus.

The light units are 4 light, cold cathode type. Use of the cold cathode units reduces the possibility of bulb breakage and reduces the bulb replacement requirement since the manufacturers guaranteed lifetime is 25,000 hours (2.85 years continuous) at rated operating conditions.

Emergency lighting is provided by a series of battery powered lights located at strategic points in the buildings or areas. The units are each capable of illuminating 10,000 square feet at maximum brightness for a period of four hours. During normal plant operation, the emergency light batteries are trickle charged from the convenience outlet supply. Upon an AC power interruption, the lights come on automatically and remain on until AC power is resumed or until rated life is exceeded.

b. Plant Convenience Power

Convenience outlets are provided along the walls in each building for hand tools, test equipment or other apparatus requiring 115 volt, 60 cps. power. These outlets are supplied from the 480 volt plant distribution bus through plug-in breakers, feeder lines, 480 - 208 Y/120 volt transformers and junction boxes. The junction boxes divide the single phase loads among the 3 phase inputs and provide a protective breaker in each circuit.

6. Nuclear Instrumentation System

The nuclear instrumentation, Figure 67, includes seven channels of neutron flux monitoring equipment, scram logic apparatus and a means of self-checking. The detectors are located in instrument wells, Figures 36 and 37, which are installed in the reactor complex. The readout, scram logic and test equipment is located in a cabinet in the plant control console.

a. Source Channels

Flux detection in the source range is done with two sensitive BF, chambers located 180° apart around the reactor and 90° to the startup source. The outputs from these detectors in separate, identical channels are converted to log count rate signals and reactor period signals. Local meters on the instrument drawer face provide a continuous indication of the count rate and the period signals from either channel. Signals for the count rate and period from either channel may be selected for presentation on the face of the control console.

b. Intermediate Range

Flux detection in the intermediate range is accomplished by two compensated ion chambers spaced 180° apart. Ranges for the CIC's overlap the source and the power detector ranges by a minimum of two decades. Signals from these detectors, in separate identical channels, are converted to log N and period signals. Local meters on the instrument drawer face provide continuous indications of the selected log and period signals. Signals for the count rate and the period may also be selected, by a switch, for presentation on the face of the control console.

In addition, the signals from the detectors are amplified and presented in linear form to the flux level meter on the face of the plant control console. A selector switch selects the desired decade to be monitored.

c. Power Range

Three uncompensated ion chambers are used in the power range to monitor flux. These chambers are installed with a 90° spacing. Each of these channels detects and indicates linearly the power of the reactor from .0015% to 150%. Local indication of the selected power signal appears on a meter on the instrument drawer face. The selector switch on the console panel face may select the linear signal for presentation on the power indicator on the console.

d. Scram Logic

Period signals in the source and intermediate ranges are auctioneered and fed to the scram logic. Signals which indicate a period shorter than 15 seconds will initiate an alarm and those shorter than 10 seconds will initiate a reactor scram. In the power range, the power signals are used in coincidence so that an alarm occurs if one signal exceeds 135% power and a reactor scram is initiated if a coincidence of two out of three high power signals occurs. A scram is initiated by interrupting the clutch holding power supplied to the control rod drive mechanisms.

e. Self-Checking

To insure that the equipment is in operating condition, a self-checking feature is provided to continuously scan the channel components with test signals and, if a faulty component is found, indicate the location of the component.

f. Mechanical Assembly

The components for each range are located in a single drawer. The drawer chasses are mounted on roller bearing slides and are secured to mounting angles of the cabinet on the front panel. Quick lock detents are provided on the slides for easy removal of the drawer assemblies.

g. Maintenance

The pull out drawers provide easy access to the operating components. Plug-in components reduce the time required to change components if faults are indicated by the self-checking system. Circuit connections between drawers are made through AN connectors.

7. Process Instrumentation Systems

Monitoring instruments for process parameters have been installed to provide the plant operator with information on plant process conditions. The equipment was selected and applied to provide this information with a high degree of reliability and a minimum of different types of equipment. Wherever possible, identical components are used in the different systems to provide interchangeability and to reduce the spare parts stock.

All process instrumentation, with the exception of temperature alarms, is supplied directly from the DC emergency supply to insure continuity of service under all plant conditions. This also increases system reliability by elimination of the converters required to supply DC power. All pressure and differential pressure transmitters are zero-displacement, force-balance type and in most cases do not require seal pots. DC signals are used for transmission to reduce the problems of electrical pick-up and frequency variations in the supply circuit. Wherever the measurement is critical or access to the sensor is limited, dual channels or separate channels for indication and alarm are provided to increase system reliability.

a. Main Steam System, Figure 43

Reactor water level is detected by two displacement float assemblies which supply signals to identical channels of alarm units, indicators, controllers, and to a common recorder. Either channel, as selected by the operator, may be used to regulate the feedwater flow valve and control reactor water level. The other parameters monitored are:

		indication		function		-	
		local*	remote**	control	alarn	scram	
toppopotupo							
temperature,			x		**		
	main steam vent discharge				Ħ		
	aux. steam discharge		x		H		
	turbine exh. discharge		x		Ħ		
	turbine exhaust	x					
pressure,	main steam	x	x			H,L	
	reactor steam		x	x	H,L		
	auxiliary steam	x					
	T. G. steam	x	x				
	space heat exchanger	x					
	T. G. gland seal	x					
	T. G. gland exhaust	x					
	T. G. exhaust	x	x		H		
flow,	main steam		x				

In a similar fashion, the instruments in the other systems are as follows:

b. Condensate System, Figure 45

		indication	function			
Application	local	remote	control	alarm	scram	
temperature						
condenser air inlet		x	x	\mathbf{L}		
condensate pump discharge	x	x				
after condenser vent	x	x		H		
shield tank temperature		x		H		
shield tank cooler outlet		x				
cond. to RFT	x	x				

* local refers to an area near the sensor

****** remote indicators are located in the plant control console

H - high level alarm

L - low level alarm

ATA - indicator pump automatic transfer

	<u>_i</u> ;	<u>indication</u>		function	
Application	local	remote	control	alarm	scram
evaporator condenser outlet	x				
after condenser water out	x				
L.O. intercooler outlet	x				
2nd stage heat exch. outlet	x				
cond. from SFT cooler	x				
liquid level					
condenser subcoolers			x	H,L	
hotwell	x	x		H,L	
flow				•	
condensate pump discharge	x	x			
pressure					
hotwell	x	x			
cond. pump seal water	х				
cond. pump discharge	х	x	x	ATA	
precooler shell	x				
after condenser shell	x				

c. Feedwater System, Figure 47

	inc	func			
Application	local	remote	control	alarm	scram
temperature, feedwater	x	x			
liquid level, RFT	x		I	H,L	
flow, feedwater	x	x			
pressure, feed pump discharge	x	r		ATA	
CRD seal water	x	x		L	

d. Coolant Purification, Figure 49

	in	dication	func	tion	
Application	local	remote	<u>control</u>	alarm	scram
temperature, reactor water		x			
purif. loop		x	x	H	
pressure, purif. pump discharge	x			ATA	
flow, purification loop		x			
e. Raw Water Purification,	Figure 51				
		dication	func	tion	
Application	local	remote	control	alarn	scram
conductivity, demineralizer outlet		x		H	
makeup feed		x		H	
liquid level, makeup tank	х	x		H,L	
pressure, makeup pump discharge	x			r	

•

f. Low Pressure Drain, Figur	e 54				
		<u>indicatio</u>	n fu	nction	
Application	local	remote	control	alarm	scram

temperature		-		TT	
control rod drive seal water		x		H	
reactor vessel head seal water		x		H	
liquid level, L.P. drain tank	x	x	x	H	
pressure, L.P. drain pump disch.	x				
g. Lube Oil Service, Figure	56				
		indicatio	n fu	notion	
Annliection	1.0.0.1				
Application	local	remote	_control	alarm	scram
temperature, lube oil	x				
T.G. bearings oil	x			н	
L.O. cooler outlet	x				
L.O. system cooler outlet	x				
pressure, L.O. cooling pump discharge	x			L	
L.O. pump discharge	x				
L.O. strainer differential	x				
T. G. bearing oil	x				
TO AO DESTING OIT	*				
h. Service Water, Figure 58	x				
_	X	indicatio	n fu	nction	
h. Service Water, Figure 58		<u>indicatio</u>		<u>nction</u>	
-	local	<u>indicatio</u> remote	n fu control		scram_
h. Service Water, Figure 58 <u>Application</u>		remote		alarm	scram
h. Service Water, Figure 58 <u>Application</u>		remotex			scram
h. Service Water, Figure 58 <u>Application</u> cemperature, spent fuel tank SFT cooler outlet		remote x x		<u>alarm</u> H	scram
h. Service Water, Figure 58 <u>Application</u> cemperature, spent fuel tank SFT cooler outlet drain tank		remote x x x		<u>alarm</u> H	scram
h. Service Water, Figure 58 <u>Application</u> temperature, spent fuel tank SFT cooler outlet drain tank waste tank		remote x x x x x		<u>alarm</u> H	scram
h. Service Water, Figure 58 <u>Application</u> temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant		remote x x x x x x x x		<u>alarm</u> H	scram
h. Service Water, Figure 58 <u>Application</u> temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator	local	remote x x x x x		<u>alarm</u> H	scram
h. Service Water, Figure 58 Application temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator disposal tank	local	remote x x x x x x x x x		<u>alarm</u> H	scram
h. Service Water, Figure 58 Application temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator disposal tank pressure, SFT pump discharge	local x x	remote x x x x x x x x x x x		<u>alarm</u> H	scram
h. Service Water, Figure 58 Application temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator disposal tank pressure, SFT pump discharge drain tank pump discharge	local x x x x	remote x x x x x x x x x x x x		<u>alarm</u> H	scram
h. Service Water, Figure 58 <u>Application</u> temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator disposal tank pressure, SFT pump discharge drain tank pump discharge waste tank pump discharge	local x x x x x	remote x x x x x x x x x x x		<u>alarm</u> H	scram
h. Service Water, Figure 58 Application temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator disposal tank pressure, SFT pump discharge drain tank pump discharge drain tank pump discharge disposal tank pump discharge disposal tank pump discharge waste tank pump discharge disposal tank pump discharge	local x x x x x x x x	remote x x x x x x x x x x x x x		<u>alarm</u> H H	scram_
h. Service Water, Figure 58 <u>Application</u> temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator disposal tank pressure, SFT pump discharge drain tank pump discharge waste tank pump discharge disposal tank pump discharge liquid level, spent fuel tank	local x x x x x x x x x x x x	remote x x x x x x x x x x x x x x x		<u>alarm</u> H H	scram_
h. Service Water, Figure 58 <u>Application</u> temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator disposal tank pressure, SFT pump discharge drain tank pump discharge waste tank pump discharge isposal tank pump discharge disposal tank pump discharge liquid level, spent fuel tank drain tank	local x x x x x x x x x x x x x x	remote x x x x x x x x x x x x x		<u>alarm</u> H H H,L	SCFAM_
h. Service Water, Figure 58 Application temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator disposal tank pressure, SFT pump discharge drain tank pump discharge disposal tank pump discharge liquid level, spent fuel tank drain tank disposal tank	local x x x x x x x x x x x x x x x x	remote x x x x x x x x x x x x x x x		<u>alarm</u> H H H,L H,L H,L	scram_
h. Service Water, Figure 58 <u>Application</u> temperature, spent fuel tank SFT cooler outlet drain tank waste tank evap. condenser coolant evaporator disposal tank pressure, SFT pump discharge drain tank pump discharge waste tank pump discharge isposal tank pump discharge disposal tank pump discharge liquid level, spent fuel tank drain tank	local x x x x x x x x x x x x x x	remote x x x x x x x x x x x x x x x		<u>alarm</u> H H H,L	scram

f. Low Pressure Drain, Figure 54

63

i. Plant Heating, Figure 60

		indication	fu	nction	
Application	local	remote	control	alarm	scram
temperature, shutdown boiler outlet	x		x		
pressure, plant heating pump	x		x	L	
shutdown boiler shell	х				
fuel oil pump discharge	x				

8. Radiation Monitoring Systems, Figures 69 & 70

a. Gaseous Effluent Monitor

Radioactive effluent gases are vented from the process loop through the aftercondenser vent line. A Tracerlab in-line gas monitoring system, Figure 69, consisting of a gas chamber with detector housing and shielding, a ratemeter and power supply with alarm unit, two flow meters, and dual filters is provided to detect and indicate the level of activity being released to the atmosphere. Measurement of the activity covers 5 decades from 10 cpm to 10° cpm. The alarm point is adjustable within the measurement range. The filters are absolute type filter which retain particles larger than .3 microns in diameter. These filters are installed in parallel upstream of the radioactive detection apparatus to prevent the release of particulate matter. Parallel installation permits one to be removed while the other is operating.

b. Area Monitoring

The radioactivities at various locations, Figure 70, in the plant are monitored by a Victoreen area monitoring units which provide indication of the activity levels at the control console and an alarm if the activity exceeds a preset level. The Beta-gamma detectors supply indicating station which cover a range of three decades. The alarm point may be set at any point within the indicating range.

The sensing units in hermetically sealed assemblies are mounted at their respective positions. The indicating stations are located on the right wing of the plant control console.

Power for the area monitoring channels is obtained from the DC emergency power supply for reliability and continuity of service.

c. Air Particulate Monitoring

To monitor the plant area for airborne, radioactive, particulate matter, a mobile monitoring system is supplied. The assembly includes a filter assembly with shielding, a pumping and flow control system, a β - γ detector with ratemeter, recorder and alarm system. The unit monitors activity over a 3 decade (logarithmic) range as it is deposited on the filter paper. Adjustable filter paper advance speeds and adjustable pumping rates provide a wide range of operating conditions.

The alarm is adjustable and has two levels. The first is an alert indicated by an amber light and a 10 sec. audible alarm; the second a continuous alarm with a red light.

All units are mounted on a mobile cart. Power is obtained from a convenience outlet in the area where the monitor is located.

9. Plant Control Systems

The center for plant control is the plant control console, Figure 40.

a. Reactor Control

The reactor control equipment is placed directly in front of the operator as he sits facing the console. On the control board, the control rod drive actuators occupy a central position. The pistol grip switch at right center moves the manually controlled rods in or out; the switch at left center moves those rods which can be manually or automatically controlled. The rods to be moved are selected by the oval handled switches adjacent to the drive switches. Reactor parameters of flux, linear and logarithmic, water level, and period are indicated on the vertical panel above the control board. Selector switches adjacent to the meter permit each channel to be monitored.

Control rod positions are indicated by meters located above the reactor vessel display.

Automatic control of the reactor is accomplished by movement of the control rods in response to a pressure deviation signal from the P-Po measuring circuit. A motor controlled bypass valve around the turbine (to the condenser), provides a back-up plant control and enables the operator to accomodate large, programmed changes in power with a minimum of reactor adjustment. A pistol grip switch (not shown) located to the right of the manual rod control switch, is provided for operation of this valve from the console.

b. Process Control

The values of important process parameters are indicated on the control panel. The indicators are arranged in a graphic display for quick familiarity with the process. Continuous control is provided for reactor steam pressure, reactor water level and condenser inlet air temperature. All controllers have provisions for an indication of the set point, an indication of controlled variable position and manual operation.

c. Secondary Electrical Control

A secondary control station for the generators control equipment is located on the panel face of the left wing of the console. Switches in the mimic bus arrangement provide for operation of the power breakers. Meters provide indication of power parameters in the various systems.

Below the switchgear panel is a motor control board. Duplicate starting stations at this point permit critical process motors to be started or stopped.

d. Plant Communications

The plant communications system consists of 1) an amplifier-master station at the console with remote-slave speakers distributed through the plant areas and living quarters and 2) a number of telephone stations. The telephone stations are capable of paging all speakers through the master station. A sound power phone circuit connects the control center to all plant machinery spaces.

Alarms are provided to transmit evacuation or fire alarms through the amplifier system regardless of cut off relay or volume control position.

e. Auxiliary Systems

A power totalizing system is provided on the right hand panel to provide a record of instantaneous plant power and integrated plant power.

An independent temperature monitoring system is provided for snow tunnel and other critical temperatures. The selector switch and readout meter are located on the right hand panel.

IV. REACTOR DESIGN

A. Summary of Design and Performance Characteristics

The PL-2 reactor is a natural circulation boiling water type with a power output of 8.0 Mw (t). It is designed to produce 24,724 lb/hr of dry steam at 600 psig. The reactor core is capable of producing a total energy output of 24 MW (t)-years over a lifetime of three full-power years.

The core for the PL-2 reactor is similar in design to the SL-1 Core II which is now being built. Core II will be installed in the SL-1 plant by midsummer of 1961. Operation of Core II should also verify the capability of this type of reactor for reaching the long life times which are needed for economical operation of remotely located plants.

In the PL-2 plant this type of core will operate at a pressure of 600 psig instead of the 400 psig to which the SL-1 plant is limited. The higher pressure operation in the PL-2 plant should enhance the behavior of the core.

Significant design characteristics and operating data of the PL-2 reactor are presented in Table IV.

- B. Reactor Core
 - 1. Nuclear and Thermal Behavior
 - a. Nuclear Characteristics

To meet present guidelines (Appendix A) the PL-2 plant requires a reactor that can operate at 8.0 megawatts (th) for a full power lifetime of three years. In addition the control rods must be capable of shutting down the reactor at 68° F with any rod stuck in its operating position, at 180° F with any rod fully withdrawn and at 39° F with all rods fully inserted. The 4.5 w/o U²³⁵ enrichment for PL-2 was based on the shutdown requirements. With this enrichment the core has the maximum reactivity which will still permit shutdown. Estimates of the eigenvalues for PL-2 at beginning of life are shown in Table V. These values are based on SL-1 Core II 400 psig data; detailed analysis of PL-2 at 600 psig must be done in the future.

TABLE IV

PL-2 REACTOR DATA

A. GENERAL

Power, MW	8.0
Core Lifetime, full power years (design value)	3
Maximum Burnup, MWd/metric ton of U (design value)	33,000
Average Burnup, MWd/metric ton of U	7,650
Steam Production, 1b/hr	24,724
Operating Pressure, psig	600
Operating Temperature, OF	489
Feedwater Enthalpy, BTU/1b	134
Fuel Composition	U02
Fuel Enrichment, %	4.5
Fuel Loading Metric tons U	1.145

B. CORE

1. Geometry

Equivalent Core Diameter, Inches	35.46
Active Core Length, Inches	38.3
Number of Assemblies	24
Fuel Assembly Width, Inches (square)	5.592
Fuel Assembly Length, Inches	46.3
Element Spacing (Pitch), Inches	•732
Riser Height, Feet	3

2. Fuel Element

UO ₂ Pellet Diameter, Inches	•420
UO2 Pellet Density, gm/cm ³	10.30
Clad Material	AISI 348 SS
	.05 w∕o Co
Clad Thickness, Inches	.020
Fuel Tube Inner Diameter, Inches	• 428
Number of Fuel Elements Per Assembly	60
Number of Poison Rods Per Assembly	2
Number of Fuel Elements in Core	1440
Number of Poison Rods in Core	48
Burnable Poison, gm B ^{LO}	16.6

3. Control Rod

9 Number of Rods Cruciform Rod Type Over-all Length, Inches 58 5/8 Over-all Span, Inches 11.44 Over-all Thickness, Inches .25 39.0 Length of Travel, Inches Ag-In-Cd Absorber Material Clad Material AISI 348 SS .05 w/o Co 39 3/4 Length of Active Section, Inches Span of Active Section, Inches 10.578 Thickness of Active Section, Inches 0.135 Thermal and Hydraulic Characteristics 4. Average Power Density, KW/liter of Active Core 13.3 Average Power Density, KW/liter of Coolant 26.6 Heat Transfer Area, ft² 564 Average Heat Flux, BTU/hr-ft² 48,400 Maximum Heat Flux, BTU/hr-ft2 279,000 Burnout Heat Flux, BTU/hr-ft² 1,000,000 Average Exit Quality, w/o Vapor 0.91 Average Boiling Length, Inches 32.97 Maximum Meat Temperature, °F (at 140%) 4930 Allowable Meat Temperature, OF 5000 14,18 Average Void Fraction, % Downcomer Velocity, ft/sec 2.0 Stability Margin 2.6 Exit Void Fraction, Hot Assembly, % 25.21 Average Steam Release Rate, 1b/hr-ft² 1800 Nuclear Characteristics 5 Core Reactivity, Beginning of Core Life keff. Cold. all rods out 1.141 Hot, zero power, all rods out 1.117 Hot, equilibrium Xe, full power, all rods out 1.081 68°F, center rod out .9998 Power Peaking Gross Axial Factor, (beginning of life) 2.7 Radial x Local Factor, (beginning of life) 1.85 Over-all Peaking Factor, (beginning of life) 5.0 Over-all Burnup Peak, (lifetime average) 3.7 Integrated Fuel Element Factor, (lifetime average) 1.85 ñ 69

C. REACTOR VESSEL AND HEAD

225 Pressure Vessel and Head Over-all Height, Inches Pressure Vessel Height Over Flange, Inches 181 5/16 Pressure Vessel O.D., Inches 54 5/8 Pressure Vessel I.D., Inches 52 Vessel Wall Thickness Excluding Cladding, Inches 1 1/8 Clad Thickness, Inches 3/16 Bolt Circle Diameter, Inches 62 Flexitallic Type Closure Seal, Mean Diameter, Inches 54 1/2 Head Type 2:1 Semi Elliptical, Integrally Reinforced Head Thickness Excluding Cladding, Inches 2 Clad Thickness, Inches 3/16 $1 \frac{1}{2} - NC - 8$ with Closure Studs (52) 1.250" Diameter Shank Vessel Penetrations 2" Sch 80 Feedwater Inlet Nozzle Steam Outlet Nozzle 4" Sch 160 1 1/2" Sch 80 Purification Flow Nozzle Head Penetrations Control Rod Extension Housings (9) 3" Sch 80 Level Control Nozzles (2) 4" Sch 80 STEAM DRYER D. Static, multiple Type screen Position Internal, attached to head Height, Inches 15 Thickness Parallel to Flow, Inches 5 1/4 Number of Segments 6 Maximum Outlet Moisture, w/o .10 CONTROL ROD DRIVE MECHANISM Ε. Type Electro Mechanical. Rack and Pinion 39 Stroke, Inches Scram Actuator Gravity Speed, Normal, Inches/Minute 3 Speed, Scram Initial 4.5 Inches in 0.3 sec. Load Capacity, 1bs. Withdrawal - 225 Insertion - 450 Synchro - Pair with Position Indication Digital Readout ± 0.10 Position Indication Accuracy, Inches

TABLE V

BEGINNING OF LIFE EIGENVALUES FOR

PL-2 AS EXTRAPOLATED FROM SL-1 CORE II

Çondition	^K eff
Cold (68°F) Center Rod Out	•9998
Cold, All Rods Out	1.141
Hot, Zero Power	1.117
Hot Operating	1.081

The cold stuck rod eigenvalue appears to be marginal, but it is felt that the number is somewhat conservative. Further calculations will be needed to ascertain this conservatism.

The hot operating reactivity was calculated using a core average void fraction of 15%. This was based on thermal calculations using the beginning of life axial power distribution which is shown in Figure 72. There is considerable uncertainty in both the eigenvalue and the power distribution since iteration between the power and vapor distributions must still be carried out. The analysis of the lifetime behavior of the core at 600 psig remains to be done so that, at present, the ability of the core to meet the three year design lifetime has not been verified.

As shown in Figure 72, the axial power peaking factor at beginning of life with no xenon is 2.70. The combined radial and local factor with a uniform vapor distribution is 2.00. In general this factor is reduced by about 8% when the actual radial vapor distribution is taken into account resulting in a radial factor of 1.85. The overall peaking factor at beginning of life is therefore 5.0, with an uncertainty of $\pm 15\%$.

b. Thermal and Hydraulic Criteria

The thermal characteristics of PL-2 were selected to produce the required output of 8 thermal megawatts within the framework established by physical limitations of core materials. These limitations may be summarized as follows:

(1) The maximum local fuel burnup shall not exceed 33,000 Mwd/metric ton of U.

(2) The maximum fuel temperature shall not exceed 5.000° F at 140% of full power.

(3) The hottest fuel assembly shall be hydraulically stable up to 140% of full power.

(4) The internal pressure in the hottest fuel element shall not exceed 1000 psi at end of life.

(5) There shall be no steam entrainment in the downcomer. To prevent entrainment, the coolant velocity in the downcomer region is limited to a maximum of 2 feet per second.

(6) The moisture carryover in the steam shall not exceed 0.1% by weight.

(7) The maximum steady state heat flux must be less than 333,000 BTU/hr-ft² to provide a burnout ratio of 3 based on a burnout heat flux of 1,000,000 BTU/hr-ft².

In order to accomodate transients, the overpower scram is set at 135% of full power. Since the instrument error is \pm 5%, the reactor could reach 140% of 8 Mw (t) before scramming. The core was therefore designed to operate safely for short periods of time at 140% of full power. It is for this reason that the fuel temperature and stability are determined at 140% of full power.

The downcomer velocity is limited to prevent steam entrainment. Steam in the downcomer decreases the density of the fluid, thus reducing the driving head. The reduced driving head increases the void fraction in the core, thus adversely affecting hydraulic stability and reducing core reactivity life. Experience has shown that if downcomer liquid velocity is below 2 feet per second, entrainment is negligible.

The reactor is assumed to be stable if the rate of change of inlet velocity to the hottest fuel assembly with respect to power level is positive. This is a conversative assumption since there are stable boiling water reactors which operate at power levels where this rate of change is negative and there are no boiling water reactors which are unstable where the rate of change is positive.

Moisture carryover is prevented by gravity fallout of water droplets in the steam dome and by a screen type steam dryer. The vessel height available for gravity fallout is limited by reactor space and weight considerations. For this reason, and because of the limited experimental and theoretical data available on gravity fallout, a screen dryer has been incorporated in the design. Maximum steam velocity through the dryer is limited to 6 feet per second and the moisture at the inlet must not exceed 10%.

c. Flow and Temperature Data

The centerline temperature in the fuel pellet is the saturation temperature of the water at maximum pressure, augmented by the temperature drop through the boiling film, tube wall, gas gap, and fuel. The temperature drop through the boiling film was calculated using the Jens and Lottes boiling film drop correlation. The other temperature drops were calculated by the standard heat conduction equations. The maximum temperature in the fuel is 4930° F which is within the limit. This is based on the following assumptions:

(1) The saturation temperature is 499° F, corresponding to a maximum reactor pressure of 660 psig.

(2) The thermal conductivity of $U0_2$ is 1.0 BTU/hr-ft- $^{\circ}$ F.

(3) The smallest pellet (0.4195 inch diameter) and the largest tube (0.4285 inch ID) are at the hottest spot in the core.

(4) Five percent of the gaseous fission products generated in the fuel have escaped into the gas gap.

(5) The total power peak is 5.75. This consists of a calculated peak of 5.00 plus 15% uncertainty in the nuclear calculations.

(6) The maximum instantaneous power is 1.4 times the steady state power of 8.0 Mw (t).

The best estimate of the burnup peak is 4.0 which yields a maximum burnup in the core of 30,800 MWD/Tonne. This burnup is slightly below the limit of 33,000 MWD/Tonne.

The fuel element internal pressure was calculated to be 940 psi. This calculation is based on the assumption that the largest pellet is in the smallest tube. The fission product gas release rate was assumed to be 30%. This is an extremely conservative estimate of the release rate and is assumed in the pressure calculation in order to eliminate any possibility of fuel element rupture due to internal pressure. In the pellet temperature calculation a release rate of 5% was assumed. This assumption is based on the fact that 5% is the maximum release rate observed for stoichiometric UO₂. This is a sufficiently conservative estimate for the temperature calculation, which is very conservative in other respects.

The maximum steady state heat flux was calculated to be 279,000 $BTU/hr-ft^2$ which is well below the allowable limit of 333,000 $BTU/hr-ft^2$.

Hydraulic calculations for the core were done by means of STREAC, and IBM-704 Code. The input to STREAC is the power level, pressure, steam rate, and pertinent core geometry such as core length, flow area, and hydraulic diameter. The code balances pressure losses due to friction, expansion and contraction against the pressure gain due to density differences between core and downcomer fluid. STREAC then determines the core flow rate, void fraction, void profiles, and flow rates for each typical fuel assembly.

The inlet velocity to the hottest fuel assembly does not peak until the reactor power level reaches 2.6 times the design power. Thus the reactor meets the hydraulic stability requirements.

Table VI is a summary of the core hydraulic characteristics. The subassembly numbering system used in the table is shown in Figure 71. The exit void fraction from the hottest assembly is 25.2% which is well below the maximum exit void fraction of 54.6% calculated for EBWR. This is a further indication that the PL-2 core is hydraulically stable.

TABLE VI

			Subassembly		
Parameter	_1	2	3	4	
Radial Peaking Factor	1.471	1.176	0.856	0.660	1.000
Inlet Velocity	4.54	4.27	3.86	3.47	3.99
Boiling Length, in.	33.95	33.39	32.34	31.46	32.97
Exit Quality, %	1.35	1.08	0.79	0.62	0.91
Exit Void Fraction, %	25.21	22.03	18.16	15.41	19.83
Avg. Void Fraction, 🖇	18.78	16.14	12.86	10.57	14.18

PL-2 HYDRAULIC CHARACTERISTICS

The downcomer velocity is 2.0 ft/second. Since steam entrainment in the downcomer does not become a problem until velocities somewhat greater than 2 feet per second are reached, there should be solid water in the downcomer.

d. Hydraulic Experiments

To determine the validity of the analytical model assumed in the hydraulic design, a half-scale air-water model of the reactor has been built and tested. This model has shown that steam entrainment at atmospheric pressure and 70° F will occur with downcomer velocities as low as .4 ft/second. The amount of entrainment decreases very sharply with increasing temperature. It appears that there will be no appreciable entrainment in the PL-1 and PL-2. However, the effect of pressure on entrainment has not been determined as yet.

For conservatism the PL-2 design is based on a total loss coefficient which is higher than the theoretical prediction. This loss coefficient is based on extrapolation from the air-water model, which indicates that the region between the top of the core and the steam-water interface is extremely turbulent.

Further tests are required to determine the following:

(1) The differences, if any, between air-in-water and steam-in-water.

(2) The effect of introducing vapor at the bottom of the core rather than along the length of the core.

(3) The effect of cold water quenching on steam entrainment.

(4) The variation of entrainment with pressure.

(5) Slip ratio in two phase flow around tubular

elements.

2. Fuel Assembly Design

Each of the 24 PL- fuel assemblies is composed of 60 fuel elements, 2 poison rods, two end plates, ferrule type lattice spacers and fixtures for lifting and guiding the assembly. The fuel assembly is approximately square in cross section and is graphically represented in Figure 13. Typical fuel element and poison rod assemblies are shown in Figure 10.

The fuel element consists of a column of uranium dioxide fuel pellets hermetically sealed in a helium atmosphere, in a tube with two welded-on end caps. The fuel pellets are .420 inches in diameter and .776 inches in length. The fuel tubes are low cobalt type 348 stainless steel with an internal diameter of .428 inch, a wall thickness of .020 inch and a length of 39.3 inches. An initial cold clearance of .006 inch on the diameter and 1.00 inches on the length has been established in order to minimize the hot gap size and yet prevent an interference fit between hottest pellets and the cladding. This clearance space also serves to contain the fission gas products released from the fuel over lifetime.

The two burnable poison rods are provided for power peak suppression and reactivity shaping. Each rod consists of a borated stainless steel material encased in a stainless steel tube similar to the fuel element tubes.

A group of 60 fuel elements and 2 poison rods are held in position by two end plates. The fuel elements are pin connected at each end. The poison rods are suspended from two opposite corners of the top plate by hanger bolts, and are pin connected at the lower end. Additional lateral support of the assembly is gained through the use of two sets of intermediate ferrule spacers. The sets of ferrules are arranged in parallel planes equidistant from each other and the end plates. Integral with the top plate is a lifting fixture. Two installation guides are attached under the bottom plate to provide additional lead-in during core assembly. The lifting fixture and installation guides are welded in place after the fuel elements and ferrules are brazed in one operation into an assembly. All twenty-four assemblies are identical for uniform fabrication procedures and ease of handling.

3. Control Rod Blade

The PL-2 reactor will have nine control rods of the basic design illustrated in Figure 12. This design fulfills the following control rod requirements:

- (1) Adequate corrosion resistance.
- (2) Adequate physics worth.
- (3) Metallurgical stability under irradiation.
- (4) Adequate mechanical strength and ductility.
- (5) Use of readily available materials.

The neutron absorbing material used is an alloy consisting of 80% silver, 15% indium and 5% cadmium. A thin nickel plate assures that the material will not be subject to corrosion, even under the worst possible operating conditions. Because of the low creep strength of this material, a welded sheath of type 348 stainless steel is required to provide sufficient mechanical strength and structural rigidity. This sheath is composed of a "picture frame" type structure to which are welded four pre-formed right angle sections. The structure is given increased rigidity by joining the sheath sections together through the active filler plates. The threaded male connector at the top of the control rod provides a simple means of remotely engaging and disengaging the control rod drive mechanism extension shaft. The cruciform configuration of this connector is required to provide adequate clearance for fuel assembly removal or insertion. The thread fit makes the joint sufficiently flexible to compensate for small misalignments between the core and the closure head.

During manufacturing, the blade will be held within a fixed envelope over its full length. This envelope is such that binding of the blade during operation, because of possible misalignments in the core, is impossible. Small guide pads at the bottom of the blade allow the use of wide channels in the stanchions while maintaining the required clearance between the control rod and adjacent fuel tubes.

4. Core Structure

The core structure (Figure 9) in the PL-2 reactor was designed to meet the following requirements:

(1) The fuel assemblies must be securely supported and accurately located.

(2) Accurately located and aligned channels must be provided for the control rod blades.

(3) The downcomer region must be physically separated from the steam riser region.

(4) A source must be positioned at the core mid-plate.

Figures 15, 16 and 17 show a half-scale model of the core structure.

The major structural member is the cast stainless steel lower grid.

Supported by four gusset plates protruding from the wall of the pressure vessel, this lower grid is able to rigidly support the full weight of the fuel and remaining core structure. Location of the 24 fuel assemblies is provided by the vertical stanchions fastened to the lower grid. The upper grid is a welded structure which rests on, and is pinned into, each of the vertical stanchions. In this manner, the upper grid accurately locates the upper ends of the stanchions, and stiffens the core structure by providing lateral support for the stanchions.

In order to separate the fuel from the downcomer, a lower core shroud is provided. This shroud consists of stainless steel sheet sections welded to the outer stanchions. Separation of the steam riser region from the downcomer region is accomplished by the upper core shroud. This shroud, formed from stainless steel plate stiffened by flanges, bolts to the upper grid. The feedwater spray ring is supported by this shroud.

A source pipe extends down from the upper grid, to which it is fastened, into the downcomer region. This pipe positions the source at the core midplane. Due to its position in the downcomer, the source will be provided with ample cooling.

Each fuel assembly, supported from its top plate which rests on the cop of two stanchions, is laterally positioned at the top by the upper grid and at the bottom by the stanchions. The nine control rods move vertically in guide channels formed by the upper grid and slots in the stanchions.

Positioning of the core structure in the pressure vessel is accomplished by means of two alignment pins in the lower grid which fit into holes in two of the gusset plates supporting the structure. Two holddown bolts securely fasten the grid to the remaining two gusset plates.

In order to avoid excessive thermal stresses in the pressure vessel walls due to gamma heating, a thermal shield is positioned in the pressure vessel at the core elevation. This thermal shield is a 3/4 inch thick stainless steel cylinder supported and located by the same gusset plates that support the core.

5. Neutron Source Design

An antimony-beryllium photoneutron source of approximately 1.6×10^7 neutron/second output is provided for use during reactor start-up operations. The antimony-beryllium type of source has been selected in preference to other suitable source types because the antimony-beryllium uniquely combines a relatively long half-life (60 days) with low cost and high yield. This source is especially suitable for reactor applications, since it can be designed as a semi-permanent part of the reactor, being constantly reactivated by the neutron flux in the reactor.

The preliminary design consists of a natural antimony cylinder 1/2 inch in diameter and 6 1/2 inches long surrounded by a hollow cylinder of beryllium with an outside diameter of 1 1/2 inches. These two components are then encapsulated in a stainless steel container. The source capsule will be designed to fit in a support structure attached to the reactor core upper grid. In this position the source would be close to the core and would be located such that the nuclear instruments essentially read core reactivity. Since the source decays out-of-pile, the strength of a new source will have a contingency factor to compensate for possible delays in reactor start-up. The contingency factor will be adjustment in source output which will allow a maximum delay period of 6 months.

- 6. Core Servicing
 - a. New Core Shipping
 - 1) Fuel Elements

The fuel element complement will be shipped to the site in the spent fuel shipping casks. Figure 20 shows the cask and Figure 21 shows the cask prepared for shipment.

2) Control Rods

The control rod blade assemblies will be shipped to the site in the spent fuel shipping casks with the fuel assemblies. This compact arrangement permits a cask, three blade assemblies, and eight fuel assemblies to be shipped as a single package.

3) Source

The source will be transported in its own individual lead pig. Pool facilities at the site will be used to transfer the source from its shipping container to the transfer cask.

- b. Refueling Procedure
 - 1) Transfer Cask

The transfer cask, Figure 22, is used to individually transfer a control rod, a fuel assembly, and the source. To remove a spent fuel assembly or control rod, the transfer cask is positioned over the appropriate hole in the refueling plate assembly. The particular hole is determined by the component to be removed. Locating the cask centrally over the plate opening automatically positions it for a direct vertical lift. The lift is accomplished by a rack and pinion mechanism attached to the top of the cask. One end of the rack extends out the top of the cask and the opposite end, to which a screw type gripper is permanently attached, is within the cask. The rack is made in sections so that overhead clearance is not critical. The entire lifting mechanism can be rotated in either direction to enable the gripper to engage or disengage an object, and to permit full use of 360° alignment. A typical transfer procedure is as follows:

(a) Flood the vessel.

(b) Remove the vessel head.

- (c) Install alignment ring and refueling plate.
- (d) Position transfer cask on refueling plate.

(e) Lower gripper and engage fuel element (or

control rod).

- (f) Retract element into cask.
- (g) Move cask to spent fuel pit.

(h) Submerge cask, lower fuel into pit, and disengage element.

(i) Retract gripper and remove cask.

(j) Using manual tools, insert element in spent fuel storage container.

(k) Repeat items (d) through (j) for removal of each assembly.

The spent fuel storage container (Figure 3) is approximately 14 feet below the surface of the water in the spent fuel pit. It is a rack type container providing storage for 24 spent fuel elements and 9 control rods, and is designed to be subcritical at 4°C, fully loaded, with no specific loading sequence required.

Following item (k) above, new assemblies are inserted into the reactor through the refueling plate openings, one at a time, using manual tools. The transfer cask is used for replacement of irradiated assemblies. The refueling plate and ring are removed, the head replaced, water level corrected, and preparations for startup are carried out.

2) Refueling Plate Assembly

The refueling plate assembly, Figure 23, serves as a transfer cask support and positioner, and as a shield when removing irradiated components.

An alignment ring fits on the core barrel flange, using bullet nose pins in the flange guide holes for positioning. Its purpose is to protect the barrel flange surface. The support plate rests on the alignment ring and can be positioned on or at 90° intervals from the core centerline. The overhead crane is used to rotate the plate, which is held in position by an index pin and matched holes in the alignment ring.

The plugs in the plate are removable and also can be indexed at 90° intervals. The plate-hole index combination permits all fuel assemblies, and all control rod blade assemblies except the central assembly, to be accessible through a hole in the refueling plate. Further, the centerlines of these components and the centerlines of the respective holes above them coincide, and, therefore, a transfer cask centered over a particular refueling plate opening is also centered over a particular component in the reactor. To remove the center blade assembly, manual tools transfer it to an adjacent blade location so that it is in position for a vertical lift. The control rod is then removed as described in paragraph 1 above.

3) Shipping Cask

The spent fuel shipping cask, Figure 20, will be used to ship eight fuel assemblies and three control rod blade assemblies. The loading operation is completed underwater in the spent fuel well using hand tools to transfer components from the storage container to the shipping cask. The cask cover is bolted in place, the sealed container is removed from the spent fuel well, and is prepared for shipment as shown in Figure 21. The site complement consists of three fuel shipping casks to handle a full core loading of twenty-four fuel elements and nine control rod blade assemblies.

C. Control Rod Drive Mechanism Design

1. Description

The control rod drive mechanism is an electro-mechanical device which utilizes a rack and pinion combination to achieve controlled linear motion of a control rod in response to operating signals from the reactor control system. The design is basically a modification of the existing SL-1 drive mechanism. The modification was undertaken to produce a simpler and more reliable mechanism by incorporating those design features of the SL-1 mechanisms that have proven successful and modifying the design features that have been problem areas.

Through use of gearing combinations, the mechanism is capable of being driven at fixed speeds in the range from 1 to 7 inches per minute. The mechanism will satisfy the scram requirement of dropping the rod through its first 4.5 inches of travel in 0.3 seconds from any position of withdrawal.

A position indication system is furnished which provides positive indication of the rod position within \pm 0.100 inches throughout the full range of rod travel.

2. Actuator Design

The design of the mechanism actuator is shown in Figure 11. Each control rod in the reactor is mechanically coupled to a drive mechanism by means of a tubular extension shaft. The upper end of this extension shaft is connected to the hollow rack shaft by means of a connector bolt which passes through the rack shaft and screws into the end of the extension shaft. Relative rotation of the extension shaft and rack shaft is prevented by a spline. The rack and extension shafts pass through a stellite bushing at the lower end of the housing extension sleeve. This bushing serves the dual purpose of controlling the lateral position of the shafts, and the rate of flow of cooling water through the mechanism. The housing extension sleeves are seated in the control rod drive nozzles on the vessel closure head.

The pinion housing, which contains the pinion, back-up roller, and associated shafting and bearings, is bolted to the control rod drive nozzle. The rack passes up into this housing and is held in engagement with the pinion by the back-up roller. A circular shoulder at the top of the rack shaft, in combination with the removable hard stop, provides positive stoppage of the control rod at the end of the scram. Ball bearings on the pinion shaft accurately locate the pinion and allow rotation with a minimum of the friction.

The seal assembly is connected to the pinion housing by a bolted flange. The seal shaft is connected to the pinion shaft by means of a tongue and groove arrangement which prevents the introduction of any loads into the seal assembly. The seal is a floating ring, controlled leakage type, thus allowing a direct mechanical drive into the mechanism. Cool, purified reactor feedwater is introduced into the seal housing inboard of the seal. Approximately 10% of this flow leaks through the seal and is then collected and returned to the feedwater system at 10 psia. The remainder of the feedwater flows through the actuator into the reactor to provide cooling and lubrication of the actuator components.

An upper housing, which is bolted to the flange at the top of the pinion housing, completes the actuator assembly.

3. Drive Package Design

The design of the mechanism drive package is essentially the same as that of the present SL-1 drive unit. The drive package is

designed to be mounted outside the reactor shielding as shown in Figure 2. This method of mounting in a region of low ambient temperature and radiation level allows the use of conventional components and facilitates maintenance. Each actuator is connected to its drive package by a shaft which passes through the shielding. Flexible couplings at each end of the shaft compensate for possible actuatordrive package misalignment. The drive package consists of a drive motor, clutch assembly, and position indication equipment.

The drive motor is a commercial, three-phase motor with integral reduction gearing. An integral friction type brake is incorporated in the motor to prevent coasting and consequent overtravel of the rods in operation. The motor is coupled to the clutch assembly by a quick change gear set. A shear pin is incorporated to limit the torque that the motor can transmit to the remainder of the system. It also prevents possible motor failure due to stalling which might result if the limit switch failed to de-energize the motor when the rods were driven to full insertion.

The clutch assembly consists of a magnetic clutch paralled with a cam type over-running clutch, the latter operating in the "rod-in" direction only. During normal operation, the magnetic clutch is energized to allow the motor to drive the control rod or to hold it in a fixed position. During scram, the clutch is de-energized, so that the control rod can drop into the core. As long as the control rod drops at a higher than normal operating speed, the over-running clutch rotates freely. If the rod should stop for any reason, the over-running clutch allows the motor to drive the rod into full insertion. Because of the high torque capacity of the over-running clutch, the drive package can exert a drive-in torque equal to 3 times the normal running torque.

The position indication system used with this mechanism consists of a high accuracy synchro-pair and associated readout equipment. The synchro-transmitter is mounted on the drive package. To prevent any ambiguity of the position indication signal, the synchro rotation is held to less than one revolution for full rod travel. A rotary cam type limit switch is used to provide "rod-in" and "rod-out" signals and to de-energize the drive motor at either limit of rod travel.

D. Reactor Vessel Assembly

1. General Description

The reactor vessel assembly, as pictured in Figure 8, consists of a cylindrical vessel, a welded ellipsoidal lower head, and an ellipsoidal flanged closure head. An integral steam dryer is mounted in the closure head cavity. A shield can is mounted on the closure to hold a mixture of radiation shielding and thermal insulation. Four pads are located in the bottom head of the vessel to provide the main core support.

Three penetrations are provided in the pressure vessel for a feedwater inlet, a steam outlet, and a purification outlet line. The closure head is provided with 9 control rod mechanism nozzles and 2 water level control nozzles.

Both vessel and head are designed in accordance with the ASME Unfired Pressure Vessel Code, Section VIII, 1959 edition, and with the nuclear addenda as published in "Mechanical Engineering", July, 1959. Design pressure and temperature for items governed by the Code are 720 psig and 600° F, respectively.

The specific design of the vessel and head have been calculated using SA212B carbon steel clad with AISI 304L stainless. However, effort is being expended on the uses of other suitable materials such as stainless steel and inconel. The general configuration of the vessel and its installation are not affected by changes in vessel materials.

- 2. Vessel and Head Design
 - a. Reactor Pressure Vessel

The vessel is a simple cylinder, 52 inches inside diameter, fabricated of SA212B boiler plate, 1 1/8 inches thick. It is clad with 3/16 inches AISI 304L stainless steel for corrosion resistance. The bottom head is a 2:1 ellipse welded to the cylinder at the tangent point of the head. The bottom head is also 1 1/8 inches thick, clad with 3/16 inches of stainless cladding.

The flange of the pressure vessel is a weld-neck flange forging of SA-105 Gr II low alloy steel. The flange has tapped holes for fifty-two 1 1/2 inch diameter 8 threads per inch, studs and a double groove for placement of a stainless steel, spiral-wound, ashestos filled inner gasket, and a soft metallic outer gasket. Between the gasket grooves, a leak-off drain is provided to collect any possible seepage of reactor coolant.

Three penetrations are provided in the side wall of the vessel. These are:

(1) Carbon steel (SA-212B) main steam outlet nozzle with a stainless steel (AISI 304) transition piece and bolting flange for field connection to the main steam piping. The nozzle is designed to connect to 4 inch schedule 80 stainless steel pipe. (2) Stainless steel (AISI 304) feedwater nozzle. This nozzle is of the double wall type. A long nozzle is welded directly to the vessel wall, and the continuous feed pipe is welded inside the nozzle. This design prevents thermal shock of the vessel wall. The feedwater nozzle is designed to accomodate a 2 inch schedule 80 stainless steel feedwater pipe.

(3) Stainless steel (AISI 304) purification nozzle. This pipe serves as a line through which a portion of reactor coolant is circulated through the purification system continuously to remove radioactive contaminents from the main plant system. A l l/2 inch schedule 80 stainless pipe is welded by transition metal directly into the vessel wall.

All piping penetrations meet the ASME Code requirement of full reinforcement for primary vessel penetrations.

Four stainless steel (AISI 304) core support pads are mounted in the bottom head of the vessel for the purpose of supporting and aligning the core and for supporting the thermal shield.

b. Vessel Head

The closure head assembly (Figure 14) utilizes a standard semi-ellipsoidal head fabricated from SA-212B boiler plate and clad on the inner surface with AISI 304L stainless steel. The head flange is a SA-105 Gr II forged bolting flange clad with 304L stainless steel. Head thickness is 2 inches throughout except for the bolting flange which has a varying contour. All clad surfaces have a minimum 3/16 inches of stainless steel except the sealing surface of the head flange which has a minimum 1/2 inch of cladding.

Head penetrations consist of 11 welded nozzles as follows:

Nine, 3 inch (Nominal) Control Rod Drive Nozzles

Two, 4 inch (Nominal) Level Control Nozzles

The center control rod drive nozzle flange is 8 inches higher than the others to meet control rod drive mechanism installation requirements.

All nozzles terminate with bolted flanges at the upper end. Sealing is obtained by spiral-wound stainless steel, asbestosfilled gaskets. All nozzle flanges are standard, AISI 304 stainless steel 600 lb. welding neck flanges.

Three lifting lugs, made from structural "TEE" beams, are welded to the head 120° F apart. Each lug has been designed to sustain the total closure head assembly weight under a 5 "G" shock loading. A cylindrical shielding container is formed by welding 3 curved plates circumferentially to the outside diameter of the ellipsoidal head, and longitudinally to the lifting lug flanges. The cylinder thus formed is approximately 56 3/8 inches ID by 26 inches long. A flat, perforated circular plate bolted to the upper end covers the cylindrical container, allowing the nozzle flanges to protrude through the perforations.

3. Integral Steam Dryer Design

The steam dryer shown in the closure head assembly drawing Figure 14, is installed inside the closure head dome. The dryer is fabricated entirely of type 304 stainless steel materials. Steam drying takes place as the steam flows radially inward through an annular arrangement of 6 dryer cartridges. A baffle directs the steam from the center region to a steam outlet adapter which delivers it to the pressure vessel main steam outlet.

Each dryer cartridge consists of eleven alternate layers of flat and corrugated wire screen contained in a 4 sided frame. The inner and outer screens are flat, $2 \ 1/2 \ mesh$, 0.135 inch diameter wire. The sandwiched screening is 6 mesh, 0.047 inch diameter wire.

The cartridges are welded into the dryer support structure which in turn is bolted to a ring on the concave portion of the head. The dryer support structure contains a top plate and a bottom plate, both conically sloped to provide for water drainage. The top and bottom plates are connected by eight 3 1/4 inch OD tubes. These tubes provide passage through the structure for the control rod extension shafts.

Passage for water level control equipment is provided by holes cut through the structure in line with the corresponding head penetration. To provide passage through the entire length of the structure, screen area is removed and replaced by baffle plates which are welded to the top and bottom plates.

4. Arrangement of Vessel Internals

In addition to the 4 core support pads previously described, the vessel contains the main steam transfer duct, the vertical leg of the feedwater pipe, and the feedwater ring.

The steam transfer duct is flanged at its lower end for bolting to a boss on the inside wall of the pressure vessel. At its upper end is a spring loaded flange which mates with a flange in the steam dryer support structure when the head is in place. The transfer duct is the carrier for dry steam away from the dryer and out of the vessel into the main system piping. The feed piping, after penetrating the vessel wall is bent at a 90° angle to form a free standing pipe which is connected to the feedwater ring. The feedwater ring rests on brackets which are welded to the upper shroud of the core support structure. Since the ring is not rigidly attached to the brackets, differential thermal expansions can be tolerated.

APPENDIX A

PL-2 GUIDELINES (REV 1 of June 1, 1960)

I. General Requirements and Objectives

Essentially, the PL-2 shall be a factory pre-packaged modular nuclear power plant to provide heat and electricity. The plant shall be:

a. Factory assembled into air-transportable packages suitable for rapid on-site installation and interconnection, and suitable for expeditious relocations to alternate operating sites at minimum installed and capital costs.

b. Designed such that all components and accessories shall be located in an easily accessible position for operation and maintenance. Each component shall be accessible without the movement of any other component, where practicable. Maintenance and adjustments shall be made readily utilizing conventional, general-purpose tools normally associated with items of this nautre, and with minimum drainage requirements. Plant maintenance requirements shall be held to a minimum. Predictable maintenance shall be accomplished with a minimum number of operating and maintenance personnel.

c. Designed to insure adequate safety to personnel and equipment.

d. Designed in accord with the National Bureau of Standards health and safety regulations and requirements.

II. Power Plant Requirements

The PL-2 nuclear power plant shall be designed, fabricated and erected to meet the following requirements:

1. The plant shall produce and deliver a minimum of 800 KWe (net electrical power) and 1,300,000 BTU/HR suitable for central heating at the designated site.

2. The plant shall be safe to operate and service.

3. The plant shall be designed for factory assembly into packages which will facilitate transportation, erection and interconnection at minimum installed costs.

4. The plant shall be capable of satisfactory operation as an independent power source and satisfactory operation in parallel with electrical and heating facilities at the operating site. No distribution equipment shall be provided to the in with electrical and heating facilities at the operating site. 5. The plant shall operate at design output with cycle heat (all cooling requirements) being rejected to the atmosphere under the following three (3) conditions:

Temperature $\dots 60^{\circ}$ F + 70° F а. Altitude.....Sea Level Wind.....O mph Precipitation.....0 in. Sunlight.....Full b. Temperature.....* Altitude.....* Wind.....O mph Precipitation.....0 in. Sunlight.....Full *Station A Temperature.....** c. Altitude.....** Wind.....O mph Precipitation.....0 in. Sunlight.....Full

**Station B

6. The generator(s) output voltage characteristics shall be 2400/4160 volts, 3 phase, 60 cycle and 4 wire. The generator(s) shall permit external connection to delta or grounded wye.

7. The heat source for power production shall be a nuclear reactor designed to operate the plant for a minimum of one year or integral years thereafter at 100% rated capacity. The plant shall be capable of startup within 24 hours after plant shutdown from extended power operation.

8. The overall plant shall be capable of continuous operation for the maximum period of time; i.e., total downtime per year shall be minimized and not exceed three (3) weeks. The specified three (3) weeks downtime per year shall include annual maintenance and complete core replacement within four (4) days from shutdown to "on-the-line" operation at rated output.

9. Major plant components, including reactor vessel and heat but excluding core components, shall be designed for a useful life of 20 years under conditions of normal use and maintenance.

10. Each factory-assembled package or module shall be designed and fabricated with a rigid base to facilitate shipment, erection, and relocation. 11. The physical layout of the plant and the equipment arrangement within each package shall facilitate plant operation and maintenance.

12. The plant shall be contained in the fewest practicable number of packages suitable for air transport by C-130A type aircraft over a range of 1000 miles under standard operating loads. Each package, complete with all shipping appurtenances, shall conform to the cargo requirements of this aircraft.

13. The packages with all shipping appurtenances shall also be designed, so far as practicable, for transport by rail, ship, and military ground transport vehicles; such as a trailer, flatbed, 40 feet long.

14. The design of the plant shall be such that field erection to a fully operating condition at a remote site is practicable in the minimum period of time, not to exceed three (3) months. Installed facilities (foundations, off-site utilities, vapor container, if required, etc.) shall be erected during the plant erection period indicated above.

15. The heat source shall be a heterogeneous boiling light water cooled and moderated reactor using enriched uranium.

16. The reactor shall have inherent safety characteristics under all conditions of startup and power operation; i.e., negative temperature and void coefficients, etc.

17. The reactor shall have the minimum number of control rods consistent with the core design. The rods shall be capable of shutting down and holding down the reactor at any time of core life at any temperature from operating to ambient if all rods are operative. If any one rod becomes immovable in its normal operating position, the remaining rods shall be capable of shutting down and holding down the reactor at any time of life at any temperature from operating to ambient air temperature $(70^{\circ}F)$. Further, if any one rod becomes immovable in its full out position, the remaining rods shall be capable of shutting down and hold and hold down the reactor at any time of life at any temperature from operating to $180^{\circ}F$.

18. The plant shall incorporate the following:

a. System design to provide steam of such quality that negligible moisture carryover into the turbine inlet shall occur during any plant transinet or during steady state operations.

b. Proper safeguards to protect all equipment and components of the plant.

c. Minimum requirements for make up water.

19. An emergency batter chargeable by the turbine-generator as well as by the diesel backup generator(s) shall be provided to supply power to operate essential lighting, instrumentation, recorders, valves, and other vital equipment for a period of time adequate for plant safety following loss of station electrical power.

20. The design shall provide auxiliary power to allow plant startup from the cold shutdown conditions.

21. The plant controls and console arrangement shall conform to meet the following requirements:

a. Operable by one (1) man during normal operation.

b. Minimum operator fatigue.

c. Instrumentation and control sufficient for manual control of the integrated plant and conspicuously displayed.

d. Malfunctions and abnormal conditions which could have a serious effect on plant operation shall be indicated both visible and audibly at the control panel. "Test", "Reset", and "Acknowledge" controls for the annunciator shall be located on the control console.

22. Instrumentation and control systems shall be as simple as possible consistent with reliability and accuracy. Semi-conductors, magnetic amplifiers, and other high reliability components shall preferably be used wherever possible. Relays and vacuum tubes shall be avoided where possible in favor of more reliable components such as those mentioned above.

23. (Deleted)

24. Neutron flux instrumentation must record flux and indicate reactor period from source level upward to 1.5 maximum design flux. Positive overlap of at least one decade must be provided between channels for flux measurement.

25. The contractor shall make recommendations on the following aspects of fuel handling and storage:

a. Storage of replacement core prior to utilization.

b. Spent fuel storage facility.

c. Practicable method of removing spent fuel from the core and placing them in storage facility. d. Practicable method of removing spent fuel from storage facility, placing it in a shipping container and removing it for shipment during reactor operation.

e. Spent fuel element transfer cask which shall permit airtransport of the maximum number of spent fuel elements from the plant site to a reprocessing plant.

26. Shielding shall be such that operating crews working an 84 hour week under routine conditions shall not receive radiation exposures greater than the maximum permissible limits (Ref. NBS Handbook 69 dated June 5, 1959).

27. Fixed radiation monitoring equipment shall be provided in pertinent areas of the plant. Immediate indication of a radiation level above normal and its locations shall be made in the control area. An automatic, fail safe, battery-operated evacuation warning system shall be provided.

28. Adequate health physics facilities shall be provided to include monitoring equipment, special clothing, etc. Also, the plant shall include provisions for facilitating decontamination of personnel, equipment and areas subject to radioactive spills or leaks.

29. The plant shall include provisions for monitoring and safe controlled disposal of radioactive solid, liquid and gaseous wastes. Provisions shall be included for draining and storing all primary coolant and additional storage as may be necessary for other radioactive wastes.

30. The plant equipment where applicable shall be equipped with the necessary drains, vents, hand or man holes, etc., to facilitate inspection, maintenance and decontamination.

31. All piping and electrical connections between packages shall be designed for quick connection and disconnection, insofar as practicable.

32. Heating facilities shall be provided to prevent freezing of process fluids and to permit useful occupancy of the plant by personnel during plant shutdowns.

33. A recommended method for relocating the plant after extended power operation shall be submitted by the contractor for review by the AEC.

34. The design shall be accomplished to meet the following environmental conditions and climatic forces.

Wind Load	125 knots
Temperature Range	-125°F to 70°F
Snow Load	40 lbs/ft ²
Ice Thnickness	2 inches
Drift	Height of structure

35. Means shall be provided to inject a chemical poison into the reactor without power, in sufficient quantity to maintain the core subcritical at cold conditions with inoperative rods.

III. Power Plant Objectives

1. The turbine-generator e	electrical specifications shall be:
Capacity:	Turbine-generator capability shall be sufficient to insure at least 800 KW(e) net power.
Voltage:	2400/4160 volts
Phase and Freq:	3 phase, 60 cycle
Connection:	External, to permit delta or 4 wire wye
Power Factor:	0.8
Steady State Voltage:	Plus or minus .5%
Steady State Freq:	Plus or minus .25%
<u>Transient Voltage</u> :	Maximum variation not to exceed $\pm 2\%$ in the range between 10% and 120% of rated station load when subjected to an instantaneous station load change of 30% at 0.8 power factor.
<u>Transient Freq</u> :	Maximum variation not to exceed $\pm 2\%$ in the range between 10% and 120% of rated station load when subjected to an instantaneous station load change of 30% at 0.8 power factor.
Recovery Time from Trans- ient to Steady State	Voltage 1.5 seconds
Conditions:	Frequency 5 seconds

Parallel Operations:	Capable of paralleling
Deviation Factor: (line to line volt)	From no load to balanced full load 5%
RMS value of all harmonics:	5% (at full rated load)
RMS value of any one harmonic:	2% (at full rated load)
Plant Factor:	0.7
Overload:	200 KW at .8 P.F. continuously
2. (Deleted)	

3. Control systems shall be designed such that any single error by an operator does not result in physical damage of consequence to the overall plant.

4. The contractor shall consider the consequence of a fission product release (viz: ruptured fuel element) on the safe operation and maintenance of the overall plant.

men.

5. The plant shall be capable of startup with a maximum of two(2) \cdot

6. (Deleted)

7. Field strength welds shall not be permitted at the erection site.

8. The reactor shall be capable of producing 50% power with the most valuable rod immovable in the fully inserted position.

APPENDIX B

WEIGHT REPORT

Breakdown of the "per box" weight estimates sued to arrive at the "per load" totals for each of the eighteen C130A loads summarized in section III.A.4.a, is as follows:

Box 1 Load 1	Wt. (1bs.)
Feed and Condensate Skid (Figure 29)	
Skid and Support Members 12 WF 27, 66 ft. 10 WF 21, 44 ft. 10 U 20, 74 ft. 8 WF 17, 19 ft. 8 U 19, 32 ft. 8 I 19, 6 ft. 7 U 10, 2 ft. 4x4 I 13, 6 ft. 4" Pipe 15, 40 ft. 3 I 8, 8 ft. 2 L 4, 150 ft. 1/4" BP, 24 sq. ft. 1/4" BP, After-Condenser Saddle 1/4" BP, Pre-Cooler Saddle 1/4" BP, Hot-Well Saddle 1/8" Weld Rod, 2000 ft.	1,5829241,480323608114207860064600290102 102 102 102 102 102 102 102 102
Misc. Gussets, Clips, Angles, Fasteners, Shims Total Skid and Support	200 7,222
Components and Piping	
Feed Pump, 2 req'd @ 3000 ea.(pump motors on Load 18)	6,000
Hotwell Condensate Pump, 2 req'd @ 250 ea. Plant Heating Pump, 2 req'd @ 140 ea. Makeup Pump Lo-Pressure Drain Pump, 2 req'd @ 110 ea. Makeup Tank Lo-Pressure Drain Tank Raw Water Demineralizer Lube-Oil Intercooler Space Heat Exchanger After Condenser Pre-Cooler Condensate Control	800 500 280 70 220 250 600 750 806 807 1,010 1,220
Feed Water Control Valve Duplex Drain Controller and Trap	500 500 125

Box 1 - Load 1 (Cont'd)	···· (11)
Components and Piping (Cont'd) Steam Traps, 3 req'd @ 42 ea. 1/2" Valves (average), 35 req'd @ 23 ea. 2" Valves (average), 35 req'd @ 56 ea. 1/2" Piping (average) 200 ft. @ .851 lbs/ft. 2" Piping (average) 200 ft. @ 3.653 lbs/ft. Total Components and Piping	Wt. (1bs.) 126 805 1,960 170 <u>731</u> 19,230
Electrical Feed Pumps Motor Starter Center Starter Boxes, 5 req'd @ 21 ea. Push Button Boxes, 9 req'd @ 5 ea. Electrical Disconnects, 10 req'd @ 2 ea. 4x4 Wireway, 40 ft. @ 3.5 lbs/ft. 6x6 Wireway, 40 ft. @ 5.5 lbs/ft. Wiring Total Electrical	800 105 45 20 140 220 <u>300</u> 1,630
Pack and Ship	1,732
Total Feed and Condensate Skid	29,814
Total Box 1	29,814
Total Load 1	29,814
Box 2 Load 2 Purification Skid (Figure 27)	
<pre>Skid and Support Members 12 WF 27, 28 ft. 8 WF 24, 62 ft. 4 U 7.2, 1.5 ft. Clips, 4 req'd @ 3 ea. 4 I 13, 7 ft. Purification Saddles, 2 req'd @ 30 ft. 4 U 5.4, 4 ft. 2 L 4.6, 6 ft. Disposal Tank Cradle, 2 req'd @ 110 ft. Miscellaneous Bolting, Gussets, Angles, Fasteners, S Welds Total Skid and Support Members Components and Piping Evenoretar</pre>	<u>50</u> 2,822
Evaporator Demineralizer, 2 req'd @ 7800 ea. First Stage Heat Exchanger Second Stage Heat Exchanger	1,162 15,600 150 300

Box 2 - Load 2	<u>Wt. (lbs.</u>)
Components and Piping (Cont'd) Spent Fuel Pit Cooler Purification Pumps, 2 req'd @ 200 ea. Poison Cylinder Disposal Tank Disposal Pump, 2 req'd @ 150 ea. Shielding 76 ft. ² @ 41 ft. I-1/2" Piping, 76 ft. @ 2.7 ea. 1" Piping, 147 ft. @ 1.7 ea. 1/2" Piping, 220 ft. @ .85 ea. 1/2" 150 Lb. Valves, 25 req'd @ 6 ea. 1" 150 Lb. Valves, 12 req'd @ 14 ea. 1-1/2" 150 Lb. Valves, 2 req'd @ 27 ea. 1/2" 600 Lb. Valves, 13 req'd @ 18 ea. 1" 600 Lb. Valves, 10 req'd @ 42 ea. 1-1/2" 600 Lb. Valves, 7 req'd @ 80 ea. Flanges (approximate) Total Components and Piping	$ \begin{array}{r} 490 \\ 400 \\ 800 \\ 572 \\ 300 \\ 3,120 \\ 205 \\ 250 \\ 187 \\ 150 \\ 168 \\ 54 \\ 234 \\ 420 \\ 560 \\ 100 \\ 25,222 \\ \end{array} $
Electrical	165
Pack and Ship	1,626
Total Box 2	29,835
Box 21b	
CIC Ionization Chamber, 2 req'd @ 20 ea. UIC Ionization Chamber, 3 req'd @ 10 ea. Pack and Ship Total Box 21b Total Load 2	40 30 62 132
	29,967
Box 6f Load 3	
Personnel Bldg. Equipment (Figure 31)	
Wiring Including Outlets Lighting Fixtures Pack and Ship	250 150 <u>333</u>
Total Box of	733

APPENDIX	в ((Cont'd))
----------	-----	----------	---

Box 15b - Load 3	<u>Wt. (1bs.)</u>
Transfer Cask Mechanism (Figure 22) Pack and Ship	45 <u>37</u>
Total Box 15b	82
Box 3	
Turbine Generator Skid (Figure 39)	
Turbine Generator Reduction Gear Base Plate and Plumbing Lube - Oil Coolers Auxiliary Lube - Oil Pump Lube - Oil Filter Lube - Oil Filter Coolant Circulation Pumps Pack and Ship	4,200 14,000 3,800 3,000 1,600 200 80 550 150 1,682
Total Box 3	29,262
Total Load 3	30,077
Load_4	
Box 4	
Electrical Skid (Figure 30)	
<pre>10 WF 33 - 53 ft. 8 WF 31 - 28 ft. 8 WF 17 - 71 ft. 6 U 8.2 - 28 ft. Misc. Brackets, Shims, Gussets, Chips Weld Wireways Wiring and Installation Total Base Structurals and Wiring</pre>	1,749 868 1,207 230 250 72 190 <u>769</u> 5,335
Control Console Batteries Metalclad Switchgear - Aux. Cabinet Metalclad Switchgear, Station Feeder Cabinet Metalclad Switchgear Generator & Instr. & Control Cabinet	4,787 982 1,721 2,013 4,886

APPENDIX	в	(Cont'd)
WEEDINTY	D	(conc u)

Box 4 - Load 4	Wt. (Lbs.)	
Electric Skid (Figure 30) - (Cont'd)		
Power Center, Distribution Center, Transformer Section and High Voltage Inlet Grounding Reactor Total Components	5,512 1,628 21,529	
Pack and Ship	2,894	
Total Box 4	29,758	
Total Load 4	29,758	
Load 5		
Box 7		
Reactor Vessel, Head and Head Shielding (Figure 27) Pack and Ship	27,100 2,180	
Total Box 7	29,280	
Box 19bl		
Control Rod Mechanism Actuator (Figure 11) Pack and Ship	650 82	
Total Box 19b1	732	
Total Load 5	30,012	
Load 6 Box 5a		
Condenser Skid (Figure 38) (Actual) Pack and Ship	22,000 1,758	

Total Box 5a 23,758

APPENDIX	B	(Cont'd)

Box 13f - Load 6	Wt. (Lbs.)
Crane Assy Provisions (Figure 4) Pack and Ship	448 90
Total Box 13f	538
Box 19b2	
Control Rod Mechanism Actuator (Figure 11) Pack and Ship	650 82
Total Box 19b2	732
Box 19cl	
Control Rod Drive Package (Figure 2) Pack and Ship	150 63
Total Box 19cl	213
Total Load 6	25,241
Box 5b	
Load 7	
Load 7 Box 5b	
	22,000 1,758
Box 5b Condenser Skid (Figure 38) (Actual)	
Box 5b Condenser Skid (Figure 38) (Actual) Pack and Ship	1,758
Box 5b Condenser Skid (Figure 38) (Actual) Pack and Ship Total Box 5b	1,758
Box 5b Condenser Skid (Figure 38) (Actual) Pack and Ship Total Box 5b Box 6g Personnel Bldg. (Figure 31) Heating Radiations Piping and Controls	<u>1,758</u> 23,758 850
Box 5b Condenser Skid (Figure 38) (Actual) Pack and Ship Total Box 5b Box 6g Personnel Bldg. (Figure 31) Heating Radiations Piping and Controls Pack and Ship	<u>1,758</u> 23,758 <u>850</u> <u>262</u>
Box 5b Condenser Skid (Figure 38) (Actual) Pack and Ship Total Box 5b Box 6g Personnel Bldg. (Figure 31) Heating Radiations Piping and Controls Pack and Ship Total Box 6g	<u>1,758</u> 23,758 <u>850</u> <u>262</u>

Box 6h - Load 7	Wt. (Lbs.)
Personnel Bldg. (Figure 31) Water Closet Including Plumbing Lavatory Including Plumbing Sink Including Plumbing Pack and Ship	425 200 200 210
Total Box 6h	1,035
Total Load 7	26,818
Load 8	
Box 8	
Core (Figure 8) Pack and Ship	1,750 256
Total Box 8	2,006
Box 12	
Waste Tank (Figure 3) Pack and Ship	1, 500 <u>392</u>
Total Box 12	1,892
Box 16d	
Service Bldg. Switch Gear Welder Hand Tools Grinder Pack and Ship	300 500 650 150 164
Total Box 16d	1,764
Box 5c	
Condenser Dampers and Supports (2 sets) (Figure 38) Actual Pack and Ship	12,240 3,660
Total Box 5c	15,900

Box 26 - Load 8	Wt. (Lbs.)
Source, Contained (Figure 15) Pack and Ship	385 86
Total Box 26	471
Total Load 8	22,033
•	

Load 9

Box 9a

Spent Fuel Shipping Assy (Fig. 21) Includes 8 Assys & 3 Rods Pack and Ship	28,250 1,055
Total Box 9a	29,305

Box 13d

Crane Bridge Drive Unit Including Motor & Reducer (Figure 4) Pack and Ship	500 197
Total Box 13d	697
Total Load 9	30,002

Load 10

Box 9b

Box

Spent Fuel Shipping Assy (Fig. 21) Includes 8 Assys & 3 Rods Pack and Ship	28,250 1,055
Total Box 9b	29,305
16h	
Service Bldg. Lathe Pack and Ship	400 219
Total Box 9b	619

Box 9c	oad 11	<u>Wt. (Lbs.</u>)
Spent Fuel Shipping Assy (Fig. 21) & 3 Rods Pack and Ship	Includes 8 Assys	28,250 _1,055
Total Box 9c		29,305
Box 19b3		
Control Rod Mechanism Actuator (Fig Pack and Ship	ure ll)	650 82
Total Box 19b3		732
Total Load 11		30,037
Lo	ad 12	
Box 10		
Shield Tank Assembly (Figure 18) Pack and Ship		27,954 2,024
Total Box 10		29,978
Total Load 12		29,978
Lo	ad 13	
Box 11		
Spent Fuel and Plant Drain Tanks Sh (Figure 19) Pack and Ship	ipping As sy	26,550 2,963
Total Box 11		29,513
Box 19d		
Control Rod Drive Connectors (Figur Pack and Ship	e 8)	360 143
Total Box 19d		503
Total Load 13		30,016

Box 15a	Load 14	Wt. (Lbs.)
Transfer Cask Assembly (Figur Pack and Ship	e 22)	11,499 375
Total Box 15a		11,874
Вох 16b		
Service Bldg. Auxiliary Boile Pack and Ship	r	7,535 465
Total Box 16f		8,000
Вох бј		
Personnel Bldg. (Figure 31) Shower, Stall and Plumbing Stool Pack and Ship		350 35 263
Total Box 6j		648
Box 6k		
Personnel Bldg. (Figure 31) Washer and Dryer Pack and Ship		400 288
Total Box 6k		688
Вох бъ		
Personnel Bldg. (Figure 31) (4) File Cabinets Pack and Ship		240 319
Total Box 6b		55 9
Вох бе		
Personnel Bldg. (Figure 31) (6) Personnel Lockers Pack and Ship		360 470
Total Box 6c		830
Total Load 14		22,599

	APPENDIX B (Cont'd)	
Bex 5dl	Load 15	Wt. (Lbs.)
Condenser Stack Struc Columns, Girders, I Pack and Ship		4,052 390
Total Box 5dl		4,442
Box 13a		
Cranes Trusses, 2 req Pack and Ship	'd @ 700 ea. (Figure 4)	1,400 425
Total Box 13a		1,825
Box 13b		
Crane Rail Beams, 2 re Pack and Ship	eq'd @ 1600 ea. (Fig. 4)	3,200 <u>425</u>
Total Box 13b		3,625
Box 14f		
Ratiometer Jack (Figu Pack and Ship	re 3)	1,712 96
Total Box 14f		1,808
Box 14g		
Ratiometer Jack (Figur Pack and Ship	re 3)	1,712 96
Total Box 14g		1,808
Box 14h		
Ratiometer Jack (Figur Pack and Ship	re 3)	1,712 96
Total Box 14h		1,808
Box 1.5c		
Transfer Cask Extension (Figure 22) Pack and Ship	on Racks, 3 req'd @ 40 ea.	120 152
Total Box 15c		272

APPENDIX	В	(Cont'd)	
----------	---	----------	--

Box 18 - Load 1.5	Wt. (Lbs.)
Refueling Plate Assembly (Figure 23) Pack and Ship	6,100 <u>419</u>
Total Box 18	6,519
Box 24	
Off-Skid Heating Provisions (Figure 59) Pack and Ship	450 143
Total Box 24	593
Box 20	
Instrument Well Shipping Pack Skid (Figure 35) Skid Steel Skid Lumber BF ₃ Wells, 2 req'd @ 558 ea. 3 UIC Wells @ 544 ea. 2 CIC Wells @ 545 ea. Pack and Ship	646 1,775 1,116 1,635 1,090 435
Total Box 20	6,697
Total Load 15	29,397
Load 16	
Box 5d2	
Condenser Stack Panels (Figure 25) Pack and Ship	2,700 742
Total Box 5d2	3,442
Box 5d3	
Condenser Stack Panels (Figure 25) Pack and Ship	2,700 742
Total Box 5d3	3,442
Box 13c	
Crane End Beams, 2 req'd @ 500 ea. (Figure 4) Pack and Ship	1,000 252
Total Box 13c	1,252

Box 14a - Load 16	Wt. (Lbs.)
Ratiometer Jack (Figure 3) Pack and Ship	1,746 112
Total Box 13a	1,858
Box 14b	
Ratiometer Jack (Figure 3) Pack and Ship	1,746 <u>112</u>
Total Box 14b	1,858
Box 14c	
Ratiometer Jack (Figure 3) Pack and Ship	1,746 112
Total Box 14c	1,858
Box 14d	
Ratiometer Jack (Figure 3) Pack and Ship	1,746
Total Box 14d	1,858
Box 14e	
Ratiometer Jack (Figure 3) Pack and Ship	1,712 96
Total Box 14e	1,808
Box 1.9b4	
Control Rod Mechanism Actuator (Figure 11) Pack and Ship	650 82
Total Box 19b4	732
Box 19b5	
Control Rod Mechanism Actuator (Figure 11) Fack and Ship	650 82
Total Box 19b5	732

APPENDIX	В	(Cont'd))
----------	---	----------	---

Box 19b6 - Load 16	Wt. (Lbs.)
Control Rod Mechanism Actuator (Figure 11) Pack and Ship	650 82
Total Box 19b6	732
Box 19b7	
Control Rod Mechanism Actuator (Figure 11) Pack and Ship	650 82
Total Box 19b7	732
Box 19b8	
Control Rod Mechanism Actuator (Figure 11) Pack and Ship	650 82
Total Box 19b8	732
Box 19b9	
Control Rod Mechanism Actuator (Figure 11) Pack and Ship	650 82
Total Box 19b9	732
Total Load 16	21,768
Load 17	
Box 5dr	
Condenser Stack Panels (Figure 25) Pack and Ship	2,700 742
Total Box 5d4	3,442
Box 5d5	
Condenser Stack Cowling, Covers, Desk (Figure 25) Pack and Ship	1,490 728
Total Box 5d5	2,218

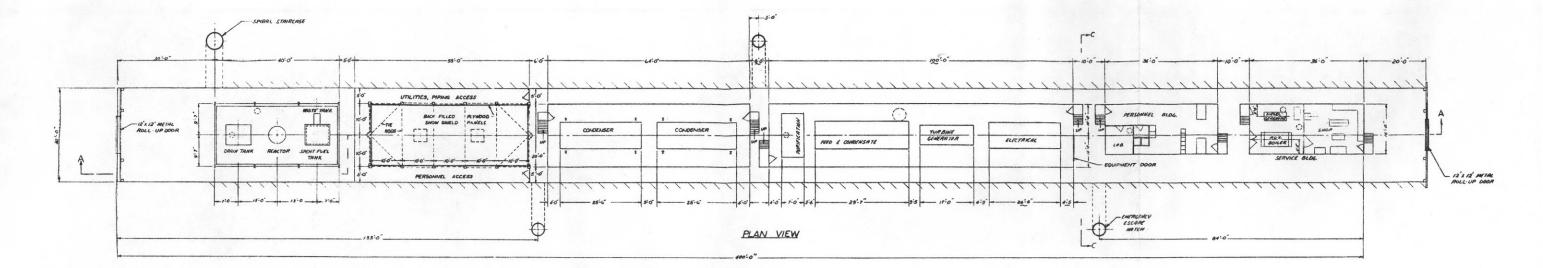
APPENDIX	В	(Cont'd)

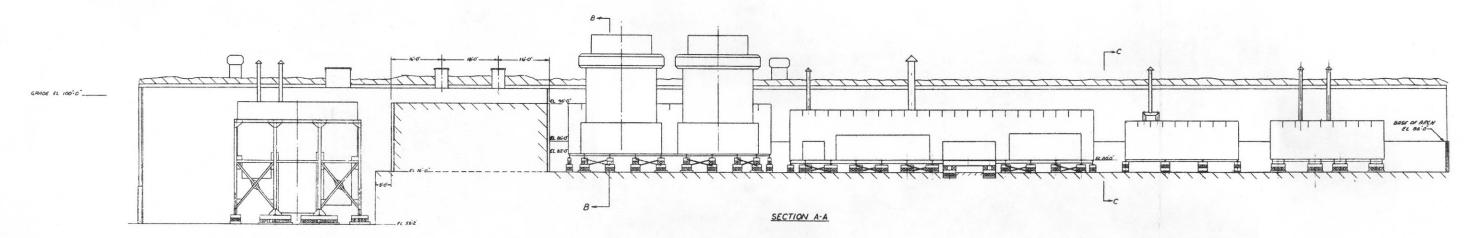
Box 6n - Load 17	Wt. (Lbs.)
Personnel Bldg. (Figure 31) (2) Desks @ 300 ea. (2) Chairs @ 30 ea. Pack and Ship	600 60 414
Total Box 6n	1,074
Вох ба	
Personnel Bldg. (Figure 31) Radiation Counter Pack and Ship	500 173
Total Box 6a	673
Box 6d	
Personnel Bldg. (Figure 31) Contaminated Clothes Bin Waste Box Pack and Ship Total Box 6d	75 200 156 431
Box 6m	-11
Personnel Bldg. (Figure 31) Table Pack and Ship	400 189
Total Box 6m	589
Box 13e	
Crane Trolley Including Motor and Reducer for Drive Plus Hoist and Hoist Motor (Figure 3 and 4) Pack and Ship	1,500 <u>343</u>
Total Box 13e	1,843
Total Load 17	10,270

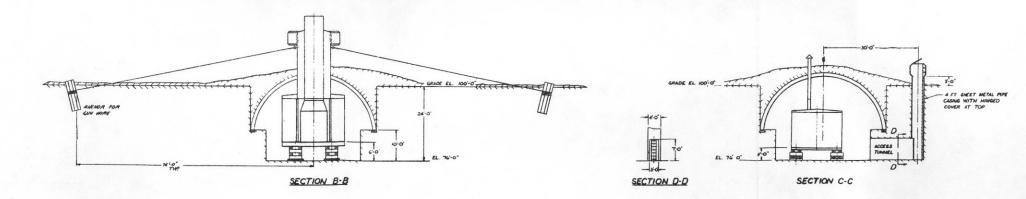
Вох бе	Load 18	Wt. (Lbs.)
Personnel Bldg. (Figure 31) 400 ft. ² Internal Partitions Pack and Ship	@4 ea.	1,600 369
Total Box 6e		1,969
Box 16a		
Service Building Auxiliary Diesel Generator (Pack and Ship	Skid Mounted)	6,985 460
Total Box 16a		7,445
Fox 16c		
Service Building Fuel Tank Pipe Threader Drill Press Pack and Ship Total Box 16c		400 200 300 238 1,138
Box 16e		
Service Building Wiring Lights Parts Bins Pack and Ship		250 150 350 262
Total Box 16e		1,012
Box 16f		
Service Building Work Bench Boiler Piping Pack and Ship		175 800 262
Total Box 16f		1,237
Box 16g		
Service Building Heating and Fire Protection Pack and Ship	Including Plumbing	1,450 448
Total Box 16g		1,898

APPENDIX B (Cont'd)	
Box 161 - Load 18 (Cont'd)	Wt. (Lbs.)
Service Bldg. Internal Partitions Pack and Ship	1,400 <u>323</u>
Total Box 161	1,723
Box 17	
Spent Fuel Storage Rack (Figure 3 3) Pack and Ship	1,474
Total Box 17	1,763
Box 19c2	
Control Rod Drive Package (Figure 2) Pack and Ship	150 <u>63</u>
Total Box 19c2	213
Box 19c3	
Control Rod Drive Package (Figure 2) Pack and Ship	150 <u>63</u>
Total Box 19c3	213
Box 19c4	
Control Rod Drive Package (Figure 2) Pack and Ship	150 <u>63</u>
Total Box 19c4	213
Box 19c5	
Control Rod Drive Package (Figure 2) Pack and Ship	150 <u>63</u>
Total Box 19c5	213
Box 19c6	
Control Rod Drive Package (Figure 2) Pack and Ship	150 63
Total Box 19c6	213

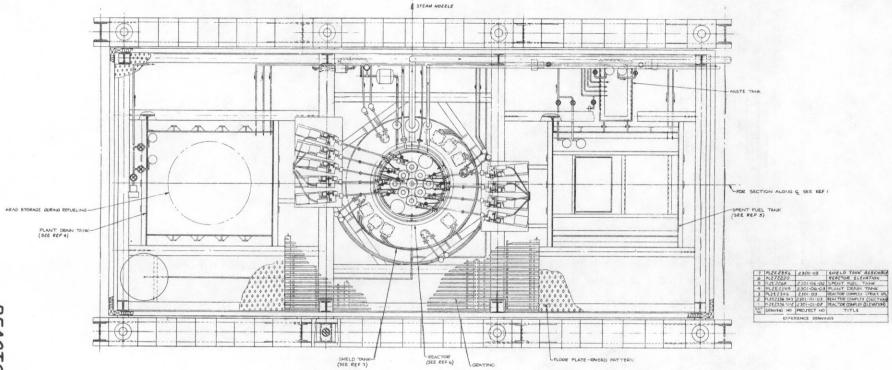
111

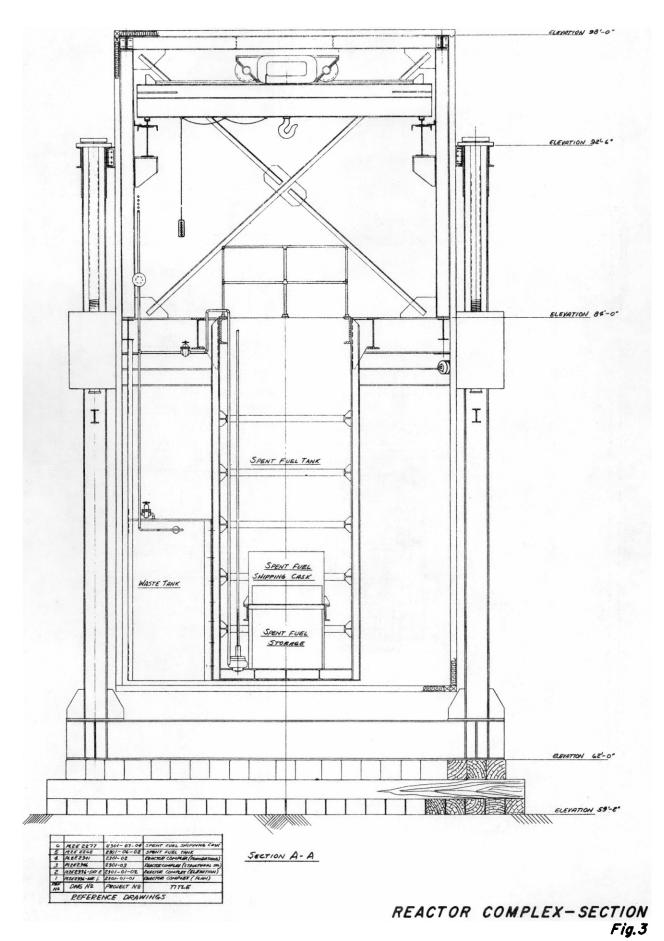

Box 19c7 - Load 18 (Cont'd)	Wt. (Lbs.)
Control Rod Drive Package (Figure 2) Pack and Ship	150 <u>63</u>
Total Box 1907	213
Box 19c8	
Control Rod Drive Package (Figure 2) Pack and Ship	150 <u>63</u>
Total Box 19c8	213
Box 19c9	
Control Rod Drive Package (Figure 2) Pack and Ship	150 <u>63</u>
Total Box 19c9	213
Box 19e	
Control Extension Shafts, 9 req'd (Figure 11) Pack and Ship	117 <u>91</u>
Total Box 19e	208
Box 21a	
BF ₃ Instruments, 2 req'd @ 100 ea. (Figure 36) Pack and Ship	200 86
Total Box 21a	286
Box 22	
Portable Radiation Monitoring (Figure 69) Pack and Ship	550 205
Total Box 22	755
Box 23	
Fixed Radiation Monitoring Pack and Ship	350 205
Total Box 23	555

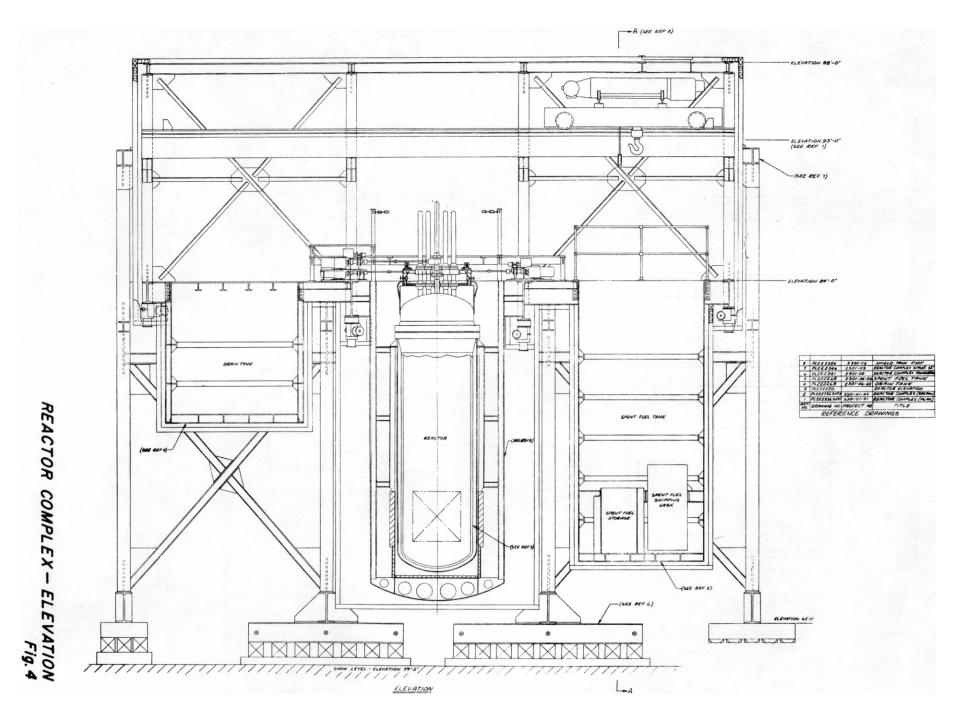

Box 25a - Load 18 (Cont'd)	Wt. (Lbs.)
Feed Pump Motor (Figure 29) Pack and Ship	1,000 <u>206</u>
Total Box 25a	1,206
Box 25b	
Feed Pump Motor (Figure 29) Pack and Ship	1,000 206
Total Box 25b	1,206
Total Load 18	24,105

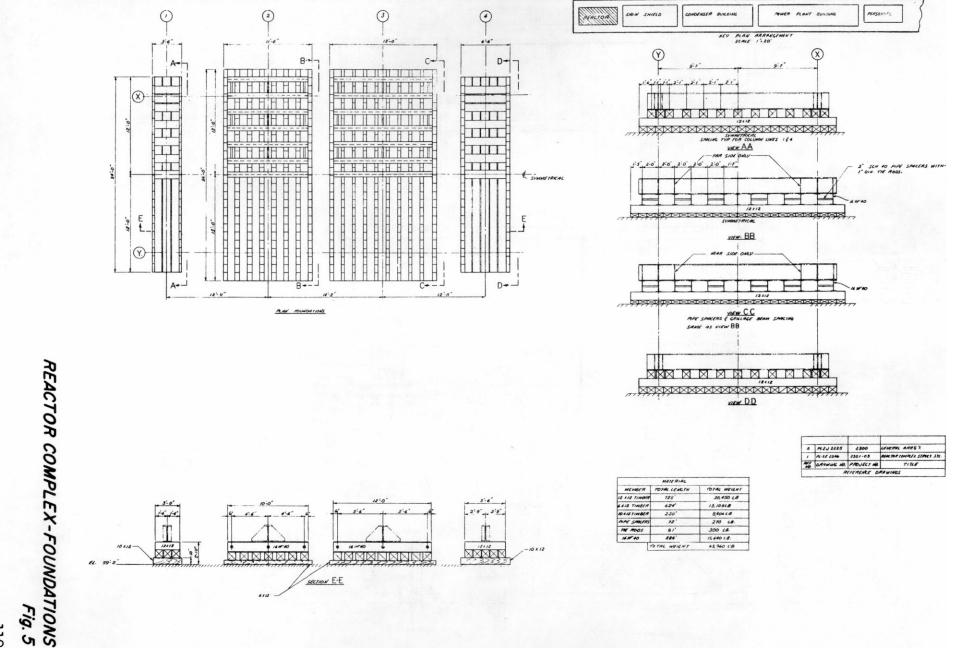

APPENDIX C

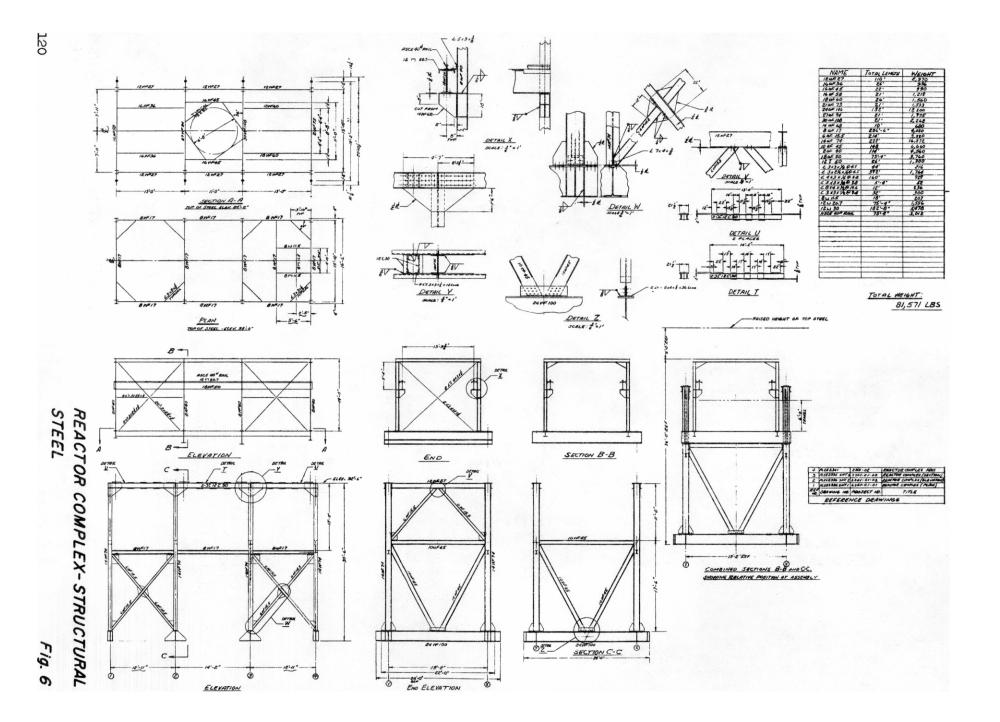
1/4 SCALE MOCKUP

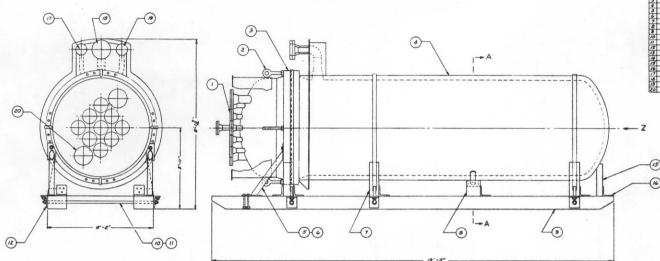

The 1/4 scale mockup has been used to develop the arrangement plans shown in this report. Maximum pull space and operational access have been provided on the mockup. Since the last report the T-5 building shells have been completed, and the stationary structure of the reactor complex completed. Final machinery arrangements and interconnecting piping are being incorporated. Figures 82, 83, 84, 85, 86, 87, and 88 are photographs of the mockup as of October 31, 1960.

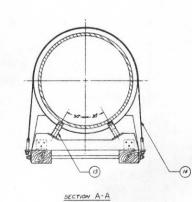





GENERAL ARRANGEMENT Fig. 1

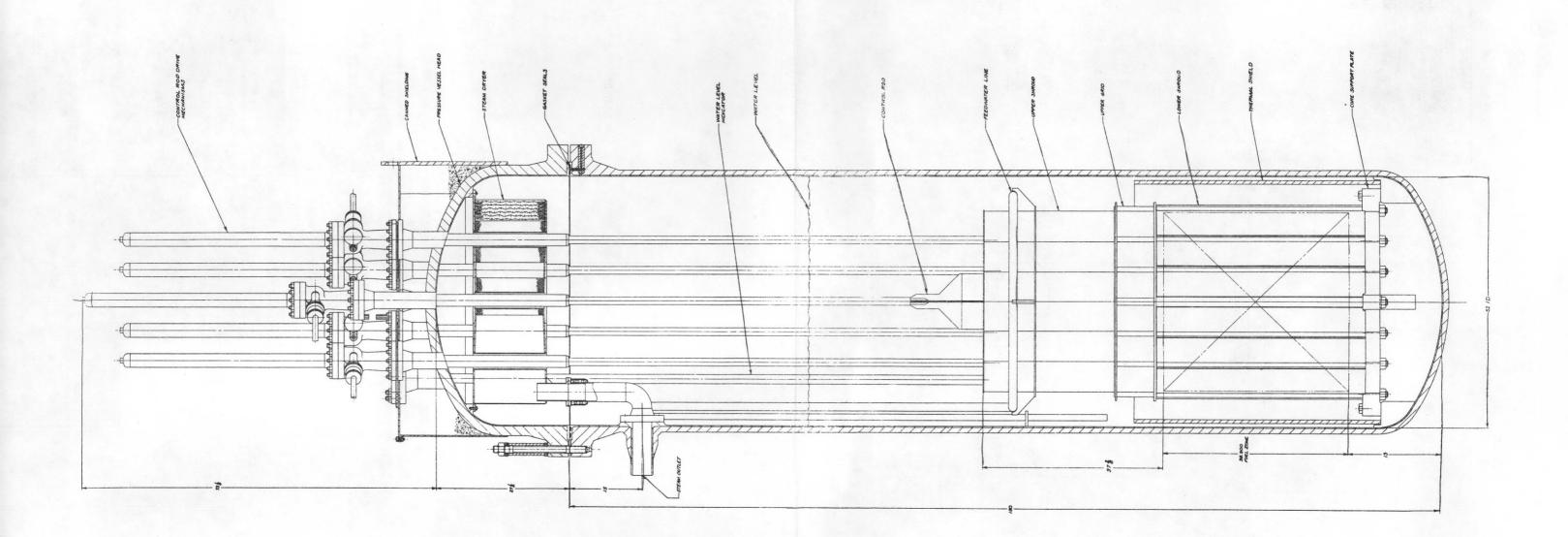



REACTOR COMPLEX-PLAN Fig. 2

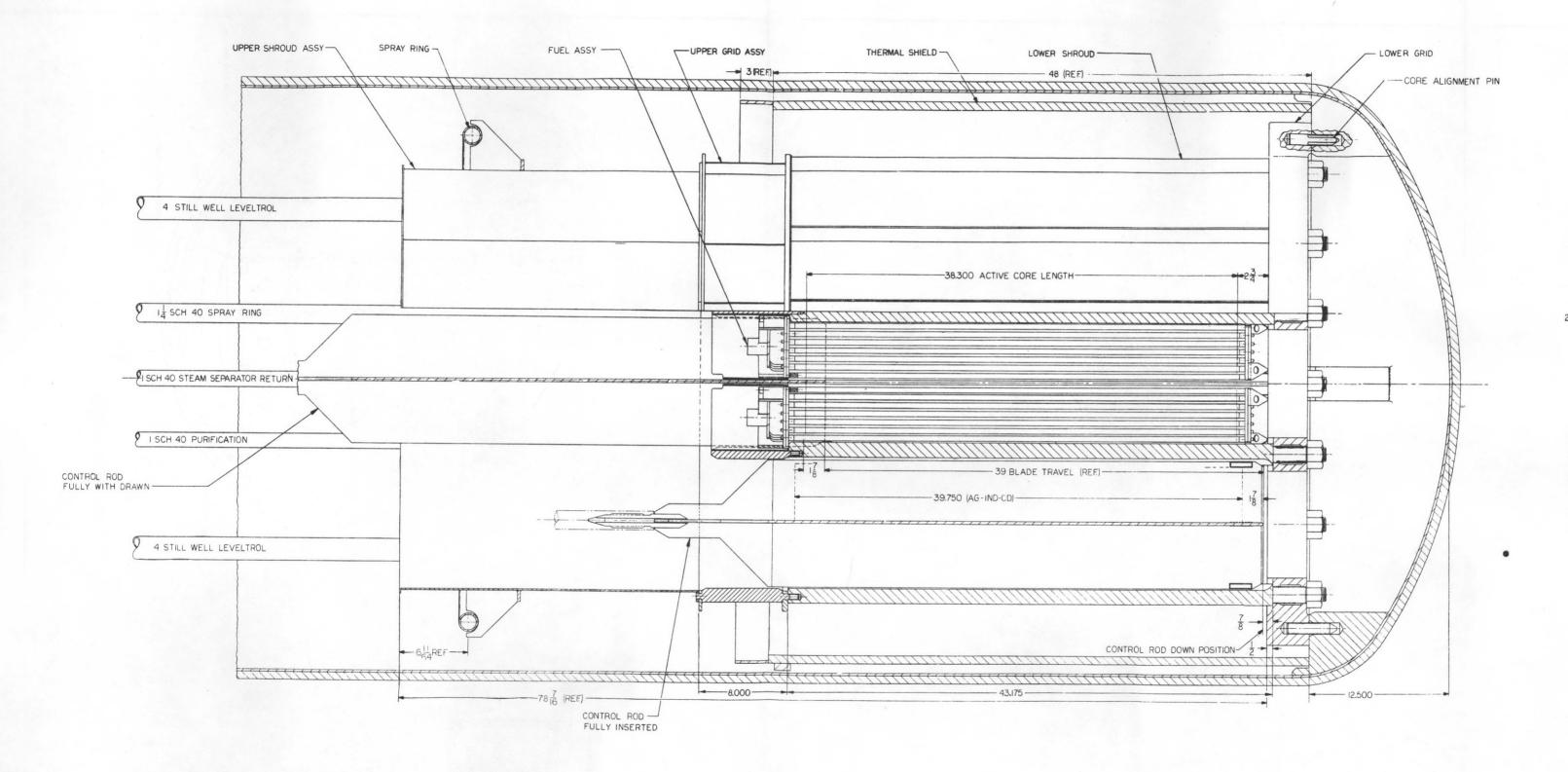


BILL OF MATERIÂLS QUANTITIES ARE FOR UNITS					
-		MANE	-	MATERIAL.	REMARKS
71		BLIND FLANGE	9		BYEDIA X 1 % THICK
2		LIFTING EVES	4		1 12 DIA + 12 LONG
3		PRESSURE VESSEL AND HEAD	11		SEE REF I
4		INSULATION CASING	11		
3		BRACE	2		3" PIPE & 32" LONG
6			50		4-10UNC-2 = 7- LONG
7		SUPPORT BEAM	3		12"x 30" = 62" LONG
8		VESSEL SUPPORT BEAM	1		8" 10" 1 62" LONG
9		SKID	2		8 = 12" × 19"6" LONG
10		TIE BAR	3		1% OIA + 68- 60M6
11		HEX. NUT SEMI-FINISHED	12		112-6UNC-2
12		ANCHOR ANGLE	6		124"17"16"10NG
13		VESSEL SUPPORT FEET	2		S" PIPE = 8" (SAECIAL)
14		TIE STRAP WITH I TO DIA STUDS	3		12 12 115 LONG
15		END SUPPORT BEAM	1		4"1/8" 1 62" LOUG
16		ANGLE BRACE	12		26" × 6" × 6" LONG
17		BLIND FLANGE	11		GTS DIA & I'S THICK
18		BLIND FLANGE	1		10 % DIA # 1 14 TWICK
19		BLIND FLANGE	1		7 42" DIA " 149" THICK
20		BLIND FLANGE	2		10 He DIA = 1 He THICE

1	ALST2280		LEACTOR ELEVATION
182		MOSTECT NO.	


<u>ЧЕКОНТЕ:</u> РЕЕЗБИЕ VESSEL АНО МЕЛО САЗИЛЕ AND INSULATION З.000 LBS ЗМИРЯМИБ S.C.IO ТОТИК 25,000 LBS

SHIPPING	
PACK	VESSEL
	AND
Fig 7	HEAD



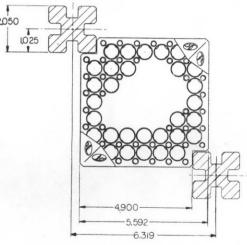
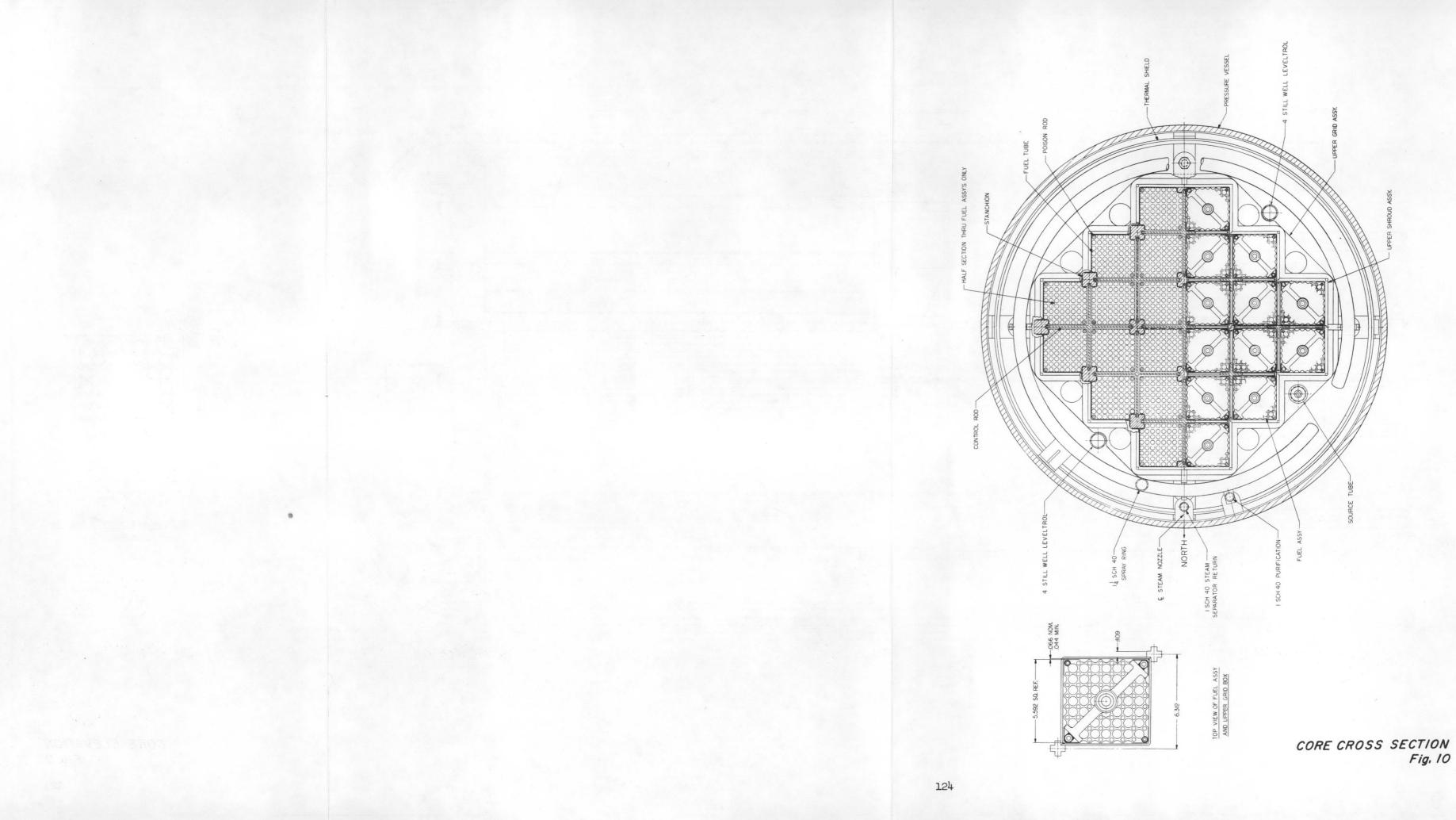
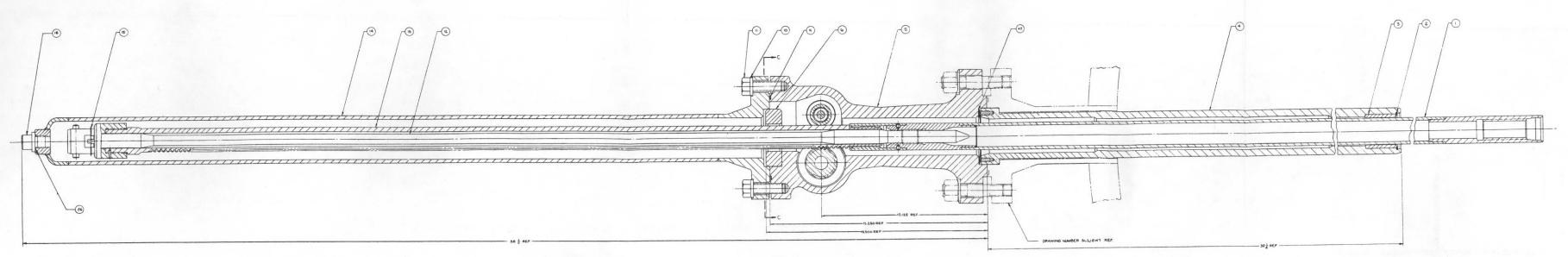
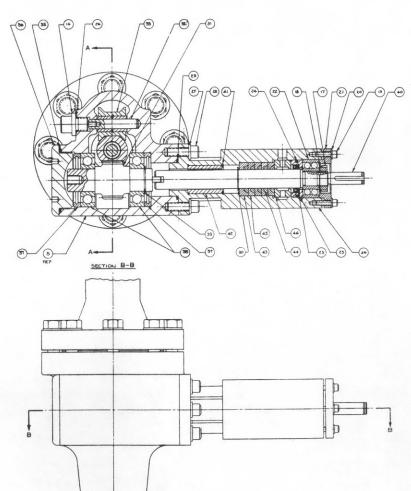
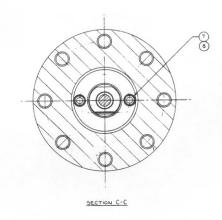

VIEW - Z

Fig. 7 121

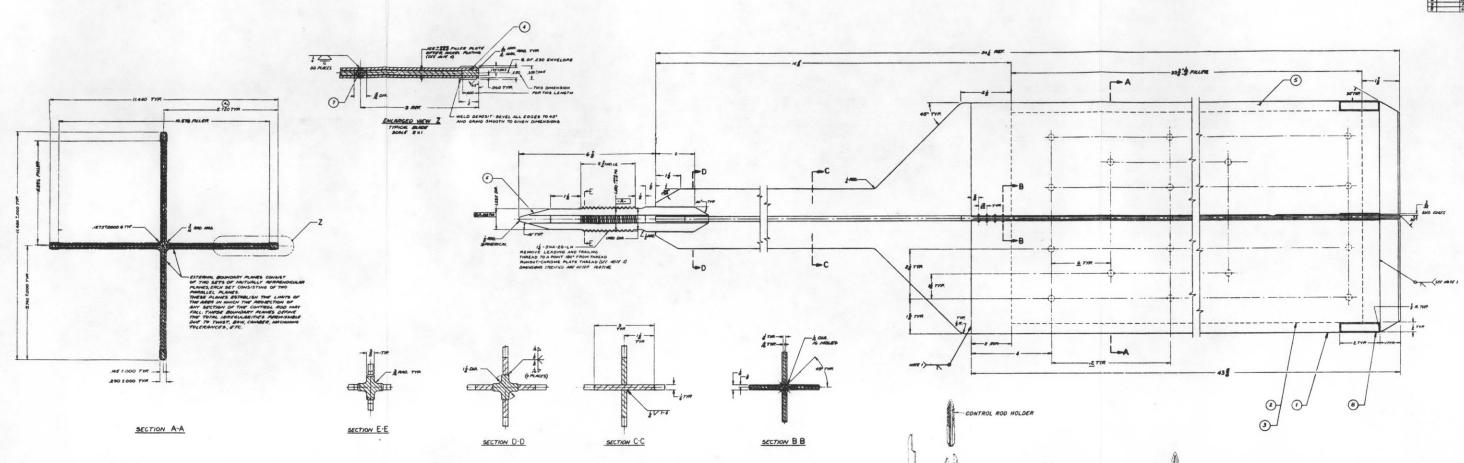


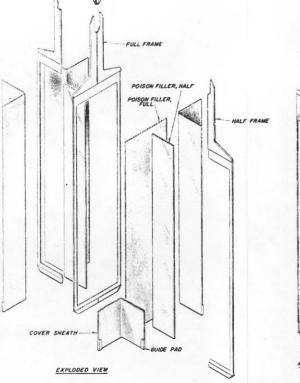



SECTIONAL VIEW OF BOTTOM FUEL ASSY AND STANCHIONS


> CORE ELEVATION Fig. 9

SECTION A-A



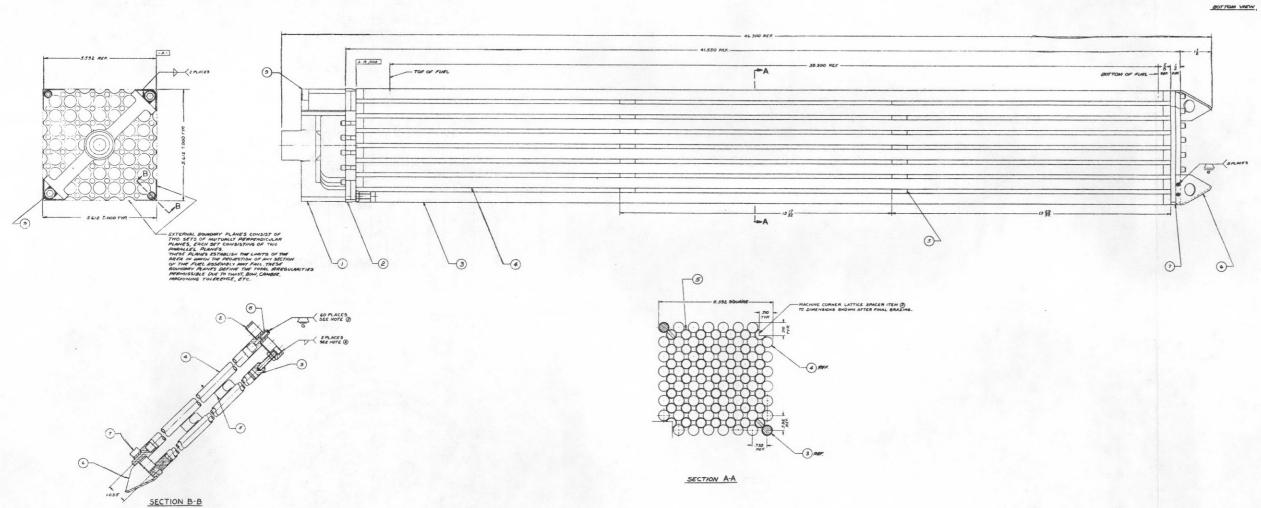


104	WANDER	PIGME	20	MATERIAL	FIMARAS
-	SUIZIAS	ACT IN TON MORE SUSH	D.		
		ETTENSION SHAFT ASST MOLY	11		
2		PETANIA RING	1	ALL TIPE ALO	LIN OF BUILD IN FORM
1	5.82994	BUSHING SLEEVE, NORZLE	1	STELL TE NO.6	
		JUSSON, JVARUE	11	ALSH TYPE 304 55T	
÷.		HOUSING PINION	11	ASHE SA JSI OR CT &	
	SLI 8 2995		-	Ares To THE 14 7 6.5.7	
-7	T-LA AURE-	CAP SCREW HER SOCKET HEAD	Z		UNC-3A
		SPENG LOCK WASHER (MEDIUM)	12	BILL TYPE SOL TH	S NOM. DIA
		GASKET, SPIRAL WOUND	1		LAND THE BE IN BRUCH
10	CUT -3+20-08	SPENG LOCK WASHER (HEDIUM)		AD. TYPE SOL SOT	
10	- LMcL - B	BOLT- REGULAR HELADON	10	AR TYPE SOA BAT	GallUNC-2A
		BOLT ASSEMPLY CONNECTOR	1		-
	SLIDZATO	RACK READING	÷		
	SLID 2454	HOUSING ASSEMBLY UPPER	ti		
	1418 2336	WASHER KEY BOLT CONNECTOR		NOT TYPE BOA NOT	
	8.18 2969	PLUG, SPAL		ALS . TYPE 347 557	
	54182992	LOCKNUT, BEARING	Ť		
	0182995	WASHER KET BEARING		AS TYPE BOA SST	
•	DUB GRAD	CAP SCREW HEL SOCKET HEAD		Line 122 printing peri	
-	ADA - 23	SPRING LOCK WASHER (MEDIUM)		ANS TYPE SOL DOT	
20	AP12.03			AN TYPE 304 BST	
	54162754	RETAINER, BEARING		Considerant Manager	- derties and the state
	56182991	SEAL, SIRVENE	÷	Country on the state	ing the Gualeste
	51152940			SUCONE RUBBER	Contraction of the second
		C-RING GASKET (STATIC USE)		Arts TYPE 347 Set	
	56182999	RETANER, SEAL, SIRVENE	+	HIS ITTE 34 1 381	THE PARTY AND
26	CHOB2361-08	O-RHIS, WETALLIC, SELF-ENERSIEING	14	ALS TTPE SLI SET	A MAN DIA
28	3445	SPRING LOCH WASHER (MEDIUM)	+7	And I was set to .	
				(and shing por.)	THE DOCTOR
		C-RIND, METALLIC, HL F-ENTROILING	+	ALS TYPE SELLET	A THE LOT OF SQUAL
		RETAINING RING	+	AND TTPE AND LET	and take of theme
	SLID 2472	MINION RACK		ARMED IT-APH SAT	
	SLID 2080	SHAFT, ROLLER, MACH	÷		
		ROLLER ASSEMOLY, RACK			
	5410 2514		÷	AS TYPE HOL IST	
		C.RING, METALLIC, SELF-ENERGIZING			
	SUC 2752	CAP, HOUSING, PINION		AISI TYPE 34196T	
	54182985	SPACER, BENEWG		AIDI TYPE SOADST	And a state of the
	5.182984	BEARING, BALL ANNULAR SINGLE	2	AS TYPE 440-61	
		RETAINING RING	1	AISI TITE 420 551	1 Dette
40	AUD 2418	SHAFT, SKAL,		ARMCO IT PH 167	
		RETAINING RING			BOALDER TRUMBE BOR
	54630125	DUSHING, SHAFT, SEAL		STELLITE NOG	
		CIAPHRAGH, LOWER, SEAL		STELLITE NOG	
		FLOATING RING, SEAL		STELLITE NO.3	
		DIAPHRAGH, SEAL		STELLITE NOG	
		LANTERN RING, SEAL,		STELLITE NO.4	-
		WASHER, WAVE,		INCONEL	

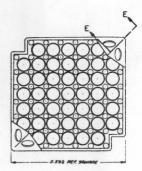
(CLEAN DEFORE ASSEMBLY OF DEGREASING WITH ACETONE, RINSING WITH WATER AND DRYING WITH LINT FREE CLOTH WITH THE FOLLOWING EXCEPTIONS: ITEM NUMBERS 9.0,11,13,20,22,23, 24 22,272,62,23 AND 35.

> MECHANISM ACTUATOR Fig.II

	BILL OF MATERIALS						
ANK.	PART .	Andrea			Arnanding		
-	SLI J 2179	CONTROL ROD BLADE ABLENELY	1				
1		CONTR SHEATH	4	AISI TYPE 348 550			
		POISON FILLER - AUL	\overline{r}	008 "A.A. 15 %	The IN STALD SEE NOTE		
3		POISON FILLER - HARF	2	30% 76 AL 15%			
4		HALF PRAME	2	ASI TYPE SHISST			
5		FULL PRAME	1	ALSI TYPE 348551			
6		CONTROL ROD HOLDER	17	415/ TYAT 348 SST			
7		ALLE	44	ASI THE 348557			
8		GUIDE PAD	8	111 A015 114 34	WELD DETERT		


с соот во автование, ити Астона, лисия, ити интера ная области наяти наято колони, ити со таке со то, сентие интера наято колони, ити со то, сентие от силается лят претиста наяти претиста наяти наяти

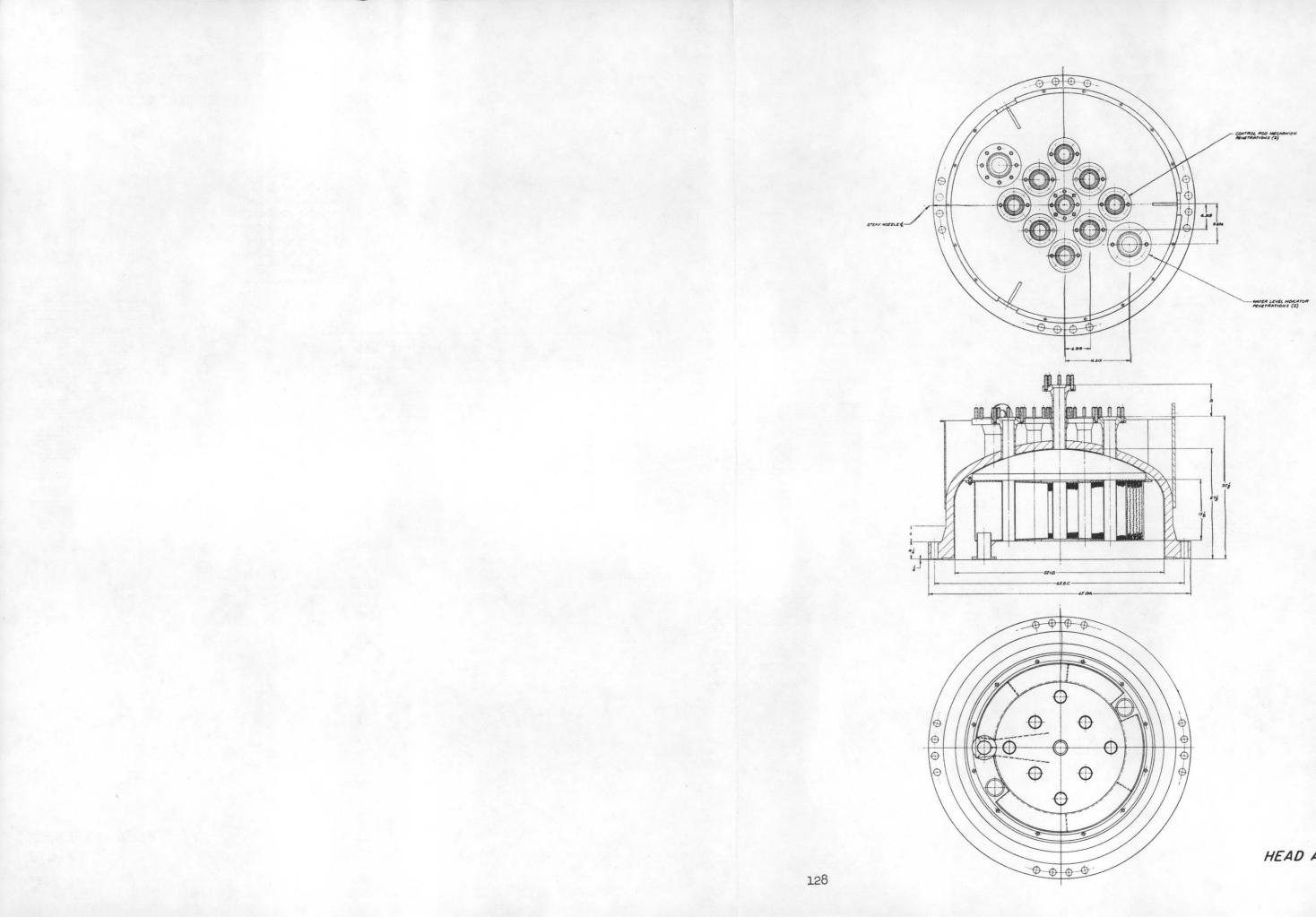
LONER SMOTTH (ITEM-I) TO BE JONED TO HALF FRAME (ITEM-I) AND FULL FRAME (ITEM-S) WITH & CONTRADUUS WITH THE MEDICAL STREAM OF THE

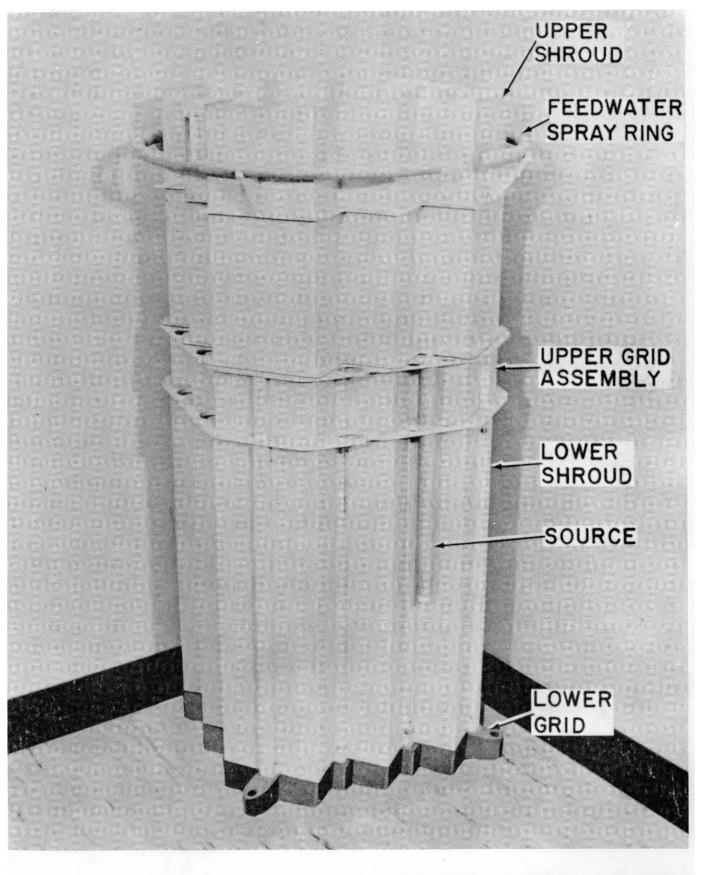

ASSEMBLED VIEW

17

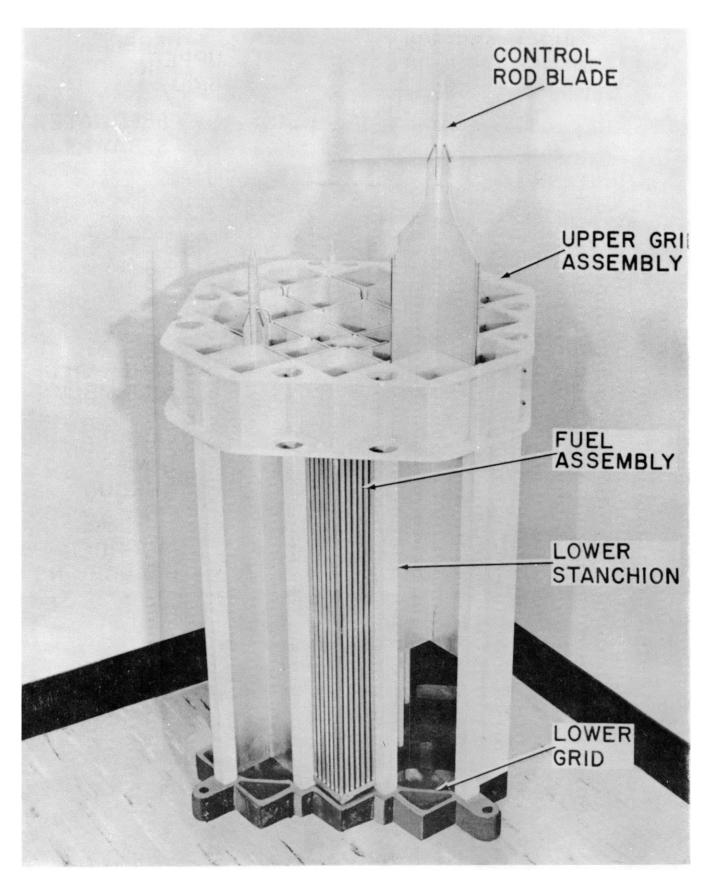
BLADE Fig. 12

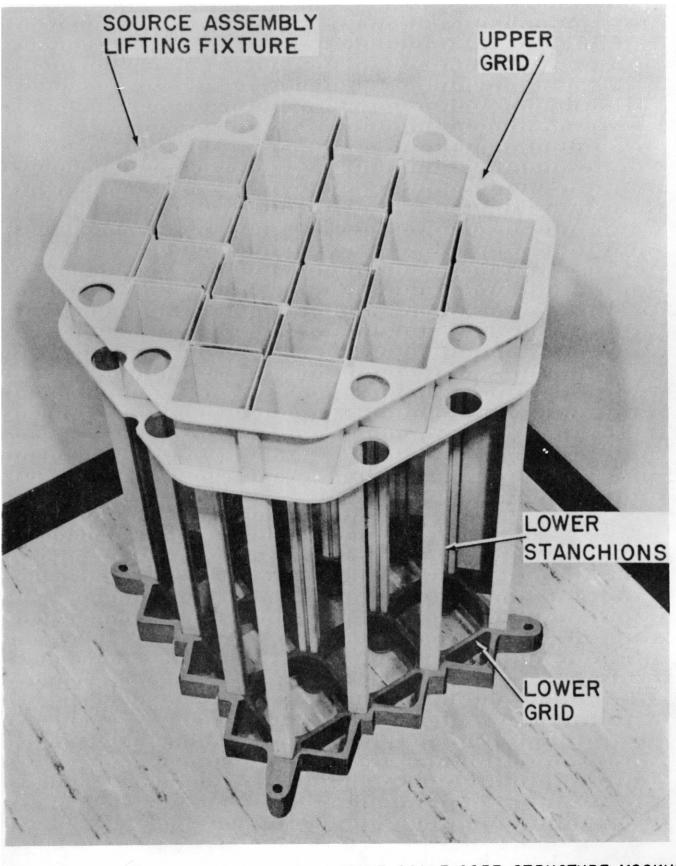
BILL OF MOTERIALS QUANTITIES ARE FOR I UNIT					
7	and	MAME	1	MATERIAL	ABMARKS
	SLIJZIBE	FUEL ASSEMBLY	+		
1	SLIC 2717	LIFTING FIXTURE	TT		
2	SUDZESG	PLATE, SUPPORT, TOP	ti	ASITTE 26754T	
5	54102453	POISON ROD ASSY.	10		
4	5402438	FUEL ELEMENT ASSY. STANDARD	140		
5	SUB2965	SPACER LATTICE	98	AURITYPE PAGAST	
6	SLICE761	CUIDE, FUEL	12	AISI TYPE Sed BAT	
7	\$UD2455	PLATE, SUPPORT, BOTTOM	17	ANT THE MATAT	
8	51102183-01	PLUG	60	ALT. TEN 341317	3252 0001 DHA. N 12 LON
9	1040.040	SOCKET HEAD CAP SCREW	16	1.5/ TYPE 314 357	3-16 UNG -24 x 2 7 LONG




SECTION E-E

- S. C. C. AND TO BE ASSEN
- TTEM NO TO BE REN TEST
- THE TOR SLIJEI83 A

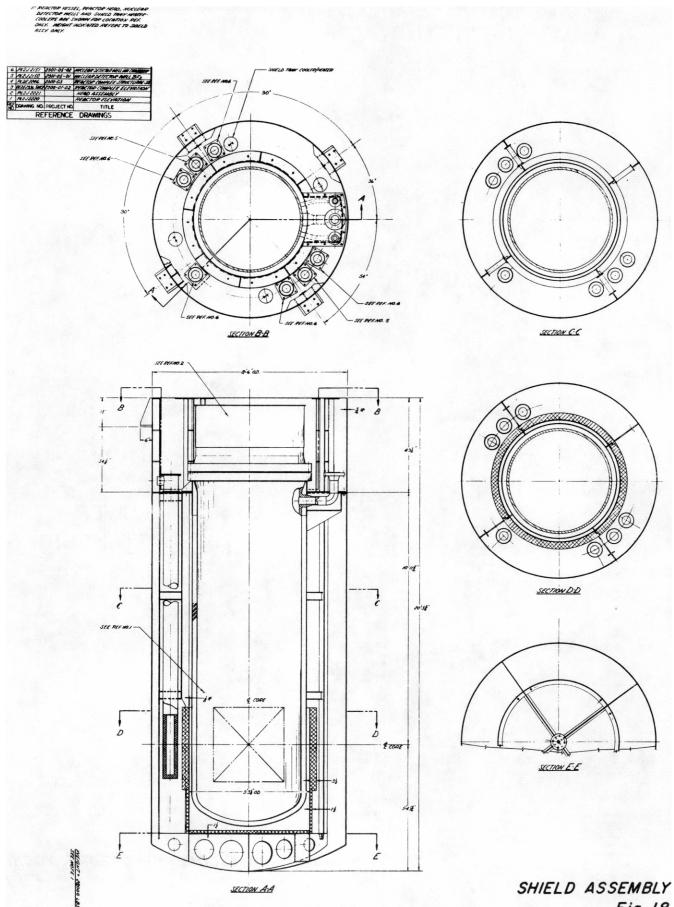
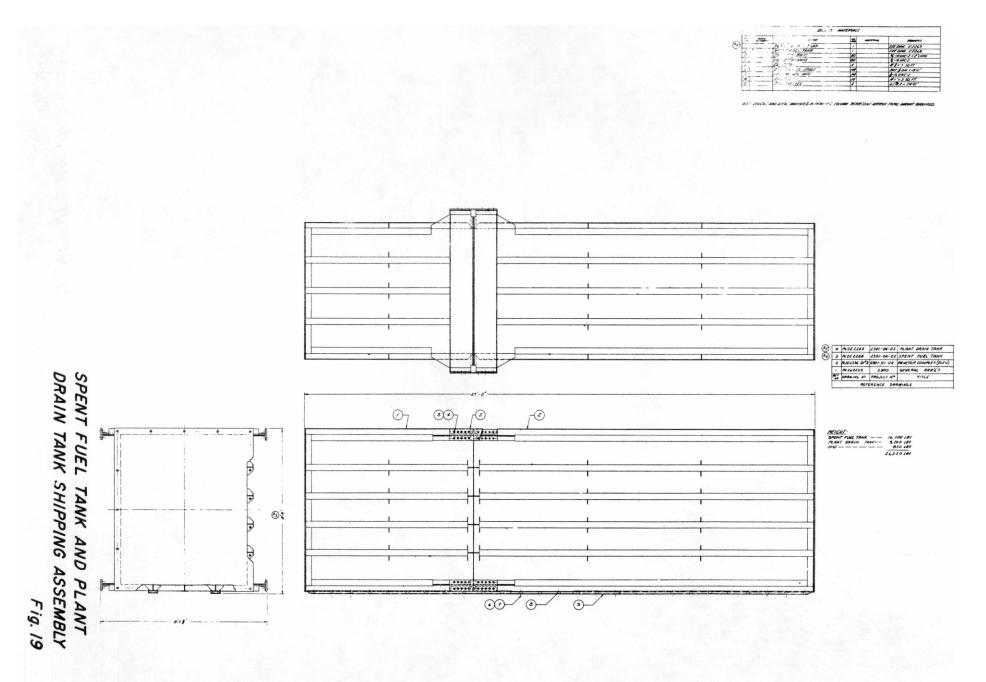
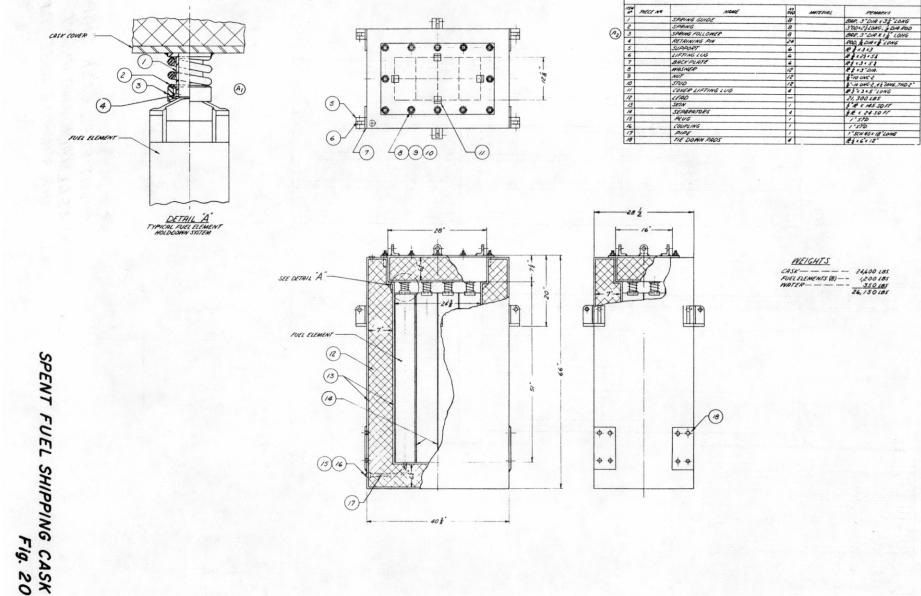
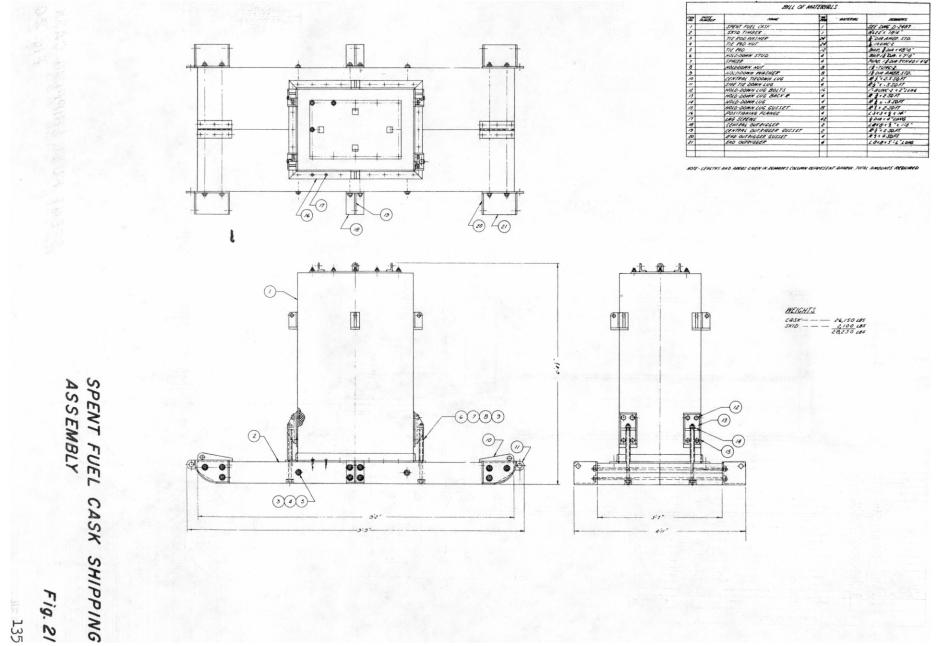

FUEL ASSEMBLY Fig. 13

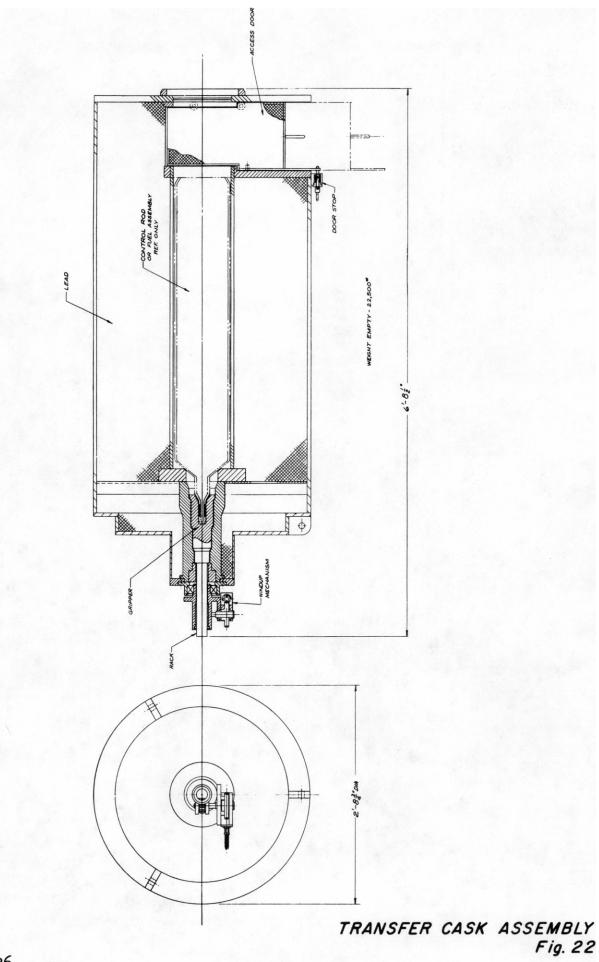

HEAD ASSEMBLY Fig. 14

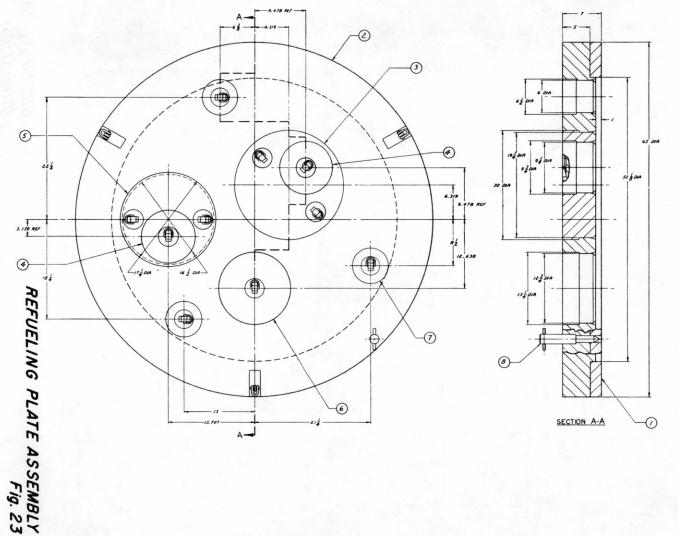
HALF SCALE CORE STRUCTURE MOCKUP Fig. 15

HALF SCALE CORE STRUCTURE MOCKL

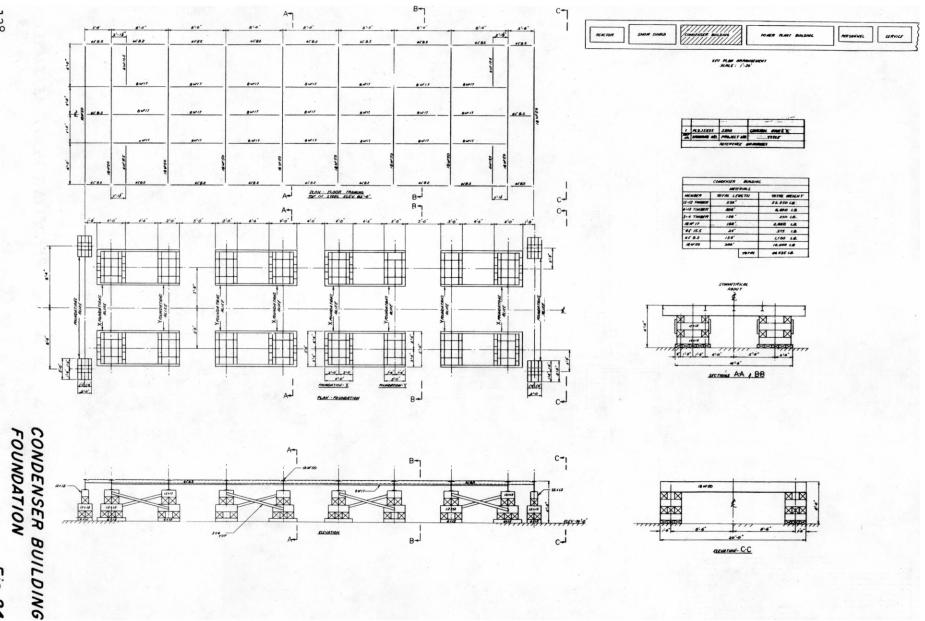
HALF SCALE CORE STRUCTURE MOCKUP Fig. 17

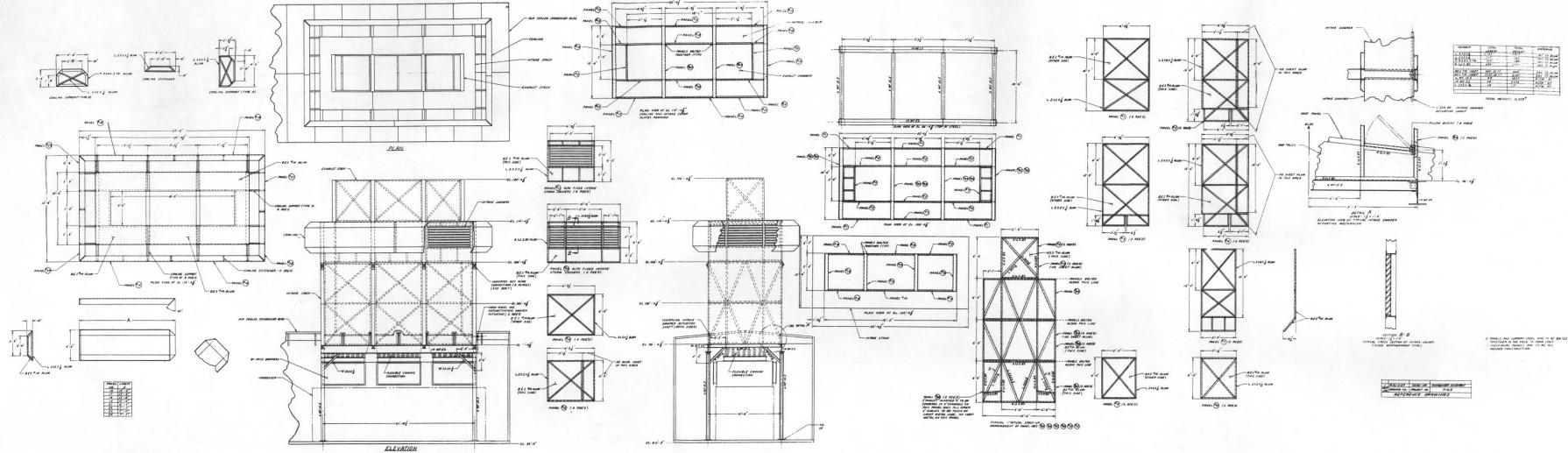

Fig. 18



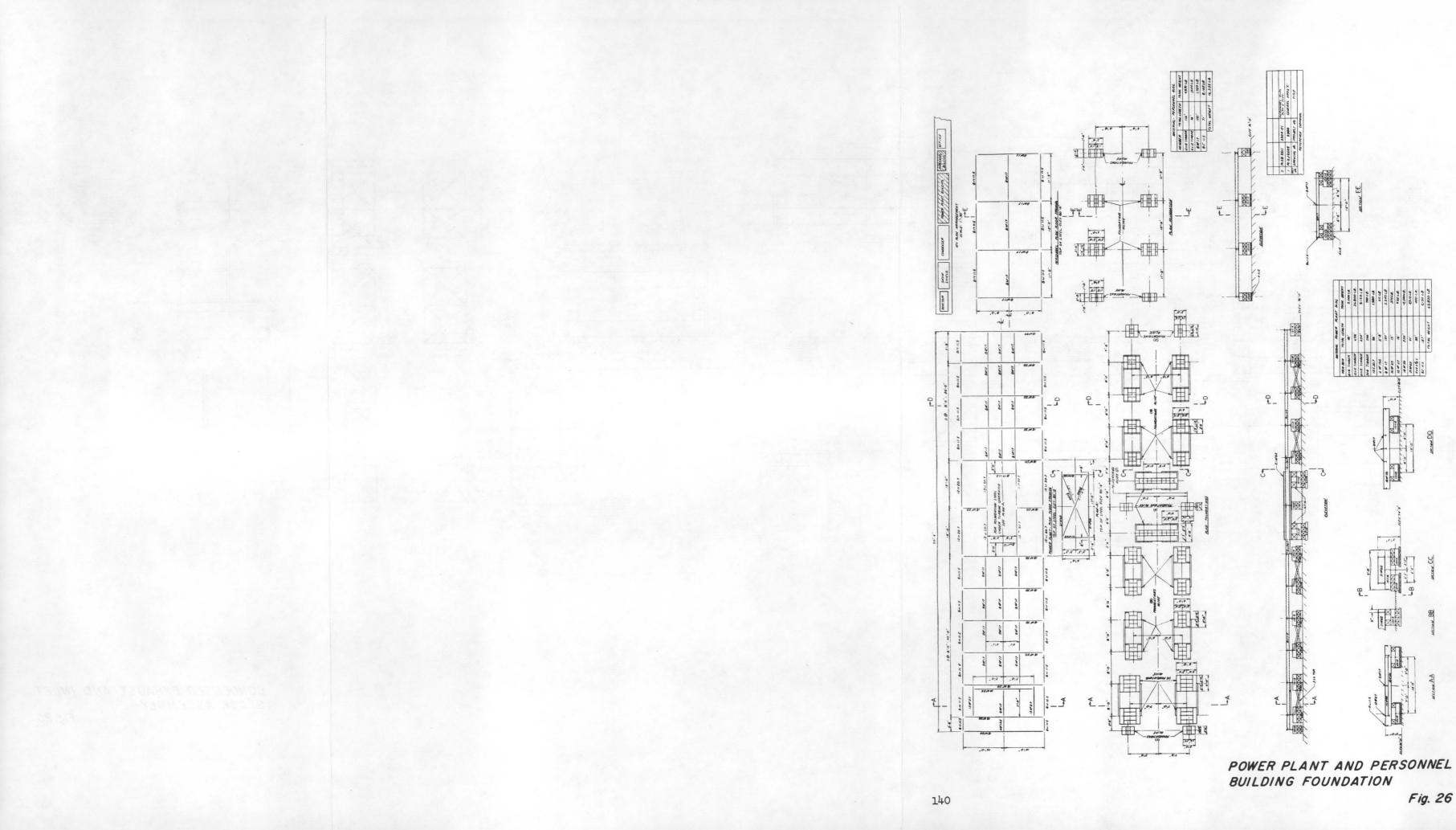
BILL OF MATERIALS



-	-	-
1	304 SST	
1	304 SST	
UG I	304 551	
3		
1	304 551	
	1 2 16 1 16 1 16 1 16 1	i 304 SST i 304 SST



ESTIMATED WEIGHT : 6100*



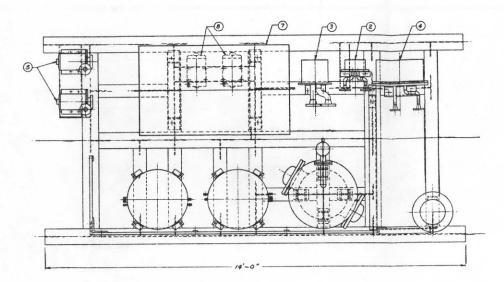
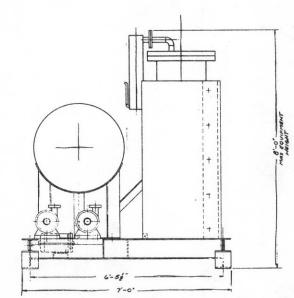
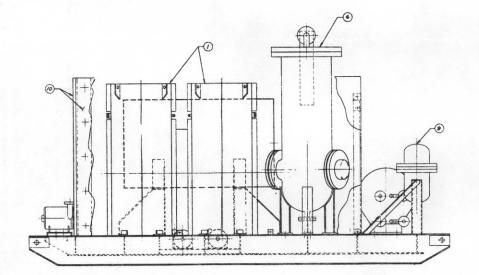
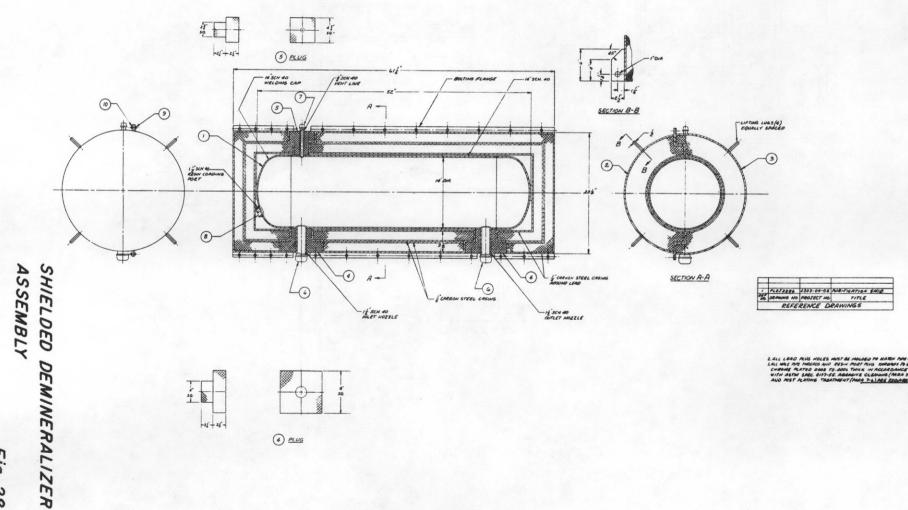

138

Fig. 24




CONDENSER EXHAUST AND INLET STACK ASSEMBLY Fig. 25

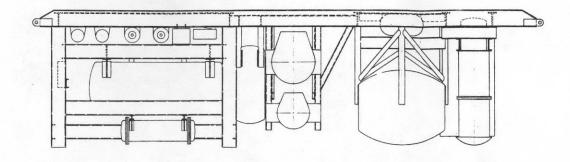


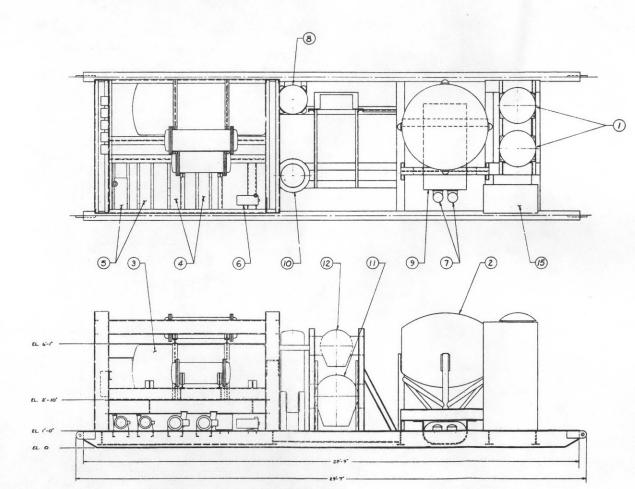
MAC	NAME	NO. ENEDID	MERNT	EEMARKS
MAC.	CEMINERALIZER	2	13.600	
	IST STALE HEAT EXCHANGER	171	150	
5	EN STAGE HEAT EXCHANGER	171	300	
-	SPENT FUEL PIT COOLER	111		
100 miles	PURIFICATION PUMPS	1 2 1	600	
	EJAPOEATOR	11	1,200	1
	DISPOSAL TANK	1/1	600	
A	DISPOSAL TANK PUMPS	E	300	
9	POISON CYLINDER	11	800	
5 -	SNIELDING		3.120	
		++		
	PIPINE, VALVES, FIFTINGS AND CONFERLS		2,350	
	SKID BASE AND STRUCTURALS		8,600	
			20,120	
	TOTAL		494129	

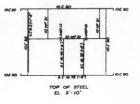
 PREJERES	2300	BENERAL ARE MARTENT (SHOW PLANEL)
 DWE NA	PHONES NA	TITLE

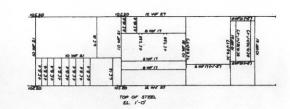
PURIFICATION SKID MACHINERY ARRANGEMENT Fig. 27

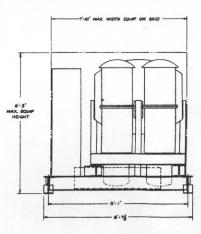
BILL OF MATERIALS QUANTITIES ARE FOR UNITS						
				MATERIAL	REDLANDED	
1		DEMINERALIZER TANK	1	304 557.		
2		LEAD CASING ASSEMBLY	1			
3		LEAD CASING ASSEMBLY	1			
4		PLUG	2	LEAD	SEE NOTE E	
5		PLUG		LEAD	SEE NOTE E	
6		CAP			12 NPT	
7		CAP	1	304 557.	Y2 NAT	
8		PLUG	1	304 957.	11/2 NDY	
8		BOLT	25	CARBON STEEL	12-13UNC-2A + 1 1/4 LAN	
10		NUT	25	CARBON STOLL	42-13UNE-20	

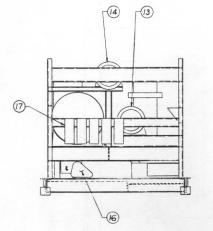

LALL LEAD RUS MOLES MAT BE MOLDED TO MATCH THE BL LALL MEL THE THERDS AND RESH THEF THUS WHERMOT THE CHEMNE THERD DOES TOOLS THULL IN ACCORDINGE WITH AETHE SRC. 873-85. MARCHER CLEMMAN (MAR 34) ALD MST LATTHE TRANSMIT (MAR 74) LARE (COLMAND.

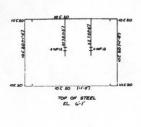

Fig. 28

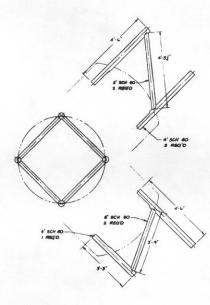

50


-21-21-

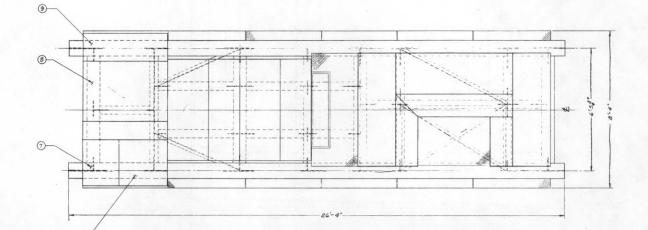

A PLUG





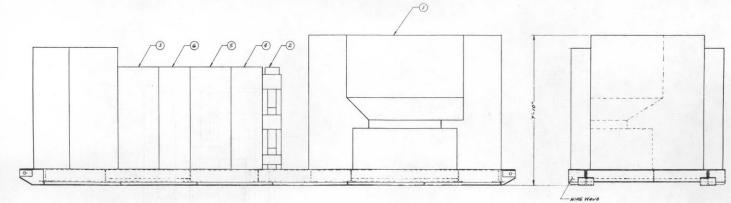


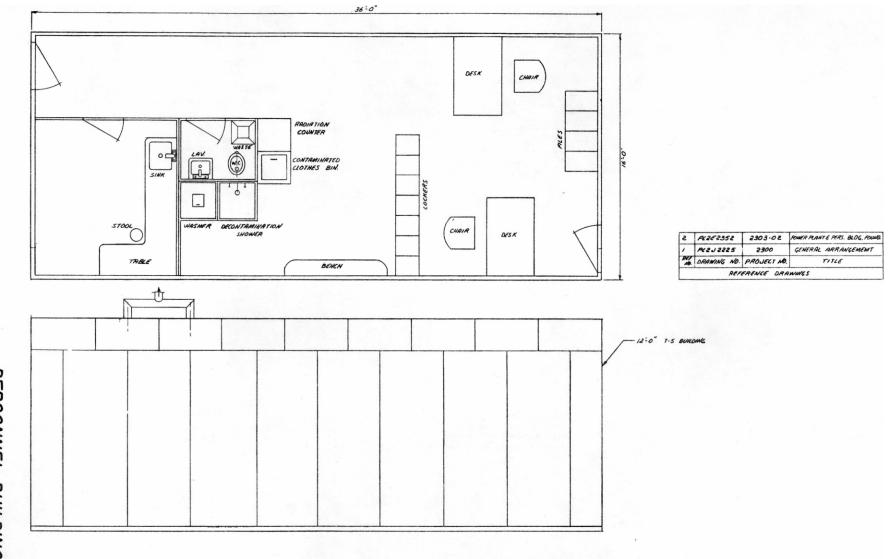
	COMPONENTS	LIST		
TEM NO.	NAME	NO REQ'D	WEIGHT	REMARKS
1	FEED PUMP	2	8000	
2	RESERVE FOED TANK	1	1000	
3	NOTWELL	1	800	
4	CONDENSATE PUMP	2	500	
5	PLANT HEATING PUMP	2	280	
6	MAKE UP FEED PUMP	1	70	
7	LOW PRESSURE DRAIN PUMP	2	220	
. 8	MAKE UP FEED TANK	,	250	
9	LOW PRESSURE DRAIN TANK	1	600	
ю	RAW WATER DEMINERALIZER	1	750	
11	LUBE OIL INTERCOOLER	,	866	
12	SPACE HEAT EXCHANGER	1	607	
/3	AFTER CONDENSER	1	1010	
14	PRECOOLER	/	1220	
15	PEED PUMPS STARTER	1	800	
16	DUPLEX DRAIN CONTROLLER	1	125	
17	STARTERS	5	115	
1000	WALVES, PIPE LINES, SUPPORTS & TRAPS (ESTIMATED)		4226	
	TOTAL EQUIPMENT WEIGHT		17298	
	MISC. ELECTRICAL, WIRING & INSTALLATION		725	
	STRUCTURAL STEEL IN SKID		7162	
	TOTAL FOR EQUIPMENT AND FOUNDATION		89526	

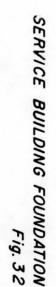

1	PL832225	2800	GENERAL ARRANGEMENT
REF NO	ORMANE MO	PROJECT NO	TITLE

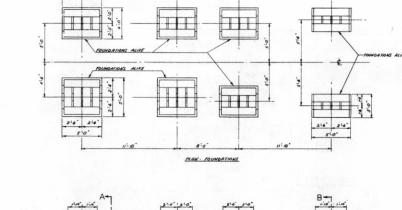
RESERVE FEED TANK SUPPORTS

FEED AND CONDENSATE SKID MACHINERY ARRANGEMENT Fig. 29




	COMPONENTS	LIST	
ITEM NE	NAME	WERGHT	REMARKS
1	PLANT CONTROL CONSOLE	4,787	
2	BATTERIES	.982	
3	METAL CLAD SWITCHSEAR, AUXILIARY CABINET	1,721	
4	METAL CLAD SWITCHGEAR, STATION FEEDEE CAB	2,013	
5	METAL CLAD SAN ITCHEGEAR INSTRUMENT AND CONTROL CAR	7 4.886	
6	METAL CLAD SWITCHGEAR GENERATOR CABINET	5 -,000	
7	POWER CENTER DISTRIBUTION CENTER)	
8	POWER CENTER TRANSFORMER SECTION	5,512	
9	POWER CENTER HIGH WOLTAGE INLET		
10	GEOUNDING REACTOR	1,628	
	SKID BASE AND STRUCTURALS	5 835	
	7		
	TOTAL WENGAT	26,864	





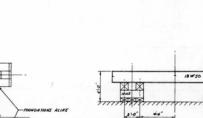
PERSONNEL BUILDING PLAN AND ELEVATION

Fig. 31 145

EL

mm

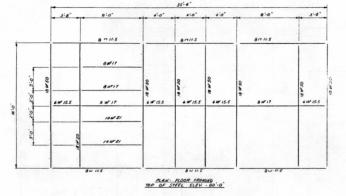
FLEVATION

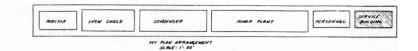

1244

B

5-0

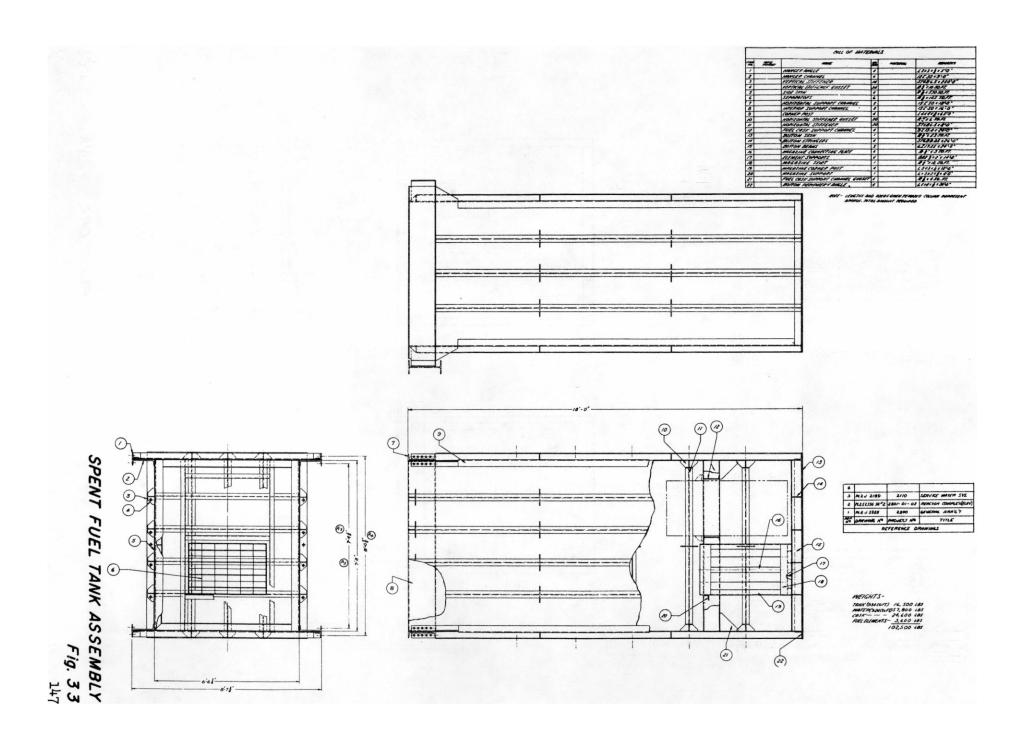
A-

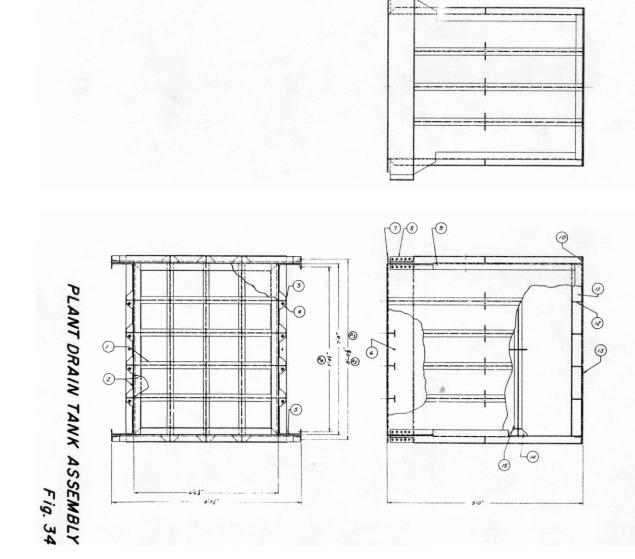




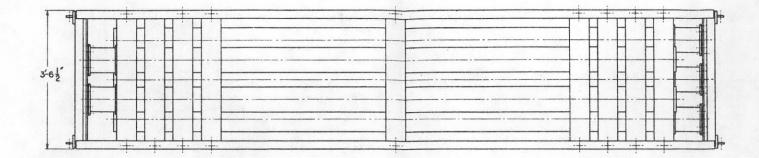
	MATERIALS	
MADER	TOTAL LENGTH	TOTAL WEIGHT
18 # 50	128'	6, 100 68.
10 # 21	16'	334 LB.
B W.17	SI'	54818.
6 W 15.5	19:4"	298 48
8-11.5	70-8"	815 68.
IZAIZ TIMBER	/66'	7,900 (8.
6 x 12 TIMBER	160'	3 34018.
	TOTAL WEIGHT	18.650 48.

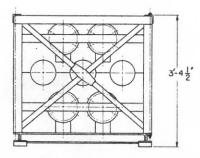
1	AL2 J2225	2300	CONTRAL ARREY	
-	D.004 404 40.	PROJECT NO.	COVERN ARREY	
-	REFE	RENCE DA	AWINGS	





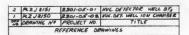
SECTION AA



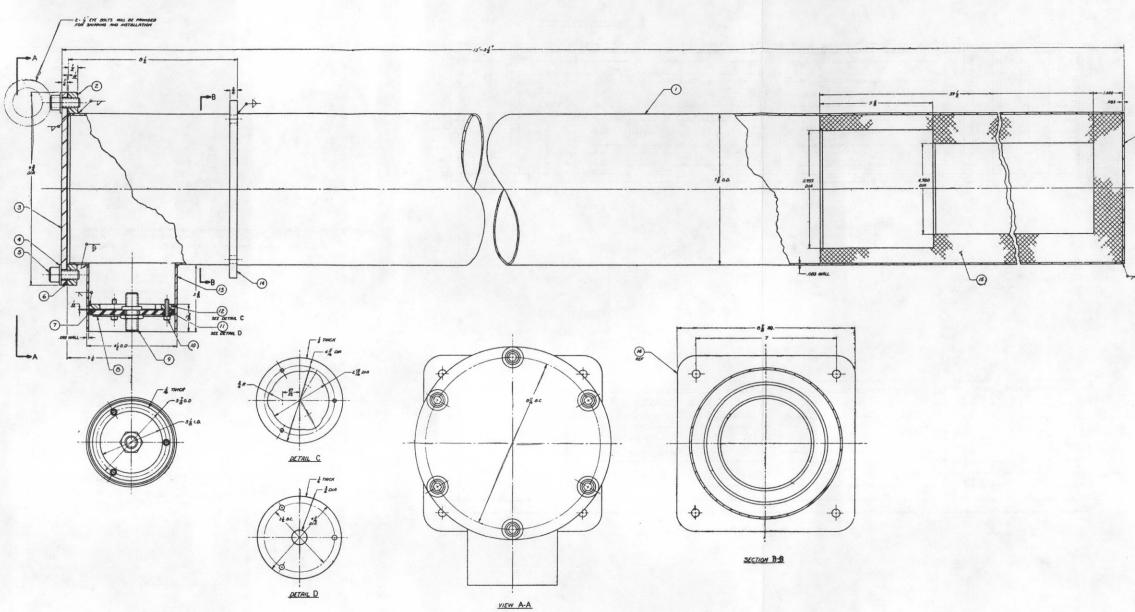


SILL OF MATERIALS						
		ner nerg		MUTTONAL	Preserver	
7		COVER PLATE SUPPORT	11		57484.5 × 28'0"	
2		SIDE AND TOP SKIN	-		P 1 3/8.30.21	
3		VERTICAL STIFFENER	14		STAB6.5 x 125:0"	
1		VERTICAL STIFFEMER GUSSET	14		Etad SOFT.	
5		NONGER CHANNEL	14		12130.0:9:0"	
6		INTERIOR SUPPORT CHANNEL	12		151 50.0 × 1610'	
7		NORIZONTAL SUPPORT CHANNEL	12		151 50.0 × 18:0'	
8		HONGER ANGLE	11		1 3x3x \$ x 5'0"	
9		CORNER POST	11		2414- × 330	
10		BOTTOM PERIPHERY ANGLE	4		LAX4x x 30:0'	
11		BUTTON BEAM	3		6117.25 x 21.0	
12		BOTTOM STRINGER	14		ST688.25 + 26'0'	
13		BOTTON PLATE	1/1		£ 1 × 53 50 M	
14		NORIZONTAL STIFFENER GUSSET	16		Atra spit.	
15		HORIZONTAL STIRFENER	8		57486.25 4 5840"	

WEIGHTS PLANT DRAIN TANK - 9,200 185 WATER (467 (2070-23,150 185 38,350 185



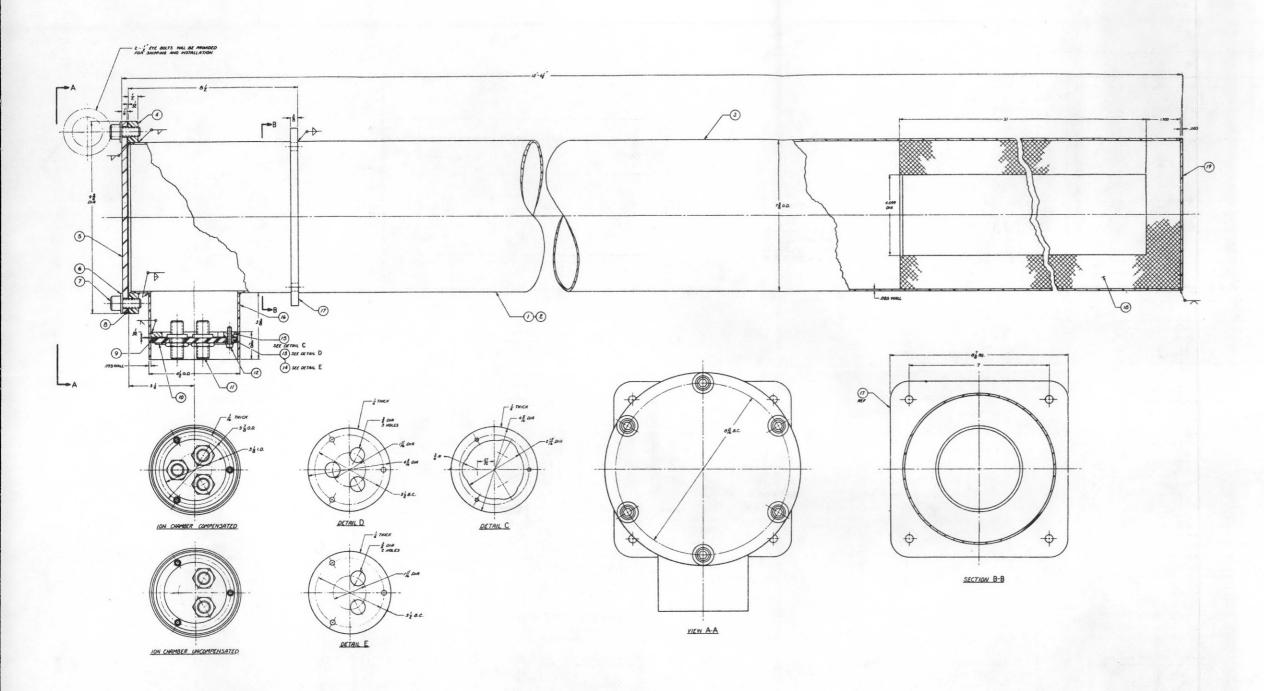
┄╊┿┥┝┽╢┝┽║┿┥┝┿╸╍╍╍╍╍╍╍ ╦┫╎┝┨╎┝┨┆┝┥┆┍╍╍╍╍╍╍╍			
		┥╎┝┥	


NUCLEA

AR DETECTOR W	R DETECTOR WELL, ION CHAMBER-UNCOMPENSATED - COMPENSATED				- 1635
NUC	EAR DETECT	DR WELL,	813	2 @ 360	3,895
			LUMBER CRATING		645 1775 435
			TOTAL	WEIGHT	6,700

SHIPPING ARRANGEMENT FOR INSTRUMENT WELLS

Fig. 35

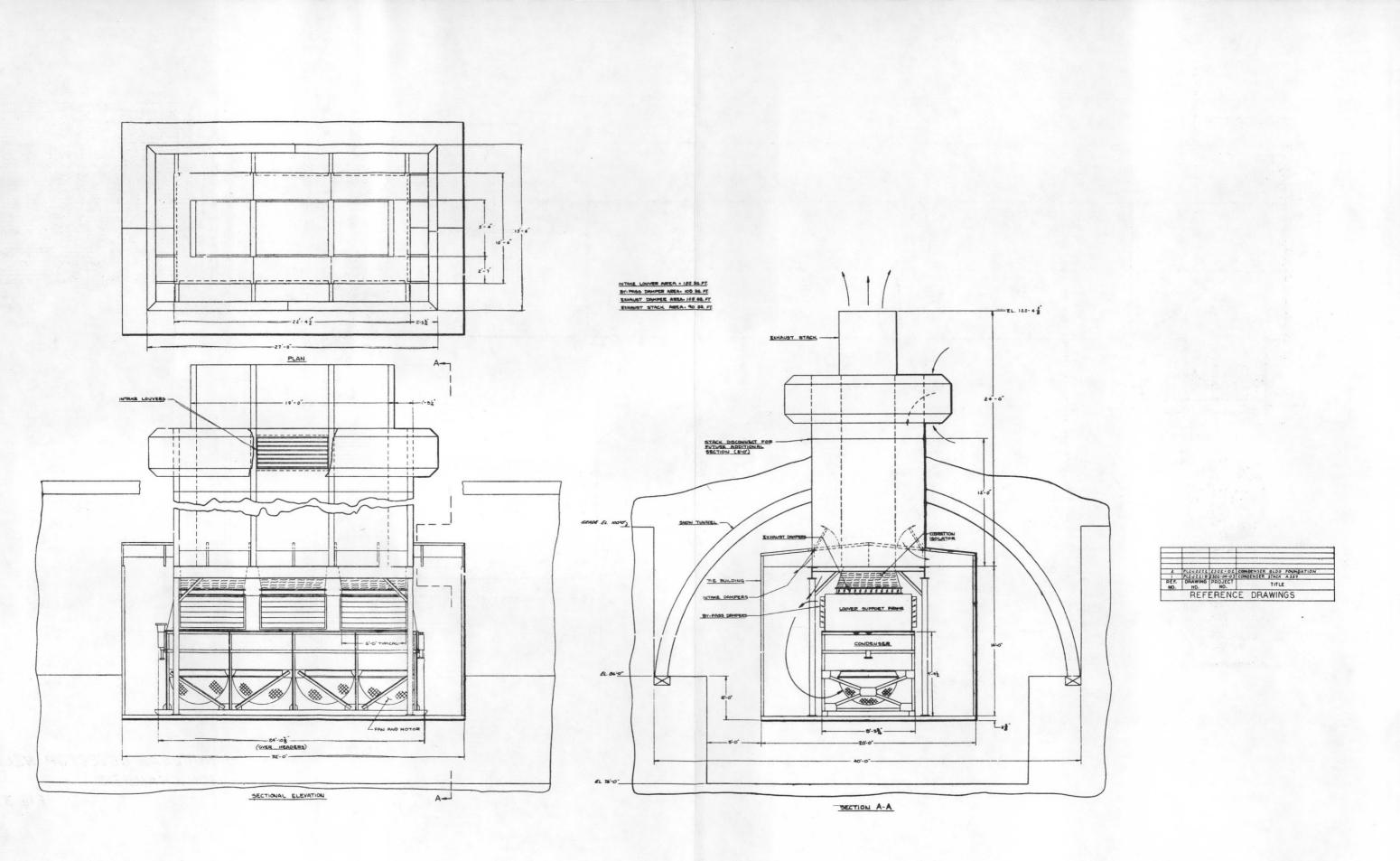


BILL OF MATERIALS							
2001	MARE	-		MATER	-	MENANCS	
1	MISTRUMENT WELL	1	AIS	THE	304 537		
2	INSTRUMENT WELL CONTR FLAMBLE	1	AIS/	TYPE	104 357		
1	INSTRUMENT WELL COVER	1	AKS/	THE	804 357		
4	INSTRUMENT WELL COVER BOLT NASHER				04 857		
9	INSTRUMENT WELL ODNER BOLT		A/S/	THE S	06 337	1-130AE-2A 1/26 24 10 100	
6	INSTRUMENT WELL OWER GASKET	1	ND	OMEN	C .		
7	INST. COMM. MOUNTING PLATE GASKET	1	NE	OPREN	2		
0	INST. CONN. MOUNTINS PLATE RETAINER	1	AIS!	TIPE	504 \$\$7		
9	INSTRUMENT CONNECTOR	1				AT CANY, ME DIC-L-I	
10	WST. CONN. MOUNTING PLATE SCREW	5	A131	TYPE .	3/4 357	"W-MUNC-LA= LLA. STO BCAR	
11	INST. COMM. MOUNTING PLATE	1					
12	MIST. CONN. MOUNTING PLATE SUPPORT	1	A/3/	TYPE	304 351		
18	INSTRUMENT COMMECTOR HOUSING	1	A/3/	TYPE	304 557		
16	INSTRUMENT WELL SUPPORT FLANGE	1	A/5	TYPE	304 351		
15	INSTRUMENT WELL SHIELDING	1	40	AD			
16	INST. WELL WY " ATE	1	AIS	TYPE	304 357		

2 P. 212125 2202 AV. ITST BUDGE ONG. 1 D. 262356 2301-05 SHIFLD ASSY 26 DATAWAY PROJECT NT TITLE

-16

NUCLEAR DETECTOR WELL, BF₃ Fig. 36



	BILL OF MATE	RI	ALS	
-	 	-	MATERIAL	REMARKS
71	 MUCLEAR MST. HELL - ION CHAMBER COMP	EN3	ATED	
3	MISTRUMENT WELL	1	AISI TYPE SON SST	
4	 INSTRUMENT WELL COVER RANGE	1	AISI TYPE JOA 337	
3	 INSTRUMENT WELL COVER	1	A131 TYPE 304 35T	
	 INSTRUMENT WELL COVER BOXT MASNER		USI TYPE 300 357	
7	 INSTRUMENT WELL COVER BOLT	6	ASI TYPE SAL SST	
8	 WSTRUMENT WELL COVER BASKET	1	NEOPRENE	
9	 UNST. CONN. MOUNTING PLATE GASKET	1	NEOPRENE	
10	 INST. CONN. MOUNTING PLATE RETRINER	11	AIS/ TYPE 304 337	
11	 INSTRUMENT CONNECTOR	3		our count, and dard - Adapt
12	 INSTRUMENT CONN. MOUNTING PLATE SCREW	3	413/ 71095 \$16 557	NO-PRINC-PRE ELG CON BLACH
13	 INSTAUMENT CONN. MOUNTING ALATE	1		
15	 INST. COMM. MOUNTING PLATE SUPPORT	1	ANSI THE SOA 357	
16	 WATAWAENT CONNECTOR NOUSINAS	11	A/3/ TYPE 304 357	
17	INSTRUMENT WELL SUPPORT FRANCE	1	ANSI TYPE BOR SST	
16	 UNSTRUMENT WELL SMIELDING	1	LEAD	
A	 INST. WELL BOTTON PLATE	1	A15/ TYPE 308 537	
	 	F		
2	 NUCLEAR INST. WELL - ION CHANDER UN	can	PENSATED.	
3	 WASTRUMENT WELL		ANY TYPE 508 357	
4	 INST. WELL COVER FLAMOR	11	A/3/ TYINE 304 357	
5	 INST. WELL COVER	1	AUSI THE SON SST	
6	 INST. WELL COVER BOLT WASHER	14	4/5/ TYPE 904 357	370 -
7	 INST. WELL COVER BOLT	14	A131 TYPE 316 35T	2 -ISUNC CAXILO LAS SCHOOL
8	 INST. WELL COVER BASKET		NEOPRENZ	
-	 INST. COMM. MOUNTING PLATE GASKET	17	NEOPHENE	
10	 INST. CONN. MOUNTING PLATE RETAINER	17	AGI TYPE BOA 357	
11	 INSTRUMENT COMMECTOR	12		THE OTHER PIET AND AND THE
12	 WST CONN. MOLWTING MATE SCREW	13	A131 THE 34 351	10- 2000K-20 + 2 10 000 100
14	 MAT COAN MOUNTING PLATE	11	1	
15	 UNST. CONN. MOUNTING PLATE SUPPORT	11	AISI THE SON 357	
16	 WISTRUMENT CONNECTOR HOUSING	17	A/3/ TYPE 304 35	
1	 INSTRUMENT MELL SUPPORT FLANGE	17	4/5/ TYPE 304 337	
10	 INSTRUMENT WELL SHIELDING	17	LEAD	
19	 INST. WELL BOTTOM PLATE		AISI TYPE JOAST	

2202 AVC INST BLOCK DIAL 2201-05 SHIFLD ASSY DADJECT NO TITLE

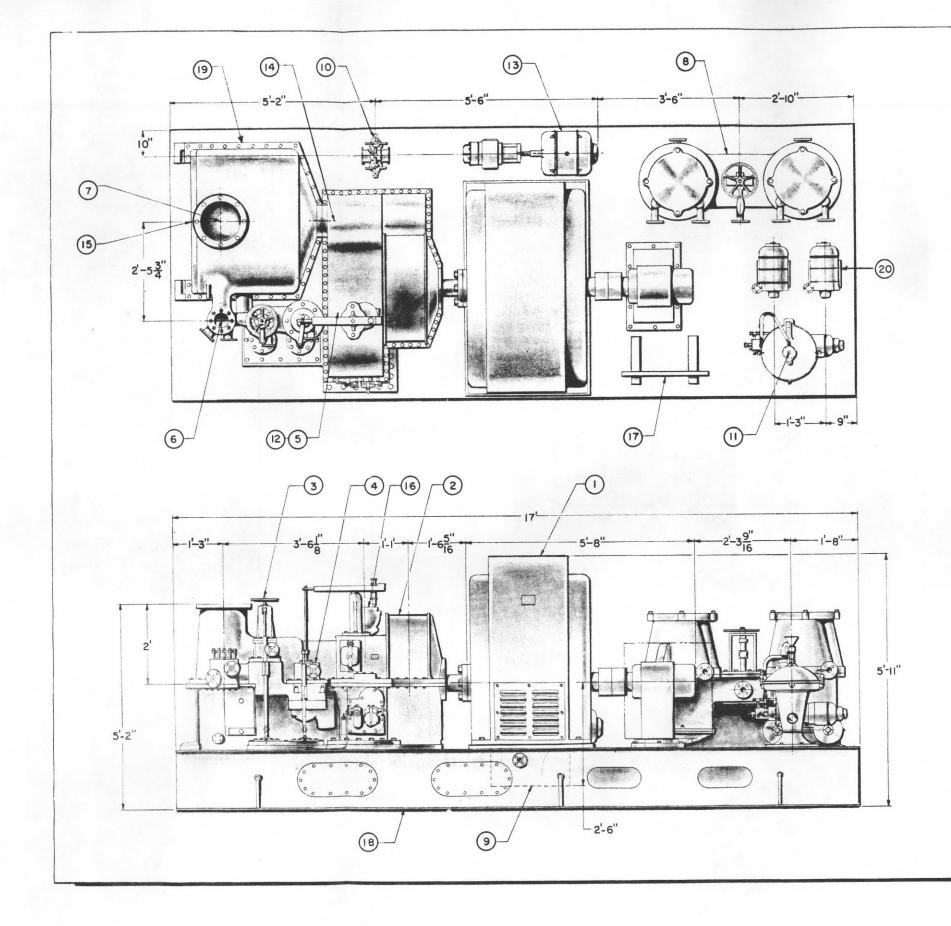
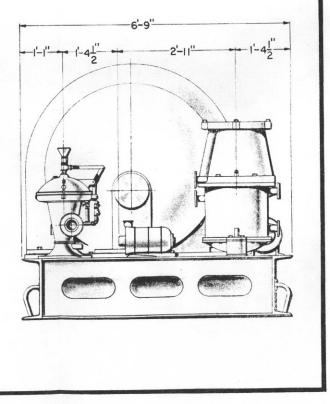

NUCLEAR DETECTOR WELL, ION CHAMBER

Fig. 37



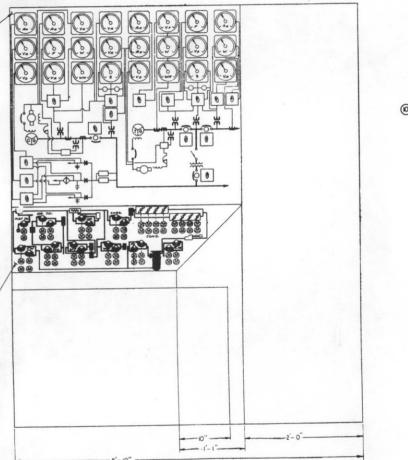
152

CONDENSER ASSEMBLY Fia. 38

NO.	DESCRIPTION	WEIGHT
1	SYNCHRONOUS GENERATOR	14.000 LB\$
2	REDUCTION GEAR	3,800 LBS
3	TURBINE THROTTLE VALVE	
4	GOVERNING MECHANISM	
5	GOVERNOR MOTOR	
6	STEAM INLET	
7	EXHAUST	
8	OIL COOLER	I,600 LBS
9	OIL RESERVOIR	
10	OIL STRAINER	BO LBS
11	OIL PURIFIER	550 LBS
12	MAIN OIL PUMP	
13	AUX. LUBE OIL PUMP	ZOO LBS
14	STEAM END BEARING	
15	EXHAUST END BEARING	
16	SYNCHRONIZER MOTOR	
17	GAUGE BOARD	
18	BASE PLATE	3,000LBS
19	TURBINE	4,200 LBS
20	COOLANT CIRC. PUMPS	150 L B S
	TOTAL APPROX. WEIGHT	27,580 LBS

ITEM I INTERCO 2 SECONDA 3 ROD COI 4 RECTIFIE 5 WRITING 6 RADIATIO CONTROL 7 PROCESS 8 REACTOR 9 PLANT 10 NUCLEAR 3-1 -(5) PLAN VIEW SCÁLE 1/16 0 8--2-0-1-1-1--1-1" -2-0--6 2 588 *, CONTRACTOR Condenger Laurer '8' OF *I CONVERSER LOUVIE 'B' TOWNER A Tunnes Jema 3 E Jat 12 ۲ C ۲ 00 * 9 T 1)--8

B

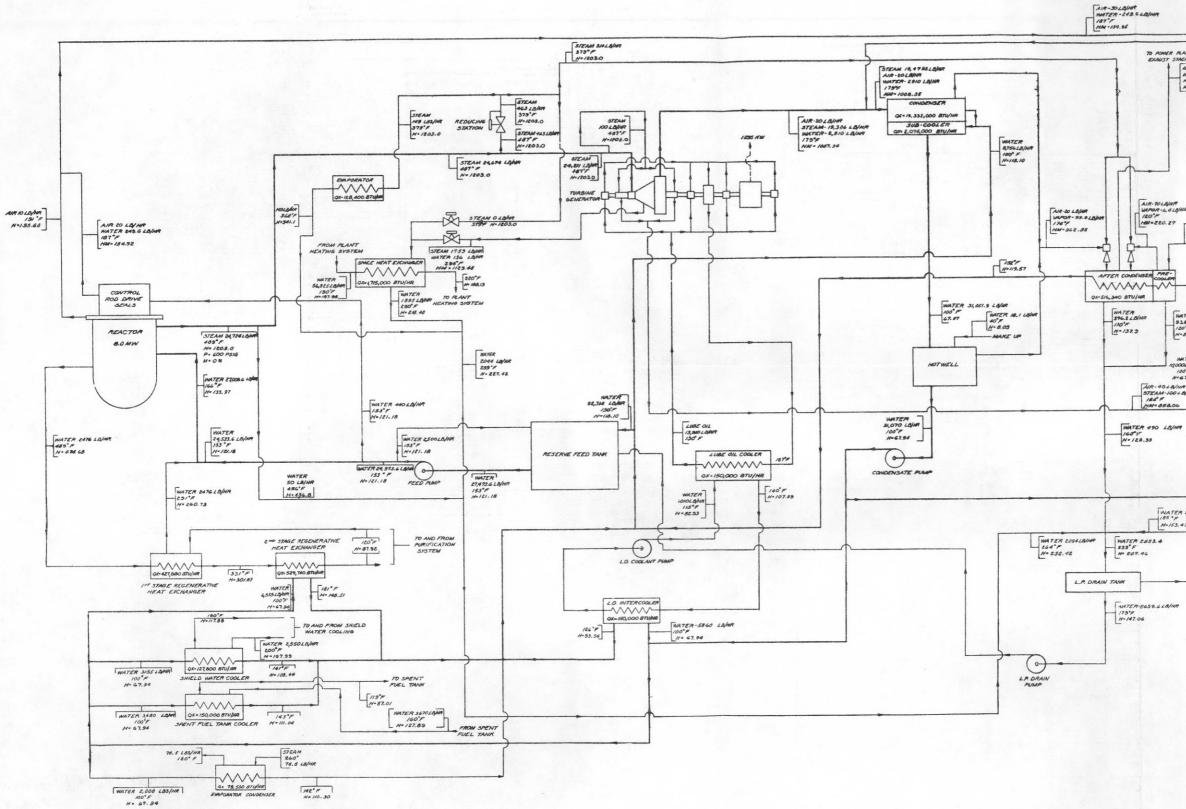

10-3

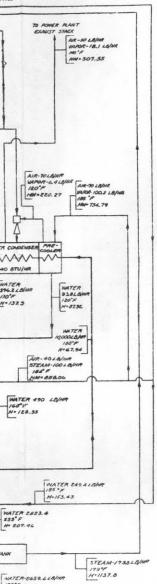
-10

SECTION A-A

PANEL IDENTIFICATION LIST

	REF NO.				
DESCRIPTION	CRAW/MG	AROUSE			
M					
RY ELECTRICAL CONTROL PANEL	1.				
TROL EQUIPMENT					
RS AND REGULATORS					
DESK					
N MONITOR, AREA TEMP, LOUVER					
INSTRUMENTATION PANEL					
CONTROL PANEL					
MOTOR CONTROL PANEL					
INSTRUMENT EQUIPMENT					

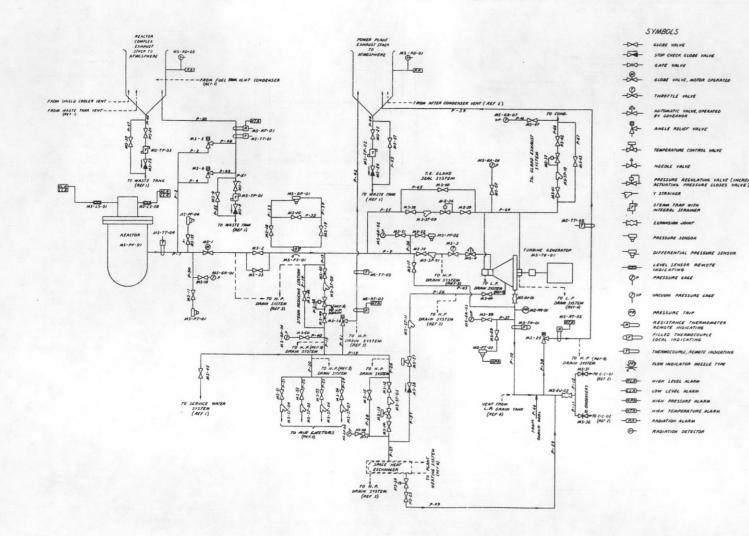



ASJESSE ISOS-OS VILLE SUID MACH ARR. Por Damuine no Magnety no 77748 REFERENCE DRAWINGS

> > VIEW IN DIRECTION Y

PLANT CONTROL CONSOLE ASSEMBLY

Fig. 40

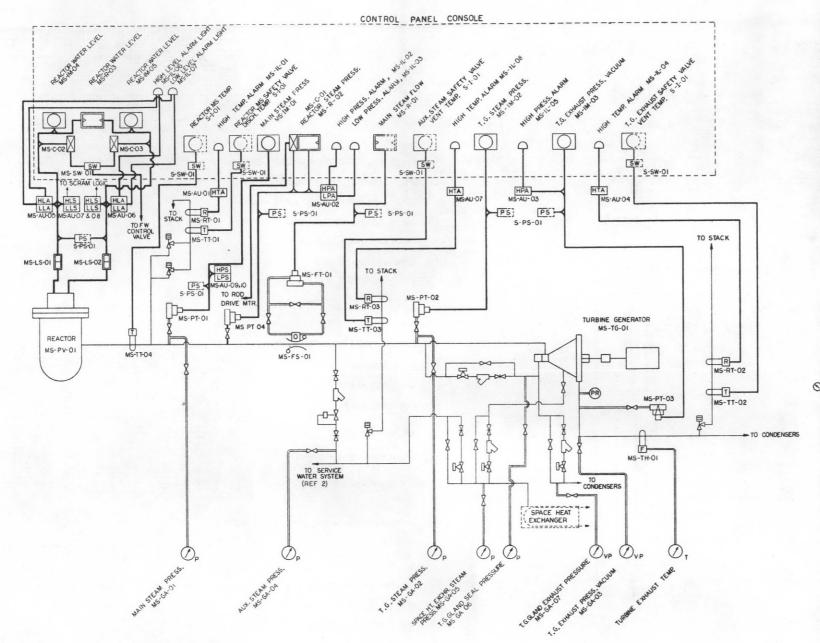


NOTE TEMPERATURES HAVE DEEN ROUNDED OFF TO THE MEAREST MHOLE DEGREE.

REACTOR THERMAL POWER GROSS ELECTRICAL OUTPUT MET ELECTRICAL OUTPUT TRADURE STEAM RATE GENERATOR EFFICIENCY GENERATOR EFFICIENCY TURDINE ENGINE EFFICIENCY CONDENSER AIR FLOW CONDENSER AIR FLOW CONDENSER AIR FLOW CONDENSER AIR FLOW CONDENSER AIR FLOW

8.0 MW 1235 KW 1000 KW 1715 K 10⁶ BTU/MR 18.01 LB/KW ME 33.6 Å 06 % CR.7 % 15" My AB3 100 AD⁶ LB/MR 5 60° F 500 P316

HEAT BALANCE DIAGRAM Fig. 41


INSTRUMENT	INSTRUMENT			NT L		(RL			LEQUIRI				
NO.	NAME	SERVICE		CATALOG NO.	RANGE				SAC AS	REMA	WARS		
MS-TT-04	REACTOR STEAM TEMP	STEAM				-	1			REF	5		
MS-68-01	REACTOR STEAM PRESS.	STEAM				-							
MS-27-01	REACTOR STEAM PRESS.	STEAM				-	-	-					
MS- FS-01	MAN STEAM FLOW NOZZLE	STEAM											
MS- DP-01	MAIN ST . MON OP SENSOR	STEAM				-		-					
MS-GA-02	T.G. STEAM PRESSURE	STEAM				1	1	-	-				
MS- PT-02	T.G. STEAM PRESSURE	STEAM											
MS-64-03	T.S. ELHAUST PRESS.	STEAM				-	-	-	-				
	T.G. EXHAUST PRESS.	STEAM				-							
MS-TH-OI	IG. EXHAUST TEMP.	STEAM	1			-			-				
M3-AT- 02	T.G. EXH. RELIEF VALVE DISCH. TEMP.	STEAM			-								
#5-GA-08	RUX. ST. PRESS.	STEAM					-	1	-	-			
MS - RT-03	AUX. ST. RELIEF WRIVE DISCH. TEMP.	STEAM				1				~			
MS-RD-01	P.R. EAH. STACK RADIATION DETECTION	AMR AND				1							
	REAC. COMPLEX EXH. STACK ROTN DETECTION	AIR AND					1						
MS-RT-01	REAC. RELIEF VALVE DISCH. TEMP.	STEAM						1				COMPONENT NC.	
M3-LS-01	REAC. WATER LEVEL	WATER				-			+				
#5-77-03	AUX. ST. RELIEF VALVE DISCH. TEMP.	STEAM	1.4.1.1				1					MS-PY-CI	REACTOR
MS-PT-04	REACTOR ST. PRESS.	STEAM				-			-			MS -75-01	TURBINE S
#3-6A-05	SPACE NA. PRESS.	STERM				-	-	-	1			mg-19-01	I UNBINE 3
M3-PAOI	T.G. EXH. PRESS. TRIP	STEAM				1		1					
MS-45-02	REAC. WATER LEVEL	WATER					1						
	T.G. GLAND SENE PRESS.	STEAM						1					
#5-6A-07	EG. GLAND EXHAUST PHESS.	STEAM		1		-		1	1				
MS-77-01	REAC. RELIEF VALVE DISCH. TEMP.	STEAM				1	-		1				
	T.S. EXH. RELIEF VALVE DISCH. TEMP.	STEAM											

SERVICE	WWWW.	5100	DESIGN	TEST	REMARKS
	THK.	41.000	PRESS.	PRESS.	AEMAAA.S
STEAM TO RELIEF VALVES	112	25,976	120	1080 1	
STEAM TO RELIEF VALVES	11	25,276		1060	
STEAM RELIES VALIE INLET	11	25,976	1:0	1060	
	115	25,976	120	1060	
TO TURBINE GENERATOR	15	25,976	120	1063	
E SENERATOR EINAUST TRUNK TO CUMPENSER	5722	23,030	30	25	
TO COMDENSER	550	14605		25	
TO COMDENSER	\$70	11.405	30	25	
TO REDUCING STRINGH NO. 1	11:	1,260	720	1650	
ING STATION NO. 1 BY PASS PROM REDUCING STATION NO. 1	11	1,660	720	1060	
MAN REDUCING STATION NO. 1	ISTR.	1,640 NIG	50	75	
NE TO GLAND EXHAUST PRESS GAGE NE TO SANCE MENT EXCHANGER PALSS GAGE	510		200		
A TO SMACE MEAT EXCHANGER MILLS. GAGE	570	466	200	300	
	1370		200	-	
ARI STEAM MAIN		360		,900	
TO AIR FUECTORS	STD	3.40	200	300	
TO CONDENSER AIR EVESTOR	574	214	200	300	
TO COMDENSER AIR EJECTOR	STD	2/4	800	300	
.7 GLAND EXHAUST AIR EJECTOR	372	100	200	300	
TO GLAND ELHAUST AIR EVECTOR	3.724	400	200		
TO T.G. SCHND SEAL SYSTEM TO TEMPERATURE CONTROL VALVE TO SPACE MEAT ELCHAMSER	12	100	122	1060	
TO YEMPERATURE CONTROL VALVE	are	4751	800	300	
TO SPACE HEAT ELCHANGER	372	1,751	æ,	25	
	375	4751	200	300	
WERT EIGNANGER VENT UNE TO REACTOR PRESS. DETECTORS	370	166	de.	25	
UNE TO REACTOR PRESS. DETECTORS		MEG	120	1060	
(INE TO STERM FLOW DIP IMTR		MOR	720	1060	
UNE TO STERM FLOW DIP XMTR		ME		1060	
FLOW WE YAUR EQUALIZING LINE				1060	
LINE TO F. G. STEAM PRESS. DETECTORS	-		720	1000	
INE TO I.G. ELH. STEAM PRESS. DETECTORS		1116	100	150	
TO T.G. EAN. PARSS. RELIEF VALVE	\$70	28.000	100	150	
IN. PRESS. RELIEF YALVE DISCHARGE	\$76		100	150	
INE TO AUX. STERM PRESSURE GAGE		NEG.	200	300	
TOTOLEAN MASS. NELIEF VALVE IN. PRESS. RELIEF VALVE DISCHARGE IME TO RVL. STEAM PRESS. RELIEF TALVE	\$70	5,000	200	300	
CAM MRESS. AELIEF VALVE DISCH.	370	\$600	100	150	
STEAM T.G. BY-PASS PLANT BANAUST STACK DRAIN	115	25,976	720	1060	
PLANT EANAUST STACK DRAIN	\$70	.250	<i>s</i> D	25	
MANT EIN. STACK ORAIN TRAP BY- PASS	370	250	50	75	
AR COMPLEX EXMAUST STACK DRAIN	370	2.50	01L	75	the second s
COMPLEY EAN. STACK DRAIN TRAP EY- PASS	1370	2.50	50	25	
TEAM RELEF VALVE DISCHARGE TEAM RELEF VALVE DISCHARGE TEAM RELEF VALVE DISCHARGE MEDDEP	\$70	25,976	100	150	
TERM RELIES VALVE LISCHARGE	370	25,976	100	150	
AM RELIES VALVE DISCHARGE MEADER	\$70	25,976	100	450	
EAM RELIEF VALVE DISCHARGE CRAIN	370	250	50	25	and the second states in the second
AN RELIEF VALVE DISCH. DRAIN TRAP BY-PASS	370	250	50	25	the base of the second second second
and the second se	-				
	1				
TTOM STEAM FROM TURBINE MAIN	SID	2,924	100	150	and designation in the local division
TION STERM TO SPACE NEAT EXCHANSER	STD	2.454	on	76	
	1	-			
	-				
	1				
	1		-		
and successful to the second or and the successful to another					
TO GLAND SEAL SYSTEM	1572	100	30	25	
TO GLAND SEAL BY ANSS	550	25	200	300	
AROM GLAND SEAL SYSTEM	370	25	50	25	
AROM GLAND SEAL BY PASS	1370	25	50	25	
	1				
	+				
CONTRACTOR AND AND THE REAL PROPERTY AND	+				

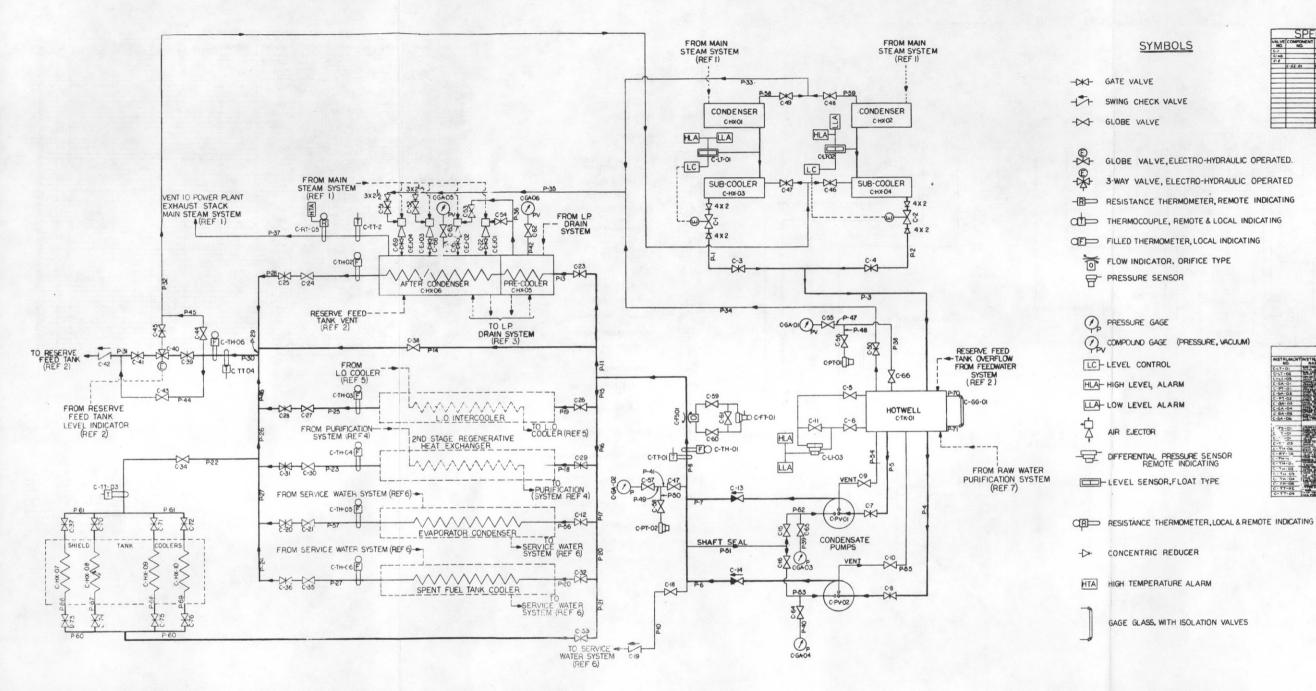
6	PK2 J 2120	2/11	PEAUT MERTING SYSTEM
5	PL2J2201		MAN STEAM PROCESS INSTR. DIAGRAM
4	PE2J2124	2107	LOW PRESSURE DRAIN SYSTEM DIAGRAM
3	PE2+2122	2106	HISN PRESSURE DRAIN SYSTEM DIAGRAM
2	M2J2119	2102	CONDENSATE SYSTEM DIRGRAM
1		2110	SERVICE WAFER SYSTEM DIAGRAM
REF. NO.	DRAWING NO.	PROJECT	TITLE
	REF	ERENO	CE DRAWINGS

					the second second	and the second
C	OMPONEN	15	LIST	-		
	CHARACTER ISTICS	SPEC NO.	MFGR.	MFGR. REF. GWG.	WEIGHT	REMARKS
VESSEL	8.0 MM		COMB. ENCRG.	`	19,500"	VESSEL IS SAPILES OFS. PRESS. 720 PSI, DESIGN TEMP. 600"P 12 304L SS CLAD
SEVERATOR	1250 KN 3PH 2400/4150 V	1-200-200-3	GEN ELECT. CO.	4-4066016-13CX	*22,000*	TYPE DRVM MULTI - VALVE MULTI - STAGE TURBINE ROOD RPM @ 15" HG ABS.
	1	-				

MAIN STEAM SYSTEM DIAGRAM Flg. 42

CONCENSATE SYSTEM DIAGRAM

	INST. NO.	TYPE	INPUT	RANGE	MFG.	MOD. NO.	OUTPUT	SET PO		MOUN	TING	EQUI
							MV	CONTROL	ALARM	INSERTION	CONNECTION	SPEC.
	MS-77-04	SENSOR, TC. SWITCH, SELECTOR	MAIN STEAM	0*-500*F	MIPLS. HOWEYWELL MPLS. HOWEYWELL	38 37 F 364971	MV. MV.			3	-16	1
	5-1-01	IND., ELEC.	MV.	0"- 500" F	MPLS. HOMEYMELL	105×11					3/4" NPT	
SYMBOLS	MS-RT-01	SEVSOR, TC. RES. THEKM.	BULY Y DUSCH TEME	0"- 500"F	MPLS. HOMEYWELL MPLS. HOMEYWELL	BROWN CLASS 2	MV.			5"	3/4" NPT	
<u>United</u>				0"- 500"F	MARS. MOMETHNELL	R 7082 C			400 ° F			
	MS-16-01	LIGNT, IG. SENSOR PRESS	IEV DC	0-750 PSIA	ELDEMA CORP. POXBORD	TYPE IFH	10-50 MA					
	1 5-15-01	POWER SLIPPLY		U-130 Para			45 V DC					
	MS-R-02	RECORDER ALARM UNIT	10-50 MA	0-750 PSIG	FOX BORD	6410 · DF			500 P310			
VALVE , GLOBE	M3-16-02	LIGNT, 1G.	12 V OC	0-130 -314	ELDEMA	IFN						
VALVE , OLOBE	145-16-03	LIGHT, IG.	12006		AL OF MA	15H 13795					1/2" NPT	
	MS-#S-01	FLOW SENSOR	M.ST. FLOW	0-750 PS/G 0-40,000 LB/M	FOLBORD		DIFF. DRESS.				RF FLANGE	
RECORDER	MS-FT-OI			0-400" H20	FOX BORD	6/3	10.50 MA MY			5"	3/4" NPT	
	AS- RT-03	RES. THERM	AVI. ST. RET. 704	0" 400" F	WES HONEYWELL	BROWN CLASS .E				5 "	3/4" NPT 3/6" NPT	
	M3-AU-07	ALARM UNIT	PULST. REL. TEMP	00-400 F	MALS HOMEY MELL	E- 708 2C			35005			
RECORDER, TWO PEN	#3-12-08	LIGNT, IG	AUL ST REL TEMP	0-900 /8/0	ASHCROFT	13795					1/2" NPT	
(SHOWING ONE INPUT)	MS- P7-02	SENSOR, PRESS	Z.4. ST. A4634.	0-4000 LB/M 0-400 F H 0 0-400 F 0-400 F 0-700 F 0-70	FOXBORD	6//	10-30 MA				12" 4.01	
	MS-1M-08	IND. METER	T.G. ST. PRESS	0-700 PS/6 0 - 700 PS/6	ASHCROFT	65AL 18785					YE WPT	
INDICATOR , ELECTRICAL (SINGLE)	MS-GA-05	GAGE PRESS.	SP. HA. MESS	0- 50 PS/4	ASNCROFT	/ 179 5					12" 401	
,				SO" NO WAC. SO PE	and the second sec	6/3	10-50 MA				VE NPT	
	MS-AU-03	GLARM UNIT		30 MG. WAC. 30 M	POIBORO	4.5			157519			
	MS-14-05	LIGHT, 1Q			ELDEMA	154						
INDICATOR , ELECTRICAL (MULTIPOINT)	MS-R-03	RECORDER	TO DISCH. PRO	0-150 -	ASNCROFT	13795				1	1/2" NPT	
	MS-TH-OI	THERM, FILLES	T.G. EXH. 764 R	0°- 300°F	FOLBORD	CLASS ITA				5"	NA NOT	
LIGHT, INDICATING	MS- 77-02	SENSOR, TC.	T.C. ELH. REL.	0"- 300""	ATTPLS HOWEYWELL	BROWN CLASS-	MV			5"	Ve NPT Ve NPT	
,	MS-AU-02	ALARM UNIT	TG ELN REL.	0°- 300*#	MPLS HONEPHEL	1 R 7082C						
	MS-12-04	LIGNT, 19.	TG GIN ROL.	0-150 - 30"HQ HK. 30.46 0°- 300°F 0°- 300°F 0°- 300°F 550-650 P2/6	ELDENA	IPH 6//	10-50 MA	400 PS/6				
CONTROLLER	M8-8-01	RECORDER	MALK STEAM FLOW	0- 40,040 LBS HR	POXBORO	4420-OF	13-30 44					
	MS- IM-03	IND METER	TG ELHAUST	30" H6 30 PS 46	FOXBORD	45 PL					4 NOT	
CHUTCH HINTIDONT	MS. GA. 07	GAGE PRESS	TE GLAND EIN.	30" HG - 30 PS 16 30" HG - 15 PS 16 30" HG - 15 PS 16	ASHCROFT	13795 13795				+	1/2" NPT 1/2" NPT 4" RF FLANGE	+ +
SWITCH, MULTIPOINT	MS-15-01	SENSOR, LEVEL	. REACTAL WEIGH LAND	0-150"			10-50 MA				4" RF FLANGE	
	MS-15-02	SEN SOR, LEVEL	BEACTAS WETERLING	0-150"	FISMER-GOVEZNON	E 2400 - 269 P SECIES REG	10-50 MA 458-DC				+" RF FERNAE	
POWER SUPPLY SYSTEM	5. 05. 01	ALARM UNIT	American united upon	10-50 MA	FOI BORD	63	500-00		1 18"			
	MS-AU-06	ALARM UNIT	BROM witt LEVA	10-50 MA 10-50 MA	FOXBORO	63			2 18"			++
HIGH TEMPERATURE ALARM	MS- AU- 07	ALARM UNIT		10-30 MA	FOI BOFO	63	-		1 25'			
	MS-AU-00/10	ALARM UNIT	MANN ST MESS.	10-50- MA	FOI BORD FOI BORD	45			\$ 80 1816			
LOW PRESSURE ALARM	MS-IM-08	IND METER	ASHER AND AND AND ADDRESS	0-150"	FOL BORD	45 PL 45 PL						
	MS. C-02 .	CONTROLLER		10-50-MA 10-50-MA 0-150" 0-150"	For BORD	62		100*				
HIGH PRESSURE ALARM	MS- C- 03	CONTROLLER IND LIGHT			FOIBORD	62. IFH		100"	1			
	MS-14-06	IND LIGHT			ELDENA	IFH				-		-
RESISTANCE THERMOMETER	M5-54-01	IND LIGHT	R PERCENT WHILE LEVE	2 POS	ANER	20905-6	+					
					1				1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
THERMOCOUPLE												
FILLED THERM. SYSTEM												
SENSOR, PRESSURE												
SENSOR, DIFFERENTIAL PRESSURE												
SENSOR, PRESSURE AND VACUUM												
GAGE , PRESSURE								—	1	+ +		
GAGE, VACUUM - PRESSURE								2 / REF.NG	PL2J2189 PL2J2121 DWG, NO.	2101 I PROJECT NO.	ERVICE WATER SY MAIN STEAM SYSTEM NAM	1 DIAGRA
										REFERENCE DRAW	NGS	


INSTRUMENT COMPONENT LIST

MAIN STEAM SYSTEM-PROCESS INSTRUMENTATION DIAGRAM Fig. 43

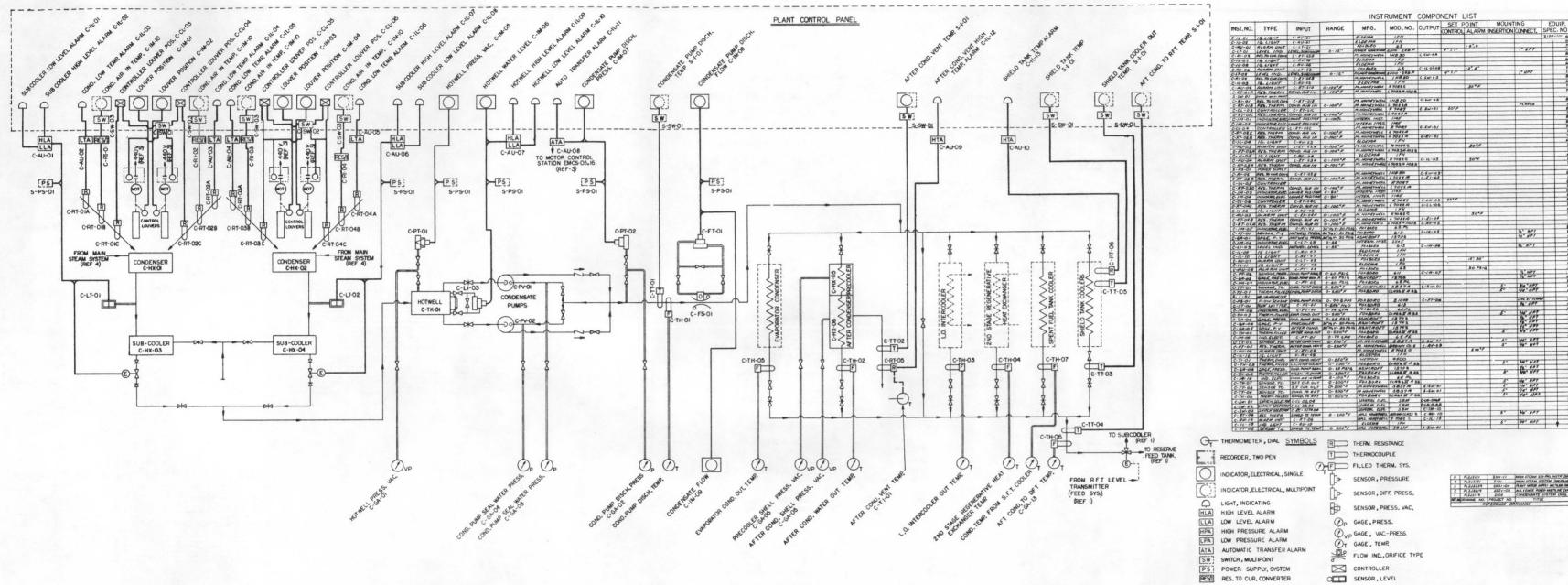
GAGE , TEMPERATURE

FLOW INDICATOR, ORIFICE TYPE

PRESSURE TRIP

ALVE NO.	COMPONENT NO.	SERVICE	NOM	TYPE	END CONN.	ACTUATING	FAIL	MATERIAL	SPEC.	REMARKS
C-1		STS CORLER PLAYER LEVEL	2'	SLOOL	180 1.6		A6 -15	8,67	AL 3461-00-8	
C-40		Carlos Chiten	12'	SLOBE		Constant and	As - 18	5.57	N. 800 1 04.14	S-MAY THEOTTLING
6.2		Then Can I and	2'	GLOBE.	180"FL&		As -IS	567	A-901-00-13	
-	6-66-01	NOT WELL GALF CLASS							1.000 0054	
								1.1.1		
-										
			T							
			1							
			1							
-			1							
			-							
-			-							

RESSURE,	VACUUM)
----------	---------


		INS	TRUM	1EN	T L	IST		(RE	F. O	NLY)	
NSTRUMEN	TINSTRUMENT	SERVICE	I HAMIFACTURER I LOFT IN AND THE		TRIP	SPEC REMA		RKS			
C-LT-01	BAR CARLES	PLATER AND								DEE REF	
C-LT-OZ	BR. SOLL	STEAM AND							_		
-L1-05	and the second	ATTEND AND			1						_
C-GA-01	THE SHE	STEAN									
C-PT-01	THE PRINTS	STEAM									
SO-AD-DE	Distant Party	MATER									
C-PT-OZ	COND. BUILD	MATER						_			
C-04-03	Land States	WATER									
C-GA-04	COND. PLAN SOL	MATER									
C-GA-05	STAN STAN	STEAM					1	•			
C-GA-06		STEAM									
(-F5-01	STOCEPER	PATER									
	Contractor in the	WATER			1				_		
C T-01	The strength	WATER									
C-T 03	COMPANYEND FRIME	MATER									
C-TH-OG	Stand Tame Part	WATER									
C-RT- 35	VALUE OF COMPANY	ALR C STEAM									
C - TH - L -		MATER				_					
C-TH-OI	TENE THE	WATER									
C-TH-02	COMO TRuit Plate	MATER									
C . TH OS	COND YEAR PROM	RSTAR									
- TH-04	Course There shares	MATER									
C- TH-05	and years Hard	MATER									
C-TT-OZ		ATE AND					-				1
C-TT-04	LOAD THAT TO	WATER								SEE REF	8

1.5	DRAWING NO	PROJECT NO	TITLE
1	PLEJEIZI	1015	MAIN STEAM SYSTEM DIA
2	PLZJZIIT	6015	FEED SYSTEM DIAG
3	PLZJZ124	7015	L P DRAIN SYSTEM DIA
4	DI22 02219	2104	COOLANT PUR. SYST. DIA
5	PL2 J 2213	2109	LO. SERVICE SYST DUMB.
6	PL2J ZIBS	0115	SERVICE WATER SYST DIA
7	PL2J 2111	2105	RAW WATER FUR SYST DAM
8	PL2J2203	11-2013	COND. SYST. PROCESS INSTRUDIA

N D.C	hou				INSUL	T	INFORMA	TEST	
		SCH	MATERNAL	SERVICE	THICK		PRESS		REMARKS
4	4	40	504 . 3.51		-		30 P54G	:5 P54	
-2	4			SUB-COOLER DRAIN		12,000%			
.3	4			SUB COOLER DRAIN MAIN TO HOTWELL		26,000 %	1		
.4				CONDENSATE PUNP SUCTION		23,083%			
25	3			CONDENSATE PUMP SUCTION		23,083 %			
2.6	5.	111		CONDENSATE PUMP DISCHARGE		83089%		+ +	
17	2	111				53407	4		
P.S	2		-	CONDENSATE PUNP DISCH, MAIN	-	23.000%			
_		111						+++	
2.10	2			CONDENSATE DRAIN					
P-11	2.	44		CONDENSATE DISTRIBUTION MAIN		23080%			
	_	111			-			12	
P13	1'	44		CONDENSATE TO PRE COOLER	-	10,000 %			
P 14				BT. PASS		13.085% 20480 %			
PIS	2'			CONDENSATE DISTRIBUTION MAIN		29400%			
AL	12			CONDENSATE DISTRIBUTION MAIN		14,000%			
217	11			CONDENSATE DISTRIBUTION MAIN	-	7,500 1	4 1		
P.18	15			CONDENSATE TO 2ND STAGE REGEN. HE		6575%			
P.19	15			CONDENSATE TO L.A. INTERCOOLER		5,863 %			
P. 30	1*			CONDENSATE TO SPONT FUEL TANK COOLER		3 643 1			
AZI	11			CONDENSATE TO SPONT FUEL THIS COOLER	570.	2.806 %			
P22	11			CONDENDATE FROM SHIELD TANK COOLERS	570.				
28	1%			CONDENSATE FROM END STAGE DEGEN HX.	570.	4.575 A			
P. 24	U			CONDENSATE RETURN MAIL	STD.	2500 %			
P-25	10			CONDENSATE PROM LD INTERCOOLER	370.	5867%			
24	142			CONDENSATE RETURN MAIN	370.	14.000 %			
P27	11			CONDENSATE FROM SPENT FUEL TANK COOLER	ATD	348.97			
28	ti-			CONDENSATE FROM AFTER CONDENSER	370.	1000°/A			
P.29	2			CONDENSATE RETURN MAIN	372.	23000			
2.60	2'			CONDENSATE TO LOUTENEETS CONTROL VALVE		23.000 %			
251	-	H		CONDENSATE TO CONDENSATE CONTROL VALVE CONDENSATE TO PERERVE FEED TANK	510.	23,085%			
1.54	2"	+++		CONDENSATE RECIRCULATION TO SUB-CODLER	570.	2.34%			
- 38		++		AIR ETECTOR SUCTION FROM CONDENSERS	STO.	150 %	1 +	+ + +	
R 54	2'	+++		AIR EJECTOR SUCTION FROM HOTWELL	510.	NEGL.			
0.56	3.	H		AIR EJECTOR SUCTION	570.				
0.36	142	+++		AIR EJECTOR SUCTION FROM PRECOOLER	570.	S. 1			
P-37	2	+++		AFTER CONDENSER VENT	510	30%		+++	
2.10	6	+++		GAGE LINE TO HOTVALL PRESSURE DETECTORS	3.5	3074		+++	
- 89		+++		GAGE LINE TO COND PUMP SEAL WATER PRESS GAGE			++-	+++	
P 40				GAGE LINE TO COND POMP SEAL WATER PRESS. GAGE					
P 41	N			GAGE LINE TO COND PUMP SEAL MATER PRESS GAGE					
2.42				GAGE LINE TO COND POMP DISCH PRESS DETECTORS			++-	+ + +	
2.45				GAGE LINE TO PRECOOLER CHELL PRESS GAGE	-		++-	+++	
2 44				GATE ONE TO AFTER CONCENSER PREELS CAGE		21.85%		++++	
		++-		COND. CONTIROL VALVE BY PASS TO RESORVE FEED TANK	312.	2,901%	1 + -	+ + +	
has	2			CONDENSATE CONTRAL VALLE BY MAS TO SUB-COOLER	310.	2, 901 78	1 +	+++	
246				CONDENDATE RETURN MAIN	310.	1000 74	-	+ + +	
2.47				GAGE LINE TO HOTWELL PRESSURE GAGE GAGE LINE TO HOTWELL PRESSURE KMTR GAGE LINE TO CONDLINCATE PRESSURE GAGE					
P.40	h			GAGE LINE TO HOTWELL PREBOURE KMTR		_	+-+	+	
2.44	1/2"	11		GAGE LINE TO CONDENCATE PRESSURE GAGE					
P-50				GAGE LINE TO CONDENSATE PRESSURE ANTE			++-	++++	
P.SI	12.	11		SEAL WATER TO CONDENSATE PUMPS					
P 52				SEAL WATER TO CONDENDATE PUMP		-			
288	14			SEAL WATER TO CONDENSATE PUMP	1	-			
P.54				CONDENSATE PUMP VENT				1-1-	
228	1.	IT		CONDENSATE PUMP VENT		-	-		
P-56	1			CONDENSATE TO EVAPORATOR CONDENSER	STO				
P-67	3			CONDENSATE FROM EVAPORATOR CONDENSER					
P-58	2"	IT		AIR EJECTOR SUCTION LINE FROM CONDENSER		1			
P-59	2			AIR EJECTOR SUCTION LINE FROM CONDENSER	1.1	1	I I		
P-60	1			CONDENSATE MEADER TO SHIELD TANK COOLERS					
PEI	1"			CONDENSATE HEADER FROM SHIELD TANK COOLERS		1			
p-a	146			CONDENSATE TO SHELD TANK COOLING COIL					
P-63	1/2"			CONDENSATE TO SHIELD TANK COOLING COIL		1			
P44	1%			CONDENSATE TO SHIELD TANK COOLING COIL	11	1		11	
9.45	145-	+++		CONDENSATE TO SHIELD TANK COOLING COIL		-			
	1	tt		CONDENSATE FROM SHIELD TANK COOLING COIL	1 1	1	11		
P 61	44	tt		CONDENSATE FROM SHIELD TANK COOLING COIL		-	tt	1	· · · · · · · · · · · · · ·
P-64		++		CONDENSATE FROM SHIELD TANK COOLING COLL	+++		++		
		++-		CONDENSATE FROM SHIELD TANK COOLING COIL	++-		+-+	1	
0.30	42°	++-		GAGE LINE TO GAGE GLASS	++-		+ +-	1.19	
- 10	174	+1-		GAGE LINE TO GAGE GLASS	+ +	+	+-1-	+ +	
PTI	42.	11		A WOR FINE IN CHOR BLASS	+ 1	+	1 8	+	
	+	-			+	+	+	******	
	1-				1	+	+	i una	
		-			+ -		+	A	100
		****		And and a second s		1	A	A	

COMPONENTA NO	UNIT	Hier, L. w.S	SHEC	MFGR	MEGR. REF. DWG. NO	WEIGHT	GEN HAS
C-HA-OI	AIR COOLED CONDENSER	HONO" BTULLEF ISH	1 -00 50-1 P	and Car - Maria	C 3155	121.550	thed wind twelfty
C-344-02	AIR COOLED CONDENSER	APAGE BLO BLOW BLOW	12 2002 00 7			21,550	LASS COMPANY
C HK-05	AIR COOLED SUB COOLER	WIND THINK SHAA					
C-HX-04	AIR COOLED SUB- COOLER	NUMBER OF SHARE	P1 4102 05-7		*		
C-HX-05	PRECOOLER	LIS IPSTAR PEIMA		CH WINFELER			
CHE OG	AFTER CONDENSER	NI BUNGENTHOS	PL 2102-00 D	C.H. WHELLER		1 10 185	
C-TK-01	HOTWELL	450GAS PIS Hy A				1 2 2 2 180	
C-PU-01	CONDENSATE PUMP	HEAPHE ILE FT			2 HVL	250185	
C-PU-02	CONDENSATE PUMP	62GPHEII2FT			2 RVL	250.00	
C-EJ-01	GLAND EXH AIR EJECTOR	TELBOYAR PZINA A			-2.05	25185	
C-EJ-02	GLAND EXH. AR EJECTOR	76 LBANEPZI Hya	A 3102 00 8	C. H WHEELER	12.5 1	. TELRS	
C-EJ-03	CONDENSER AIR EJECTOR	130LBY HEE SHOA	PL 2102 00-F		2355300	25180	
C-EJ-OA	CONDENSER AIR EJECTOR	BOLDINE SILA		1	23 55 300	25185	
C. HA 07	SHIELD TANK COOLERS	12+10 \$12/= = + AMES	A 200 201 A			1	
C. HX OS	SHIELD TANK COOLERS	1					
C- HX- 09	SHIELD TANK COOLERS			1			
C- HA-10	SHIELD TANK COOLERS	+	+			-	

CONDENSATE SYSTEM DIAGRAM Fig. 44

5 PL2/2121 2101-11 MAIN STEAM STS-PRO. INSTR. DAG. 4 PL2/2121 2101 MAIN STEAM SYSTEM DAGRAM

PS RESI

RES. TO CUR, CONVERTER

		R	FERENCE	r DA	AWINGS
REX.MI	DRAWING I				TITLE
1	PL2JZII9	,	2102		CONDENSATE SYSTEM DIAG.
2	PLZJZZI	9	2201-	03	ALC. I EMER. POMER-MARTILINE DUAG.
3	PLZJZZZ		220/-		PEANT MOTOR SUPPLY METALE LINE.

MOUNTIN

I" APT

I' NPT

FLANGE

1/2" NPT 1/2" NPT

42" NPT

1 NPT

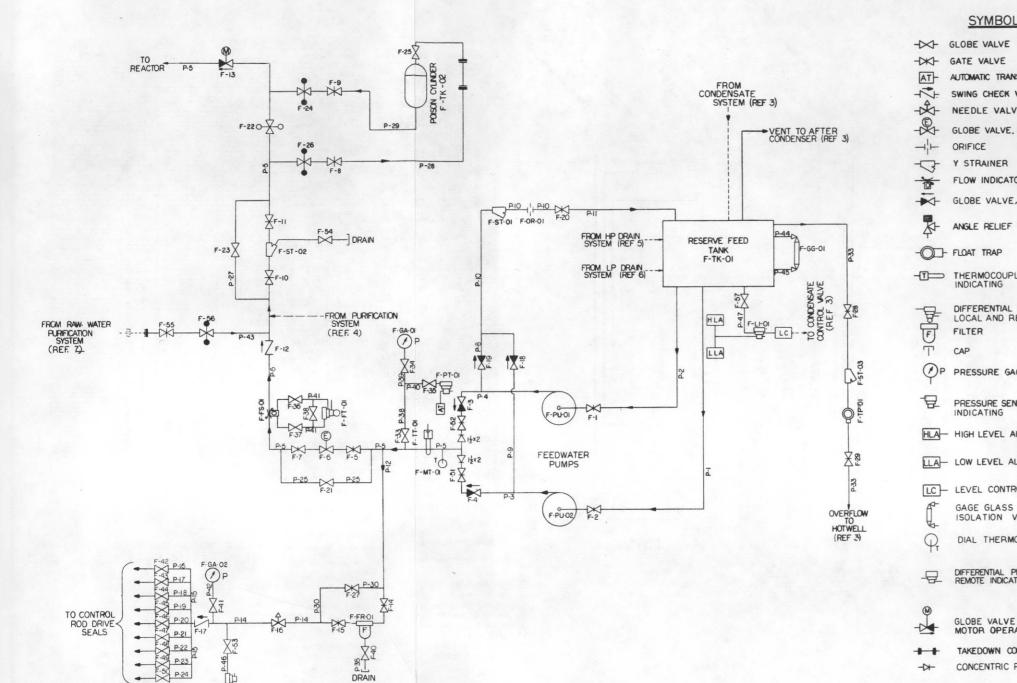
UNE BY MAND

5" ¥4" NPT 5" \$14" NPT

5" 246" NAT 1/2" NAT 1/2" NAT 1/2" NAT 1/2" NAT 5" 4/4" NAT

5" W#" N#T 5" 344" N#T

5" 46" WPT 16" NPT 5" 46" NPT


5" 46" NPT 5" 3/4" NPT 5" 3/4" NPT 5" 3/6" NPT 5" 40" NPT

S" He NPT

5- 1/0" NPT

REMARK

CONDENSATE SYSTEM PROCESS INSTRUMENTATION-ONE LINE DIAGRAM Fig. 45

SYMBOLS

AT- AUTOMATIC TRANSFER SWITCH - SWING CHECK VALVE - NEEDLE VALVE GLOBE VALVE, ELECTRO-HYDRAULIC - Y STRAINER FLOW INDICATOR, ORIFICE TYPE GLOBE VALVE, STOP CHECK - ANGLE RELIEF VALVE -OD- FLOAT TRAP THERMOCOUPLE, REMOTE DIFFERENTIAL PRESSURE SENSOR, LOCAL AND REMOTE INDICATING - I III FILTER CAP P PRESSURE GAGE PRESSURE SENSOR REMOTE HLA- HIGH LEVEL ALARM LLA- LOW LEVEL ALARM LC - LEVEL CONTROL GAGE GLASS WITH A th Q DIAL THERMOMETER DIFFERENTIAL PRESSURE SENSOR, REMOTE INDICATING, ATMOS. REF. LEG. 0 GLOBE VALVE, STOP CHECK, MOTOR OPERATED -14 TAKEDOWN CONNECTION CONCENTRIC REDUCER -1-

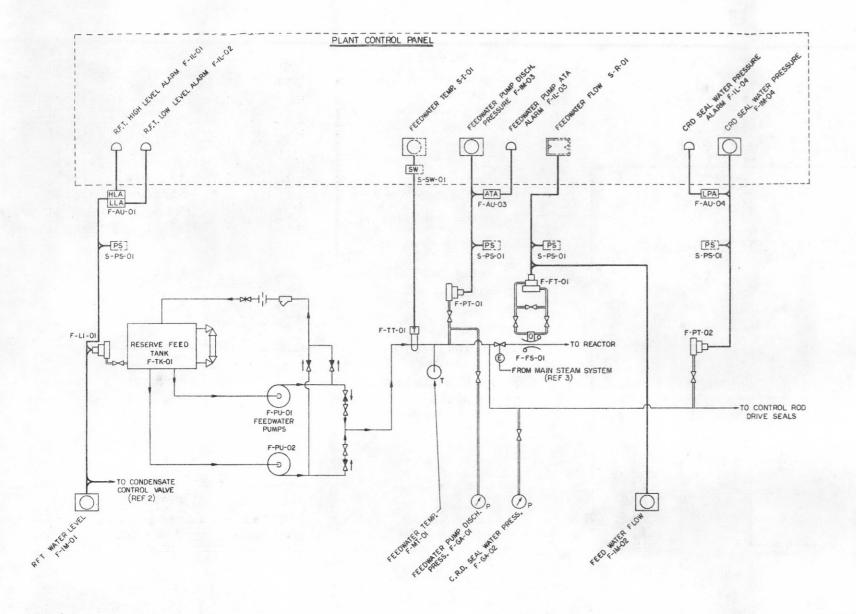
49 P-23

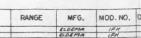
P-24

F-PT-02

NO.	COMPONENT NO.	SERV	ICE	NOM	TYPE	END	ACTUAT.	POSITION	MATL	EQ.UNR SPEC. NO.	REMARKS
F.6		FEEDWAT	CONTROL		GLOSE	RANGED		A5-15	5.57.	1-946J-	
F-13		FEEDWATER	\$70.0	5.	36 ma	R ANGED	MOTOR	A5-15	-	12.340.	
-											4.
	F-08-01 F-66-01	FEED PLAN	ER LINEL		-				-	100	
				-	-		-			-	
				-		-					
-				-		-					
				-							

MPE	NOM SIZE	MATL	SERVICE	INSUL	FLOW	DESIGN	PRESS	REMARKS
NQ.	SIZE		FEED PUMP SUCTION	THICK			45 1546	
	3 40		FEED PUMP SUCTION	3/0			48.43.46	
	4		FEED PUMP DISCHARGE				4551-376	
	14		FEED PUMP DISCHARGE	++			018-11/6	
	2		VEEDWATER WAIN	++-			20.45.45	
7.3				++-				
-								
A.8			FEED PUMP RECIRCULATION				81.82.45.46	
P.9	5		FEED PUMP RECIRCULATION		200%	280 1210	4152-55.45	
AND	V		FEED PUMP RECIRCULATION		Eco AL	30/310	12.534.60	
	S.I.		FEED PUMP RECIRCULATION		K cm "/4	JOAT/S	#3.PS/8	
AIE	16'		FEEDMATER TO CRO SEAL WATER FILTER .		160 24	130/3/6	1950,75.16	
				-				
	1		FEEDMATER TO CRO SEAL WATER DISTR. MOR				#3295/#	
			CRD SEAL WATER DISTRIBUTION HEADER .	570			404444	
	*		SEAL WATER TO CRD. SEAL				#30/6/6	
	¥.		SEAL WATER TO CRD. SEAL				4542/57.46	
A18	16		SEAL WATER TO CAD SEAL				455095.46	
A/9	Mr.		SEAL WATER TO CAD SEAL				40075/6	
AD	X		SEAL WATER TO CRO SEAL				100 -5.10	
AZ1	K'		SEAL WATER TO CRD SEAL				0.249.00	
AZZ	F		SEAL WATER TO CRO SEAL				6120°245	
A23	16		SEAL WATER TO CRO SEAL				1050.0010	
A24	14		SEAL WATER TO CRD SEAL				105475/10	
A25	5.		FEEDMATER CONTROL WALVE BY ANSS	370	23766	30/5/6	1000-55-6	
					-	-		
<u>~~</u> ?	2		FEEDWATER STRAINER BY-PASS				480 45.46	
A28	1.		PORSON CYLINDER SUPPLY				ANSO 1010	
A29	1		POUSON CYLINDER EFFLUENT				1 434 75 AS	
	4		CRO SEAL WATER FILTER BY-MASS				100,000	
A3/	1		RESERVE FEED TANK RELIEF WALKE AVILET				45 MIN	
AH.	2		RESERVE FEED TANK RELIEF WILVE DISCHARGE	1	390076	-		
A33	2'		RESERVE FEED TANK OVERFLOW		Jan 14	30 1216	45.75.16	
	14		CRD SEAL WATER FILTER DRAW	1		100.014		
	8		FEEDWATER FILTER DRAIN				460,9515	
	3.11		GAGE LINE TO RESERVE PEED TH. PRESS. GAGE				43.01.6	and the same the same same same same same same same sam
	*		FEED PUMP DISCHARGE PRESSURE GAGE LINE				ALMAN ACIE	
	*		GAGE LINE TO PEED PUMP DISCH PAESS GAGE				ASO PSA	
-32	8	+ +	GAGE LINE TO FEED PLAN DISCH PARESS. UNTR.	+	-		49.45.4	
			FEEDWATER FLOW INTR GAGE LINE	+	-		m50 At/6	
P41	*		CRD SEAL WATER PRESSURE GAGE LINE	-	-		MIN /0.40	
	3			-	-			
	3++		COMML FROM RAW WATER PURFICATION SYSTEM	-	-	20 2516	45 PS16	
P-45			GAGE LINE TO RESERVE FEED TANK GAGE GLASS	-	-		45 1516	
					-		43 1310	
	5 11		GAGE LINE TO CRO SEAL WATER PRESSURE XMTR			130 13/6	Public / 3/6	


1000		114	<u>STRL</u>		1	LIU	I Income	-	REF. C	-	
NO.	MAME	SERVICE	NANE	CAT. NO.	RANGE	SET	POINT	POINT	SPEC	REM	RICS
F.6A-01	248 59%	WATER			-		-			SEE R	
F-6A-02	Salar Ann.	WATER			-	-					
F-PT-01	23 Sta	WATER				_			-		_
F-FT-01	224 Sand 194 200	WATER		-	-			-			
F-TT-01	A TONTA	WATER			-						_
F-FS-01	and the state	HATER		-				-			-
1-61-01	THE PARTY AND THE	WATER						_			_
F-MT-OI	PELDWATER TEMP.	WATER		-						_	-
F-PT-02	CAD LON MINE MILT.	WATER									


	DEC	FOENC	E DRAWINGS
REF NO.	DRAWING NO.	PROJECT	TITLE
1	PL2J2206	2103-11	FEEDWATER SYS. PROCESS INSTRUMENTATION DA
2	AL2J2121	2/0/	MAIN STEAM SYSTEM DIAGRAM
3	PL2J2119	2/02	CONDENSATE SYSTEM DIAGRAM
4	PL212210	2104	COOLANT PURIFICATION SYSTEM DIAGRAM
5	PLZJZIZZ	2106	HIGH PRESSURE DRAIN SYSTEM DIAGRAM
6	PL2J2124	2107	LOW PRESSURE DRAIN SYSTEM DIAGRAM
7	PLZJZIII	2105	RAWWATER PURIFICATION SYSTEM DIAGRAM

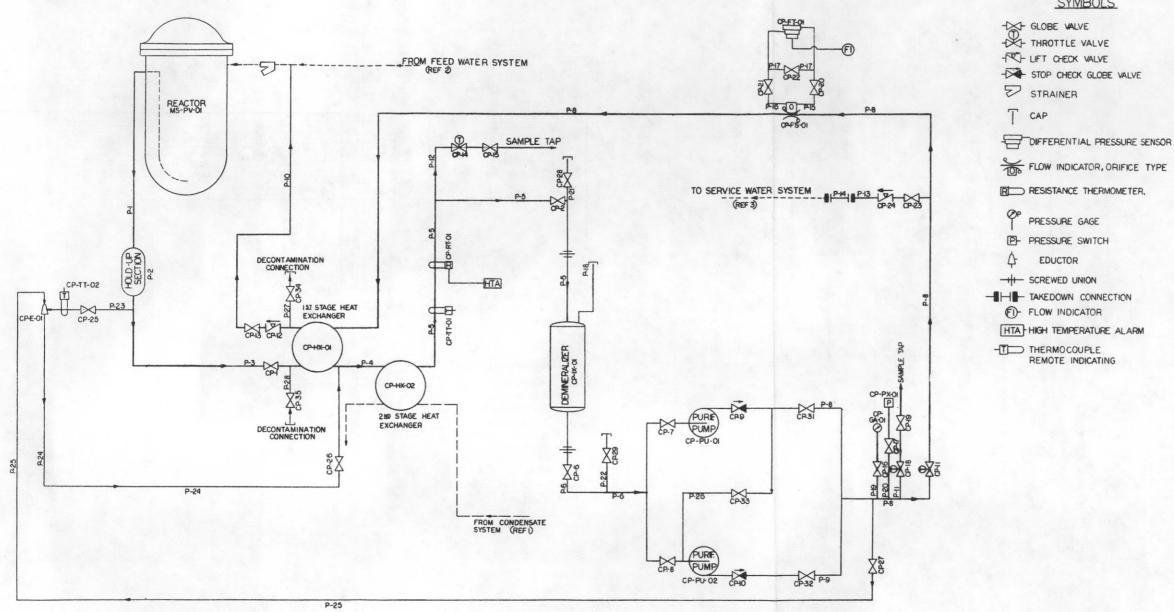
COMPONENT NO.	UNIT	CHARACTER-	EQUIP SPEC. NO	MFGR	MFG'R. REF. DWG.	WEIGHT	REMARKS
1-78-01	RESERVE FEED TANK	660 GAL	20-109-			1000*	
F-78-02	POISON CYLINDER		00-2193-			350	
F. PU.01	FEED PUMP	60 GAN 700 PSIG	00:15	INGERSOL · RAND	14 VP - 7	4000*	
F-AU-02	FEED PUMP	40678 700PSIG	00:3803.	WGERSOL - RAND	1 + VP-7	4000*	
F.FE.01	CRO SEAL WATER FILTER	106.MM 200.P516	da-193		_	50"	

-DA- GATE VALVE, LOCKED OPEN

FEED SYSTEM Fig. 46

ALCT NO	THOP	INPUT	DINCE			DUTTOUT	SET P	OINT	MOUNT	ING	EQUIP	REMARKS
INST. NO.	TYPE	INPUT	RANGE	MFG.	MOD. NO.	OUTPUT	CONTROL	ALARM	INSERTION	CONNECT.	SPEC. NO.	REMARKS
F-12-01	IG.LIGHT	F-AV-01		ELDEMA	IFH						2100-11-68	
	IG. LIGHT	F-AV-01		ELDEMA	IFH	1					3100-11-6B	
F-AU-OI	ALARM UNIT	F-L1-01		FOXBORO	63	F-IL-01.02		3", 24"			2100-11-79	
F-41-01	LEVEL IND.	RES. FEED TK. LEWEL	0-48"	FOXBORD	6/3	1 2 81					2100-11-81	
F-11-04	IND. LIGHT	F-AV-04		ELDEMA	IFH	1					2100-11-68	
	IND. ELECT.	F-LI-01	0-40"	FOXBORD	65P5						2100-11-83	
	IND. ELECT.	#-FT-01	0-706 PM	FOXBORO	65P5	10					2100-11-83	
5-1-01	IND. GALV.					1						REF 4
	SWITCH MERTIPON					11.						REF &
	POMER SUPPLY										1	REF 3
5-R-01	RECORDER											REF4
		FEED WHER ADIA	0- 200°F	AR, MOANEY WAE'LL	3837A	5-5W-01			5"		2100-11-71	
		FEEDWATER TEMR	0- 200°F	WESTON	4500				5"	YE WAT	2100-11-89	
	IND. ELECT.	F-PT-02	0-1000 PSIG	FOXBORO	65 PL						2100-11-83	
	ALARM UNIT	F-PT- 02		FOXBORO	63	F-12-04		650 P316			2100-11-79	
F-11-03	IG.LIGHT	F-AV-03		ELDEMA	IFH	1					2100-11-68	
F- AU-03	ALARM LUNIT	#-PT-01		FOXBORO	63			600 PS/6			2100-11-79	
		KW. PUMP DISCH	0-1000 PSIG	FOXBORO	611	F-AY-03				YZ NOT	2100-11-76	
F-GA-01	GAGE, PRESS.	F.W PLMP DISCN.	0-1000 PSIG	RSHCROFT	13795	L.				12 HPT	2100-11-65	
	SEVSOR P.V		0-200" N20	FOXBORD	6/8	6-R-01 R-1M-02.				VE NPT	2100-11-81	
F.FS-01	SENSOR FLOW	FEED WATER FLOW	0-70 3 PM	FOXBORD	81049	F-17-01					2100-11-80	1
F-GA-02	6466, ABS.55.	C.R.D. SEAL WATER PEESS	0-1500 P316	ASHCROFT	13795					YE" NPT	2100-11-65	
F-PT-02	PRESS. KMTR.	C.R.D. SEAL WHATER PARTIC	0-1000 PSIG	FOXBORD	611	F-AU-01				1/2"NPT	2100-17-76	
	IND, ELECT.		0-1000 P3/5	FOXBORO	65 PL			1				

	SYMBOLS
Øp	GAGE , PRESSURE
Ør	GAGE , TEMPERATURE
~	RECORDER, ONE PEN
	RECORDER, TWO PEN, ONE INPUT
O	INDICATOR, ELECTRICAL, MULTIPOINT
T	THERMOCOUPLE
R	THERMOMETER, RESISTANCE
F	TFILLED THERMOMETER SYSTEM
HLA	HIGH LEVEL ALARM
LLA	LOW LEVEL ALARM
HTA	HIGH TEMP. ALARM
ATA	AUTO. TRANSFER ALARM
SW]	SWITCH, MULTIPOINT
PS]	POWER SUPPLY, SYSTEM
þ	SENSOR, PRESS.
ļþ	SENSOR, DIFFERENTIAL PRESS.
	FLOW INDICATOR, ORIFICE TYPE


INSTRUMENT COMPONENT LIST

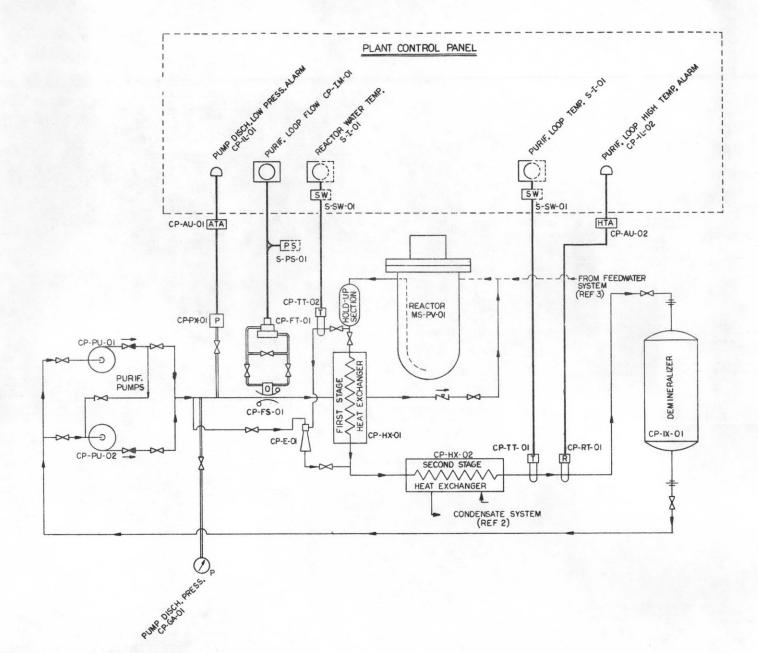
O SENSOR, LEVEL CONTROLLER

- THERMOMETER , DIAL

5	J2219	2201-03	BLEGTRIC POWER ALK, AND DESIG
	105201	2101-11	MAIN STEAM STS. ABORESS MISE
3	12121	1013	MAIN STEAM SYSTEM DIAG.
2	J2119	2102	CONDENSATE STOTEM DIAD.
1	12117	2103	PEEDINMTER STSTEM
Res NO.	DEAWING NO.	PROJECT NO.	TITLE
	REFE	RENCE D	RAWINGS

FEED SYSTEM PROCESS INSTRUMENTATION-ONE LINE DIAGRAM Fig. 47

SYMBOLS


				PIPE LIST				1	
NO.	NON	pcn.	MATL		INSUL	OPRG.	DESION	-TEST	REMARKS
AI	15	40	304 337	MEACTOR DUTLET TO MOLDER SECTION	570	5000	720	1090	
AL	12"	60	300 357	MORAUP SECTION	1	SGPM	720	1000	
A3	15	40	304 337	MEAUP SERION IS IST STAGE NEAT EXCHANGER		SOPH	720	1080	
14	15	-	300 357	1 ST STAGE MEATERCHA. TO E'S STAGE MEAT EXCMM.		SGPM	720	KAO	
N	11	40	304 337	ZWR STAGE MEAT EXCHANGER TO DEMINERALIZER INLET		SGPH	720	1082	the second is not the second
~	16	40	304 337	DOMENNULLER ONTLET TO PULL CP-PU-DI		SGAM	120	1080	
A7	10-	40	304 357	PLANE CA. MU-OS WHET		SGAM	720	1000	and the second sec
A	1-		301337	DISCHARGE FROM PUNCE CA. PU-DI TO IST STACE HEAT EXIME		6000	720	1080	
1.9	1"		304 337	DOCHNAME AROM AND CA-AU-OL		56.04	720	1080	
10	1.	-	300 357	PETURN DESCRIFEOM IN STAGE INAT ENINE TO REALTOR FEEDLINE		SGM	720	1000	
A-11	7	-	304 357	DEMINGENCIELR ENFLORENT SAMPLE LINE		SGM	120	1000	
AIE	1	40	304357	DEMINERAUZER MPLUENT SAMPLE LINE	++	SGPH	720	1080	
RIS	1	40	304 547	ORAN LANE TO SERVICE WATER BYSTEM		5 6.04	720	1080	
RIG.	+"	40	304 337	DENN LINE TAKEDOWN CONNECTION	-	SGM	720	1080	
AN	5.	40	304337	N.R. SUPPLY-FLLW METER DR TRANSMITTER	-	-	720	1080	
AK	£.	40	304537	LA SUPPLY - FLOW METER DR TRAUSMITTER	-	-	730	1080	
AUT .	1	40	104 157	EQUALIENC BAMASS - REON METER DR TRUSSITYER	-		740	1080	
4.40	Ŧ.	40	364 237	YENT LINE DEMINERALIZER CP-1X-01	-		720	1080	
AIT	1.	46	304 337	PRESSURE CACE NULLY LILE	-	-	720	1000	
A20	1	40	304337	PRESSURE SWITCH MLET LINE	-		786	108c	
A!I	1-	40	BC4SST	VENT LINE ON DEMINERALIZER MLET LINE	370		720	1080	
A22		40	304337	HENT LINE ON DEMESCALIZER CUTET LINE	570		726	1080	
ALT	15	40	IC+ ST	EDUCTER SUCTION	\$10	SGM	720	1600	
A.84	14	40	304537	FOULTOR CUTLET TO ZE STAGE MEAT EXCUR	\$10	12.264	720	1080	
125	11	40	BOASAT	MOTIVE WATER LINE TO EDUCTOR	\$10	72 654	786	1080	
-2.5	1"	40	304557	PUMP SERIES CONNECTION	\$10	RICAN	720	1080	
A27	1.	40	304 558	DECONTRACINGTION CONNECTION	\$10	6 GAN	7.80	10.00	
A20	1'	40	304 557.	DECONTRAINATION CONNECTION	570	50.941	720	1000	

INSTRUMENT NO.	NAME				REMARKS				
CP-FT-OI	FLOW METER			SEE A	REFERENCE 4				
CR GA-OI	PEESSURE GAGE				1				
CP-#5-01	PUBFICATION RAW SENSOR								
CR.PY-OI	REESSURE								
CR.RT-CI	RESISTANCE THERMOMETER								
CP-TT-OI	THERMOCOUNCE								
CP.TT-02	THERMOCOUPLE				1				

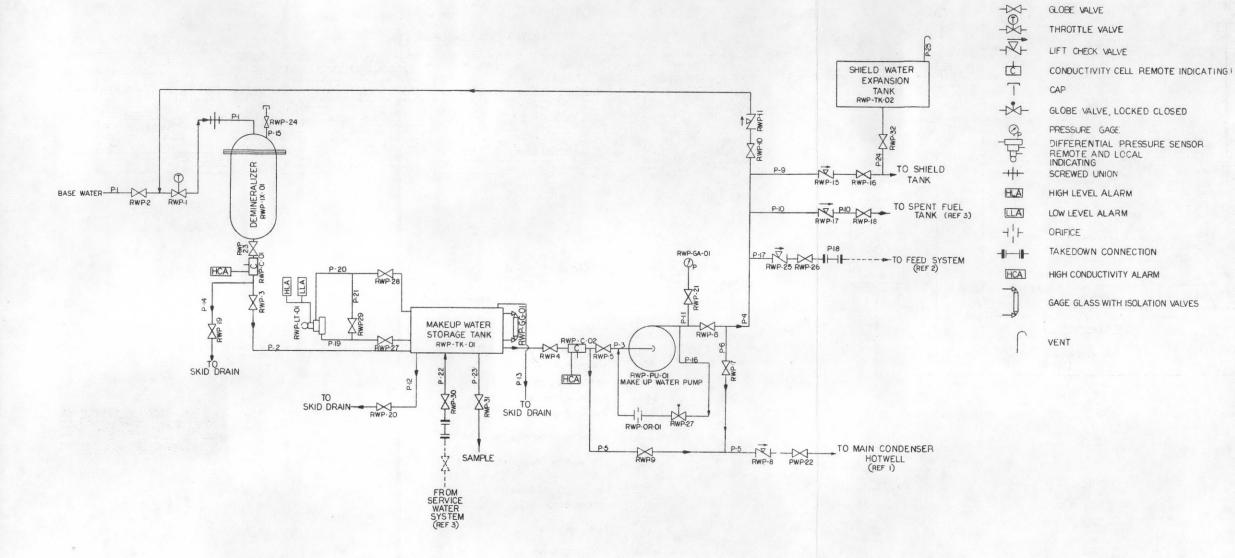
COMPONENT NO.	UNIT	CHARACTER-	SPEC. NO	MFG'R.	MFG'R, REF DWG.	WEIGHT	REMARKS
CP-HI-DI	STATE MER ENMAGER	128 - 10 BTO/DR	A.ame.4./1	GRIVIN MIG	124646 - 12	1150*	
CA-HX-DE	255 STAGE NENT Stendarger	5.30 × 10" BTU/ME.	12 - 2004-00-201	GRAMAN MIG.	304C4C - 14L	300-	
CP-1X-01	DEMINERALIZER	RESIN VOL. E.B CU FT.	Rens - 10022	THENT WONT LO.		TRLO"	
CP-E-01	EDUCTOR	LIFT CHA- SEPAN	1.3/98-48-47	SCHWITTE FRANK	FM. 222-B	230	
CP-AU-OI	PURIFICATION PURIP		A LOS OF M	CHEN PUMP	CFN-11/2 - 3/4	200"	
CP-14-02	FURSKITION PLANP	15-17-1 Car	1.204-00-20	CHEM PUMP	CPH-14-34	200	

R87 1/2	Dank Na	ABOARCE BAT MS	TITLE
1	PL 2/2/19	2013	SERVICE WATER SYSTEM DIAGRAM
8	PREJENT	2103	PEEC MATER SYSILM QUERAM.
3	AN 2189	2110	CONDENSATE SYSTEM DIAGRAM
	PL2J2207		COOLANT PURKET. SYST. INSTRUMPENT DI AGRAM

COOLANT PURIFICATION Fig.48

INSTRUMENT COMPONENT LIST

	THOS	INDUT	Danide	1 1150	MOD NO	OUTPUT	SET F	POINT	MOUN	TING	EQ:	JIP.	REMARKS
INST. NO.	TYPE	INPUT	RANGE	MFG.	MOD. NO.	DUIPUI	CONTROL	ALARM	INSERTION		SPEC	. NO.	ALMARKS
CP-PX-01	PRESS. SWITCH	PURIF. PUMP DISCAL	0-750 PS/G	BARKSDALE	312	CP-AU-OI	625 PSIG			1/4 NPT	2100-1	1-66	
	ALARM UNIT	CP-PX-01		SQUARE D	85CI AP	CP-12-01		615 PS19	RACK		1	91	NO AUTO. TRANSFER
	IG. LIGHT	CP-AU-01		ELDEMA	IFH				FLUSH			68	
		PURIF. PUMR DISCH.	0-750 PS/G	ASHCROFT	19795				SURFACE	1/2 NPT		65	
		PURIF. LOOP FLOW	0-10 G PM	FOXBORO	B1049					LINE RE FLANKE		80	
	FLOW XMTR.	CP-F5-01	0-100" HEO	FOXBORO	613	CP-IM-OI				12 NPT		81	
	IND, ELECT.	CP-FT-01	0-10 GPM	FOXBORO	65PL							83	
	SENSOR, TC.	PEIMARY COOLANT TEMP.	0-250° F	MPLS HOWEY	3837F	MV			5"	Va NPT		7/	
	ALARM UNIT	CP-ET-OI		MPLS HOMEY	£7082C	CP-11-02		170° F				72	PUR. PUMPS STOPPED ABOVE 170"
	IG. LIGNT	CP-AU-02		ELDEMA	IFH							68	
		DEMIN. INLET TEMP.	0-250°F	MPLS HONEY		CP-AU-02			5"	3/4" NPT		70	
		REACTOR WATER	0-250°F	5-5W-01	38375	5-5W-01	1		5"	14 NPT	1	71	
	SWITCH MULTIPOINT					1							REF 3
	IND. GALVOMETER						1		1				REF 3
	POWER SUPPLY												REF 4


SYMBOLS

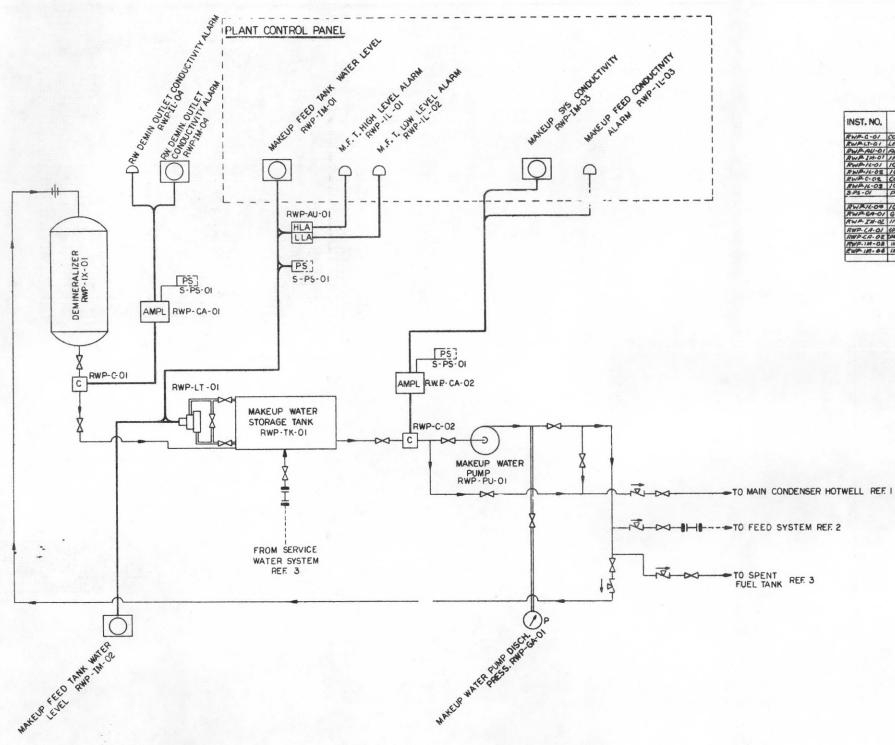
$\boxed{\bigcirc}$	INDICATOR, ELECTRICAL, MULTIPOINT
\bigcirc	INDICATOR, ELECTRICAL
ATA	AUTO. TRANSFER ALARM
HTA	HIGH TEMPERATURE ALARM
SW	SWITCH, MULTIPOINT
PS	POWER SUPPLY, SYSTEM
P	PRESSURE SWITCH
Þ	SENSOR, DIFFERENTIAL PRESSURE
	FLOW INDICATOR, ORIFICE TYPE
R	RESISTANCE THERMOMETER
T	THERMOCOUPLE
\bigcirc_{P}	GAGE, PRESSURE
P	LIGHT, INDICATING

	REFE	RENCE D	RAWINGS
REF. NO.		PEOTECT NO.	
1	P12 J 2210	2104	COOLANT PURIFI. DIAG.
	PC2J2119	2102	CONDENSATE SYS. DAAG.
	PLZJZIIT	2101	FEEDWATER SYS. DMB.
4	PL2J2219	2201-03	AUX & EMERG POWER MULTERE DIA

COOLANT PURIFICATION PROCESS INSTRUMENTATION-ONE LINE DIAGRAM Fig. 49

SYMBOLS

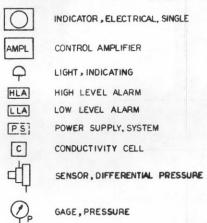
PIPE	NOM	SCH	MATERIAL	SERVICE	INSL.	OPER	DESIGN	TEST	REMARKS
P.1	F	10	304 517	DEMINERALIZER INLET	THK.			PRESS	
P.2		10			-			PS16-110	
	8		304 867	DEMINERALIZER OUTLET	-			AS15-150	
PJ	1	10	304 387	SUCTION - MARE-UP WATER PUMP	-			A\$16 130	
P-4	1			MARE-UP WATER PUMP DISCHARGE HEADER	-			PS 16+30	
P.S	1	10	304 987	WACLIUM DRAG LINE TO MAIN CONDENSER MOTWELL	-			AS16-150	
MS	1	10	309 887	COMNECTOR LINE TO VACUUM DEAG LINE	-	SGMP	1001-3129	15K-150	
-		1					1		
	-		1.1. S.		-	12003	1		
p.9		10	300 3.3.7	SWIELD WATER SYSTEM SUPPLY LINE	-			PSK-150	
AD		10	304957	SPENT FUELTANK SUPPLY LINE	-	SGMP		PSK 150	
R-11		10		SUPPLY LINE - PRESSURE GAGE	-			RSK-130	
A12			722 POE	THINK DEANN LINE - MAKE-UP MATER STORAGE TANK	-	-	R.K-100	84.50	
PH3			304 557	OVERFLOW LINE MAKE-UP MOTER STORAGE TANK	-	-	ADE NOO	PS16150	
P.H.	1	10	304557	DEMINERALIDER EFFLUENT DERIN LINE	-	-	PSIK-100	PS16.50	
Pus	t		Tes POL	VENT LINE . DEMINERALIZER	-	-	13.4.100	1516-150	-
P.16	4		304.557	PUMP RECIRCULATION LINE	-	0-2,5 (AM	PSIG-NO	PS16-150	
P-17			304 SS I.	FEEDWATER SYSTEM SUPPLY LINE	-	SCPM	1316-100	P\$16-150	
P-18			304 557	THE OOWN LINE FEED WATER SYS. SUPPLY LINE	-	SGPM	PS16 .00	\$\$16-150	and a second second
	1		304 557	MIGH PRESSURE SUPPLY - OP SENSUR		-	PSK. 160	PS14 150	
P-20			30# 557	LOW PRESSURE SUPPLY-DP SENSOR	-	- 1	PT.10 . 100	P319.150	
021	\$		304557	EQUALIZING PRESSURE LINE . OP SENSOR			P316-100		
0.22	+	10	300 SST	MAKEUP WATER PROM SERVICE WATER SYSTEM	-	-	PO-6-100		
023	K	10	304 SST	MAKEUP WATER STORAGE TOUK SOMPLE TAP	-	-	P36-104		
P-26	X	10	304 557	SHIELD WATER SURGE LINE	-	-		PS/6-150	
P.25	1/2 1	10	304 557	SHIELD WATER YENT LINE	-			P\$16-150	


9	SPECIAL	VAL	VE	AN	DFI	TTIN	IG L	IST	
COMPONENT NO	SERVICE	NON	TYPE	END	ACTUATING	FAIL	MATERIAL	EQUIP SPEC NO	REMARKS
 RWP-66-01	MOTER STREAM TOWN						\$\$7	A-2105-	RD and Deer In. and all
 		_							

INSTRUMENT	INSTRUMENT NAME	SERVICE	REMARKS					
RWP-C-01	CONOUCTIVITY CELL	WAKE .UP WAJER	REHER TO INST. DIAG	2105-11 (PL2 J2208) FOR DETAILS				
RWP-C-02	CONDUCTIVITY CELL	MAKE-UP WATER		VIE VIE VIE VIE VIE				
PWALT-01	LEVEL SENSOR	MAKE-UP WATER						
RWP. 6A.01	PRESSURE GABE	ADDKE-UP WATER		+				
		_						

	TERISTICS	SPEC. NO.	MANUFACTURER	MANUFACTURER REF.	WEIGHT	REMARKS
DEMINERALIZER	RESIN NOL: SCU. FT.	1-216500-31	Manar mart		750 185	
WARE UP WATER PUNP RECARL OPINE	AP- 23 PSI	N-2105 02-30			-	
					100 1.00	
SHIELD WATER EXAMISION TANK					Jec 100.	
	MALEUP WATER PUNP RELAC OPILE MAKEUP WATER PUMP MAKEUP WATER STORAGE MAK	MILE UP WATER PONP RECARC OPILE DP-23 PSI MARE-UP WATER PUMP MARE UP WATER PUMP MARE UP WATER STORAGE MARK CAP SO GAL.	MACUP WATER PONP RECENC CAPES DP. 23 PSI NOVOSO430 MAREUP WATER PUMP CAP STORE A NOVOSU 10 JE MAREUP WATER STOREGE MAR CAP SOGAL PLOSO03	MARC UP WOTER STORES PLUE COTES D.P. 23 PSI ADDISON DE MERSICUL AND O MARC UP WOTER FUMP RELATION AND ADDISON DE MERSICUL ADMO MARC UP WOTER STORES PLUE COP SO GAL ADDISON ADMOS	MARCUP MATTER PARTA RECARC CAPIES DO-23 211 A 2005 00 40 MERICA ANAD MARCUP MATER PUMP SCIENCE DO-25 211 A 2005 10 DAPASSAL ADAD 30 ANTA 428 MARCUP MATER STORAGE MALC LAP 50 GAL. A 5005 00-10	MARE UP WATER PAIN PREME CAME LAP .23 PS1

		ICE DRAWINGS
DANG NS	PROJECT NE	TITLE
AL2/2119	2015	CONDENSATE SYSTEM DIAGEAM
	2103	FEED SYSTEM DIAGRAM
PLZ/2189	2110	SERMCE WATER SYSTEM DURGERH
	AZJ2117 AZJ2119	AZUZIIT 2103 AZUZIIS 2102


RAW WATER PURIFICATION Fig. 50

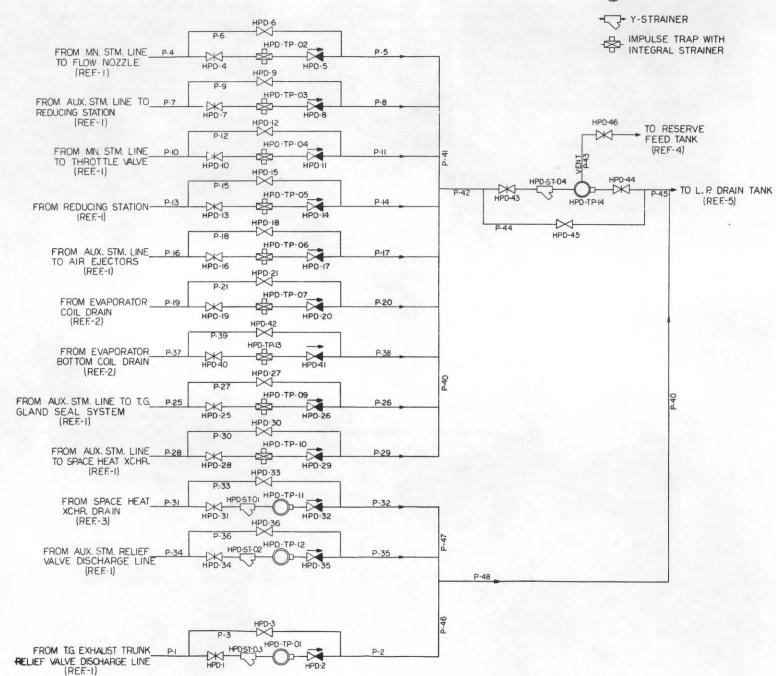
INSTRUMENT COMPONENT LIST

INST. NO.	TYPE	INPUT	RANGE	MFG.	MOD. NO.	OUTOUT	SET PO	INT	MOUN	TING	EQUIP.	REMARKS
11421.140.	ITTE	INFOT	HANOL	MF O.	MOD. NO.	UUIPUI	CONTROLIAL	ARM	INSERTIO	NCONNECT	SPEC. NO.	DEMARKS
RWP-C-01	COND. CELL	DEMIN. OUTPUT	# MANNOS 2 M MINOS	IND INST	CAL # 55-1				6"		2100-11 - 86	
RWALT-01	LEWEL SENSOR .	MAKEUP FEED TK. LEVEL	0-48"	FOXBORO	TYPE 613	10-50 144				1/2" MPT	1 8/	
RWP-AU-DI	ALARM UNIT	MOKEUP FEED TH LEVEL		POXBORD	63						79	
RWAIM-01	IND. ELECT.	MAKE UP FEED TK LEVEL	0- 48"	FOXBORO	65PL						85	
RWP-16-01	IG. LIGNT	RWP-AU-01		ELDEMA	JFH						.68	
RWA-16-02	IG. LIGHT	RWP-AU-01		ELDEMA	IFH					+	68	
RWAC-02	COND. CELL	MAKEUP FEED CONO	4 MMHOS 2 MMHOS	INO INST	CEL I SS-1	1			6"	11/2" NPT	85	
RWP-16-03	13. LIGHT	MAREUP FEED COND	1	ELDEMA	IFH	1				1	68	
3-25-01	POWER SUPPLY							-	-			REF. 2
RWAIL-04	IG. LIGHT	DEMIN OUTPUT COND.	+	SLOEMA	IFH					1	68	
RWP-GA-01	GAGE PRESS.	MAKEUP DISCH, POSH	0-50 PS/6	ASHCLOFT	13795	1				12" HPT	65	
	IND. ELECT.	MAREUP FEED TE MOTHE LEVEL	0-48"	FOIBORD	65.BL	1	T			1	1 83	
RWP-LA-01	CONTROL AMPLIFIER	DEMIN, OUT PUT COND	1	INQ INST	RA-4"	10-50 MA		MMHOS	a secondaria e e e e e		86	
		MAKE UP PEED LOND		INO INST	RA-4	10-50 MA	2.0	O MANNOS		1	86	
RUP.IM-08	IND METER	DEMIN OUTLET CONO.	4 M MHOS 2 MMHOS	FOIBORO	65PL					1	83	and a second
	IND METER	MOKE FEED COND.	9 M MHOS 2 MMHOS	POLBORD	65.PL						83	
					1					1		

SYMBOLS

3	PEZJZ/89	2110	SERVICE WARER SIS. DIAGRAM
2	PL 2 J 2219	2201-03	AUXILIARY AND EMERGENCE POWER MULTILINE DIAGRAM
1	PLZJZIII	2105	RAW WATER PURIE DIAG.
RF.	DROWING NO	PROJECT NO	TITLE

RAW WATER PURIFICATION PROCESS INSTRUMENTATION-ONE LINE DIAGRAM Fig. 51

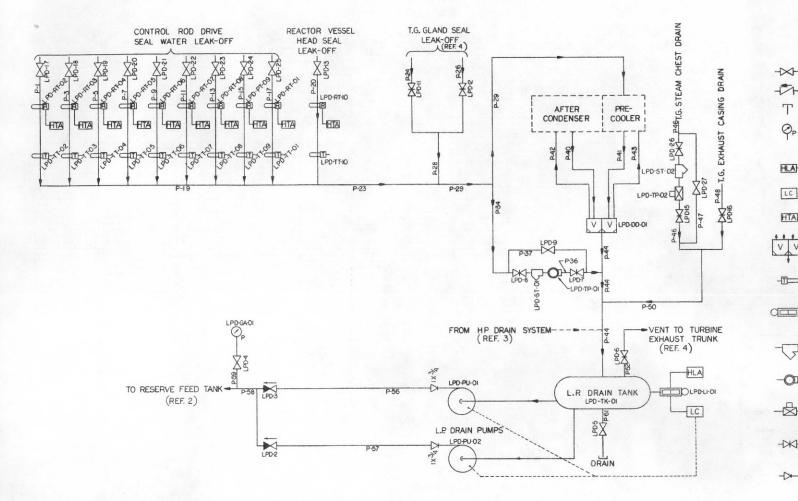

SYMBOLS

-C-GLOBE VALVE

-CH- GATE VALVE

- STOP CHECK GLOBE VALVE

-OD- FLOAT TRAP



NO.	COMPONENT NO.		NOM		END CONN.	MEDIUM	FAIL	MATERIAL	EQUIP.	REMARKS
	HPD-TP-01	STEAM AND CONDENSATE	42	ROAT	SCR.			5.57.	Pt 280-00-57	W/INTEGRAL STR.
	HPO-TP-02	1	1/2	IMPLUSE	SCA.			1	1	WINTEGRAL STR
	HPD-TP-09		42	IMPLUSE	SCR.					WINTEGRAL STR
	HPD-TP-04		1/2	IMPLUSE	SCR.					W/ INTEGRAL STR
	HPD-TP-05		42	IMPLUSE	SCR.					WI INTEGRAL STA
1.1.1.1.1	HPD-TP-06		42	IMPLUSE	SCA.	1				W/ INTEG RAL STA
	HPO-TP-07		42	MPLUSE	SCR.					WI INTEGRAL STR
	HPO-TP-09		1/2	MATUSE	SCR					WI INTEGRAL STA
	HPD-TP-10		42	IMPLUSE	BCR.					WINTEGRAL STR
	HPD-TP-11		1	FLOAT	SCR.					
	HPD-TP-12		42	FLOAT	SCA.					
	HPO-TP-13		1/2	IMPLUSE	SCA.	1				W/INTEGRAL STR
	HPD-TP-14		1	FLOAT	SCR.					

	NOM	Land			INSUL.		DESIGN	TEST T	
	SCH	BOFEL		SERVICE	THK.	FLOW		PRESS.	REMARKS
P.1	1/2	40	304 5.57.	T.G. EXH. RELIEF VALVE DISCH. DRAIN	-		150	225	
P.2	1/2	1		T.G. EXH. RELIEF VALVE DISCH DRAIN TRAP DISCN.	-		150	225	
P.3	42			T.G. EXH. RELIES VALVE DISCH. DRAIN TRAP BY-PASS	-		150	225	
P.4	42			STAL LINE TO FLOW NOZZLE DRAIN	STD		700	1050	
P.5	1/2			STM. LINE TO FLOW NOZZLE DRAIN TRAP DISCH.	STD		6.50	225	
P6	1/2			STM. LINE TO FLOW NOZZLE DRAIN TRAP BY-PASS	STD		750	1.050	
A7	YZ			AUX. STM. LINE TO RED. STA. DEAIN	STD		750	1050	
p-8	1/2			AUX. STM. LINE TO RED. STA. DRAIN TRAP DISCH.	570		150	225	
P.9	1/2			AN. STM. LINE TO RED. STA. DRAIN TRAP BY-PASS	570	-	750	1050	
	42			MH. STM. LINE TO THROTTLE VALVE DRAIN	570		750	10 50	
	42			MN. STM. LINE TO THROTILE VALVE DRAIN TRAP DISCH.	STD		150	225	
	1/2			MN. STM. LINE TO THROTTLE VALVE DRAIN TRAP BY PASS	370		750	1050	
	1/2			RED. STA. DRAIN	570		750	1050	
P.14				RED. STA. DRAIN TRAP DISCH.	570		150	225	
P-15				RED. STA. DERIN TRAP BY-PASS	570		750	1050	
	1/2			AUX. STM. LINE TO AIR EJECTORS DRAIN	370		175	263	
P-17				AN. STM. LINE TO AIR ESECTORS DRAIN TRAP DISCH.	STD		150	225	
	1/2			AVI. STM. LINE TO AIR EJECTORS DRAIN TRAP BY-PASS	570			263	
	1/2			EVAPORATOR COIL DRAW	370		150	225	
	1/2		-	EVAPORATOR COIL DRAIN TRAP DISCHARGE	STD	-	150	225	
A2/	1/2		T	EVAPORATOR COIL DRAIN TRAP BY- PASS	37D		150	825	
		40	304 5.57.	STW. LINE TO T.G. GLAND SCAL SYS. DOWN	STD		750	1050	
A26		+++		STM. LINE TO T.S. GLAND BEAL SYS, DEAN TRAP DISCH.	STD		150	225	
	1/2	+++			STD		750	1050	
P28				STM. LINE TO SPACE NT. XCNR. DRAWN	STD		175	263	
A29				STALLINE TO SPACE NT. XCHR. DRAIN TRAP DISCH.	370		150	225	
230				STALLINE TO SPACE NT. XCHR. ORAIN TRAP BY-MOSS	STD	_	175	263	
	1	11		SPACE HT XCHR. DRAIN	STD		150	225	
		111		SPACE NT. ICHR. DRAW TRAP DISCH.	370		150	225	
P.92				SPACE NT, XCHR. DRAIN TRAP BY-PASS	570		150	225	
A33				AUX. STAR. RELIEF MALVE DISCAL LINAE DENNA	STD		150	225	
A33 A34	1/2						150	225	
A33 A34 A34 A35	1/2 1/2			AUL STAL RELIEF VALUE DISCH. LIME DRAWN THAP DISCN.	STD				
A39 A39 A34 A35 A36	1/2 1/2 1/2			NUL STM. RELACT VALVE DISCH. LINE DIDAN TOAP AT-ANNE	STD	_	150	225	
A39 A39 A34 A35 A36 A37	1/2 1/2 1/2 1/2 1/2			NUL STM. RELIES PALVE DISCH. LINE DIDNH TONS BY MARK EVAP. BOTTOM COLL DRAIN	STD			225	
A 32 A 34 A 34 A 35 A 36 A 37 A 30	1/2 1/2 1/2 1/2 1/2			NULSIM, BULNE PALVE DISCH LINE DIDAH TOUP AV ANNE SVAP. BOTTOM COLL DRAIM EVAP BOTTOM COLL DRAIM TRAP DISCH	37D 57D 57D		150 150 150	225	
A32 A34 A34 A35 A36 A37 A36 A37 A36 A37	V2 1/2 1/2 1/2 1/2 1/2 1/2			NALSTH, MILLER PALVE DISCH LINK DAMN TONP AV MAR SVAP, BOTTOM COLL DRAIN SVAP, BOTTOM COLL DRAIN TRAP DISCH EVAP BOTTOM COLL DRAIN TRAP BY PASS	37D 57D 57D 57D		150 150 150	225	
A32 A34 A34 A35 A34 A35 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37	12 12 12 12 12 12 12 12 12 12 12 12 12 1			NILSTM, MILLER POLINE DISCHLUNG DUBAH TOUR BRANNE SUMP, BOTTOM, LOLL, DRAIM EVAP, BOTTOM COLL, DRAIM, TRAP, DISCH EVAP, BOTTOM, COLL, DRAIM, TRAP, BY-PASS DRAW, MEADER	37D 570 570 570 570		150 150 150 150	225	
A34 A34 A34 A35 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A37 A37 A37 A37 A37 A37 A37 A37 A37	1/2 1/2 1/2 1/2 1/2 1/2 1			NU STA BREEF PALVE DISCH LINI DAWN TOUP AF-AME SWAP. BOTTOM COLL DARIM EVAP BOTTOM COLL DARIM EVAP BOTTOM COLL DARIM TRAP. DISCH EVAP BOTTOM COLL DRAIM TRAP. BY-AMSS DARIM MERABUR DARIM MERABUR	37D 570 570 570 57D 57D		150 150 150 150 150 150	225 225 225 225 225 225 225	
A32 A33 A34 A35 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A37 A37 A37 A37 A37 A37 A37 A37 A37	12 12 12 12 12 12 12 12 12 12 12 12 12 1			NE STA BELEF PALYE DISKI LINE DAWN TELE DA AME SURP. BOTTOM COLL DURIN EVIP BOTTOM COLL DURIN TRUE DISCH EVIP BOTTOM COLL DURIN TRUE DISCH EVIP BOTTOM COLL DURIN TRUE BY AMSS DERN MERADE DERN MERADE DERN MERADE RETURN HERDER	37D 570 570 570 570 570 570 570 570		150 150 150 150 150 150 150	225 225 225 225 225 225 225 225 225 225	
A32 A34 A34 A35 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A37 A37 A37 A37 A37 A37 A37 A37 A37	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2			NE SIG MELLE DISKLING DOW TOP BANG SIGN BOTTON COLL DANN TAN SURB BOTTON COLL DANN TAN BURB BOTTON COLL DANN TAN BURB BOTTON COLL DANN TAN DAN MERGE DENN MERGE RETURN MERGER RETURN MERGER VENT	37D 570 570 570 570 570 570 570 570		150 150 150 150 150 150 150 150	225 225 228 225 225 225 225 225 225 225	
A39 A34 A34 A35 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A36 A37 A34 A34 A34 A34 A34 A34 A34 A34 A34 A34	V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V2 V			NE SIA MELLER INFLUEDISCI UNE DOBUT TRAP BY-ANN BURP BOTTOM COLL DARIN' TRAP DISCH EVAP NEROSCE DOBUT NEROSCE DOBUT NEROSCE RETURN HERDER VENT TRAP BY-PROSS	37D <u>570</u> <u>570</u> <u>570</u> <u>570</u> <u>570</u> <u>570</u> <u>570</u> <u>570</u> <u>570</u> <u>570</u>		150 150 150 150 150 150 150 150 150	225 225 225 225 225 225 225 225 225 225	
A39 A34 A35 A36 A37 A37 A37 A37 A37 A37 A37 A37 A37 A37	1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2			145 556 MB or PALYE DISK LINE DOWN TRAP BY AND SUMP BOTTOM COLL DANN TANP SUMP BOTTOM COLL DANN TANP DISK DITOM COLL DANN TANP DANN MERGEE DEAN MERGEE RETURN MERGEE RETURN MERGEE TARA BY-PASS RETURN TANSOF TO LA. DANN TANK	37D 570 570 570 570 570 570 570 570		150 150 150 150 150 150 150 150	225 225 225 225 225 225 225 225 225 225	
P32 P33 P34 P34 P34 P35 P34 P35 P34 P45 P45 P46 P46 P46 P46 P46	V2 1/2 1/2 1/2 1 1 1/2 1 1 1/2 1 1 1/2 1 1 1/2 1			NE SIA MELLER INNER DISKLINK DOOM TRAF BY-AME BURF BOTTOM COLL DANN TRAF DISCH EVAR BOTTOM COLL DANN TRAF DISCH EVAR BOTTOM COLL DANN TRAF BY-AMES DOWN MERDER DOWN MERDER NETTAM NEADER TRAF BY-PASS RETURM VERDER DOWN MERDER	37D 570 570 570 570 570 570 570 570		150 150 150 150 150 150 150 150 150	225 225 225 225 225 225 225 225 225 225	
P39 P39 P39 P39 P39 P39 P39 P39 P39 P40 P40 P40 P40 P40 P40 P40 P40 P40 P40	V2 V			145 556 MB or PALYE DISK LINE DOWN TRAP BY AND SUMP BOTTOM COLL DANN TANP SUMP BOTTOM COLL DANN TANP DISK DITOM COLL DANN TANP DANN MERGEE DEAN MERGEE RETURN MERGEE RETURN MERGEE TARA BY-PASS RETURN TANSOF TO LA. DANN TANK	37D 570 570 570 570 570 570 570 570		150 150 150 150 150 150 150 150 150 150	225 225 225 225 225 225 225 225 225 225	

-	DEFEC	RENCE DRA	AMINGC
REF.	DRAWING NO.	PROJECT NO	TITLE
1	12121	2101	MAIN STEAM SYS. D.AG.
2	12189	2110	SERVICE WATER SYS DIAS
9	0515L	1115	PLANT HEATING SYS DIAG
4	12117	2105	FEEDWATER SYS DIAG.
5	1212A	2107	L.P DRAIN SYS. DIAG.

VALVE NO.	COMPONENT NO.	SERVICE	NOM	TYPE	END CONN.	ACTUATINE	FAIL	MAT
	10-00-04	MATER	NO. 2	PLOAT	WELD			5
	LPD-TP-OI	WATER	1	CALC IN	WELD			5
	LPD-TP-08	WATER	- 14	INPINSE	WFLO			3
			_					-
			-					-
-			-				-	+-

-	GLOBE VALVE	
-	SWING CHECK VALVE	
	CAP	
>	PRESSURE GAGE	
<u></u>	HIGH LEVEL ALARM	
]	LEVEL CONTROL	
0	HIGH TEMPERATURE ALARM	
v	DUPLEX VACUUM TRAP	
>	THERMOCOUPLE, REMOTE INDICATING	INSTS
]	LEVEL SENSOR, FLOAT TYPE, LOCAL INDICATING	LPD- LPD- LPD- LPD- LPD- LPD- LPD- LPD-
}-	Y-STRAINER	LPD LPD UPD LPD
0-	FLOAT TRAP	LPD LPD LPD LPD LPD LPD LPD
}_	IMPULSE TRAP	LPD
1-	GATE VALVE	

REDUCER

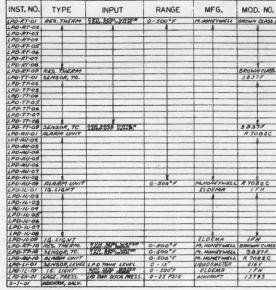
SYMBOLS

						TRU	NFL		LI	SI
STRUMENT NO.	NAN		SER	VICE -	NAME	CAL NO.	RANGE	SET	POINT	PO
D-GA-OI	LE DELLE	PUMP	MAT							
01-77-0	1.00	CAN'	TATE	ALE			1			
SO-TT-OF	11.12	Charles I	NUTE:	1418						_
CO-17-05	-		1							-
PD-TT-04										
20-77-09										-
PD-TT-06										-
PD-11-07										-
PD-TT-OB	10.17								-	-
PO-TT-09		-								-
PD-TT-OI	LEAL OF	THATT	YATE	04						-
PO-L1-01	CP DRAIN	TANK.	MAT	ER						
PD-RT-OI	CR0 58	AL MARE	TURP	R AIR			1		1	
PD-RT-08	-	- Manhor	A.nes							
PD-RT-03										1
PD-RT-04										
D-RT-05										
PD-RT-04					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					1
PD-RT-07										1
0-RT-08										_
PD-RT-09		1								-
PD-RT-10	173270K	St Steres	E VAT	R AIR			1	1		1

LIS	T
EQUIP.	REMARKS
P1-200-00-64	

PIPE	NOM	SCH	MATERIAL	SERVICE	INSL	FLOW	DESIGN	TEST	REMARKS
-1		40	304 5.5T	CRD SEAL WATER LEAK-OFF	570		SOPSNA		
		1			1			1	
.5	1/4						_		
-5					++		-+-	-++	
~ 3	1/2	++-			++				
2.7	1/2	1				-			
-								-	
p.9	42				++	-			
P-11	1/2				++-				
-11	12	++-							
9.13	1/2	1							
	_	1							
P-15	1/2	++-			++-		++-		
P47	1%	++		······	++				
	-	11							
P-19	1			CED SEAL MATER RETURN HEADER					
P-20	1/2	1.		PEACTOR HEAD SEAL LEAK-OFF	++				
-	-	++-			++-		1		and it is not set of the set of the set
P.23	1 1/2	++-		SEAL LEAK-OFF RETURN HEADER	++				
	11/2	tt		H.P. GLAND SEAL EXHAUST					
	1	II.							
P-24	11/2	++-		L.P. GLAND SEAL EXHAUST	++-	+	+++		
P-28	1%	++-		GLAND SEAL EXHAUST HEADER	++-	-		11	
	3	++-		SEAL LEAK-OFF & GLAND EXHAUST HEADER					
-	-	11							
1						-			
_	-	11			++		++	++	
	1	++		SEAL LEAK OFF & GLAND EXHAUST DRAIN	++	-	11		
	+	tt.							
P-34				SEAL LEAK OFF & GLAND EXHAUST DRAIN					
P-31	1	1		SEAL-LEAK OFF & GLAND BRUNDST TRAP BY-PASS	++	+	++	++-	
-	+	++-			++		++-	++-	
0.4	17	+++		AFTER CONDENSER DRAIN		-	1		
P-4		++		PRECOOLER DRAIN					
P4	2 1/2	IT		VENT					
P.4	1/2			VENT	++-	+	++		
P.4	172	++-		LP DRAIN HEADER	++	+	++	++-	
P.4	1	++		T.G. STEAN CHEST DRAIN	1-1-				
	11	++		T.G. STEAN CHEST DRAIN TRAP BY PASS					
P.4	8 1	T		T.G. EXHAUST CASING DRAIN			++-	++	
-	+	++-		T.G. CASING DRAIN HEADER	++	+	++-	++-	
ra	1	++		I'V CAUND DEAN READER	++	-	11	11	
P-S	2 2	++		LP DRAIN TANK VENT					
	1-	11						1	
-	-	11			++		++-	++-	
25	6 1	++		L.P. DRAIN PUMP DISCHARGE	++-	+	++-	++-	
P.5		++		L.P DRAIN PUMP DISCHARGE		-	1	11	
PS		++		L.P. DRAIN PUMP DISCHARGE					
P.5				L.P. DRAIN PUNP GAGE			T	++-	-
	1	W	1		-	1	1.	5 75 PSI	
P.6	1 72	40	304 557	L.R. DRAIN TANK DRAIN	STE		150731	113/31	P

REF
-
-


4	PL21 2121	2101	MAIN STEAM SYS. DIAG.
3	PLEJEIEE	2106	N.P. DRAIN SYS. DIAS.
2	PLZJ 2117	2/03	FEEDWATER SYS. DIAS.
1	PL2J 2124	2107-11	L.P. DRAIN PROCESS int bit
REF NO.	DRAWING NO	PROJECT NO	TITLE

COMPONENT NO-	UNIT	CHARAC- TERISTICS	SPEC. NO.	MANUFACTURER	MANUFACTURER REF. DWG.	WEIGHT	REMARKS
PD -TK-OI	LP DRAIN TANK	100 GAL	PR-2101 00 .32			6034	
PD-PU-OI	L.P. ORAW PUMP		A 212340 38	WEFFELI FIL	IKEVSY.	110#	100
SO-DA-DA	L.P. DRAIN PUMP	2CGPM@ 4IFT.	AL 40-54 13	M	IKEVSYS	110*	

LOW PRESSURE DRAIN Fig.53

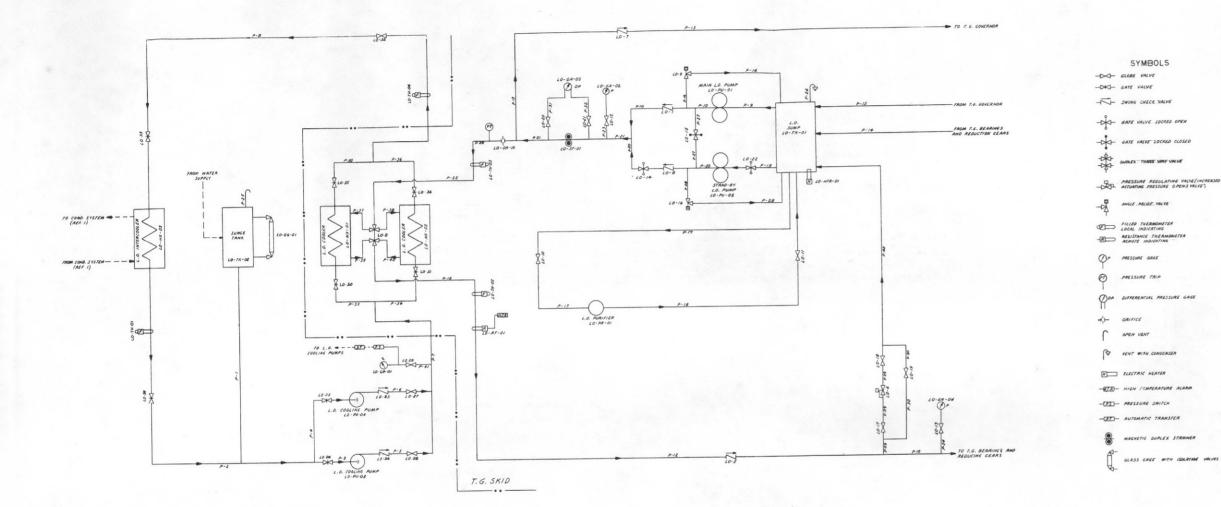
LPD-PU-02

SYMBOLS $\left[\bigcirc \right]$ INDICATOR, ELECTRICAL ; MULTIPOINT THERMOMETER, RESISTANCE T THERMOCOUPLE HIGH TEMPERATURE ALARM HIGH LEVEL ALARM

- SWITCH, MULTIPOINT SENSOR , LEVEL- FLOAT TYPE
- Ø GAGE, PRESSURE 9 LIGHT, INDICATING

HTA

HLA

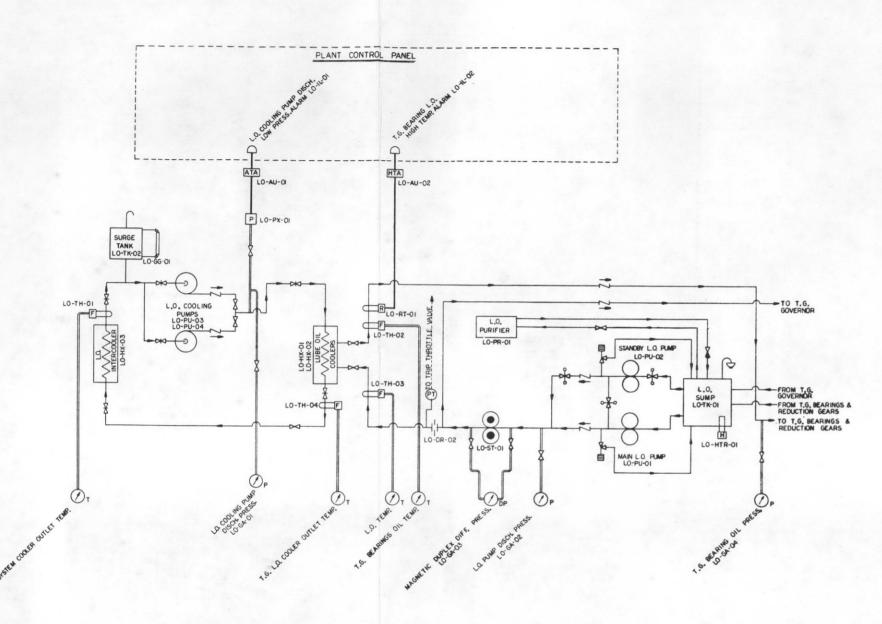

SW]

OUTPU		SET POINT		MOUNTING INSERTION CONNECT.		EQUIP.	REMARKS
6	OUTPUT	CONTROL	ALARM	INSERTION	CONNECT.	SPEC. NO.	REMARKS
S A				4"	4 NPT	2100-11- 70	
				1	1	1	/
SA						2100-11-70	
	MV					2100 - 11 - 71	
						1	
-							
_				1			A
_					+		
_	MV			1	19/4 NTP	2100-11-71	
-	MV		200°F	PANEL SURFACE		2100 - 11 - 72	
			200 7	i may summe		1 1	
			-	-			
				7		*	
			200 %	PRANEL, SLAPAR	24	2100-11-92 2100-11-68	
				PANEL, & D		2100-11-68	
				+ +			
						1	
				1	1		
-							
				PRNEL 45 D		2100-11-68	
SA						2100-11-10	
_	MV					2100 - 11 - 71	
			20005		2. 150", NF FLG	2100-11-72 2100-11-73	
			12"		2,130,RF FLG	2100-11- 68	
					1/2" NPT	2100-11-68	
					a NPT	2100-11-65	REF 4
					1		ner +

4	A212201	2101-11	MAIN STEAM SYSTEM PROCESS INSTR
3	ALZJZ122	2106	HP DRAIN SYSTEM DIA
2	AZJZ117	2103	FEEDWATER SYSTEM DIABRAM
1	PZZJZ124	2107	LOW PRESSURE DRAIN SYSTEM DUAD.,
REF. NO.	DRAWING NO.	PROJECT NO.	TITLE

LOW PRESSURE DRAIN PROCESS INSTRUMENTATION-ONE LINE DIAGRAM Fig. 54

NO-	COMPONENT NO.	SERVICE	NOM	TYPE	CONN	MEDIUM	POSITION	MAT	_	SPEC	. NO.	REMA	
	10-55-01	L.O. STRAINER	2	MAG.	8. W		-	6. 9	5	10.001	.01.03	FURK. WITH	7.6. SET
-			11	-	8.W	-	-		-	-			-
	10-0R-01	L.O. TO BEARINGS	12		FLG	4.0	A5 15						
10-6		L.O. TO BRGS PRESS. REG.		-	FLG	1.0	-		-			LIFT	120 PS16
10-8		MAIN LO. PUMP RELIEF YALVE STOY LO. PUMP RELIEF VALVE	1/25		FLG	1.0	-					LIFT	120 PS10
10-16		DUPLEY 3-WAY VAVLE	2	ALUC	FLG	MANUAL	-			1 1	*		
(0-2	10-66-01.	SURCE TRAK LEVEL	-					-	-	PL 24			
_					-		-	_	-	-			
_			-		-				-	-	_		
_			-	-	-		-	-	-	+		-	

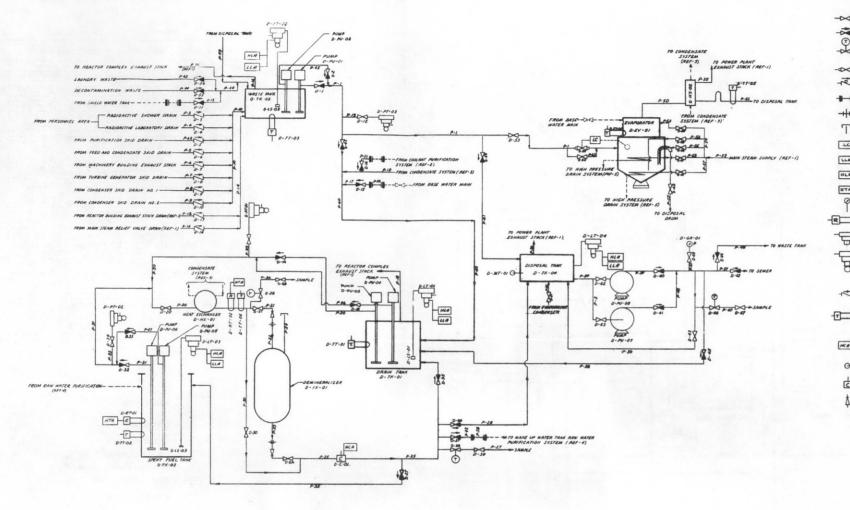

NO	NOM	SCHE	MATERIAL	SERVICE	INSUL-	FLOW	DES. PRESS	PRESS	REMARKS
P-1		40	65	SURGE TANK CONNECTION	510	500 %r	59 8516	15 ASI6	
0.2			1	WATER FROM L.O. INTERCOOLER					
P. 1	r	-		1.0. COOLING PUMP SUCTION					
2.4	1			L.O. COOLING PUMP SUCTION					
0.5	1.	++		L.O. COOLING PUMP DISCHARGE					
2.6	F	11		L.O. COOLING PUMP DISCHARGE					
P- 7	1			COOLANT TO L.O. COOLER	1				
P. B	1'			COOLANT FROM L.O. COOLER		1		1	
8.0	r			MAIN L.C. PUMP SUCTION					TURN. WITH T.S. SET
P-10	2"			MAIN L.O. PUMP DISCHARGE		1			
10	-								
2.12	P			L.O. TO BEARINGS AND REDUCTION GEARS					
P-/3	2			L.O. TO GOVERNOR					
0-14	r			L.O. FROM BERRINGS AND REDUCTION GEARS					
2-15	3			1.0. FROM GOVERNOR					
0.16	2			MAIN L.O. PUMP PRESSURE RELIEF					
P-17	1	+ + +		L.O. TO PURIFIER		1			
P-18	1'			1.0. FROM PURIFIER					
2-19	T.	+++		STAND-BY L.O. PUMP SUCTION				-	
P-20	2	++		STAND BY L.O. FUMP DISCHARGE					
A21	6	++-		L.O. PUMP DISCHARGE HEADER					
8-22	2	++-		L.O. TO COOLERS	1				
P-23		++		CAGE LINE TO LO PUMP DISCH. PRESS. GAGE			1		
8-20	1.	++		GAGE LINE TO LO. TO BEARING PRESS. GAGE	1				
P.26	1	++		SURGE TANK VENT			-	1	
P-26	H¢-	++		L.O. SUMP VENT					
P-27		++		L.O. PUMP PRIMING LINE					
1-20		++		STAND-BY L.O. PUMP PRESS. KELLEF				1	
200		++		L.O. TO BEARINGS BACK PRESS CONTROL					
P.10		++		L.O. PRESS. REGULATING VALVE BY-PASS					
A.31		++		L.O. STRAINER GAGE LINE					
P-32		++		L.O. STRAINER GAGE LINE		-		1	1
AJJ		++		COOLANT TO L.O. COOLER NO. 1	STD	6000 %	\$0 PSH	5 75 PS16	
	1r	++		COOLANT TO L.O. COOLER NO.2	10	11	1. 1.		
AB		++		COOLANT FROM L.O. COOLER NO. 1					
A 16		++		COOLANT FROM L.O. COOLER NO. 2		11	1 1		
P.37		++		1.0. TO L.O. COOLER NO. 1				1	FURM. WITH T.G. SE
	12	++	+	1.0. TO 1.0. COOLER NO. 2				-	
	2	++		L.G. FROM L.O. COOLER NO. 1	-				
A. 40		++		L.C. FROM LO. COOLER NO.2					
A. 4		++		GAGE LINE TO L.O. COOLING PUMP DISCH. PRESS.	-	-	SO PSI	6 15 AS/6	
0.42		++	+ + -	LD. REG. VALVE DRAIN	-	-	1	-	FURN WITH TY SE

		INS	TRU	MENT	LIST	(R	EF.	ONL	Y)		
NO.	INSTRUMENT	SERVICE		CAT. NO.	RANGE				EQUIP	REM	ARKS
LO - TH-06	L.O. COOLER WATER TEMPERATURE OUT	WATER								SEE R	EF 2
10 -TH-01	L.O. INTERCOOLER WATER TEMP. OUT	WATER			-					SEE R	
LO-TH-02	L.O. TEMPERATURE TO BEARINGS	LUBE OIL								FURN	
LO-TH - 03	L.O. PUMP DISCHARGE TEMPERATURE	LUBE OIL								_	
10-6A-02	1.0. PUMP DISCHARCE PRESSURE	LUBE OIL									-
20-GR-04	L.O. PRESSURE TO BEARINGS	LUBE OK									
20-GA-03	PRESSURE DROP ACROSS STRAINER	LUBE OIL									1
LO-GA-01	L.O. COOLING PUMP DISCHARGE PRESSURE	WATER						1	-	SEE A	
10 - RT-01	1.0 TEMPERATURE TO BEARINES	LUBE OIL									15ED 7.6. SET

2	02213	11-6015	LO SERV. SYS. PROCESS INST. DIAGRAM
1	12119	5015	CONDENSATE SYSTEM DIAGRAM
REF. NO.	DWG. NO.	PROJ. NO.	TITLE
	REFE	RENCI	DRAWINGS

COMPONENT	UNIT	CHARACTERISTICS	EQUIP. SPEC. NO.	MFGR	DWG.	WT.	REMARKS
10-118-03	L.O INTERCOOLER	V. S. KID" BJU/HR	1.2108-00-36	GERMAN	15546 28	866 #	
10-78-02	SURGE TANK	5 GAL	Pe-2109-00-34			80"	
LO- PU- 01	L.O. COOLING PUMP	12.56 MA 56 FT	PL-2109-00-35	WGERSOL ERNO	34 2RVS- 1/2	75"	
LO- PU-04	L.J. COOLING FUMP	12.56MM 858 FT	Pt -2109-00-35	INCERSOL EAMD	3/4 KRV5 - 1/2	15"	
10- 48.01	L.O. COOLER	V.SXIQ" BTU/HR	PE 2101-00-03				FURE AND I.6 S
10-10-01	MAIN L.O. PUMP		1				
19-PU-02	STAND-BY L.O. PUMP						
10-PR-01	L.O. PURIFIER			SHARPLES			
10-5K-01	L.O. SUMP						
10-HTR-01	L.O. HEATER			1			
10- HX-02	L.O. COOLER	1.5x 10 BTU/ HR	1				
						1	
			-			· · · · · · ·	

LUBE-OIL SERVICE SYSTEM Fig. 55

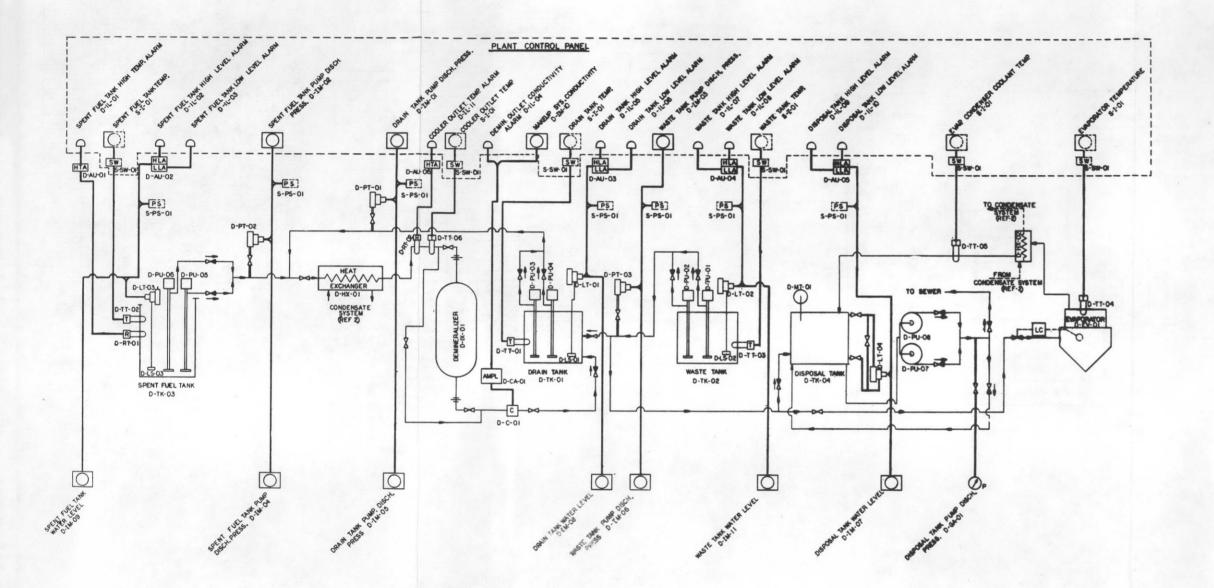

INSTRUMENT COMPONENT LIST

INST. NO.	TYPE	INPUT	DANCE	MEC		Lourour	SET P	POINT	MOUNT	ING	EQUIP.	
INDI. NU.	ITPE	INPUT	FANGE	MFG.	MOD. NO.	DUIPUI	CONTROL	ALARM	INSERTION		SPEC.NO.	
0-TH-01	THERM, FILLED	LO.COOLER OUTPUT	0-200 F	FOXBORO	CLASS ZA				5"	HE NPT	2100-11-69	
						+						
		-										
10-PX-01	SWITCH, PANESS	LO. COOLING HUMP DOCK	0. 50 PSIG	ASHCROFT	13795					YZ' NPT	2100-11-65	
10-AU-01	ALARM UNIT	LO COOLING PUMP DISCH		SQUARE D	8501 AP			15 PS/6			2100-11-67	
10-16-01	IG. LIGNT			ELDEMA	IFN						2100-11-68	
10 - TH- 04	THERM, FALLED	T.G.L.O. COOLERSOUTPUT	0-200 F	FOXBORD	CLASS IA	-	1		5	14' NAT	2100-11-69	
	STAL MESS DISON ROM			ASHCROFT	13795					YE" NPT	2100-11-55	
		T.G. BEARING LO. TEMP.	4.002-0	MPLS HONEYNELL	BEOWN QASS 2				5	Sid NOT	2100-11-70	
		T.G. BEARLINS LO. TEMP.		MALS MONEYNELL	27082C			150°F			210:11-72	
		IG. BEARING LD TEMP.		ELDEMA	IFH	1					210011-68	
10-TH-02	THERM, FILLED	TA. BEARING LO. TEMA	0-200°F	FOXBORO	CLASS IA	+			5'	4" NPT	2100-11-69	
C.TH-01	THERM, FILLED	4.0. COOLER INLET TEMP	0-200*2	FOXBORO	CLASS IA				5'	4 NAT	2130-11-69	
		L.O. PUMP PRESS	0-120 P316	ASHCROFT	/3795					1/2" NOT	2100-11-65	
10-GA-03	GAGE DIT POESS	MAGNETIC STERINER	0-10 PSIG	ASHCROFT	/3795					YE NOT	2100-11-65	
				1								
10-GA-04	GAGE PATTS.	T.G. BEARING L.C. PRESS.	0-25 PS/6	ASHEROFT	/3795					YZ" NPT	2100-11-65	

SYMBOLS HLA HIGH LEVEL ALARM LLA LOW LEVEL ALARM HTA HIGH TEMP. ALARM ATA AUTOMATIC TRANSFER ALARM P SWITCH , PRESSURE R THERMOMETER, RESISTANCE H HEATER, ELECTRIC Q LIGHT, INDICATING Ø. GAGE , PRESSURE $\mathcal{O}_{\mathbf{T}}$ GAGE , TEMPERATURE PT PRESSURE TRIP

1	PL212228	2109	LO.SERVICE SYSTEM DALOBAN
EEF MD	DEAMINS NO.	PEOSECT NO.	TITLE
	REFE	RENCE D	RAWINGS

LUBE-OIL SERVICE SYSTEM PROCESS INSTRUMENTATION-ONE LINE DIAGRAM Fig. 56


		-			STRUME	41	LIST		ONLY	1
	SYMBOLS	NO.	TANK NAME	54	EVILE			REMA	RKS	
			COMOUR TIVITY		TY DEMINERA	IZER		SEE REF. O	F	
	GLOBE VALVE		DIFTERENTIAL		LIQUID LEVE	4				
	GLOBE VALVE, STOP CHECK	0-17-02	WESSURE SENSOR	WASTE TANK	K, LIQUID LEN	EL				_
			WITERENTIAL	CORE FUEL	TANK, LIQUID L	EVEL	1			
	THROTTLE VALVE	1	DISSERENTIAL	DICROSAL TA	WE LIDUID L		+			
			PRESSURE SHISA	DISPOSAL T	ANK, PUMP					
	CONTROL VALVE				PRESSURE GA					
		D-MT-01	THERMOMETER	ARRIN TAN		TORE				
	CHECK VALVE, LIFT	0-17-01	ANTISUME SENSOR	DISCHARGE	PRESSURE	MP				
	TAKE DOWN CONNECTION	0-PT-02	PRESSURE SENSO	DISCHARGE	PRESSURE		-			
		0-PT-03	PRESSURE SENSOR	PUMP DISC	WARGE PRES		-			
	SCREWED UNION	D-RT-01	RESISTANCE THERMOMETER	SPENT FUEL	TRAK, TEMPER	TURE				
		0-RT-02	RESISTANCE THERMOMETER	COOLER OU	TLET, TEMPER	ATURE				
	CAP	D-FF-01	THERMOCOURE	DRAIN TANK	, TEMPERAT	URE		-		
	LEVEL CONTROL	0-77-02	THERMCCOUPLE	SPENT FUEL	TANK, TEMPER	RATURE				
		0.77-03	THERMOCOUPLE	WASTE TAN	K TEMPERA	URE				
	LOW LEVEL ALARM	0-77-04	THERMOCOVALE	EVAPORATON	TEMPERATU	RE	-			
			THERMOLOVHLE	EVAPORAT	OR CONDENS					
	HIGH LEVEL ALARM		THERMOLOUPLE	001221 14	EMPERATURE	TURE	+			
	HIGH TEMPERATURE ALARM		LEVEL SEASOR		CLIQUID LEY					
			LEVEL SENSON		K LIQUID LE		+			
	PRESSURE GAGE				TANK, LIQUID		-			
	RESISTANCE THERMOMETER	0-23-03	LEVEL SENSOR	Press root		-	1	+		
		COMPONENT		COMPONE			_	MFGR		1
	PRESSURE SENSOR REMOTE INDICATING	NO.	UNI	r	CHARACTER 1571C	UTC. M	MF6R GRANN	RER	WEIGHT	REMAR
	REMOTE INDICATING	D - NX - 01	COOLER		BTUINR	46	MFG ER ISCOM	154646-551		
	DIFFERENTIAL PRESSURE SENSOR	0-NX-02	EVAPORATOR	CONDENSER	BTU/MR	45	RUSSELL	N60-1956	1	
-	LOCAL & REMOTE INDICATING	D-1X -01	DEMINERALI	ZER	RESIN CAR 28 CO.FT.		TREATMENT	1		
		0- PU-01	WASTE TAN	PUMP	WEAD SED PT	43.		ANTY MOD !		
		D-PU-02	WASTE TANK	PUMP	WAD STET.	43	RAND	FRAN MOD. B		
	CHECK VALVE, SHINE	D-PU-03	DRAIN TANK	PUMP	CAP 7.5 GPM MEAD 68 FT	42	RAND	LARVL - E		
		D-PU-04	DRAIN TANK	PUMP	CAP 7.5 GPM HEAD 68 FT	62	RAND	ZKAN - Z		
		0-TK-01	DRAIN TANK		CAR 467 CU.FT.	39	14C	M262269 2301-06-03		
			WASTE TANK		CAR 65	40	COMB ENG			
	THERMOCOUPLE, REMOTE INDICATING	D-TK-02			- CU.FL.	te-340-4	COMB (MG	M262268	1	1
	THERMOCOUPLE, REMOTE INDICATING			ANK	208 924	41.				+
	THERMOCOUPLE, REMOTE INDILATING	D-TA-03	SPENT FUEL		CU. FT.	41 .	COMB ENG	2301-06-02		
	THERMOCOURLE, REMOTE INDULATING MIGH CONDUCTIVITY ALARM	D-TX-03 D-TX-04	DISPOSAL TO	RMK	CU. FT CAR 100 CA. FT CAP 7.5 GPM	26	INC. COMB ENS INC. INC.		-	-
		D-TX-03 D-TX-04 D-PU-03	SHENT FUEL	RNK TRNK PUMP	CU. FT CAR 100 CA.FT CAP 7.5 GPM HEAD 68 FT CAP 7.5 GPM	26	INC. COMB ENG INC. INCERSOL RAND INCERSOL	LARVE - Z	-	-
		D-TX-03 D-TX-04 D-PU-03 D-PU-06	SPENT FUEL	анк Ганк РишР Талк РимР	CU. FT CAR 100 CA FT CAP 7.5 GPM HEAD 68 FT CAP 7.5 GPM HEAD 68 FT	20 20 20 20 20 20 20 20 20 20 20 20 20 2	INC. COMB FAS INC. INC. INCERSOL RAND	2 KAVE - 2 2 KAVE - 2 2 KAVE - 2		
	NIGH CONDUCTIVITY ALARM	D-TX-03 D-TX-04 D-PU-05 D-PU-05 D-PU-06 D-PU-07	SPENT FUEL I DISPOSAL TO SPENT FUEL SPENT FUEL DISPOSAL TO	ANK TANK PUMP TANK PUMP ANK PUMP	CU. FT CAR 100 CAR 70 CAR 7.5 GPM MEAD 68 FT CAR 7.5 GPM WEAD 68 FT CAR 10 GPM MEAD 50 FT	A 100 - 20		2 xAVL - 2 2 xAVL - 2 2 xAVL - 2 2 xAVL - 2 2 xAVL - 2	,	
	NIGH CONDUCTIVITY ALARM	D-TX-03 D-TX-04 D-PU-03 D-PU-06	SPENT FUEL I DISPOSAL TO SPENT FUEL SPENT FUEL DISPOSAL TO	RNK PUMP TRNK PUMP TRNK PUMP RNK PUMP	CU. FT CAR 100 C4 FT CAR 7.5 GPM HEAD 68 FT CAR 10 GPM	A 100 - 20	- INC. CCMB ENG INC. INCERTOL RAND INCERSOL INCERSOL ROMO INCERSOL ROMO	2 KAVE - 2 2 KAVE - 2 2 KAVE - 2	1	

		PIPE LIST		_		_	
WELL BULLER		SERVICE	THK.	FLOW		PRESS.	REMARKS
·	304 557	DISCHARGE WASTE TANK PUMP D-PU-01	-	226/11		150 15.16	
	1	INLET TO DISPOSAL TANK FUMP D-PU-CT	-	10 GPM			
- Jeat		RADIOACTIVE SHOWER DRAIN		12 G PM			
-424		RADIOACTIVE LABORATORY DRAIN		5 GPM			
5 2		FEED& CONDENSATE SKID DRAIN		NEG.			
2 2		MACHINERY BLDG EXMAUST STACK DRAIN	-				
0-6 12		MINCHINERT BEDG ETHADIT STALL PRAIN		NEG.			
P-7 2		TURINA GENERATOR SKID DRAIN					
-0 h		CONDENSER SKID DRAIN NO. 1		NEG.			
0.9 2		CONDENSER SKID DRAM NO.2	-	NEG.		++	
-10 2 12		COMBINED DRAINS NEADER TO WASTE TANK	-	17 G.PM		+++	
9-11 12		PRIMARY COOLANT DISCH. FROM COOLANT PURIS. 5 XS.		10 6 100		++-	
0-12 1/2	1	PRIMARY COOLANT DISCH.FROM CONDENSATE SYS.		10 GPM			
P-13 1/2		LINE FROM SHIELD WATER TRAK TO WASTE TANK		5 G.PM			
0.14 1/2		RELIEF VALVE LINE DRAIN	550				
a-15 1/2		REACTOR BLOG. ESH. STACK DRAIN	-				
P-16 1/2		WASTE TANK VENT LINE	-				
0.17 12		BASE WATER TO DRAIN TANK	-	10 6 10			
P-18 12		DRAIN TANK VENT LINE	-				
10 12	+ + -	PRESS. SENSOR SUPPLY WASTE TANK PUMP	-	-			
0-19 1/2		DRAIN TANK PUMP DISCHARGE D.PU-03	000	10 GAM	+ +		
P-20 1		DRAIN INNE FUMP DISCHARGE D. PU-03					
A21 1		HEAT EXCHANGER TO DEMINERALIZER INLET	210	10 6 PM		+++	
A22 1 2 1		DEMINERALIZER INLET	510	OGAM			
P23 1 2		DEMINERALIZER OUTLET	580	10 6 PM			
0.26 1/2		VENT LINE DEMINERALIZER	-	-			
P-25 1 1		DRAIN TANK RETURN LINE	510	10 6 190			-
425 h	+ +	DRAIN TANK RETURN LINE DEMIMERALIZER INLET SAMPLE LINE	510	0.56m			
A27 12	+ +	DEMINERALIZER OUTLET SAMPLE LINE	510	0.56/			
		DEMINERALIZER EFFLUENT TO DISPOSAL TANK	550	DGAM		1	
P-28 12		PRESSURE SENSOR SUPPLY DRAIN TANK PUMP	5/0	po or m	++	+-+-	
P-29 1/2		DEMINERALIZER BY - PASS LINE	370	VOCA	++	+++	
A.30 7				DO GAM		+++	
P31 1		SPENT FUEL TANK PUMP DISCHARGE D- PU-06	370			+++	
P-32 1		RETURN LINE TO SPENT FUEL TANK	580	10 61700	4	++	
P-39 12		PRESSURE SENSOR SUPPLY SPENT FUEL TANK PUMP	-	-			
P.36 1		UNLET TO DISPOSAL TANK PUMP D-PU-08		10 G.PM			
P35 /		EVAPORATOR CONDENSER VENT LINE	550				
P.36 1/2		DISPOSAL TANK VENT LINE	-	-			
P-37 /		DISPOSAL TANK PUMP DISCHARGE D-PU-08	- 1	1067			
P-38 1/2	+ + -	DISPOSAL TANK RETURN TO CRAIN TANK	-	10 614			
P30 h	+	DISPOSAL TANK RECINCULATION LINE	-	10 6 10			
A0 12	+ + -	DISPOSAL TANK SAMPLE LINE	-	2560		1	
2		PRESSURE SENSOR SUPPLY DISPOSAL TANK PUMP	-	-			
A#1 12		DEMINERALIZER EFFLUENT TO MAKE UP WATER THINK	-	56M		+++	
P-42 12				56 PM		++	
P#3 12	-	CAUNDRY WASTE TO WASTE TANK	1000			++	
1-40 2		DECONTAMINATION FLUID WASTE TO WASTE TANK	550	5674		++	
A-15 1/2		DISCHARGE WASTE TANK PUMP D-PU-02	1			++-	
P-46 1		DRAIN TANK PUMP DISCHARGE D-PU-04	510	10 GPA		++	
P-07 32		SPENT FUEL TANK PUMP DISCHARGE D-PU-05	510	10 61	1	1	
A48 7		DISPOSAL TANK PUMP DISCHARGE D-PU-07		10 61			
1+0 h	+	RETURN LINE FROM DISPOSAL MAR TO WASTE TANK	1	5 G.P.A			1
A-50 12		EVAPORATOR OVERHEAD TO CONDENSER	310	30 #/4			
ACT /		EVAPORATOR OVERHERD TO DISPOSAL TANK	350	026A	4 9	11	
A52 14		EVAPORATOR BIMS CONCENTRATE	550	-	200 13	100.7	4
AS3 /	+ +	STEAM SUPPLY LINE TO EVAPORATOR COILS	380	500 %	1	11	
	+-+-	LINE WARE DO CHOOSEFOE OCHUSTINE SECTION	380	10044		-	
A54 2		STEAM SUMPLY TO EVAPORATOR DEMISTING SECTION	550	500=1		-	
A35 12		STERM SUPPLY TO LIFT LINE	sro	100 %		++	
A56 12	-	STERM LANCE TO EVAPORATOR BIMS				1 +	
A-57 12		STEAM SUMMEY TO EVAPONATOR BOITOM NEATING COIL	550	100 %#	1 100	-	-
A.00 1/2		THE DOWN COMMECTION TO MAN WATER PURIF. SYS.	1			150 15.	0
A50 2		TAKE DOWN CONNECTION TO BASE WATER MANY	-	5610		++	
A-60 1/2		INLET HERDER TO DRAIN TANK	550		1		
A61 1/2	1.1	WASTE TANK LINE TO DISPOSAL TANK	1	26M	H		
	+ +	PURIFICATION SKID DRAIN		1			
P62 2	+-+	BY-MISS LINE EVAPORATOR FEED CONTROL VALVE	1	0.26 P			1
P63 2 1	1	GT-MASS LINE A WAR CHAILOR TEED CONTROL PALTE	-	p-20ri	-	+ *	

UNLY COMPONENT SERVICE NOR TYPE END ACTUATING PAL MILCON ON NO. 200. SPACE NED CARE MILCON PALITON MILCON SA	5			T	215	INGS	FIT	. ¢	NVE	1 VA	SPECIAL		
ROAT ROAT	ALC. NO. REA	YE NO.	SARC. M	#176.27#L	MAIL	UM	ACTUA MED.	ENO	TYPE	ADA	SERVICE	CON ALMAN	WALVE .
D-30 - WED COMMEN IR OWNER OWNER OFFICIED	47 00-	100.00-	PL-2100-0	304.557	-	7-	MUNICI O	A BRAND	61085	1/2"	END PORTAL		0.50

5	PL2J2122	2106	NIGH PRESS. DRAIN SYSTEM DIRGRAM
4	P22J2111	2105	RAW NATER PURIFICATION SYS. DIRERA
3	AX2J2119	2102	CONDENSATE SYSTEM DIAGRAM
2	PEZJZ110	2104	COOLANT PURIFICATION SYS. DIAGRAM
1	PR202121	2101	MAIN STEAM SYSTEM DIAGRAM
REF. NO.	DRAWING NO.	PROJECT NO.	FITLE
	RE	FEREN	CE DRAWINGS

SERVICE WATER SYSTEM Fig. 57

								SET P	OINT	MOU	NTING	EQUIR	
NST.	NO.	TYPE	INPUT	RANGE	MFG.	MOD NO	OUTPUT	CONTROL	AI ADM	INSEDTION	CONNECT	SPEC. NO.	REMARKS
5 - 1 - 1	6/	ING. LALK						CONTINUE		INSCRIION		2/00-11-	REK &
		Saving and the Assoc										1	A67. 4
0- Mf-	03	HO. PLEC.	0.17.63	0 - /6'	102.80.80							63	
			SALAN AND AND LAND	0-11	A # 16 7.64	61.678	0-67-03					90	
1.4	.0/	COLLER SUPPLY			Territoria con contractoria con								AER. 3
		ALACH WIT	ACMIN INA ET TEMP	0.504.4		ACOUNT CLASS &	0.16.11		170 %		46 . NPT	\$1	
		100 44.07	0 AV- 04		ELOAMA	a reads	0.10.11		110-1				
			COMMIN INC T TEMP	0.846.7	THE MANTANAL	34 37/	1-24-61			F	W 407	7/	
0.60	-01	······································	0.6.01		INOUS INST	20-6	B Hrdt					84	
		10. 6.1.	D-CA-01		10140.00							44	
	-0/	SAGK LONG	BEAM MAY LEVEL	0.	ALL TOL		-17-61						
		140 668	-LT- 0/	0.1	1378		P-17- 01				RPT	50	
		100 FLFE	0-17-02	0.0	Por Baro						12- XPV		
		140 64	0.17.04	0.4	MI BARA	11/1							
			OILPOLAL TANK HMA		WESTON	4604				F	St NPT		
			EVAN COME OUTLET TEMP		MARY MENTINGLE		3-8-0-01				W HP7		
2.41	. 0/	Child Contains	BALK THE PUBLIC BALLAL ARTISS		TRONTION						A NPT	43	
			EVAR ONE MADE HARA		LIAS ANADRONA		5-54-01				W HPT	*	
			O-MAIN MAKE TEMP	0-220 9	THE MENTY SHELL	3647/	5-34 01				48 401	91	
2.1	-0/	the first faith	S.MANT ANGL THE TOTAL	0.10.7	State of the state	ARUF ELASE &	A 44-61			STATE OF THE OWNER OF	W UP7	10	
		ALARM UNT	0. 97-01		BLD SHA				500.1			18	
		14-11-11	A-AU-01 A-11-05	6-4	7613670								
		ALAGAR CANT			1016020				45-18		W NPT	78	
		14.614.117	A.M. 02		FLOEMA	IPH			-/-				
		14. 618 MT	0.00-02		FLORM	IPH						44	
2.07	-01	C7.77 1 7	DEMU TE PUMP DUCH	0.40 MM	PALAORO	611					1 801	76	
36	-67	11:15. 161.63.	0. PT-01		ANT AG AS	16.0							
2-54	-06	IND GLEGT	0-07-01		HALLO RO								
			SPT FUMP BILLM		141.0040	611					\$ WP1	76	
		IND. CLERT	8-81-01	0.00 MM	Paraode	44							
		IND ELECT.	DEMM OUTLET CONO.	0-09 AL4	1414066	A6 A6					18 007		
		IG. LIGNT	D.CA.M	CPANNE TO COMM	8408468	IN IN					IN PPT		
		THCAM. TO		4.1647	MALE AND VIEWLA							7/	
0-48	01	SANSAR A.MITTER	8- 45 - 02	0.0'	101 66.00	6//						76	
		ALAAN WWY	Q.17-91		1013420	63	B-16-05.06		1. 7			78	
0-12-	0.5	14. 610117	D. AV-92		6408.000	184						-	
		IG. WANT	0. 40-03		ROFMA	1811					A BPT		
			WALTE TR. ALMA ARCH.	0-40 ALA		6//						76	
		IND SLEET	0. 87.68		ADL BORD							44	
	00	SENSAL EMITTE	0. PT. 03	0-40 18.4							" HPT	63	
	4	ALAAM LAWT	D.47- 08		ME BO FO	63					BAPT	78	
		16.64.47	p. my. 04		810844	IFH .			18.6				
		10. LIGHT	A. 40- 44		ROFMA	144						68	
			WASTE TANK WHAT	0.260 1	The second second		8-34-61			8	4 801	11	
-0-	24	Contrat and the	CULADEAL PRANCIAL	8-0	A01 6040		6 67 61					76	
-AU-	0.5	ALALAS CONT	0-67-04		P41.80.00		-16-04-18		14.4			78	
-16-5	2	19.61017	0-10-08		107.00	124						64	
- 14 - 1	0	14. LANT	p. Av. 66		ALC: NO	1							

SYMBOLS

ă	SENSOR , LEVEL	
\boxtimes	CONTROLLER	
HLA	HIGH LEVEL ALARM	
LLA	LOW LEVEL ALARM	
HTA	HIGH TEMPERATURE ALARM	
PS	POWER SUPPLY, SYSTEM	
Þ	SENSOR , PRESSURE	
T	THERMOCOUPLE	
R	THERMOMETER, RESISTANCE	
SW)	SWITCH, MULTIPOINT	

\square	INDICATOR, ELECTRICAL,	
	HUIGHIOR, ELECTRICAL,	

175

ſĿ,

Q

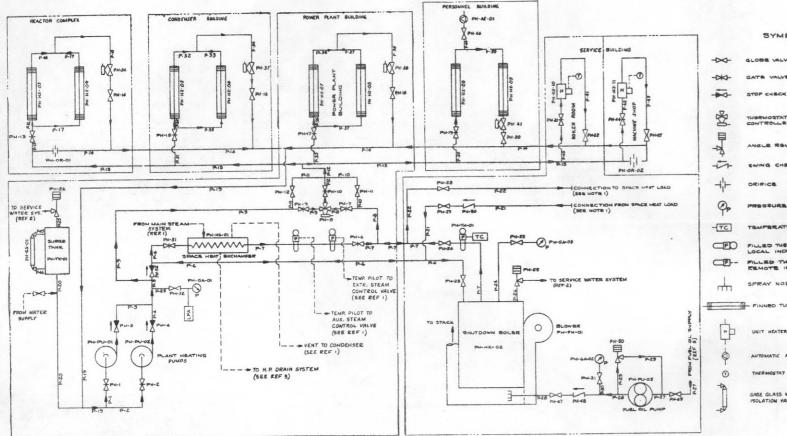
0.

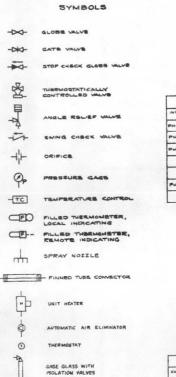
INDICATOR, ELECTRICAL, SINGLE INDICATOR, ELECTRICAL, MULTIPOINT

SENSOR, DIFFERENTIAL PRESSURE

LIGHT , INDICATING

C CONDUCTIVITY CELL


GAGE , PRESSURE


SENSOR, LIQUID LEVEL AMPL CONTROL AMPLIFIER

4	PLEJEEOI	8/0/-//	MANY STONY SYS MUST. DURG
3	ALVERIS	2201-03	AUX I EMER MULTILINE DIAG
2	RAJ 2118	2108	CONDENSATE SYS. DIAG.
1	PL 2 J 2183	8/10	SERVICE MATER SHS.
25	OBRINANS NO	PHONET Nº	FITLE

SERVICE WATER SYSTEM PROCESS INSTRUMENTATION-ONE LINE DIAGRAM Fig. 58

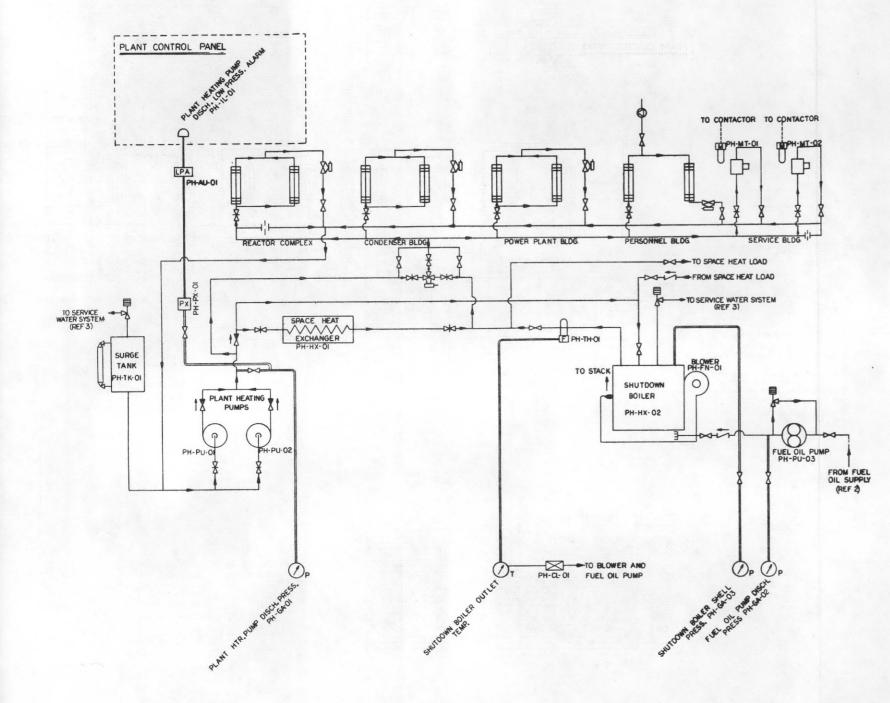
		SPE	CIAL	VA	LVE	AND F	ITTIN	IGS I	LIST	
NO.	COMPONENT NO.	BERVICE	NOM		END CONN.		POSITION	MATERIAL	SPAC NO.	
Pai-8		WATER	2	Bullaches	FLANGED	THREWOMET			3C-231-00 22	
	PH-08-01	WATER	-	-						HGP
	PH-OR-DL	WATER								INDI
PH-M		WATER	11	Teur	UNION	PLICO	OPEN		A-20-00-61	
PH-37		WATER	15	TEMP	UNION	THERMONIAT	OPEN		PK-2111-00-61	
P14 26		WATER	11	12000	UNION	THEFT	OPEN	BRONZE	R-2111-00 41	
PH-41		WATER	140	THE	UNION	THE ROOM OF	OPEN	BRONZE	A-2.1-10-61	
	PH-66-01	WATER	-	1.20	-	17			A -7000-00-66	

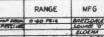
INSTRUMENT	INSTRUMENT	SARVICE	MANUFA	PLNGE	387	ALARM	TRIP	BOUIR.		
NÓ.	NAME		NAME	CAT. NO		POINT	POINT	POINT	SPEC N.	
PH-GA-OI	DISCH PRESS.	WATER								SEERE
PH-GA-OZ	PRESSURE	DIESEL OIL								FURNIS SHUT DO
PH-84-03	SHUTTOOM BOLER									ANT DO
					-				-	
PH-TH-03	SARDON BOLER	WATER								EQUIP

COMPONENT	UNIT	CHARAC-		MANUFACTURER	REF	WEIGHT
PH-HE-01	SPACE HEAT EXCHANGER	LEENS BTU/NE	Pt-2H1-00-60	GRAHAM	30W4C4C-22L	810
PH-HE-OZ	SHUTDOWN BOILER	2.0410" STUAIK	PR-248-00-53			7,600
PH-PU-OI	PLANT HEATING PUMP		A-JH -00-51			60
PH-PH-02	PLANT HEATING PUMP	40 4PM @ 36 FT	PL-201-00-51	WGER SOL-RAND	12 RY	80
Pal-Pu-03	FUEL OIL PUMP		PL-2111-00-54			-
PH-FN-CI	BLOWER		PL-211-00-51			-
PH-TK-OI	SURGE TANK	69 6AL.	PL-11040-50			200"
PH- HI- 03	CONVELTION HEATER REACTOR CONREA	22.500 BTU/HR	PL-218-00-52	TRANE		
PH- HY- 04	CONVECTION HEATER REACTOR COMPLIS	JL. SOO STU/NR	N-201-00-58			
PH- H1-05	CONVECTION HEATER COND. BLDG.	98020 BTU/HR	PL-00-52			
PH-HE-OF	CONVECTION HEATER COND BLOG	PLON BTUNR				
PH-HE-OF	CONVECTION HEATER POWER PUT BLDG	ALDO BTU/HR	PL-211-00-#2			
PHA HIN-OS	COMMECTION HEATER POWER PLT BLDG	HE.MO STU/HR	Point-on-se			
PH-H1-09	CONVECTION HEATER PERS BLOG	34640 BTU/HR	PL-200-52			
PH-HI-IO	VENT NEATER, BOILER ROOM	TOT COME TO THE	A-2111-00-52		72 H	
PH # # 11	WENT NEATER, BOILEN RIDOM	E Grand Print	Pt 201 00 52		72H	
			-			
						1

0 10 PS1	
9 10 431	
	1

	NOM.	SCH	MATERIAL	ath MCB	THK.	PLOW	PIPESS	THST PRESS	REMARK
D.:		40	C.S.	PLANT PEATING PUMP LAR TION	STD.	40 LPM	5-31-216	75 MOIG	
P.Z		40	CS.	PLANT HEATING PUMP SUTION	STD.	ADCPM	Sertia	75 8516	
P.3		40	65.	PLANT HEATING PUMP DE HARGE	3 °P.	40 6PM	1: OFSIG	75 P10	
RA	2		C.S.	PLANT HEATING HUMP DIS HARGE	5. D.	40 CPM	SOPLIG	757314	
P. 5	2	40	C.S.	PLANT HEATING PUMP CONN TO HER NET MAIN			SOPSIO		
P-6	3	40	6.5	HEAT ESCHANGERS INLET MAIN	570.	131 CPM	SOPLIG	75 P5+0	
0.7	3	40	C.5.	HEAT EXCHANGERS OUTLET MAIN	370.	BICPM	SOPTIC	78	
2.8	2	40	6.5.	HOT WATER SUPPLY TO BLENDING VALVE	570.	406 PM	SC PSIG	75.P116	
87	2	40	C.E.	COLD WATER CUMPLY TO BLENDING VALVE	570.		SOPSIG		
RIO	2	40	e.5.	BLENDING VALVE EXPASS-HOT LEG	510.	40 6 PM	SOPSIG	TSPEIG	1
RII	18	40	C.E.	ELENDING VALVE SY-PASS-COLD LEG	570.		SOPSIG		
Puz	2	40	6.5	BLENDED WATER SUPPLY TO PLANT HTA. LOOP	STD.		SOFSIE		
PA13	2	40	6.5	PLANT HEATING SUPPLY MAIN	STD.	20		75 PEIG	
B.14	2	40	6.5	PLANT HEATING RETURN MAIN	570.	05		ISPAG	
AIS	1.	40	65	REACTOR COMPLEX CONVECTOR SUPPLY LINE	570.		SOPHO		
P.16	H	40	OPPER	REACTOR COMPLEX CONVECTOR LOGP		2.6 GPM			
BI7		40	COPPER	REACTOS COMPLEX CONVECTOR LOOP	370.		SOPSIG		1
P417	1	40	COPPER	REACTOP COMPLEX CONVECTOR RETURN LINE	370		BOP3IG		
		40	C.S.	COLD WATER RETURN FROM HEATING LOOP	STR		SCPAG		
19.19	2		C.S.	SURGE TANK CONNECTION	STR	1~		7.59315	
P-20		40	C.S.	CONNECTION HROM SPACE HEAT LOAD	374	ALCON	SOPIG		
PAZI	3	40	6.5	CONNECTION TO SPACE HEAT LOAD	STR		607316		
		40	6.5	GAGE LINE TO PLANT NTG. PUMP DISCH PIESSAGE		1~		75 -510	
P-24		40	6.3	GAGE LINE TO SHUTDOWN BOILER PRESS GADE	5/2-	-		75 =310	
P24		40	6.8	RELIEF VALVE CONNECTION TO SURGE TANK	STR			TEPSH	
			C.5	RELIEF VALVE CONNECTION TO SHUTDOWN BOLLER	370	-	SAPSA	78 -10	
R26		40	6.5	F.O. P JMP SUCTION	3/4.	486PH	1		
9.0		40		F.O. PUMP DISCHARGE		US GPH	++	++-	But Anth Mart
PZ		40	C.S. E.B.	E.C. PUMP RELIEF VALVE		~	+++	+++	PURMILINE WITH
			the set is a set of the set of the set	EO. PUMP DISCHARGE PRESS. GAGE LINE		1 -	++-	+-+-	Part Gree Black
	1/4		C.S.	CONDENSER BLOG CONVECTOR SUPPLY LINE	STD	13.2600	+ +	+-+-	1
P-31			C.S.	CONDENSER BLOG CONVECTOR LOOP	1310	KIGPM	++	+++	
PS		40	COPPER	CONDENSER BLDG CONVECTOR LOOP		KIGPM	++	++-	+
P-3		40	COPPER	CONDENSER BLDG CONVECTOR RETURN LINE	STO	ALZGPM		+++	
	122		C.S.			AL-4 CPM		++	
	5 1/2		6.5	POWER PLT BLDG. CONVECTOR SUPPLY LINE	STD	STOM		++	
P-36		40	COMER			BILEPM	++-	+-+-	+
P-31		40	COPPER		STD	HACPM	+++	+++	
	17		6.5.	POWER PLT. BLOG CONVECTOR RETURN LINE	13 10	BACPM		+-+-	+
	3/4		COPPER	PERSONNEL BLOG CONVECTION NTG LOOP				+-+-	
P-44		40	6.3.	BOILER ROOM VENT HTR SUPPLY LINE	STO	23690		++	
PHI		40	6.5	BOILER ROOM VENT NTR RETURN LINE	570	2.36 PM		++-	
P-43		140	C.S.	MACHINE SHOP VENT HTR SUPPLY LINE	570	23CPM		+-+-	+
P-4.		40	4.5.	MACHINE SHOP VENT HTR RETURN LINE		2368	++-	+	
P44	1 1/2	40	c.s.	PERSONNEL BLOG CONV. HTG LOOP AIR VENT	STO	+		-	


ERMARKS FREAS ONISHED WITH TOOM BOILER MISHED WITH TOOMF BOILER CONTROLLER


GENERAL NOTES

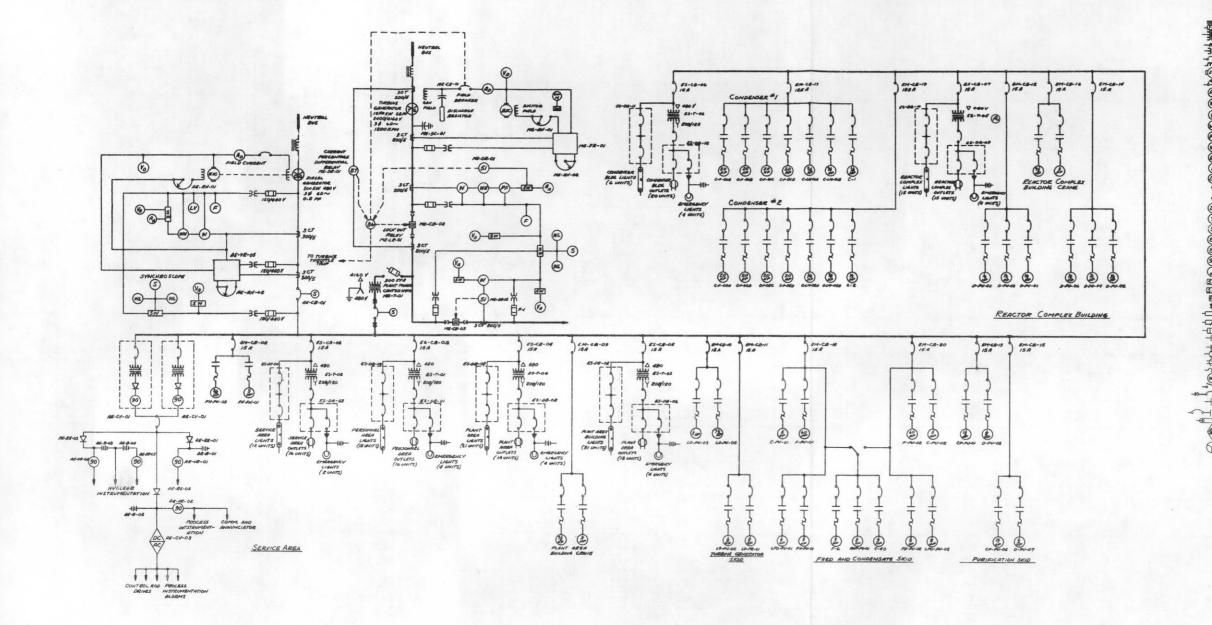
 REMARKS
 PORSERING WITH CONTRACT BOLLING CONTRACT CONTRACT CONTRACT CONTRACT
 Con THE LOOP CAT IS ALL OF BUT THE LOOP CALL OF THE THE LOOP CALL OF CALL DOLL OF CALL DOLL OF

REF NO-	DRAWING NO.	PROJECT NO	TITLE
1	PLZJZIZI	2101	MAIN STEAM SYS. DIAG.
5	PL2 J2189	2110	SERVICE WATER SYS DIAL
3	PLZJZIZZ	2106	H.P. DRAIN SYS. DIAG
4	PLZJZZII	2111-11	PLANT HEAT SPS PROC INST. SYS
5		2112	F.O. SERVICE SYS. DIAGRAM

PLANT HEATING SYSTEM Fig. 59

				1		-	SET P	OINT	T MOUNTING EQUIP		DEM	ARKS		
INST NO	TYPE	INPUT	RANGE	MFG	MOD NO	OUTPUT	CONTROL	ALARM	INSERTION	CONNECT	SPEC		REM	
RH-R1-01	SHUTTA SPEEL	PLANT NT. PLUMP DECK	0-40 FEI6	BARTSDALE	3/2			SOPER		W NPT	2/00-	11- 66		
PM-MU-01	RLARIA LINIT	PH PUMP LOW PLESSUE		SQUAR O'	BEDI AP	1	-	-				67		
AL 14- 01	10. LIGHT			ELDEMA	IFH							68		
PH-CA-OI	GAGE, PRESS.	PEANT NT. PUMP DISCN.	0-60 PSK	ASAKLEOFT	13785					12- 11.07		65	TE AF CUDENES	BOVENDOR
PM- MT-01	THERMOSTAT	SER BLOG AIR TEMP	0-120"F										TO BESUPPLIED	BO JENDAR
PH·MT-02	THERMOSTAT	SERV BLOG AIR TEMB	0-1200	-										CE MA. RW. HTR. MAK
PH-TH-Q1	THERE FILLED	SMITTONIN BOMER OUT.	0- \$00"F	FOX 80.60	CLASS & A					W NPT				WITH BOILER
	0.000 00000	SUVTOONT BALAT SURL	0-60 1016	ASHCENT	18793	1	1			12" NPT		65		
BW-CA-OZ	Q.R.C.S. A.C.3.3.	F.O. PUMP DISH.	0-60 1816	ASHCROFT	13785					1/2" #07	1	65		WITH BOILER
PW-CL-01	CONTROLLER	SMITOOWN BOMGE TEMP		SOUARE D'	8501 AP	280.4						67	FURMISHED	WITH DOILER
									+		1		1	

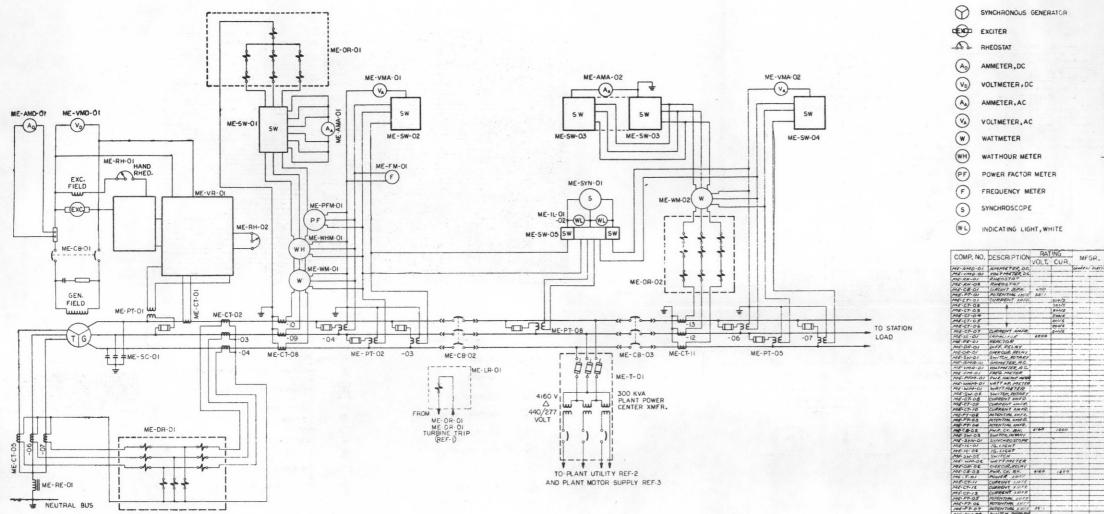
S	YMBOLS
9	LIGHT, INDICATING
	CONTROLLER SWITCH, PRESSURE
ØP	GAGE, PRESSURE
ØT	GAGE, TEMPERATURE
F	FILLED THERMOMETER SYSTEM
	THERMOSTAT


INSTRUMENT COMPONENT LIST

-		1			
3	PL212189	2110	START HURS'S STORED		
2		2112	BUEL OK SEPARCE DETRO		
	PLZJ CZII	2111	PLANT MEATING SHS.		
NA	DRAWING Nº	PROJECT Nº	TITLE		
	REF	FRENCE DR	AWING		

PLANT HEATING SYSTEM PROCESS INSTRUMENTATION-ONE LINE DIAGRAM Fig. 60

	K3	REMARKS	OWER KVA 0 0 0	0 0 0 0 0	SHUT DEMAND FACTOR 0 0 0	KVA 0	K W 0	STAI DEMAND FACTOR		GN FULL P KW 1,221,400 1,000,000 221,400	DESI DEMAND FACTOR I I	FULL LOAD VA 1, 250, 000	POWER FACTOR	W	LOAD	RATING	5 35 TEM HO. ME- T-01	1 4160 VOLT. AC LORDS 2 STATION LOAD
			0 0 0 0 0 0 0 511	0 0 0 0 0 0 0 0 245	0 0 0 0 0 0 0 0 0 1.0	18100 18100 0 0 0 0 0 0 256	/7385 /7385 0 0 0 0 0 0 0 122	1.0 0 0 0 0 0 0 0 0 0 5	18100 18100 18100 18100 18100 18100 18100 18100 52	17385 17385 17385 17385 17385 17385 17385 17385 17385 49	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.2	18100 18100 18100 18100 18100 18100 18100	0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96	17385 17385 17385 17385 17385 17385 17385 17385 245	20.5 HP 20.5 HP 20.5 HP 20.5 HP 20.5 HP 20.5 HP 20.5 HP 20.5 HP 0.25 HP	20 HP 20 HP	C-F-01A C-F-01B C-F-01D C-F-01D C-F-02D C-F-02B C-F-02C C-F-02D C-F-02D C-LM-01A	100 YOLT RC LORDS */ CONDENSER FAIL A #/ CONDENSER FAIL B #/ CONDENSER FAIL C #/ CONDENSER FAIL C */ CONDENSER FAIL B */ CONDENSER FAIL B */ CONDENSER FAIL C */ C
			0 0 471 0 236 5243 0 542/5 0	0 0 287 0 14.3 4404 0 46625 0	0 0 1.0 0 0.5 1.0 0 0	0 0 2 3 6 0 2 3 6 5 2 4 3 0 5 4 2 1 5	0 0 143 0 143 4404 0 46625	0 0.5 0.5 1.0 0	52 52 94 94 94 5243	49 49 57 57 57 4404	0.2 0.2 0.2 0.2 1.0 0 1.0	5// 5// 47/ 47/ 5243 5243 5243 5243	0.48 0.48 0.61 0.61 0.61 0.84 0.84 0.84	245 245 287 287 287 4404 4404 4404	0.25 HP 0.25 HP 0.25 HP 0.25 HP 0.25 HP 4.9 HP 4.9 HP 57.5 HP	4 HP 4 HP 4 HP 5 HP 5 HP 5 HP 5 HP 5 HP	C-LM-02A C-LM-02B C-1 C-2 C-40 C-40 C-PU-01 C-PU-02 F-PU-01	*2 CONDENSER LOUVER MOTOR B *1 CONDENSER LEVEL CONTROL VALVE *2 SONDENSER LEVEL CONTROL VALVE *2 SONDENSER MEGULATING VALVE *1 CONDENSATE PUMP *2 CONDENSATE PUMP *1 FEED PUMP
			7325	2420	1.0	7325	2420	1.0	7325	2420	0.7	471	0.61	287	0.25 HP	1 HP	F-6 CP-PU-01	FEED REGULATING VALVE
									95					234		IR HP	LPD-PU-01	#I LOW PRESSURE DRAIN PUMP
$ \begin{array}{c} D 0 & 0 & 0 & 0 \\ T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ T & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$			522	282	1.0	522	282	1.0			1.0	522	0.54	282 282	0.36 HP 0.36 HP	12 HP	10-PU-03 10-PU-04	STAND-BY LUBE OIL PUMP #/ LUBE OIL COOLANT PUMP #2 LUBE OIL COOLANT PUMP
TADE TRUE AND *** PACE Auge Out of the second s			0	0	0	0	0	0	48	2.4	0.1	483	0.49	237	0.2 HP	12 HP	RWP-PU-0)	
T. ALANY MARTING TANK T. ALANY MARTING			0 0 627 0 0	0 0 389 0 0	0 0 1.0 0	0 0 627 0 0	0 0 389 0 0	0 0 1.0 0	63 627 61	39	0 0.1 0 1.0 0 0.1	1000 627 627 627 627 610	0.22 0.62 0.62 0.62 0.62 0.62 0.62	220 389 389 389 389 389 379	0.05 HP 0.37 HP 0.37 HP 0.37 HP 0.37 HP 0.36 HP	HP HP HP HP HP HP HP	D-PU-02 D-PU-03 D-PU-04 D-PU-05 D-PU-05 D-PU-06 D-PU-07	WASTE TANK PUMP "I WASTE TANK PUMP "2 DRAIN TANK PUMP "I DRAIN TANK PUMP "I SPENT FUEL TANK PUMP "I SPENT FUEL TANK PUMP "I DISPOSAL TANK PUMP "I DISPOSAL TANK PUMP "I
Image: series Image: s			0 682	0 484	0	0 682	0 484	0.8	610		0	763	0.70	534 605	0.53 HP 0.6 HP	14 HP	PH-PU-02 PH-PU-03	# I PLANT HEATING PUMP #2 PLANT HEATING PUMP FUEL PUMP - SHUT DOWN BOILER BLOWER - SHUT DOWN BOILER
I. ATTOC PONCE CONVERTER AT Grave State JUL JUL <thjul< th=""> <thjul< th=""> <thjul< th=""> JUL</thjul<></thjul<></thjul<>			0	0	0	0	0	0			0	6914 3184	0.78	5393 2579	6.0 HP 2.8 HP	7 HP 3 HP		HOIST MOTOR - REACTOR COMPLEX CRAME HOIST MOTOR - POWER PLANT CRAME TRAVERSE MOTOR - REACTOR COMPLEX CRAME TRAVERSE MOTOR - POWER PLANT CRAME
IV Description Description <thdescription< th=""> <thdescription< th=""> <thde< td=""><td></td><td></td><td>4190</td><td>3930</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>3761 3761</td><td>5000 W 5000 W</td><td>AE-CV-01 AE-CV-02</td><td>#1 AC/DC POWER CONVERTER #2 AC/DC POWER CONVERTER</td></thde<></thdescription<></thdescription<>			4190	3930											3761 3761	5000 W 5000 W	AE-CV-01 AE-CV-02	#1 AC/DC POWER CONVERTER #2 AC/DC POWER CONVERTER
2. ACCOMMENTATION AP-RE-D ROUBDY JOB JIAL LO 562 LO 562 LO 562 LO 562 LO 562 LO 562 LO 362 LO 363 Co CO CO				0	<u> </u>	><	. 0	0	~	0	0			131	128	40A @ 78Y	AE-RE-01	T TBY DIRECT CURRENT LOADS [™] JLOCKING RECTIFIER VOLTAGE REGULATOR - TRIP CIRCUITS 2
DC/AR POWLAR CONVERTER AE-(Y-Q) 3 KW 2502 2720 1.0 189 1.0 180 1.0 280 44 1.0 280 44 1.0 280 44 1.0 280 44 1.0 280 44 1.0 280 44 1.0 280 44 1.0 280 44 1.0 280 44 1.0 280 44 1.0 280 44<															3082 326			2 BLOCKING RECTIFIER VOLTHGE REGULATOR-INSTR. & COMM.
5 7	<u>05 ~ ~ </u>	- DC LOADS	425 425 425 425 425 425 425 425 425 425	268 268 268 268 268 268 268 268 268	1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	\$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$	28 28 28 28 28 28 28 28 28 28	0.1 0.1 0.1 0.1 0.1 0.1 0.1	16 16 89 16 16 16	10 10 10 56 10 10 10	0 0 0.2 0 0	441 441 441 441 441 441 441 441 441	0.63 0.63 0.63 0.63 0.63 0.63 0.63	278 278 278 278 278 278 278 278 278 278	278 278 278 278 278 278 278 278 278 278	A HP A HP A HP A HP A HP A HP A HP A HP	AE-CV-03	DC/AC POWER CONVERTER + ROD DRIVE MOTOR * 2 ROD DRIVE MOTOR * 3 ROD DRIVE MOTOR * 4 ROD DRIVE MOTOR * 6 ROD DRIVE MOTOR * 7 ROD DRIVE MOTOR * 7 ROD DRIVE MOTOR * 9 ROD DRIVE MOTOR PROCESS RLARMS
4 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7				239	1.0		239	1.0		239	1.0			239	215	20A @ 78V	AE - VR - 03	S 7 8 9 W3 BLOCKING RECTIFIER 0 VOLTAGE REGULATOR-25Y-AUCLEAR INSTR. 2 VOLTAGE REGULATOR+25Y-AUCLEAR INSTR. 2 VOLTAGE REGULATOR+25Y-AUCLEAR INSTR.
5 6 7 UT. XMFR PERSONNEL BUILDING ES-T-01 J XVA 1000 1020 0.93 1097 1.0 1020 1097 1.0 1020 1097 1.0 1020 1097 9 UT. XMFR SERVICE BUILDING ES-T-02 J XVA 1000 1020 0.93 1097 1.0 1020 1097 1.0 1020 1097 1.0 1020 1097 9 UT. XMFR POWER PLANT BUILDING ES-T-03 J XVA 1000 1020 0.93 1097 1.0 1020 1097 1.0 1020 1097 1.0 1020 1097 9 UT. XMFR POWER PLANT BUILDING ES-T-03 J XVA 1000 1020 0.93 1097 1.0 1020 1097 1.0 1020 1097 1.0 1020 1097			1263 8842 2526	1200 8400 2400	1.0 1.0 1.0	1263 8842 2526	1200 8400 2400	1.0	1263 8842 2526	1200 8400 2400	1.0 1.0 1.0	1263 8842 2526	0.95 0.95 0.95	1200 8400 2400	1200 8400 2400	1200 W 8400 W 2400 W		FLUDA. LTG REACTOR COMPLEX FLUDA. LTG CONDENSER BUILDING FLUDA. LTG POWER REART BUILDING FLUDA. LTG PERSONNEL BUILDING FLUOR. LTG SERVICE BUILDING
UT. XMFR REACTOR COMPLEX. ES-T-OS 3 KVA 1000 1020 0.93 1097 1.0 1020 1097 1.0 1020 1097 1.0 1020 1097 2 UT. XMFR CONDENSER BUILDING ES-T-05 3 KVA 1000 1020 0.93 1097 1.0 1020 1097 1.0 1000 1000 1000 1000 1000 1000 1000			1097 1097 1097 1097 1097	1020 1020 1020 1020	1.0 1.0 1.0 1.0	1097 1097 1097 1097 1097	1020 1020 1020 1020	1.0 1.0 1.0 1.0	1097 1097 1097 1097	1020 1020 1020 1020	1.0 1.0 1.0 1.0	1097 1097 1097 1097 1097	0.93 0.93 0.93 0.93 0.93	1020 1020 1020 1020	1000 1000 1000 1000	3 KVA 3 KVA 3 KVA 3 KVA	ES-T-02 ES-T-03 ES-T-04 ES-T-05	S TUT. XMFR PERSONNIEL BUILDING TUT. XMFR SERVICE BUILDING 9 UT. XMFR POWER PLANT BUILDING 0 UT. XMFR POWER PLANT BUILDING 1 UT. XMFR REACTOR COMPLEX 2 UT. XMFR CONDENSER BUILDING 3 4 5
7 A <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7 9 9 2 2 7 2 3 3 4 5 5 5 5 7</td>												2						7 9 9 2 2 7 2 3 3 4 5 5 5 5 7
9																		9 0 1 2 3 4 4 5 5 6 7 7 8 6
9																		/ 22 3 3 4 5 5 6 7


		5	
		~	
		0	
		`)	
		-	
		-	
		-0	
		-	
		0	
		-	
		T	
		U	
		0	
		0	
		-	
		de.	
		-	
		-0	
		-	
		-	
		-	
		0	
		-	
		r	
		-	
		U.	
		-	
		N	
		della	
		>	
		<	
	>	N	
	- 1		
	-	2	
	5		
		~	
	•	12	
 	_	S	
	ig. 6	ELECTRIC POWER LOAD ANALYSIS	
~	~,	1-	
 TI	-	S	
	-	-	

m_	INDUCTOR
IE-	POWER TRANSFORMER
E	INSTRUMENT CURRENT TRANSFORMER INSTRUMENT POTENTIAL TRANSFORMER
m	AIR CIRCUIT BREAKER FIELD MINONS
2)	SKITER
ñ	RNEOSTAT
R.	AMMETER, AC
2	VOLTMETER, AC
à	WATTMETER
3	NATTHONE METER
2	POWER METER
Ð	
2	VOLTMETER, OC
9	Artification, DC
E	FEEQUENCY
Ð	LOW VOLTREE RELAY
) . @	SOLENOUD OPEENTUD LIECUT BUBALLER
3	SYNCHEONOUS DEVICE
ŝ)	SYNCHROSCORE
ŝi)	TIME OVERCURBENT BELAN
3000	PERCENTING DIPPERENTIAL RELAY
à	LOCKOUT RELAY
ò	WOLTAGE REGULATOR
è.	NOTOR (MORSERUNDE RATINS)
	SYNCHEOSCOPE SWITCH
N	SWITCH
	POWER AIR CIRCUIT BANANAR
*	RECTIFIER RESISTOR
5	CONTINUOUSLY ADJUSTABLE RESISTOR
70-	FUSE
11-	CONTACTOR
u-	BATTERY
)	INCANDESCENT LAMP
3-	CONVENIENCE OUTLET
r.	THERMAL ELEMENT
	WHITE USHT
-	SWITCH, AIR BREAK
	DRAWOUT TYPE CIRCUIT BREAMER
1(-	CAPACITOR
1-2	- COMBINATION STRETER
10	FLUORESCENT LIGHT
	DC TO AC CONVERTER
Ð	SYNCHRONOUS GENERATOR

4	P12/2210	2200-04	COOLANT PREVERCATION
3	PL8/2117	2200-03	FEED SYSTEM
2	PL2J2113	\$0-0053	CONDENSATE SYSTEM DUARAMY
1	PESIEIZS	2200-01	MAIN STEAM SYSTEM DIAL MAN
14	DANG INE	NOT TSBURGH	NAME
		DEEEBEAL	E DOAMINAE

ELECTRIC POWER-ONE LINE DIAGRAM Fig. 62

3E

SYMBOLS

m ---0--7--010--11--11--do-

- Ar-_m_ Sw

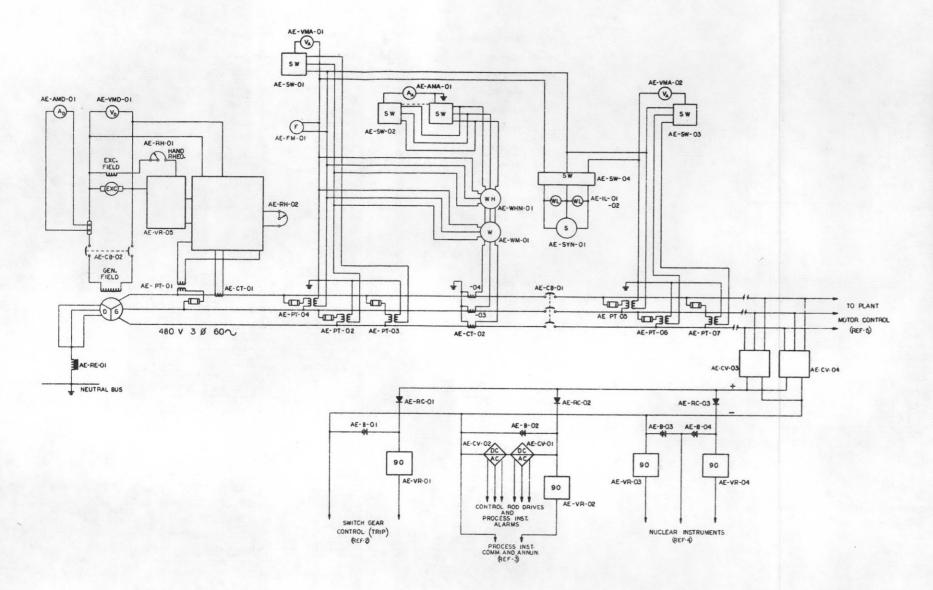
TV Anten HELL
 ΜΕ· VMA-OL
 ЮСТМЕТЕР Ф.С.

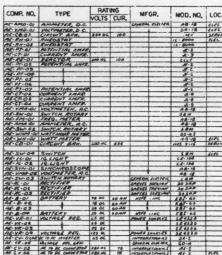
 ΜΕ· VE· OI
 VOLTAGE REG.

 ΜΕ· PT-OB
 POTENTIAL IMFR 35:1

 ΝΕ· LP-OI
 LOCKOOT RLAV

```
ASTRUMENT CURRENT TRANSFORMER
          INSTRUMENT POTENTIAL TRANSFORMER
          AIR CIRCUIT BREAKER
          FIELD WINDING
          RECTIFIER
          RESISTOR
         CONTINUOUSLY ADJUSTABLE RESISTOR
         FUSE
          CONTACTOR
          CAPACITOR
          SWITCH, AIR BREAKER
----- DRAWOUT TYPE AIR CIRCUIT BREAKER
          RELAY COIL
          INDUCTOR
         SWITCH
```


TYPE	LOCATION	DIM.	WGT.	REMARKS	
A RIFORNIA	STELECTERAL SEID				
DS IA		1			
. 8000		1			
0006	1				
HKF				68 N FIELD BREAKER	-
1130. 2	1				
65.0	1				-
12:00					-
65.0					-
2. 0					
15.2	1				-
50		1			
62.0					-
18 F					_
12 F	1	300 x 36L x 76 H	1600685		_
IJEV .					_
Sam					_
A5-10					
43-18	+				
78.18					
A.4- 18 33-65	+			•	
AB 18	+				
	++	+			
\$ 8M					-
1.50					
					-
JUS-0 JVM 3	+				-
11'11. 5	+				-
11 M- 5 14 M- 3	1				-
7-4.16-75		DOWELS LEARH	1600133		-
5 5M AB-18					
AB-18					-
11.156					_
1 156					
			1.00		
196					
1. 6 16 . 75		20 web42 . 44 W			_
e, witt, 4xs		55% == 892 176 H	5500643		
123-0	-				_
265.0					_
125.0					
J:'M- 5					_
J:M 3	+				
d.M. 5					
SBM		+			_
18-18					_
13-18					
609	1				
124 3		1			
HER	1 1	1			-
	TOTAL COULD	MENT WEIGHT -	1: 500 /85	and a second sec	-


2 200-04

ALY DIAL

3 PL2J222

ELECTRIC POWER HIGH VOLTAGE-MULTILINE DIAGRAM Fig. 63

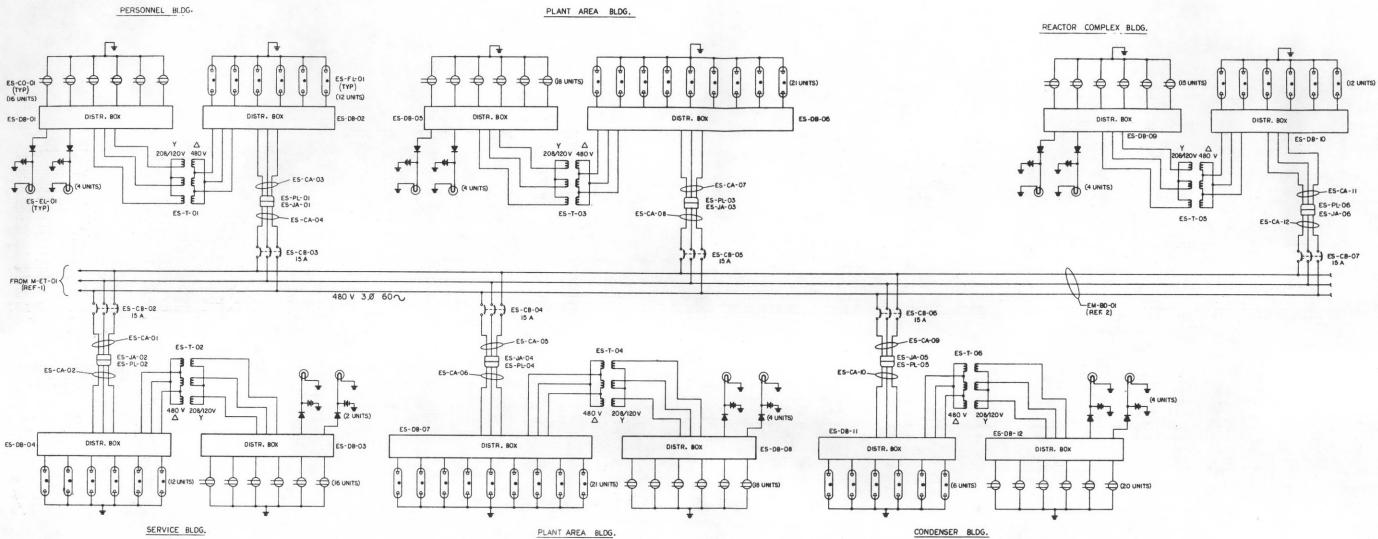
CATION	DIM.	WGT.	REMARKS	
6131	+			
6 5810				
INF BLOG				
5410			and the second s	
1				
	1			
	1			
			and the second	
1				
	1			
			•	
			- shift and the second of the last of the second se	
-				
1				
SKID				
ILE BLOG	2041220272			
5810				
				1
1				
-				
	WEINWISH	200		
_	1962310#12 BN			
	WLIDD'S BH	100		_
	WE LOW LOH	100		
	152 118 WATAM	60		
_	PSLY ISTAS SIN	60		
-	152 119 115 AN	40		
	521/501554	40		
	12 CUBE 71.17 W125 M	45		
	72 17 112 11	64		
	12 6086	45		
1810	12.6088	45		

90 主 JE -11-¥ ----(AC)

VOLTAGE REGULATOR

BATTERY

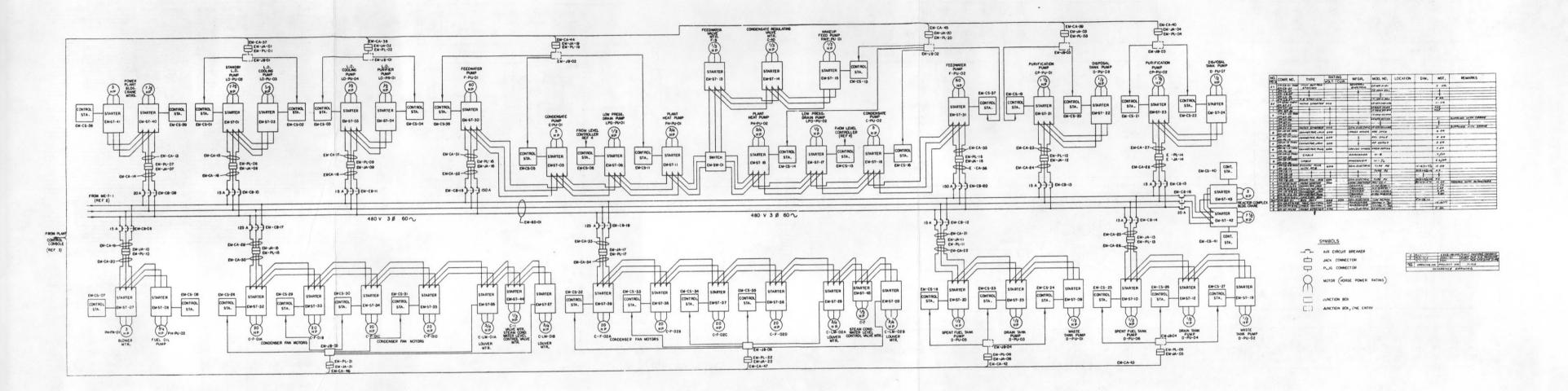
INSTRUMENT CURRENT TRANSFORMER


INSTRUMENT POTENTIAL TRANSFORME

FIELD WINDING INDUCTOR FUSE CAPACITOR RECTIFIER AIR CIRCUIT BREAKER

DC TO AC CONVERTER

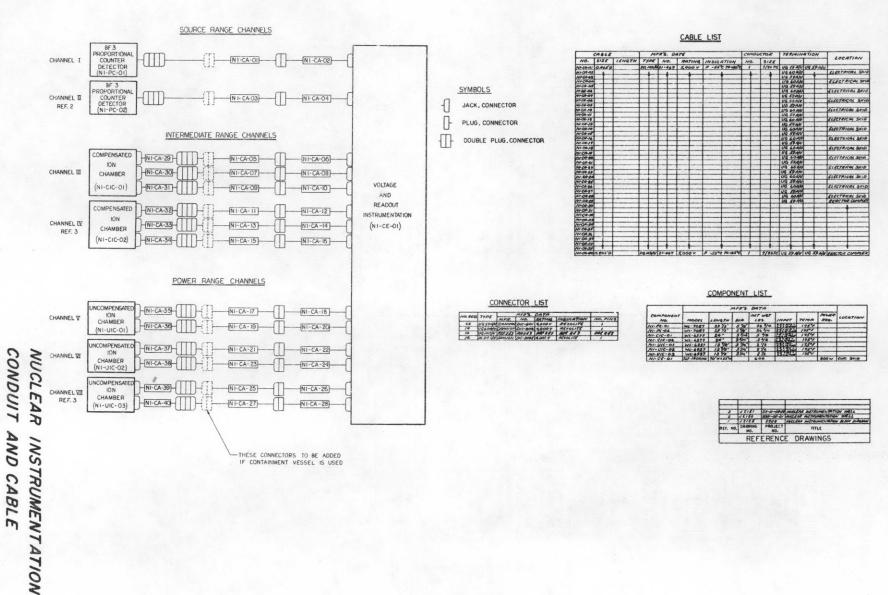
AUXILIARY AND EMERGENCY POWER-MULTILINE DIAGRAM Fig. 64

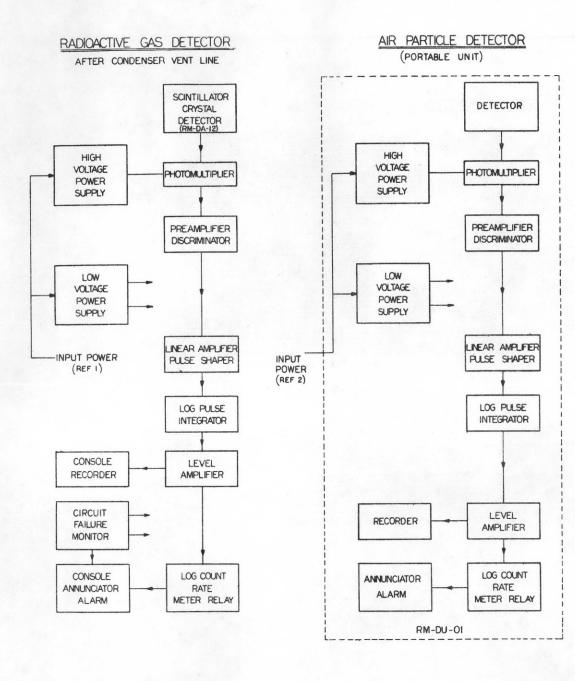


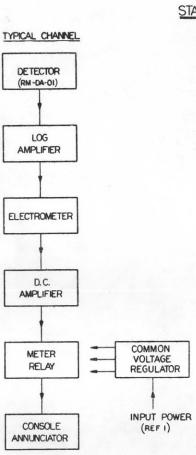
0.1	COMP. NO.	TYPE	RAT	ING						
EQ		TYPE	VOLT.	CUR.	MFGR.	MOD. NO.	LOCATION	DIM.	WGT.	REMARKS
3	63-00-01	CONV. OUTLET	250	13	RESERVE			1		
4	63-F6-01	FLUOR. LIGHTS	277		CISCO	65 481				
2	63.66.01	EMERCENCY LIGHTS	120		NICAD	MOD. #7				
-	CS-DA-O/	DISTRIBUTION BOX	208/120	225	GEN. ELECT.	NRB-424L	PERS. BLDG	224×622344	112	
_	3-08-0E		480/277			NH8-424 AB	PERS. BLDG	224 ×6 4 × 46 4		
-	B-DE-OR		208/120			NAB-424L	SERY. BLOG	2241642344	112	
-	23-04-04		480/277			NH8-424A8	SERY. BLDG	22 4 16 4 246 3	/67	
	13-08-06		200/120			NAB - 424L	PP 8606	22416 h X J4h	112	
-	23-08-06		480/277			NHB-424AB	PP BLOG	224264246	167	
-	53-D8-07		480/271			NH8 - 424 AB	PP BLDG	224,26 2 46 %	/67	
-	13-00-08		208/120			NAB - 424L	PP BLDG	2241641344		
-	13-08-09 13-08-10		208/120			NRB - 424L	REACTOR COMPLEX			
-	63-08-11		480/277				REACTOR COMPLEX			
-1	63-DB-12		480/277			NNB - 424AB NAB - 424L		22 3 16 3 1 16 3		
	G-7-01	TRANSFORMER	480/208			972146250	COND. BLDG PERS. BLDG	1927 164 1 304	77	
	65.7-01	1	100/200	JAM		1101000	SERV. BLDG	ITMA (XOA	- //	
	5-7-03						PP BLOG			
	63.7-04					1	PP BLD6			
	13-7-05						REACTOR COMPLEX			
	29-7-06						COND. BLOG			
	E3-CA-01	CABLE, POWER	600	40	ANACONDA	6-8	SERV. BLDG		0.7#/87	
	23. CA.02		1	1			SERV. BLDG			
	63-CA-09						PERS. BLDG			
	\$3-CA-04						PERS. BLDG			
	ES. CA.05						PP BLOG			
	S. CA-06						PP BLDG			
	ES-CA-07						PP BLDG			
	E3- CA-08		+ + -				PP BLDG			
	63-CA-10		+ +				COND. BLDG			
	18- CA.JI		+ + -				COND. BLDG			
	68-CA-/2						REACTOR COMPLEX			
	ES-PE-01	CONNECTOR PLUC TH	600	10	CROUSE NINES	ARE 1422	PERS. BLOG		1.0	
	S-PL-OL		1	1	1 1	Hint y tay	SERV. BLDG			
	ES- PL-08						PP BLDG			
	18-PL-09						PP BLDG			
	13- PL-05						COND. BLDG			
	E8-P6-06						REACTOR COMPLEX		1	
	19-JA-01	COMMECTOR JACK TYPE				ARU3463	PERS. BLDG		20	
	S-JA-OL						SERV. BLOG			
	5-JA-03		++				PP BLOG			
	58-JA-04						PP BLOG			
	E3-JA-06		++-	-			COND. BLOG REACTOR COMPLEX			
-			+ '			+	MEMORY COMPLEX			
-	£3-C8-02	AR CIRCUIT BREAKER	5 600	13	GEN. ELECT	PE	SERV. BLOG	10" 1 7" 1 6"	190	BUSWAY PLUG IN UNITS
	63-08-03		11	1		+	PERS. BLOG			Desmar reso in Units
	13-68-04						PP BLD6			
	13.08.05					1	PP BLDG			
	63-C8-06		11			1	COND. BLDG			
	19.08.07		11			1	NEW TOR COMPLEX	1		
1								1000	1.	
1										

2	R 2/ 2229	2201-64	PLANT MOTOR SUPPLY MULTILINE DIAGRAM
1	P1252217		ELECTRIC POWER ONE LINE
NO.	DRAWING NO.	PROJECT NO.	TITLE

PLANT UTILITY ELECTRIC POWER LOW VOLTAGE-MULTILINE DIAGRAM Fig. 65


PLANT MOTOR SUPPLY ELECTRIC POWER LOW VOLTAGE-MULTILINE DIAGRAM


INTERMEDIATE RANGE CHANNELS



INPUT POWER

NUCLEAR INSTRUMENTATION BLOCK DIAGRAM

STATION MONITORS

TURBINE FEEDWATER WASTE TAN SHIELD CO

HOTWELL

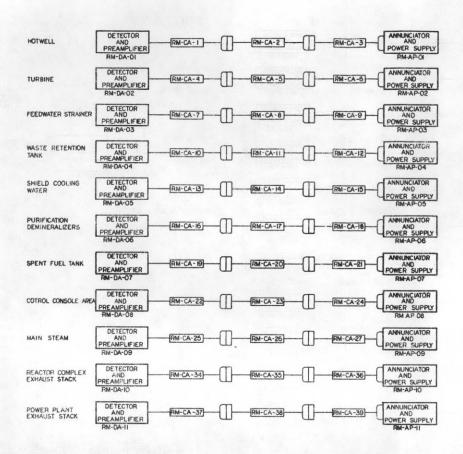
PURIFICATI

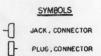
SPENT FUE

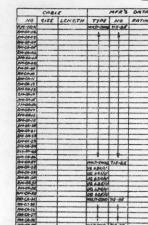
CONTROL

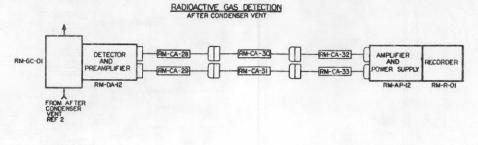
MAIN STEA

REACTOR C


POWER P


STATIONS	DETECTOR NO.
	RM-DA-OI
	RM -DA-02
R STRAINER	RM -DA-03
NK	RM-DA-04
COOLING WATER	RM-DA-05
ION DEMINERALIZERS	RM-DA-06
EL TANK	RM-0A-07
CONSOLE AREA	RM-DA-08
AM	RM-0A-09
COMPLEX EXHAUST STACK	RM-DA-10
PLANT EXHAUST STACK	RM-DA-II


2 REJEERS EEGI-OL PLANT UTILITY MULTILING 1 PREJEEJS BEGI-OL AUX. ELMERG. POWER MULTILING ME DWG. MO. PROJECT NO. TITLE DWG. NO. PROJECT NO. REFERENCE DRAWING.


RADIATION MONITORING BLOCK DIAGRAM

STATION MONITORS

AIR	PARTICLE
DE	TECTION
(SELF	CONTAINED)
RI	H-DU-OI

COMPONENT LIST

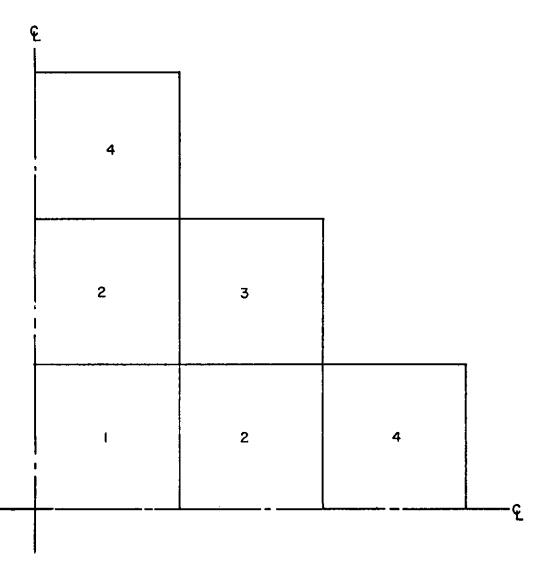
NO.	NAME	NF6R.	NO.	l
100-00-01 70/1	DE TESTOR / AREANS	VICTOREEN	7/6	Ŀ
At AR OF 1011	AMARIMENTOR FORMER SUFFER	NERREEN	685	۲
1210-04-15	DETECTOR ! . WEAMP	TRACERLAS	MD-5	F
R.M-A.A-12	ANTING THE ACHTER SUPPLY	7704.18 104.4.8	100 BY 10435	1
RM-OC-01	BAS CHANBER	TRACERINE	MT-80	Г
ANA- R-01	RECOMDER	POXBORD	60-0-05	k
RH-CV-OI	AND THEY AND AND ANY THE	AU124-44	64-20	6

CONNECTOR LIST

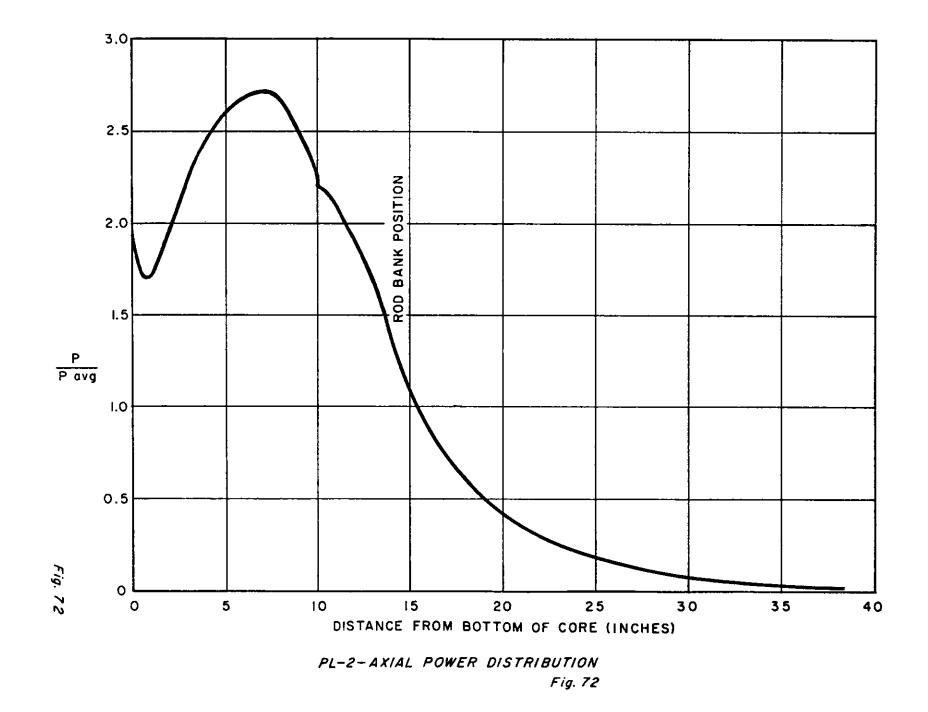
	REQ.	TYPE	MER'S DATA			
			MO	INSUL.	RATING	
	33	1	S# 58-22C-5		1,300 V	
	22		GR-5.1-21C- 3		1,300 V	
	3		DK-3021		40000	
	3		DIC - 5008		1,0007	
	1		DIC-2308		5007	
	3	US 89 8/U	Dec-1377	TEFLON	500 V	

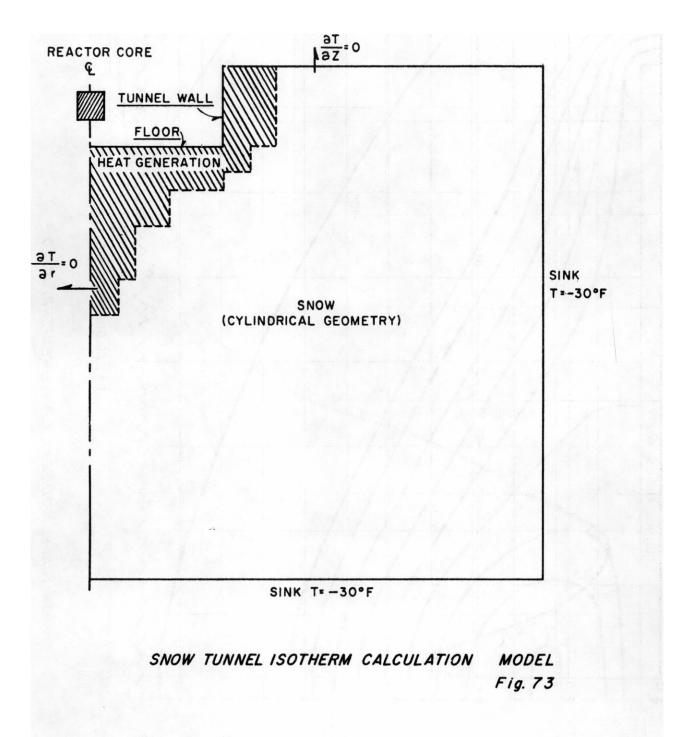
CABLE LIST

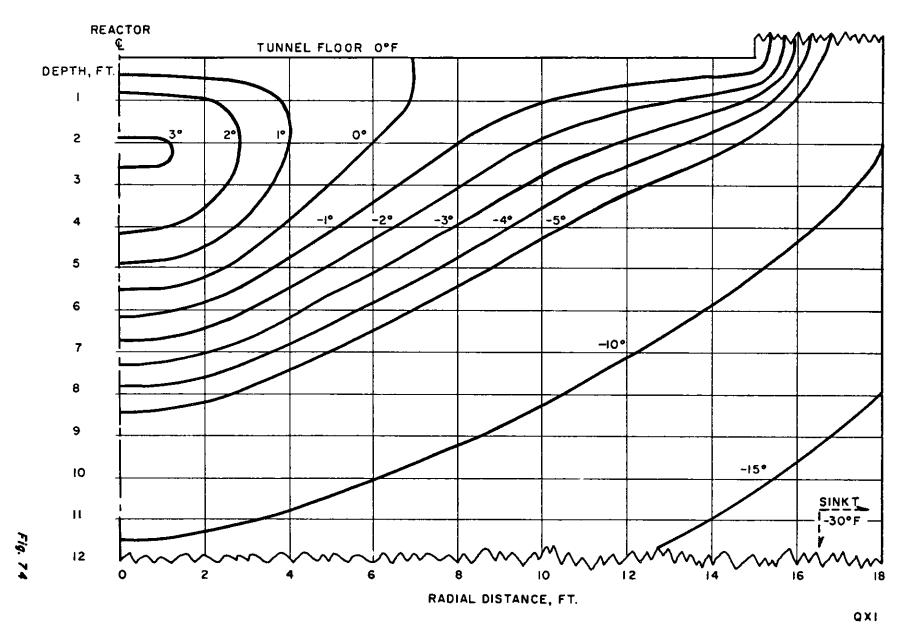
10		CONSUCTORS		TERMI	NATION	
NO	INSULATION	MO.	0. 8/88			LOCATION
		1			CQ-58- 110 24	
		L		Co Spesse ?		
				01-56 .880 3		
				-		Contraction of the sound burger score of
				1.9 36 52.4		
				CG-38-8207		
				-		
				CQ-50.88C		
-		-		CO-40-040 A		
		-		-		
				C4-0-786-2		
		-		CQ-42-592-A		
				-		
				ce-50-110-%		
-		-		06-48-93C-K		
-				-		
				00-00-100-8		
				CO -08-500 %		
-				00 -58-200-96		
				00-50-500-7		
				MODE SEA		
-				04-38-280-3		
-				co-re-tie- A		
-				admonte. M		and a contract of the statement of the statement of
-		-		10-50-50C-X		
				TO COLOR N	C4-50-200 %	
		1		15 573 A/U		
-		-		HG BB C/H	US AS AIN	the first of programmer an electronic
		-		145 57.8 AL	US 89 0/U US 572 U	
				10 88 ch	UN 89 2/W	
		1 1		10 173 AW	UR 5724	
		11		US 88 617	US 49 2/4	
	A CONTRACTOR OF A CONTRACTOR O	0		una di la constante di la const	CG-40-11C-4	
	in the second	1		08-60-820-5		
	A CONTRACTOR OF A CONTRACTOR O			16-04-200 \$		and a set of the second se
			and the second second			
		1		CG-50-22C-1		
	a second a second a second	0			CE-54-53C-6	and the second se


ANNE	POINT	REMARKS
Ball	EG MOSTINE	ADVISTABLE MARN PONT
10ª CPM	850 CPM	ADASTABLE ALARN POWT
OF CAL		FORSTADLE ALARM ANNT

3 7 PL 5.1 EU.3 7 PL 5.1 EU.3 7 PL 5.2 FIZS RESOLUTION AND ADDRESS REFERENCE DRAWINGS

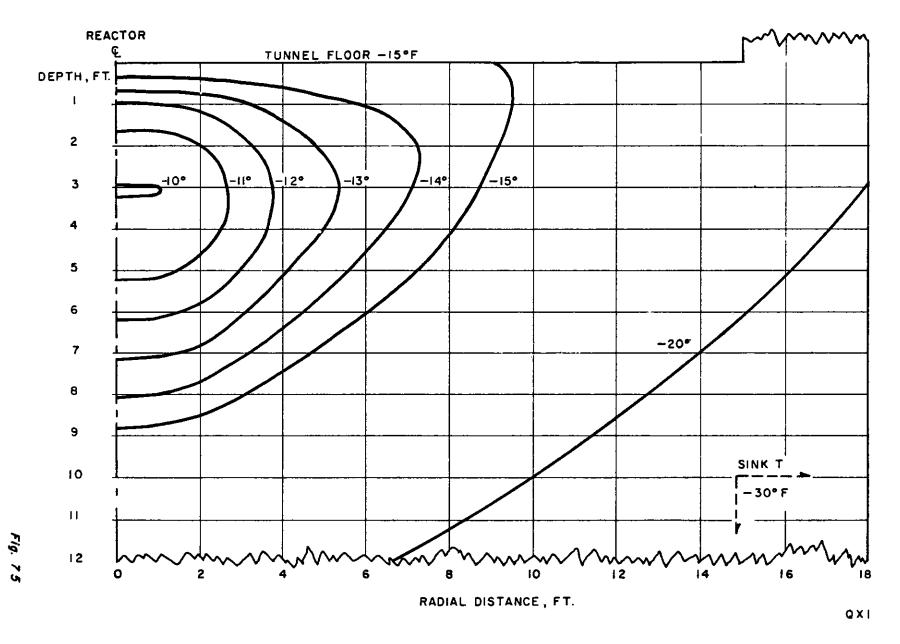

RADIATION MONITORING CONDUIT AND CABLE Fig. 70


ASSEMBLY No.	<u>F'(R</u>)
1	1, 471
2	1.176
3	0.856
4	0.660



CORE QUARTER CROSS SECTION SHOWING ASSEMBLY NUMBERING SYSTEM AND RADIAL POWER PEAKING FACTOR (F' (R))

Flg. 71



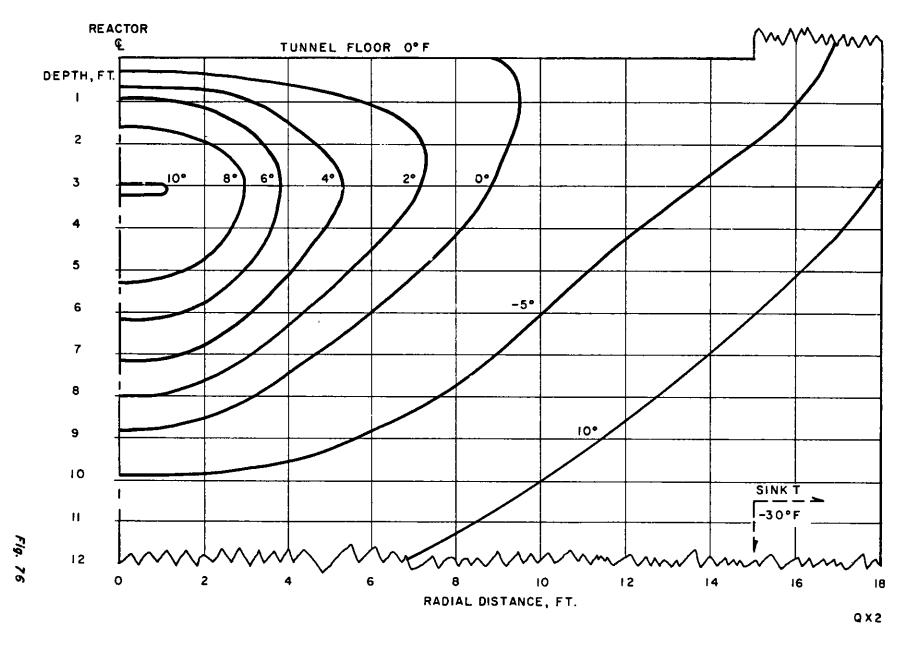
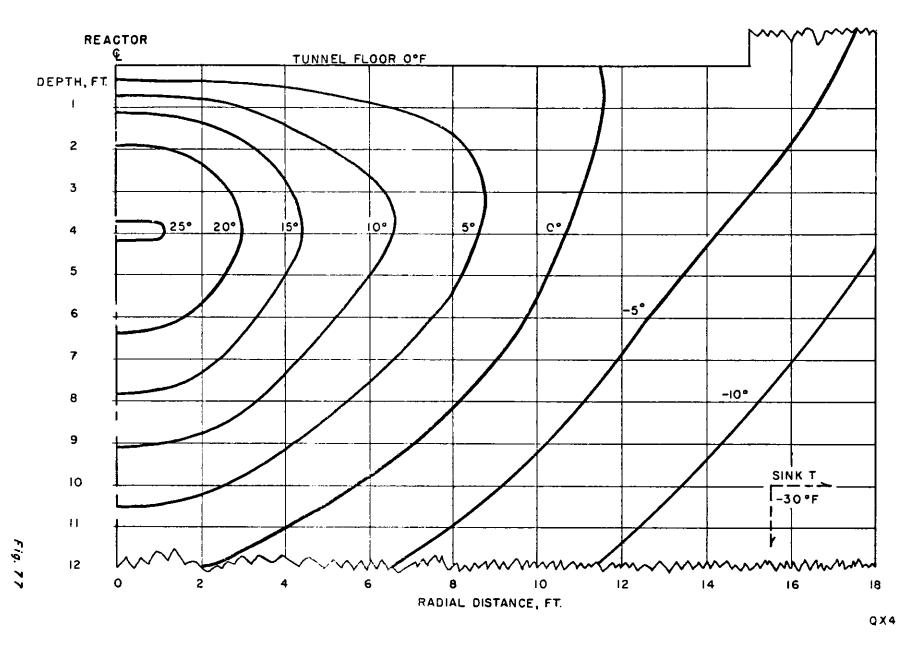
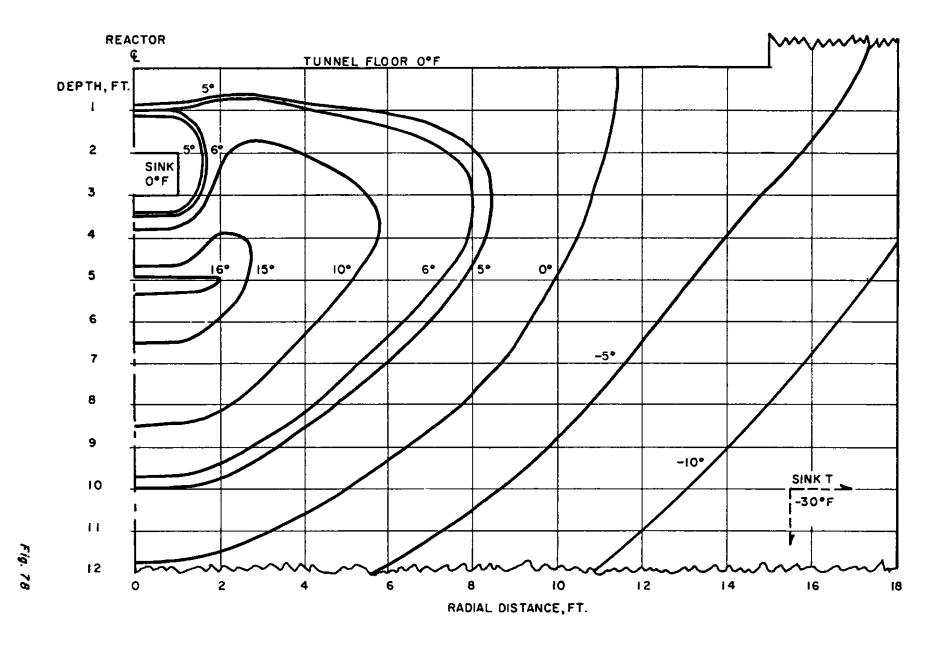
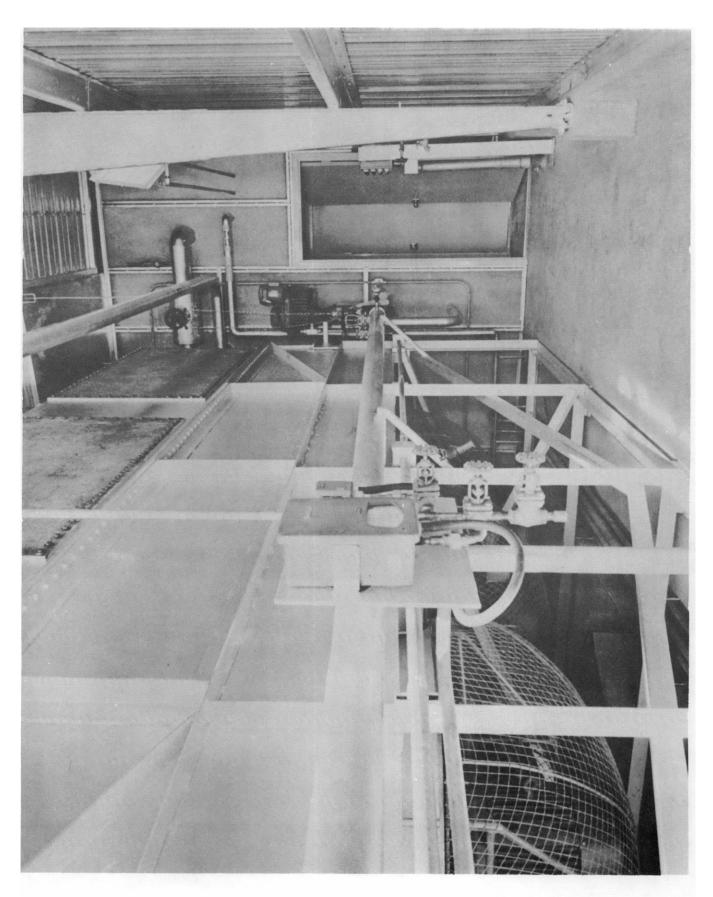

SNOW TUNNEL ISOTHERMS, TUNNEL TEMPERATURE OF

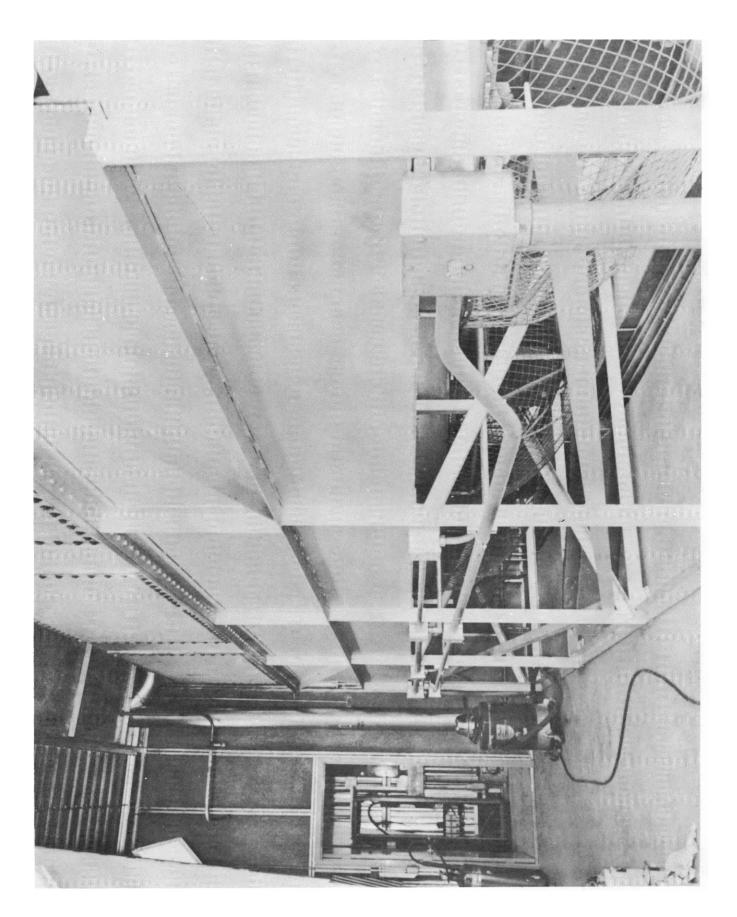
Fig. 74

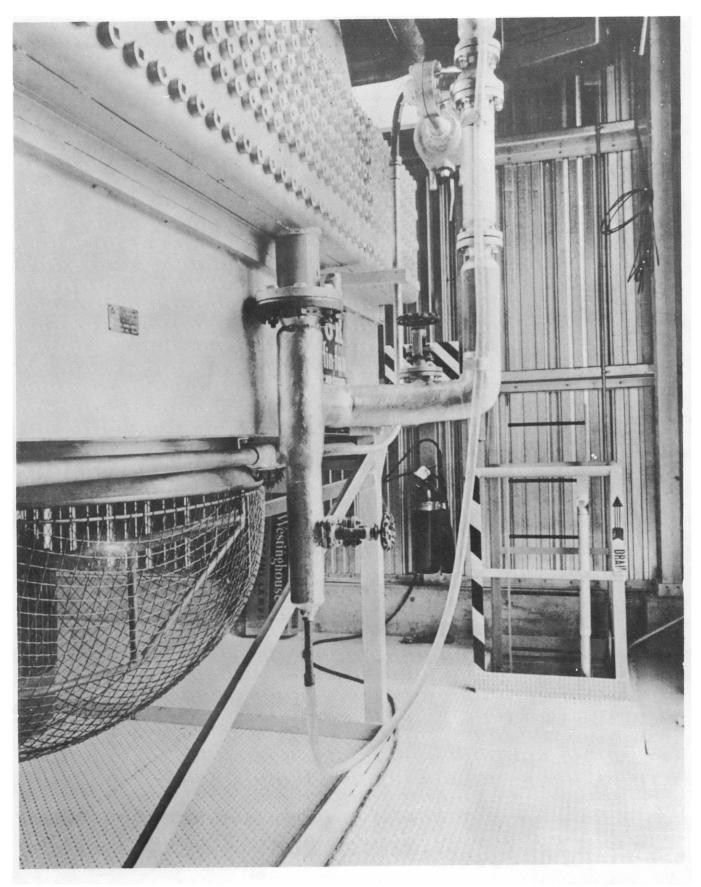


SNOW TUNNEL ISOTHERMS, TUNNEL TEMPERATURE -- 15°F

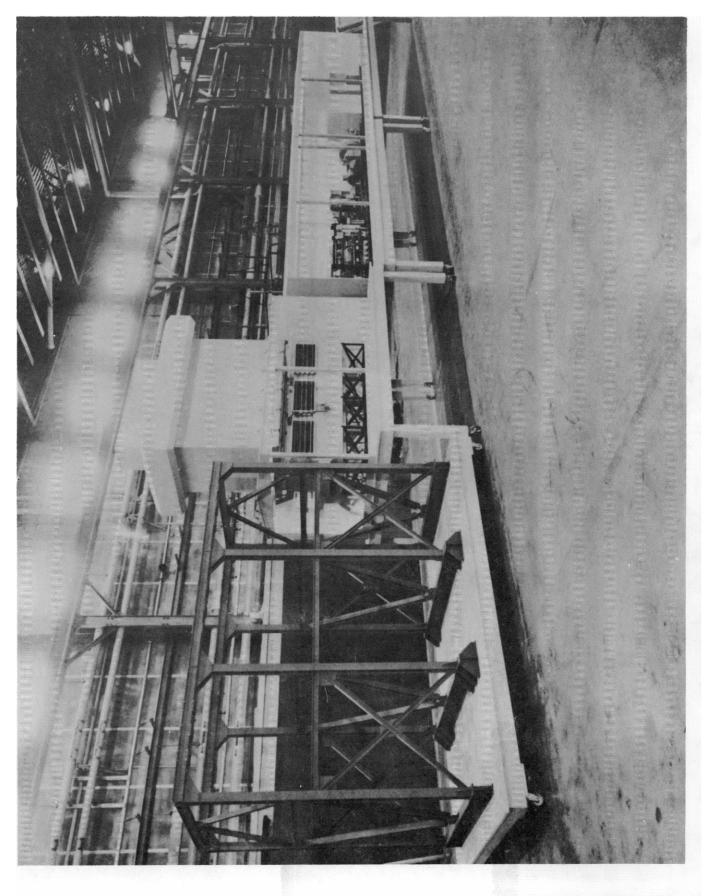

Fig. 75

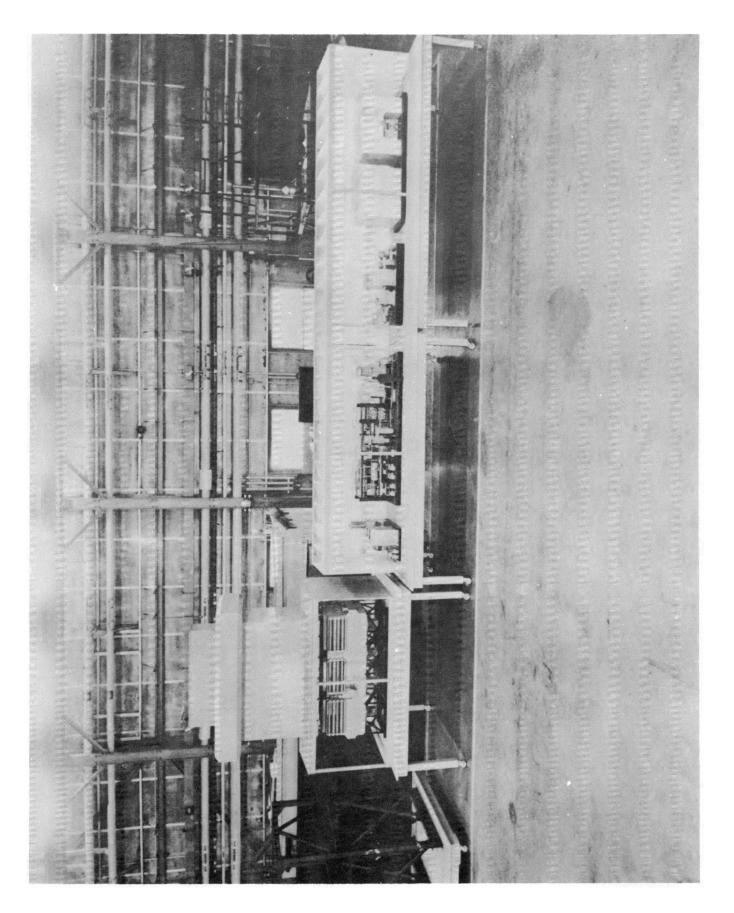

SNOW TUNNEL ISOTHERMS, TUNNEL TEMPERATURE O°F, HEAT GENERATION X2 Fig. 76


SNOW TUNNEL ISOTHERMS, TUNNEL TEMPERATURE O°F, HEAT GENERATOR X 4 Fig. 77

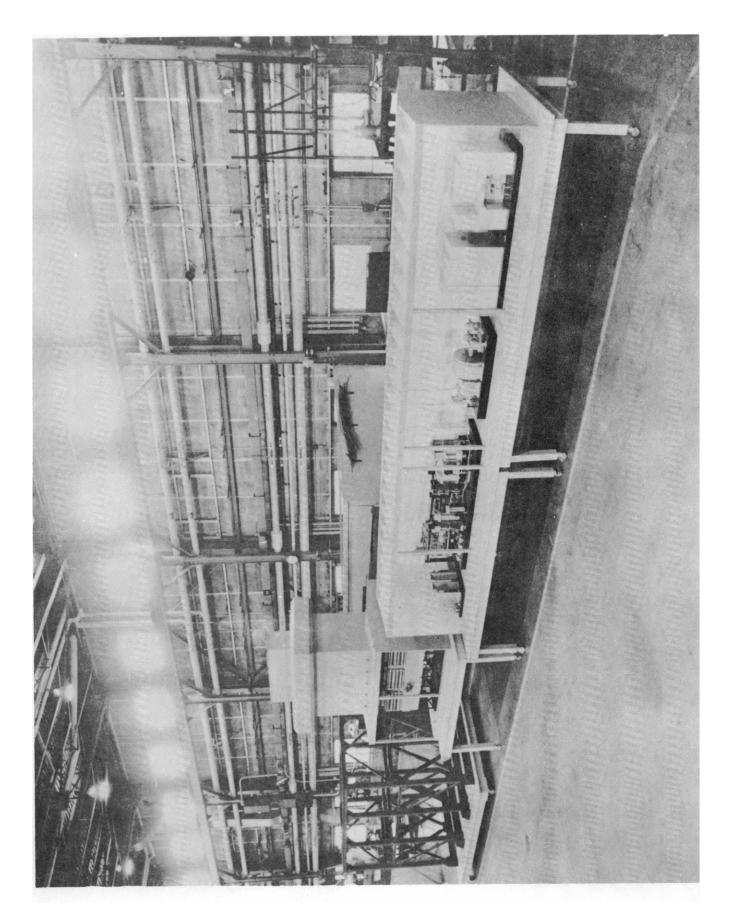

SNOW TUNNEL ISOTHERMS, TUNNEL TEMPERATURE O°F, HEAT GENERATION X 4, WITH HEAT SINK Fig. 78

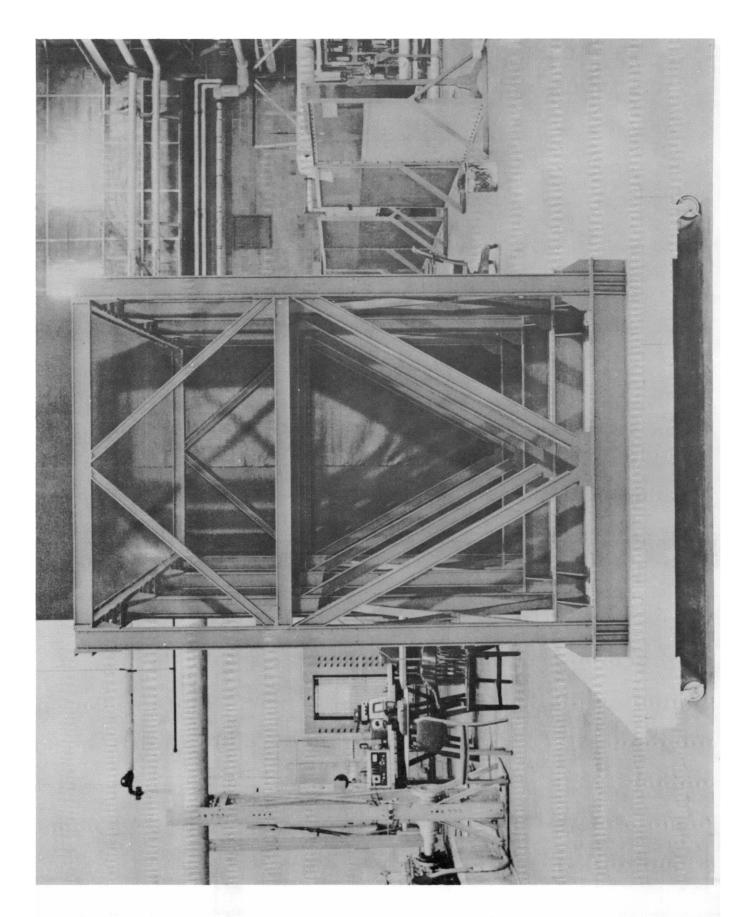
SL-I INSTALLATION OF PL TYPE AIR-COOLED CONDENSER Fig. 79

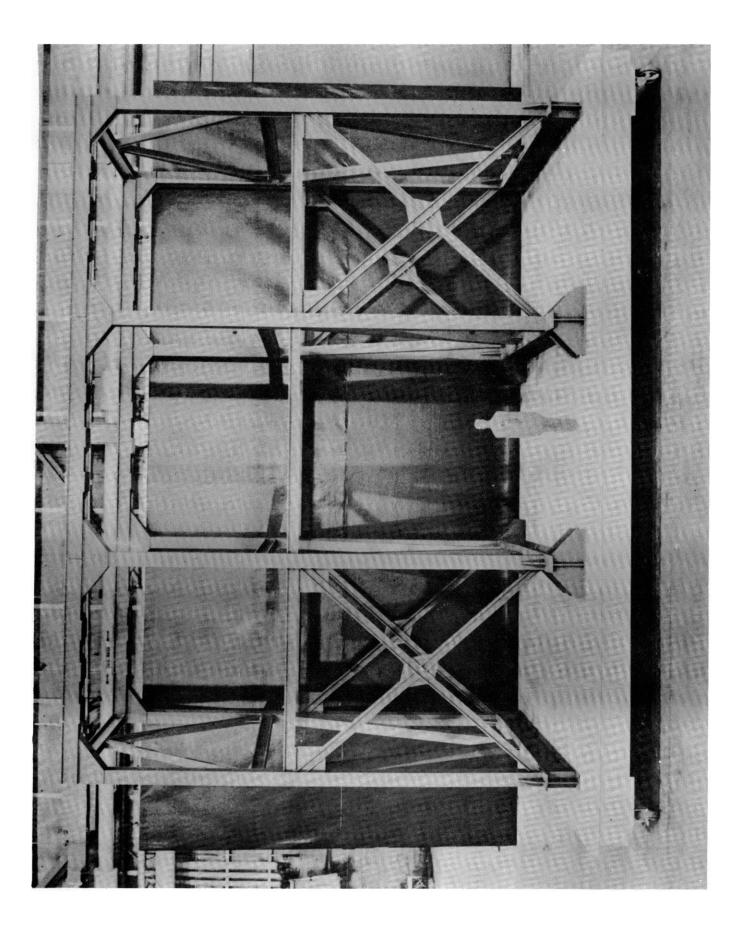

SL-I INSTALLATION OF PL TYPE AIR-COOLED CONDENSER Fig. 80



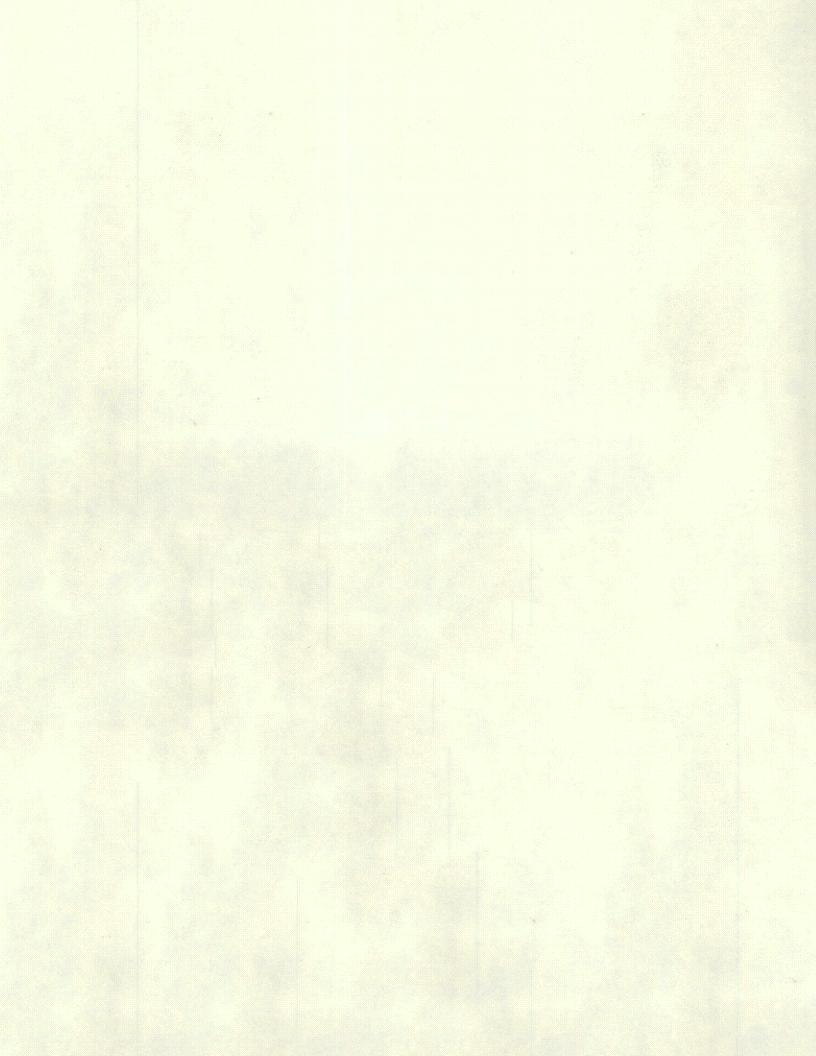
SL-I INSTALLATION OF PL TYPE AIR-COOLED CONDENSER Fig. 81 195

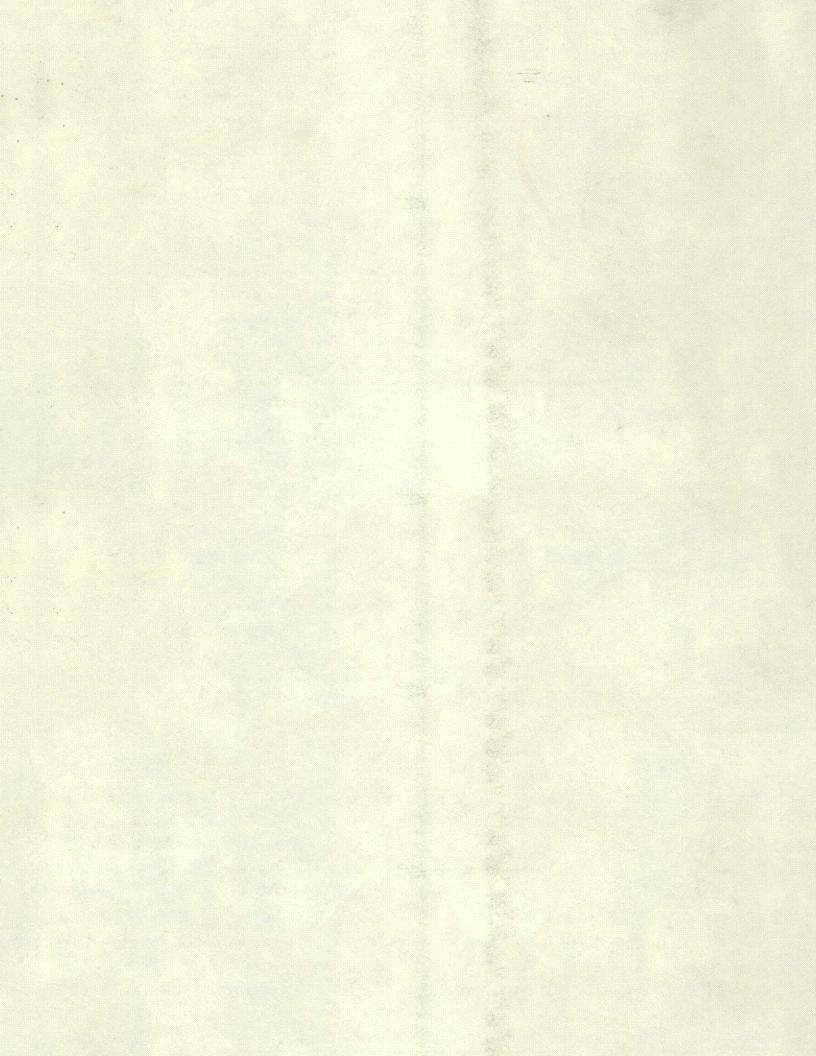



PL-2 1/4 SCALE MOCKUP Fig. 82



PL-2 1/4 SCALE MOCKUP Fig. 84





PL-2 1/4 SCALE MOCKUP Fig. 88

