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The focus of this research is on the development of a real time application that 

uses a low cost EEG headset to measure a player’s state of mind while they play a video 

game. Using data collected using the Emotiv EPOC headset, various EEG processing 

techniques are tested to find ways of measuring a person’s engagement and arousal 

levels. The ability to measure a person’s engagement and arousal levels provide an 

opportunity to develop a model that monitor a person’s flow while playing video games. 

Identifying when certain events occur, like when the player dies, will make it easier to 

identify when a player has left a state of flow. 

The real time application Brainwave captures data from the wireless Emotiv 

EPOC headset. Brainwave converts the raw EEG data into more meaningful brainwave 

band frequencies. Utilizing the brainwave frequencies the program trains multiple 

machine learning algorithms with data designed to identify when the player dies. 

Brainwave runs while the player plays through a video gaming monitoring their 

engagement and arousal levels for changes that cause the player to leave a state of flow. 

Brainwave reports to researchers and developers when the player dies along with the 

identification of the players exit of the state of flow.  
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CHAPTER 1

INTRODUCTION

The Entertainment Software Association (ESA) [3] reported that consumers in the

United States spent 22 billion dollars on video games, hardware, and accessories in 2014. The

ESA also found that almost half of the population in the United States plays video games.

AAA games (those with the highest development costs) require several years of development

and millions of dollars in funds, all of which are wasted if the consumers end up disliking the

game. Developers naturally try to evaluate player experience before their game is released

by letting a small group of people play the game at various points in its development, a

process known as play-testing.

Game developers commonly employ a questionnaire to gauge subjectively how players

feel about their game after play-testing. However, data from questionnaires is subject to

inaccuracies from various sources, including the subject’s memory, their desire to fit in, or

their ability to recognize their own feelings. Physiological data provides a means for accessing

in real time various states of feeling that a person experiences including engagement and

boredom. Game developers have been reluctant to collect physiological data because it has

historically required the use of laboratory grade or medical grade devices which have an

extremely high cost and require a skilled technician to connect the equipment and interpret

the data.

New advances in technology have led to the release of some inexpensive consumer-

grade devices that provide easy access to physiological data. Specifically, several companies

developed new brain computer interfaces that they advertised as a new means of controlling

computers, games, and toys using the power of the player’s mind. However, they are much

more than just controllers; they are tools that provide access to the mental activity of the

player. These cheap and easy to use devices therefore provide an opportunity to develop a

new and practical approach to measuring player experience.

The recently released brain computer interfaces are so new to the research world
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that there is a lack of consensus on their resolution. Researchers continually work with

these devices to discover how well these devices measure a person’s neural activity. Most of

the research indicates that these brain computer interfaces are adequate for capturing basic

neurological information, but naturally do not have the same capabilities as medical grade

devices. Until now, no research has been conducted using off-the-shelf devices to measure

gamer experience.

The main advantages of using physiological data to measure player experience is

that the data can be gathered in real time during gameplay using a real-time application,

the development of which presents us with three major hurdles. Firstly, we must gather

information about the neural resolution of the brain computer interface when used during

gameplay. Secondly, we must devise a methodology for processing the captured data, since

there is no set standard on how to process neurological information from off-the-shelf brain

computer interfaces. Thirdly, we need to devise a way to report the processed data in a

designer-friendly way. Game developers need information about how specific game events

affect the player’s experience, for example, how often the player dies and how this affects

them. Developers also need data about any fluctuations in player experience as they move

throughout a level without engaging with any specific game event.

1.1. Current Evaluation Methods

While knowledge of the player’s state of mind is imperative to the design of a successful

video game (Norman [58]), the current evaluation methods employed by developers to assess

player state of mind are costly, antiquated and ineffective. Game developers and researchers

most commonly employ questionnaires for this purpose. Schwarz [68] found that when used in

isolation, self-report data is highly susceptible to influences from the questionnaires’ wording,

context, and format. Questionnaires also induce a timing issue, since asking the player

to answer the questions while playing the game affects their experience causing negative

feedback (Berta et al. [10]). Chiang et al. [17] learned that asking the player after completing

the game leads to missed and/or false information. To help supplement the questionnaire,

developers and researchers sometimes record game play so that they can play it back later
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to help evaluate player experience; however, the only benefit of replaying game play footage

is that it shows were the players struggled the most within the game, which is not a true

measure of player experience.

1.2. Affective Computing

Affective computing is a term given to the process of computationally measuring

a human’s state of feeling, commonly referred to as affect (Tao and Tan [75]). Affective

computing systems work by collecting data from humans and interpreting that data to find

patterns that associate to human affect. The systems collect data using various inputs such

as cameras and microphones. A camera can be used to interpret the meaning behind facial

expressions and body language while a microphone can be used to detect variations in a

person’s voice that may signify changes in mood. Current research is directed at developing

affective computing system that respond in a rational and strategic fashion to real-time

changes in user engagement (Wu et al. [79]), neurocognitive performance (Parsons et al. [59]),

and arousal (Fairclough et al. [30]).

1.2.1. Psychophysiological Metrics

Psychophysiological metrics are measures of physiological signals produced by humans

interacting within their environment. Psychophysiological metrics are excellent sources of

input for affective computing systems, the most common devices being used are electroen-

cephalogram (EEG), electromyogram, galvanic skin response, and electrocardiograph.

The electroencephalogram is a monitoring tool used to look for variation in electrical

activity in the brain. By placing EEG electrodes on the scalp, scientists can monitor the

brain’s voltage fluctuations over a period of time to identify neural oscillations, commonly

known as brainwaves which are typically broken down into five bandwidths: alpha, beta,

delta, gamma, and theta. Each bandwidths represent the states of activity of a person’s

mind. The alpha band primarily indicates that a person is in a relaxed state of mind. The

beta band is predominate when a person is active and engaged in cognitive tasks. During

deep sleep, while not dreaming, the delta band becomes the prevailing signal. gamma is
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commonly associated with higher levels of brain activity such as memory processing or the

formation of ideas. The theta band indicates extreme relaxation or a light sleep where the

brain is still active and processing information. Combined, these bandwidths create a picture

of a person’s mental activity while engaged in processing information. For example, a person

engaged in a difficult task would produce a strong beta rhythmic activity with some alpha

activity to help keep them in a calm state. Over a period of a study, the brainwaves begin

to form patterns that correspond to specific tasks a person completes. For instance, every

time a person blinks the brain tells the different parts of the eye what to do. The signal

generated to start an eye blink is the same every time and becomes uniquely identifiable in

a person’s brainwave signature. Identifying and decoding other patterns generated by the

brain gives researchers a non-invasive method to identify human affect.

An electromyogram is a monitoring tool designed to measure electrical activity gen-

erated by muscle movement. When a person wants to move, their nervous system sends a

small electrical signal to the muscle that requires movement. An electromyogram records the

electrical activity allowing researchers to identify electrical signals that correspond to specific

muscles. Using an electromyogram in affective computing allows the system to monitor the

human face for expressions, which can correlate to affect. However, electromyograms lack

the capability to measure neurocognitive performance.

Galvanic skin response is the monitoring of the skin conductance between two different

body parts. Skin conductance changes with the amount of sweat generated, which changes

with arousal level. Current galvanic skin response devices typically measure skin conductance

between two fingers on the same hand. Measuring on the fingers proves to be a problem for

video game players, who need the use of their fingers to operate game controls. Some other

locations are available for measuring galvanic skin response, but these alternate locations

often introduce artifacts from muscle movement.

An electrocardiograph is a monitoring tool that measures the electrical activity of the

human heart. Electrocardiograph electrodes placed on a person’s chest measure the electrical

activity generated by the heart and report the number of times the heart beats per minute,
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commonly referred to as heart rate. As a person experiences increases in arousal levels, their

nervous system compensates by increasing their heart rate to send more blood throughout

the body. An affective computing system can use this information to determine whether a

person is in an anxious or exicted state. Electrocardiographs are very effective at measuring

arousal but lack the ability to measure engagement and neurocognitive performance.

Psychophysiological metrics afford researchers and developers a way to obtain infor-

mation about a players experience that would otherwise be quite difficult to gather from

self-report data (Kivikangas [47]). The psychophysiological signal is continuously available

for developers to collect information from their players. This continuous feeback offers sev-

eral key advantages over self-report data when used it to measure player experience. The

first advantage, as describe by Gilleade et al. [33], is that it allows for greater understanding

of how any stimulus in the gaming environment impacs the gamer, not just the parts of the

game designed to produce behavioral responses. The second advantage is that psychophysi-

ological signals allow for the collection of data without interrupting the player allowing for

true immersion into the game. Finally, as reported by Slater et al. [71], psychophysiological

measures may uncover stimuli in the gaming environment that caused a break in the player’s

sense of reality within the game, commonly referred to as presence. Psychophysiological re-

sponses occur without the gamer’s conscious awareness, creating an objective measure of the

gamer’s state, which can include measures of cognitive workload (Berka et al. [9], Brookings

et al. [16], Kobayashi et al. [42]), varying stress levels (Branco and Encarnacao [15], Fair-

clough and Venables [29]), task engagement (Pope et al. [63], Seery et al. [69]), and arousal

(Bradley and Lang [14], Cuthbert et al. [23] [24]).

1.3. Off-The-Shelf Electroencephalography

Electroencephalography (EEG) provides a means of accessing and recording neural

activity, thus allowing a computer to retrieve and analyze information from the user’s brain-

wave patterns. Until recently, Birbaumer [12] points out, the brain computer interfaces were

developed as communication tools to allow a person to integrate with external devices. As

an example, a person with paralysis could use a brain computer interface to operate comput-
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ers, prosthetic limbs, and motorized chairs. Research conducted by Zander and Kothe [82]

demonstrated that these same brain computer interfaces have the capability for near real-

time decoding of a person’s neurocognitive or affective state, opening up a whole new way

to collect data from individuals.

Affective computing has recently seen great advancement due to the improvements in

off the shelf EEG brain computer interfaces, which allow researchers from all areas of study

an inexpensive alternative to laboratory-based systems. The primary function for these EEG

devices, until now, is as an input for players to interact with video game characters in the

next generation games commonly referred to as neurogaming. Neurogames map specific

neural activity to various game controls, so as the player reproduces these neural patterns

they have the ability to interact with the game without the use of a controller. Recent

studies demonstrated the potential of neurogaming applications for interfacing with well-

known games such as Pacman (Reuderink et al. [64]), Tetris (Pires et al. [62]), and World of

Warcraft (Van et al. [76]).

Neurogaming platforms use a gamer’s psychophysiological metrics to complete tasks

or alter the mood of the game. However, the research design, data logging, and the control

algorithms found in neurogaming are not systematic and studies to support their use remain

limited. The growing trend in neurogaming literature is to recognize a user’s cognitive and

affective states in real time. While establishing the optimal relationship among frequency

bands, task engagement, and arousal states is one of the main goals of neurogaming, these

indices are typically developed in isolation and do little to take into account cognitive and

affective information. Currently there is no standardized method for measuring a person’s

cognitive and affective information in real time.

A popular EEG-based brain computer interface used for research is the Emotiv EPOC,

a compact, wireless headset that requires comparatively little effort to set up and allows much

greater flexibility and mobility than traditional EEG. The EPOC was aimed at the gaming

market and is not classified as a medical device though a few researchers Cinar and Sahin [18],

Rosas et al. [65], and Vi and Subramanian [77] have adopted it for a variety of applications
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including detecting facial movements, emotional states, and imagined motor movement.

Sourina and Liu [73] used the EPOC to measure a user’s affective states while they

watched film. Researchers have also investigated different EEG processing algorithms, with

the EPOC, to assess classification of positive and negative emotion elicited by pictures (Jatu-

paiboon et al. [38], Pham and Tran [61]) and evaluation of cognitive workload (Anderson

et al. [2]). Esfahani and Sundararajan [28] used the EPOC to investigate different EEG

processing algorithms to assess classification of shapes that the participants were thinking

about. The goal of their research is to develop a way to use brain computer interfaces within

a computer aided design program. Although their results were not the strongest, Esfahani

and Sundararajan’s research offers some potential uses for the Emotiv EPOC EEG headset.

Although the Emotiv EPOC EEG headset does not have the fidelity of a laboratory

EEG device it still offers the ability to measure a gamer’s brain wave signature. Duvinage

et al. [26] compared the Emotiv headset (Cost: 750.00) to the Advanced Neuro Technology

(ANT) (Cost: 50,000.00) acquisition system during a run with the P300 speller system.

The results from this research showed that the data recorded by the Emotiv EPOC headset

was not as precise as the ANT system. Duvinage et al. indicated that the measurement

taken from Emotiv had far above chance classification rates concluding that Emotiv was

measuring EEG. Although the Emotiv headset did not match the accuracy of the ANT

system (a medical grade device), it was able to capture EEG signal at a successful level

that was deemed adequate for game psychophysiological testing. With the benefit of being

non-invasive to the wearer, the Emotiv is a tool that is practical for use by game developers

and researchers.

1.4. Electroencephalography to Measure Player Experience

The Emotiv EPOC offers an opportunity to gather data about the users-state during

game play, where currently little work is done to use EEG to measure player experience

while playing video games. The limited research that does exist uses laboratory grade EEG

devices, which is impractical for use by game developers. Salmin and Ravajja [66] used EEG

to isolate specific game events from the EEG data. Using Super Monkey Ball 2 as their
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test platform, they were able to detect changes in the brainwave bands as different event

occurred during game play. Research by Murthy and Fetz [52] and Steriade [74] show that

beta rhythmic activity increases with attention and tasks requiring vigilance. Salmin and

Ravajja found this to be true as well during video game play.

Nacke et al. [55] showed that EEG data can determine a player experience across

entire game levels. Using a Half Life 2 modification Nacke and colleagues captured the

EEG signature of players as they played through three different levels designed to induce

boredom, immersion, and flow. Nacke’s data showed significant fluctuation in brainwave

activity as the player moved across the three different levels, specifically an increase in the

theta band during the immersion level. In other research, Nacke [54] and Wirth et al. [78]

discovered a relationship between beta and gamma brainwave activity attributed to spatial

presence of the player within virtual gaming environments. Berta et al. [10] used EEG and

other physiological signals to assess a player state by using game levels designed to induce

boredom, flow, or anxiety. Using machine-learning algorithms, Berta classified player EEG

data into one of the three categories, achieving a correct classification rate of 67 percent. The

work performed by Nacke and Berta focuses on measuring a player’s experience across an

entire game level versus measuring changes throughout the level. Averaging player experience

across an entire level does not allow for the identification of specific game events that affect

the player’s experience negatively.

1.5. Player Experience

No standardized descriptions exist that best explain player experience. This is due

to the large number of factors that contribute to the way a person feels about a video game.

For example, some players may not like a game because it is too hard or too easy. If a person

thinks the game has too much repetition they may become bored. Individuals will invariably

have different reactions to a given video game, so developing a method to measure player

experience requires looking at the changes to an individual person’s affect as they play a

video game.
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1.5.1. Flow in Video Games

According to Csikszentmihalyi [20], [21], [22], the general understanding of “flow” is

as an optimal state of consciousness that is best characterized by a state of concentration

so focused that it results in complete immersion and absorption within an activity. In

video games, flow or immersion is a state in which the player is in a preferred level of both

engagement and arousal. If the player is either too engaged or aroused they are in a state

of stress where if it is too low, the player is in a state of boredom. Figure 1.1, adapted

from Csikszentmihalyi [20], illustrates the flow channel which is used to keep the player in

complete immersion. As game play constantly shifts, flow channels are required to adjust

over the course of the game. When a player starts playing a new game their skill level is

lower, requiring lower intensity and complexity. However, as the player’s ability level and

familiarity with the game increases, the intensity and complexity must increase or the risk

increases that the player will become bored. This works in reverse as well, if the game starts

off with too much intensity and complexity for a player’s skill level they become frustrated

or stressed. This makes it important to be able to find a players optimal engagement and

arousal levels to keep them in the flow channel.

1.5.2. Electroencephalography for Establishing Indices of Engagement

The first part to measuring player experience requires knowing the player’s level of

engagement while they play the video game. Currently, no research exists that utilizes

off-the-shelf EEG tools to measure a person’s engagement level. However, several studies

conducted with medical grade EEG devices have demonstrated the successful ability to deter-

mine a person’s engagement levels from neural activity. Pope et al. [63] built an automation

task that fluctuated based upon the user’s engagement level. As the operator’s engagement

level would increase the system would perform more of the operator’s duties. As their en-

gagement level decreased the system would do less of the operator tasks. Freeman et al. [31]

expanded on this same system by evaluating the performance of each task along with using

absolute values of engagement versus just looking at increasing and decreasing engagement.

Task engagement and mental workload are areas that Berka et al. [9] explored as a way to
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Figure 1.1. Two-dimension representation of the flow channel for video

games, the figure depicts the need for video games to increase intensity and

complexity to keep a player in a state of flow as their ability level increases.

help identify more accurate and efficient methods for people to interact with technology with

the possibility of developing more efficient work environments that increase motivation and

productivity. Their results suggest that EEG measurement reflects information gathering,

visual processing, and attention allocation.

Smith and Gevins [72] used a flight simulator to subject participants to low, mod-

erate or high difficulty tasks to see how players’ brains responded. The results from their

study showed an increased frontal theta response along with reduced parietal alpha during

demanding tasks. Work conducted by Fairclough et al. [30], Holm et al. [37], and Nassef et

al. [56], produced similar results indicating that an increase in theta and a decrease in alpha

correlated with an increased number of tasks along with amount of time a person is awake.

Yamada [81] measured frontal theta activity along with eye blinking and found that children
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playing video games had higher theta activity along with a high degree of blink inhibition.

Recently, Kamzanova et al. [39] compared the sensitivity of various EEG engagement in-

dices during time-on-task effect and cueing to determine which index was most effective for

detecting reduced alertness linked with a decline in vigilance.

1.5.3. Electroencephalography for Establishing Indices of Arousal

The second part of measuring player experience requires knowing the player’s arousal

levels while playing a video game. Kim et al. [41] performed a review in which they found

fluctuation in various brain wave frequency bands provides an excellent tool for assessing

arousal and affect. Miskovic and Schmidt [50] exposed participants to highly arousing im-

ages while they were connected to an EEG device in hopes of isolating variations in neural

activity. They found an increase in the overall EEG coherence, specifically in the beta band.

Several studies performed by Balconi and Lucchiari [5], Aftanas et al. [1], and Sammler et

al. [67] found theta power event-related synchronization during transitions between affective

states. In addition to spectral power and waveforms, Wyczesany et al. [80] found inter-

actions between pairs of neural oscillations, such as phase synchronization and coherence,

which commonly implies affective states of hedonic arousal.

Nie et al. [57] suggested that higher brain wave frequency bands may have greater

contribution to arousal response than lower brain wave frequency bands. Often, researchers

emphasize the potential of alpha power variance with the negative and positive valence states

(Balconi and Mazza [7]) or with discrete affective states such as happiness, sadness, and fear

(Balconi and Lucchiari [5]). Davidson [25] reported finding alpha power frontal asymmetry

as a steady correlation of valence. Gothlib [35] expanded on this idea suggesting that frontal

alpha asymmetry may reflect the approach/avoidance aspects of emotion. Other research

by Balconi and Lucchiari [6], Keil et al. [40], and Muller et al. [51] found that gamma power

event-related synchronization and de-synchronization related to affective states such as hap-

piness and sadness. Martini et al. [46] saw an increase in the gamma phase synchronization

index when they introduced unpleasant visual stimuli to participants.
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1.6. Manuscript Outline

The following outline offers a framework for a real-time method of measuring player

experience. Chapter 2 describes the procedures, apparatus, and measures used in the study.

Further, a description of participants is included. Chapter 3 describes the EEG power

spectral bands drawn from the Emotiv EPOC, the testing of multiple EEG engagement

indices, discusses the use of arousal-valence indices, and the mixing engagement and arousal

indices to build a flow model. Chapter 4 describes the implementation of machine learning

techniques to identify game events. Chapter 5 discusses implementation of the framework.

Chapter 6 is the future work and conclusion.
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CHAPTER 2

METHODOLOGY1

Developing a program that measures players experience using EEG first requires

knowing how to process and analyze the data that the EEG collects. There is no established

framework for analyzing EEG data collected while playing video games and the minimal

availabel research using EEG to measure player experience was conducted with medical

grade EEG equipment. Given this, the first part of developing a framework requires collecting

more information about the off-the-shelf EEG equipment. Specifically, how it gathers data

and how effective and accurate when measuring video games. Answering these questions

requires collecting EEG data from people as they play video games, then analyzing their

data to standardize measuring player experience.

2.1. Participants

A study was conducted of thirty people (66 % female, mean age = 20.87, range 18 to

43). Participants were recruited from undergraduate and graduate schools; education levels

ranged from 13 to 20 years (See Table section 2.1). Ethnicity was as follows: Caucasian

(n=20), African American (n=1), Hispanic (n=4), Native American (n=1), and Asian Pa-

cific (n=4). Participants reported they used a computer at least once every day with 30 %

saying they used the computer several times a day. 66 % participants rated themselves as

experienced, 27 % rated themselves as somewhat experienced, and 7 % rated themselves as

very experienced when ranking their computer competency. Homogeneity of the sample was

found in that there were no significant differences among participants relative to age, educa-

tion, ethnicity, sex, and self-reported symptoms of depression. Strict exclusion criteria were

enforced to minimize possible confounding effects of comorbid factors known to adversely

impact cognition, including psychiatric conditions (e.g., mental retardation, psychotic dis-

orders, diagnosed learning disabilities, attention deficit/hyperactivity disorder, and bipolar

1Parts of this chapter have been previously published, either in part or in full, from T. McMahan, I. Parberry,
and T. D. Parsons, “Modality Specific Assessment of Video Game Player’s Experience Using the Emotiv”,
Entertainment Computing , Vol. 7, pp. 1-6, March 2015, with permission from Elsevier B.V.
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disorders, as well as substance-related disorders within 2 years of evaluation) and neurologic

conditions (e.g., seizure disorders, closed head injuries with loss of consciousness greater than

15 minutes, and neoplastic diseases). All participants were right handed and had at least

average computer skills. Game playing skills ranged from casual cell phone games to playing

every day on a personal computer or a game console. The participants received class credit

for their participation in the study.

2.2. Apparatus

2.2.1. Super Meat Boy

Super Meat Boy [49] is a platform game in which players control a small, dark red,

cube-shaped character named Meat Boy (See Figure 2.1). The participant played a cube of

meat jumping around the level to avoid saw blades to reach their goal of rescuing bandage

girl. This game requires the minimum amount of keys to play (arrow keys and space bar) thus

making it easy for any level of gamer to achieve success. As the player progresses through

the game the levels get increasingly difficult by adding more saw blades and large jumps. A

goal of the game is to get through each level as fast as possible. The core gameplay requires

fine control and split-second timing (Egenfeldt et al. [27]). Primary game events used for this

study included: 1) Death Events; and 2) General Game Play. The “Death events” occurred

when the participant’s character died. Although there are a number of possible ways for a

character to die in a game (e.g., the character gets sliced to pieces, or falls into acid, or gets

skewered on needles), samples for Death Events came from the character falling into acid.

The “General Game Play” was differentiated from “Death Events” in that General Game

Play are periods in which the player had not experienced any death events for 1 minute

before or after “General Game Play” sampling.

2.2.2. Two-Picture Cognitive Task

Participants saw a pair of color pictures of a landscape (See Figure 2.2), and were

given the evaluative task of identifying any differences between the pair. Unknown to the

participants, the pictures were identical.
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Figure 2.1. Screen shot from Super Meat Boy.

Figure 2.2. Two-Picture Cognitive Task presented to participants.
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Figure 2.3. Venomous head crab used in the Spider Jump Arousal Stimulus.

2.2.3. Spider Jump Arousal Stimulus

The Spider Jump Arousal stimulus was first storyboarded and designed on paper. A

3-D model of a venomous headcrab was taken from the Half-Life 2 game [19] (See Figure 2.3).

The venomous headcrab leaps with incredible speed while releasing an angry squeal when

a suitable host is in a clear line of sight. The participants encountered the Spider Jump

Arousal Stimuli without any cue or knowledge that it would occur.

2.2.4. Game Experience Survey

Participants answered a series of questions assessing their prior videogame experience

and other personal characteristics (See Appendix A and Table 2). Participants reported

the number of hours they spent playing video games on their cell phones (M = 3.47), on

their computer (M = 3.47), and on their game console (M = 2.3). 20 % of the participants

reported playing video games more than 20 hours per week. The participants also reported

whether or not they classified themselves as “gamers”, 33 % responded as being part of this

category. An interesting finding from the survey was that a portion of women played games
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Figure 2.4. Emotiv EEG sensor locations.

on their cell phone an average of 4 hours a week which is higher than males and females who

classified themselves as gamers, yet did not classify themselves as gamers.

2.2.5. Emotiv EPOC EEG

This Emotiv EPOC EEG headset has 14 electrodes (saline sensors) locating at AF3,

AF4, F3, F4, F7, F8, FC5, FC6, P7, P8, T7, T8, O1, O2 (see Figure 2.4) and two additional

sensors that serve as CMS/DRL reference channels (one for the left and the other for the right

hemisphere of the head). The Emotiv EEG’s 14 data channels are spatially organized using

the International 10–20 system. The Emotiv EPOC headset does not require a moistened

cap to improve conduction. The sampling rate is 128Hz, the bandwidth is 0.2–45Hz, and

the digital notch filters are at 50Hz and 60Hz.

2.3. Procedure

Upon arriving at the testing office, the participants read and signed an informed

consent (See Appendix B). Included in the informed consent was a waiver to allow recording

of the participant during the study. The participants were then seated in a comfortable
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Figure 2.5. Chair specifically designed to for participants to sit in with key-

board, sound and comfort.

chair (see Figure 2.5) and given a keyboard and mouse to complete a questionnaire about

their computer and game experience. The game was displayed on a Samsung 60 inch plasma

screen (see Figure 2.6). The participants sat in a chair with a built in keyboard tray,

along with a speaker system and USB port around head level to minimize the distance

between the Emotiv headset and the receiver/transmitter. A member of the study combed

the participants’ hair on the left, mid-line, and right sides of their scalp firmly in order

to reduce electrode impedances (Mahajan and McArthur [45]). After cleaning the relevant

areas on the face and mastoids, the study member positioned the Emotiv EEG headset on

the participant’s head. The examiner confirmed impedances in connections between each

electrode and the participant’s scalp.
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Figure 2.6. Testing environment.

Participants first watched a video designed to establish a baseline. During the video

the participants were told “to relax and try not to think about anything”. In the video the

screen was blank for two minutes to establish a minimum brain wave activity. Next, the

participant completed the Two Picture Cognitive Task, which required them to compare

two pictures to determine the difference between them. After a set amount of time passed,

the spider jump arousal stimulus displayed and startled the participant. This allowed for

the establishment of a brain wave signature for basic cognitive processing and arousal. After

the spider jump arousal stimulus the participants were presented with 90 seconds of blank

screen viewing to allow them to return to a steady state. During the Super Meat Boy Task

the researcher aided the participant with the first few levels to allow the player to acquaint

themselves with the rules and game controls. The experimenter informed the participants
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Figure 2.7. Chronological orders of events that participants encountered.
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Figure 2.8. Image of recording setup.

that they would play Super Meat Boy for 15 minutes and that they were to advance as far

as they could in the game. The participants played the game with the lights turned off to

help immerse the player into the game and reduce glare from overhead lights.

The examiner captured each participant’s game play footage in 1080p HD (60 frames

per second) using a Hauppauge video capture device. This allowed for the synchronization

of the participants game play to their EEG data (See Figure 2.8). Each participant was also

recorded using a Logitech 9000 HD webcam to help isolate events (facial or body movements)

that may affect the EEG data. The experiment required the use of two computers. The first

computer captured EEG and video data, with all non-essential programs closed to ensure

minimal disruption. The participant played Super Meat Boy on the second computer. Using

two computers alleviated the problem of other programs interfering with the capture of EEG
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data. OpenViBE drift correction allowed the capture of EEG data at 128 Hz sample rate,

minimizing any syncing issues between the EEG data and the video recording of game play.

Syncing all video recordings with EEG recording software involved the use of screen captures

before and after every section of the study (baseline video and game play). Each screen shot

produced a time stamp for EEG data and video to establish the location of the start and

end of each section. The screen shots were saved to reference later during the data analysis

phase.

2.4. Preprocessing EEG Data

Before analysis of the EEG data begins, it must first undergo some basic prepro-

cessing. The data needs to have noise and artifacts removed, as well as a transformation

applied to convert it out of the raw electrical signal. Performing this preprocessing has been

established and is common in most research involving EEG.

Artifacts such as blinking, head movements, or body movement can cause unwanted

data in the EEG signal. Most EEG analysis requires removal of these artifacts to help identify

medical issues. However, this is not necessarily a detrimental issue when used for game play

analysis. Research performed by Bos et al. [13] found that eye blinking, head movements,

and body movements are common in games and can suggest a person’s current state of

feeling. Bianchi et al. [11] took it further and was able to show that body movement and

other artifacts can actually signify engagement. As each participant ran through the study,

the researcher annotated the times any visibly noticeable deflection of the EEG equipment

or body movement occurred. The Emotiv SDK automatically detects and records eye blinks

which allows for an easier way to identify the events within the EEG data.

The next step in preprocessing EEG data is to segment the data into equal length

time intervals, commonly referred to as epochs. The epochs required for this research broke

down into 5 different modalities: 1) baseline—staring at a blank screen; 2) Two-Picture

Cognitive Task; 3) Spider Jump Arousal Stimulus; 4) General Game Play; and 5) Death

Events. The epochs for each modality consisted of 100 ms before the onset of each event (0

ms), and ended 750 ms after the onset of the same event. After sub dividing the data, the
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EEG data passes through a low-pass filter and a high-pass filter. The low pass filter removes

unwanted noise commonly caused by changes in skin conductance. The low pass filter is set

to cutoff any frequency above 50Hz. The high pass filter removes noise caused by muscle

electrical activity. The high pass filter is set to cutoff any frequency below 1Hz.

The final step in preprocessing EEG data is to apply a transformation that converts

the data from the time domain into the frequency domain commonly referred to as calculating

the power estimates (µV2). Applying a 1 second Hamming window with no overlaps and

then a fast Fourier transform (FFT) to the data, allows for the acquisition of the various

brainwaves delta (1 – 4 Hz), theta (4–7 Hz), alpha (7–13 Hz), beta (13 – 25 Hz) and gamma

(25 – 43 Hz). All 14 sensors locations on the Emotiv EPOC headset produce their own

measure for each bandwidth. Typically in EEG studies, the number of channels (e.g., 32, 64,

128, or 256 EEG channels) ranges from 32 channels (for routine exams) up to 256 channels

(for source estimation) and the systems are able to sample at up to 1000Hz. Given that

the Emotiv has only 14 channels and the data sample rate is only 128Hz, along with the

individual measurement from each sensor, the average was calculated across all 14 sensors

to obtain a global average for each frequency band. Following Anderson et al. [2], the

baseline and stimulus signals were transformed to determine the power change and frequency

shift induced by the task. These values calculate the cognitive processing experienced at

each of the 14 sensors for a given task. The spatial averaging of the 14 values gives a

single measurement for analysis. Applying the natural logarithm to the resulting EEG data

normalizes the data for further analysis.
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Variables
Total

(N = 30)
Percentage

Gender

Female 20 66.67 %

Male 10 33.33 %

Age

18–19 17 56.67 %

20 – 21 8 26.67 %

22 – 24 2 6.67 %

28 – 43 3 10.0 %

Ethnicity

African American 1 3.33 %

Asian 4 13.33 %

Hispanic 4 13.33 %

American Indian 1 3.33 %

Caucasian 20 66.67 %

Highest Level of Education

High School Diploma 1 3.33 %

Some College 24 80.0 %

Associate Degree 2 6.67 %

Bachelor’s Degree 3 10.0 %

Computer Compentency

Somewhat Experienced 8 26.67 %

Experienced 20 66.67 %

Very Experienced 2 6.67 %

Computer use Frequency

Several Times a Day 9 30.0 %

Every Day 21 70.0 %

Table 2.1. Demographics of participants.
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Female Male Gamer Non-Gamer

N 20 10 10 20

Gamer 4 6

Non-Gamer 16 4

Age (SD) 19.9 (2.30) 22.9 (7.71) 19.5 (1.84) 21.6 (5.80)

Ethnicity

African American 1 0 0 1

Asian 3 1 0 4

Hispanic 3 1 0 4

American Indian 1 0 0 1

Caucasian 12 8 10 10

Game Use (Hours)

Cell Phone (SD) 4.0 (3.13) 2.4 (3.06) 3.0 (2.98) 3.7 (3.28)

Computer (SD) 2.2 (1.98) 6.1 (3.48) 6.1 (2.92) 2.2 (2.37)

Console (SD) 1.7 (2.32) 3.6 (3.10) 4.0 (3.20) 1.5 (2.04)

Table 2.2. Demographics males versus females and gamer versus non-gamer.
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CHAPTER 3

EXPLORING THE EMOTIV EPOC HEADSET1

There is no set standard on how to process neurological information that comes from

the Emotiv EPOC headset. So to develop a framework that measures player experience we

first need to explore the headset’s capabilities. The major goal while evaluating the Emotiv

headset is to find methods that will work in real time. Most research involving EEG data

uses post processing techniques that will not work in real-time. Thus our focus will be on

systems that can be implemented in real time. The first step in the evaluation is looking

at the raw data from the headset. Knowing that the Emotiv EPOC meets the minimum

need for this type of research, we can apply EEG algorithms designed to extract specific

information about the neural activity of a person. Finally, we must find a way to combine

this information so that it reports meaningful information for our program.

3.1. Emotiv EPOC Neural Resolution

The Emotiv EPOC measures the electrical signal produced by the human brain and

records the data in the form of voltage measurements. Applying a fast Fourier transform

(FFT) to the raw voltages allows us to convert the data into the power spectrum and

extract the various brainwaves. Evaluating these brainwaves for changes will help determine

the Emotiv’s resolution, specifically the changes in brainwaves during the different measured

modalities (Two Picture Cognitive Task, General Game Play, and Death Events). Being

able to find changes in the EEG data during each modality will confirm the headset has the

basic capabilities to provide measurable date of player experience.

3.1.1. Comparing Individual Power Estimates

Individual power estimates were compared using a repeated-measures analysis of vari-

ance (ANOVA) for the assessment of the following modalities: 1) Two Picture Cognitive

1Parts of this chapter have been previously published, either in part or in full, from T. McMahan, I. Parberry,
and T. D. Parsons, “Modality Specific Assessment of Video Game Player’s Experience Using the Emotiv”,
Entertainment Computing , Vol. 7, pp. 1-6, March 2015, with permission from Elsevier B.V.
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Figure 3.1. EEG beta power mean values ln[µV2] for differences between

baseline and each modality that was tested.

Task; 2) simple game play (General Game Play) using Super Meat Boy; and 3) complex game

events (e.g., Death) using Super Meat Boy. Results from the repeated measures ANOVA

using modalities as a within-subject factor for dependent variables delta (1-4 Hz), theta (4-7

Hz), alpha (7-13 Hz), beta (13 – 25 Hz), and gamma (25 – 43 Hz; ln[µV2]) revealed a signif-

icant difference for beta (F(2, 28) = 6.213, p = 0.004, partial eta2= 0.18) (see Figure 3.1),

delta (F(2, 28) = 4.698, p = 0.01, partial eta2 = 0.14)see Figure 3.2), and gamma (F(2, 28)

= 8.875, p = 0.0001, partial eta2 = 0.23)(see Figure 3.3) power estimates was found during

the different modalities (See Table subsection 3.1 for descriptive).

Follow-up tests of repeated within-subject contrasts revealed that modalities had

differing impacts on power estimates. Beta power was significantly increased during the

Death Event in comparison with the Two-Picture Cognitive Task (t(1, 29) = 2.97, p <0.006;

see Figure 3.4). Gamma power was also significantly increased during the Death Event in

comparison with the Two-Picture Cognitive Task (t(1, 29) = 2.99, p <0.006; see Figure 3.6).

Interestingly, there were no significant difference between General Game Play and the Two-
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Figure 3.2. EEG delta power mean values ln[µV2] for differences between

baseline and each modality that was tested.

Figure 3.3. EEG gamma power mean values ln[µV2] for differences between

baseline and each modality that was tested.
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Mean Std. Deviation
Std. Error

Mean

Two Picture Task

Alpha 3.167 0.066 0.012

Beta 1.592 0.126 0.023

Delta 6.999 0.014 0.003

Theta 6.997 0.014 0.003

Gamma 0.409 0.232 0.042

General Game Play

Alpha 3.033 0.183 0.033

Beta 1.800 0.407 0.074

Delta 7.000 0.000 0.000

Theta 7.000 0.000 0.000

Gamma 0.300 0.466 0.085

Death Events

Alpha 3.219 0.202 0.037

Beta 1.717 0.232 0.042

Delta 7.008 0.034 0.006

Theta 7.001 0.027 0.005

Gamma 0.756 0.451 0.082

Table 3.1. Description of the three modalities.

Picture Cognitive Task.

Comparison of low intensity (General Game Play) gaming events with high intensity

(e.g., Death events) using repeated within-subject contrasts revealed that beta power was

significantly increased during the Death Event in comparison with the General Game Play

(t(1, 29) = 2.536, p = 0.01; see Figure 3.4). Delta power was also significantly increased
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Figure 3.4. EEG beta power mean values ln[µV2] for comparisons between

each modality that was tested.

during the Death Event in comparison with the General Game Play (t(1, 29) = 2.438, p

= 0.02; see Figure 3.5). Further, gamma power was also significantly increased during the

Death Event in comparison with the General Game Play (t(1, 29) = 3.372, p = 0.002; see

Figure 3.6).

3.1.2. Overview of Findings

The primary results were: (a) a significant difference was found among different

gaming modalities (Two-Picture Cognitive Task; General Game Play; Death events) for

beta and gamma; (b) gaming modalities had differing impacts on power estimates, with

beta and gamma power being significantly increased during the Death Event in comparison

with the Two-Picture Cognitive Task; and (c) comparison of low intensity (General Game

Play) gaming events with high intensity (e.g., Death events) revealed that beta and gamma

power were significantly increased during the Death Event in comparison with the General

Game Play. Interestingly, there were no significant difference between General Game Play
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Figure 3.5. EEG delta power mean values ln[µV2] for comparisons between

each modality that was tested.

and the Two- Picture Cognitive Task.

3.1.3. Gaming Modalities had Differing Impacts on Power Estimates

Modality type was found to have differing impacts on power estimates. Beta power

was significantly increased during the Death Event in comparison with the Two-Picture Cog-

nitive Task. Activity in the beta range is known to be important for attention and motor

processing (Gross [36]). Given that Death Events require increased attention, these results

are not surprising. Beta rhythm has been shown to increase with attention and vigilance

in general (Murthy and Fetz [52], Steriade [74]) and during video game play specifically

(Salminen and Ravaja [66]). For example, Salminen and Ravaja [66] found that different

events in the platform game Super Monkey Ball 2 evoked oscillatory responses in beta.

Likewise, gamma power significantly increased during the Death Event in comparison with

the Two-Picture Cognitive Task. Gamma oscillations commonly signify the brain’s ability

to integrate various aspects of a stimulus into a coherent whole. Further, Engel et al. en-
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Figure 3.6. EEG gamma power mean values ln[µV2] for comparisons be-

tween each modality that was tested.

gel2001dynamic found gamma changes in a host of other cognitive processes: attention,

arousal, object recognition, and top-down modulation of sensory processes. The increased

beta and gamma between Death Events and the Two-Picture Cognitive Task reflect find-

ings in the literature that suggest a link between EEG beta activity, gamma activity and

perceived action possibilities in a virtual gaming environment (Nacke [54], Wirth et al. [78]).

Interestingly, there were no significant difference between General Game Play and

the Two- Picture Cognitive Task. This may reflect a lack of differences in the cognitive

resources needed for the two tasks. The cognitive processes needed for the Two-Picture

Cognitive Task involve those needed for staring at two pictures and performing a visual

search for any differences. This is a low arousal and simple cognitive search task. Likewise,

General Game Play is low in arousal and requires the participant to simply scan the viewable

play area for safe areas to jump. Changes in beta and gamma occur when the participant

moves from a low intensity search process to a high threat and high intensity Death event.

Comparison of low intensity (General Game Play) gaming events with high intensity

32



(e.g., Death Events) using repeated within-subject contrasts revealed that beta and gamma

were significantly increased during the Death Event in comparison with the General Game

Play. As mentioned above, the beta and gamma results are consistent with expectation.

3.1.4. Individual Power Estimates for Gamer Versus Non-Gamer

Using a series of one-way analysis of variances (ANOVAs) tests were performed to

compare the EEG signatures between gamers and non-gamers during each modality (Blank

Screen, Two Picture Task, Spider, Game Play, and Death Event). Table subsection 3.2 shows

the means and standard deviation for each modality. The Levene’s test was not significant

for any of the modalities (Blank Screen Levene’s F (1, 28) = 1.31, p = 0.261; Two Picture

Task Levene’s F (1, 28) = 0.59, p = 0.450; Spider Levene’s F (1, 28) = 0.72, p = 0.405;

Game Play Levene’s F (1, 28) = 0.48, p = 0.493; Death Event Levene’s F (1, 28) = 0.40, p

= 0.531), meaning equal variance can be assumed. The results from the one-way ANOVAs

indicate that there are no significant difference between gamer and non-gamer in any of the

different modalities (Blank Screen F (1, 28) = 0.002, p = 0.963; Two Picture Task F (1,

28) = 0.297, p = 0.590; Spider F (1, 28) = 0.665, p = 0.422; Game Play F (1, 28) = 0.049,

p = 0.826; Death Event F (1, 28) = 1.431, p = 0.242). The results suggest that there is

not a distinguishable difference in the EEG signatures during each modality between gamers

and non-gamers. EEG signatures may not be able to be used to help identify gamers from

non-gamers. However, this does suggest that player experience does not have an impact

when comparing across the different modalities.

3.2. Measuring Engagement with the Emotiv EPOC

There is no established outline for measuring player experience. One solution is to

develop a framework that follows the concept of flow. Keeping a person in an adequate

flow state requires that they always have the appropriate levels of engagement and arousal.

Too much deviation in engagement or arousal leads to the person being in possible states

of stress or boredom. The first part of implementing the flow model requires the Emotive

EPOC headset to be able to measure a person’s engagement levels. Various EEG algorithms
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N Mean Std. Deviation

Blank Screen

Gamer 10 0.154 0.009

Non-Gamer 20 0.154 0.013

Two Picture Task

Gamer 10 0.159 0.009

Non-Gamer 20 0.156 0.015

Spider Jump Arousal Stimulus

Gamer 10 0.182 0.031

Non-Gamer 20 0.193 0.036

Gerneral Game Play

Gamer 10 0.157 0.011

Non-Gamer 20 0.156 0.015

Death Event

Gamer 10 0.161 0.026

Non-Gamer 20 0.171 0.020

Table 3.2. Gamer versus non-gamer performance.

exists that measure a person’s engagement level, however these algorithms have only been

implemented with laboratory grade EEG devices and require further testing with the Emotiv

to validate its compatibility.

3.2.1. EEG Engagement Indices

Measuring engagement level is one part of determining a player’s experience while

playing a video game. Pope et al. [63] and Freeman et al. [31] have shown that an engagement

index can be calculated by taking the ratio of beta / (alpha + theta) [Index 1] EEG bands

(see Table 3.3). Berka et al. [9] was able to show that the engagement index reflected a

person’s process of information-gathering, visual scanning and sustained attention. Gevins
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and Smith [32] introduced a different task engagement indicator that looks at the ratio of

frontal midline theta activity to parietal alpha locations (theta/alpha) [Index 2]. A third

index was identified by Yamada [81] that looks at activity at the frontal theta [Index 3] sites

which indicate increased attention. Kamzanova et al. [39] compared these indices across

time-on-task effects and workload manipulation with their findings indicating that there is

a difference between tasks that are queued versus non-queued tasks.

Indices Brainwave Bands Notes

Index 1 beta
alpha+theta

Averaged across all sensor loca-

tions [9, 31, 63].

Index 2 theta
alpha

Average frontal midline theta and

average parietal alpha [72, 32].

Index 3 theta Averaged frontal theta [81].

Table 3.3. EEG indices.

An example of brain activity during General Game Play and an example of a Death

Event can be seen in Figure 3.7. This shows higher levels of theta and beta during the death

event compared to General Game Play.

• Index 1 (beta/(alpha + theta)) was calculated for each participant using the single

measurement from all sensors.

• Index 2: (frontal theta/parietal alpha) was calculated by using the theta average at

frontal lobe locations F3, F4, FC5, FC6 and dividing them by the alpha averages

at the parietal locations P7, P8.

• Index 3: (frontal theta) was calculated using the average of the following frontal

lobe locations: AF3, AF4, F3, F4, F7, F8, FC5, FC6.
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Figure 3.7. Brain activity during General Game Play and Death Events.

Each index calculation produced an engagement level for each modality specifically focusing

on General Game Play and Death Event.

3.2.2. Engagement Comparison Results

Repeated-measures analysis of variance (ANOVA) was used for assessment across the

3 indices: 1) Index 1 (beta / (alpha + theta); 2) Index 2 (frontal theta/partial alpha); 3)

Index 3 (frontal theta); and General Game Play and Death Events from Super Meat Boy (See

Table 3.4). Results from the repeated measures ANOVA using indices as the within-subject

factor for dependent variables General Game Play and death events revealed a significant

difference for the main effect (F(2,28) = 17.5, p <0.001, partial eta2 = 1.0). These results

represent the difference in the formulas used to calculate the index of engagement ratio.

Follow-up tests of repeated within-subject contrasts revealed differences between Gen-

eral Game Play and Death Events within each index. Index 1 engagement levels during Death

Event was significantly increased in comparison to General Game Play (t(1,29) = 2.720, p =

0.011). Index 3 also showed increased engagement levels during death events in comparison

to general game play (t(1,29) = 2.485, p = 0.019). Index 2 did not yield any significant

results between general game play and death events.
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Indices Mean Std. Deviation
Std. Error

Mean

Index 1

General Game Play 0.327 0.148 0.027

Death Event 0.449 0.238 0.044

Index 2

General Game Play 0.816 0.197 0.036

Death Event 0.815 0.186 0.034

Index 3

General Game Play 0.315 0.075 0.014

Death Event 0.421 0.207 0.038

Table 3.4. EEG descriptive for each index.

3.2.3. General Overview of Comparison Findings

The goal was to assess various engagement indices using EEG to determine which

is most compatible with the Emotiv EPOC headset. The aim was to analyze difference in

response in engagement levels between specific game events (General Game Play and Death

Events). The primary result were: (a) a significant difference among the three different

indices due to the difference in the equations used; (b) Increased engagement levels during

Death Events compared to General Game Play Events when using Index 1 and Index 3.

3.2.4. Findings from Assessment of Engagement Indices

The findings suggest that Index 1 (beta / (alpha + theta) is an adequate algorithm for

calculating the engagement levels of players playing video games. The results suggest that

the Emotiv headset may not have the resolution to support individual sensor measurements

that Index 2 uses to calculate engagement levels. Higher levels of engagement during Death

Events when compared to General Game Play may suggest the user is not more engaged

when their character dies, but rather they have entered a more stressful state which has
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increased their attention [9, 81, 39]. Putting thresholds on individual players engagement

levels based upon their base-line results would help identify when players have entered a

stressful state and identify from their EEG signal when a death event has occurred.

3.3. Measuring Arousal with the Emotiv EPOC

The second part to the flow model is measuring the arousal level of a player. Again

there is no existing methodology for measuring arousal using an off-the-shelf EEG. Various

methods and algorithms exist for measuring arousal, all which have used laboratory grade

EEG devices, but which have not been tested with the Emotiv EPOC.

3.3.1. Arousal – Valence Indices

Measuring arousal levels is an important part of determining a player’s experience

while playing a video game. Arousal has been shown to be measurable by using (betaF3 +

betaF4) /(alphaF3 + alphaF4) and valence using (alphaF4 / betaF4) - (alphaF3 / betaF3)

by Giraldo and Ramirez [34]. Similar to the engagement indices, arousal and valence level

was calculated for each participant during General Game Play and Death events.

A repeated-measures analysis of variance assessment (ANOVA) was completed across

the index of engagement, the arousal index and the valence index to verify the existence

of differences between General Game Play and Death Events. Results from the repeated

measures ANOVA using the indices as the within subject factor for dependent variable

General Game Play and Death Events revealed a significant different in the main effect

(F(2,28) = 183.22, p <0.001, partial eta2 = 0.68). These results represent the difference in

the formulas used to calculate each index.

Follow-up testing of repeated within-subject contrasts revealed differences in Gen-

eral Game Play and Death Events within each index. The engagement level during Death

Events was significantly increased in comparison to General Game Play (t(1,29) = 2.720, p

= 0.011). The arousal was also significantly increased during Death Events in comparison

to General Game Play (t(1,29) = 3.959, p <0.001). The valence index did not yield any

significant differences between General Game Play and Death Events. However, it did yield
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an interesting trend that valence usually decreased during Death Events when compared to

General Game Play events (see Table 3.5).

Indices Mean Std. Deviation
Std. Error

Mean

Arousal Index

General Game Play 0.22 0.262 0.005

Death Event 0.25 0.398 0.007

Valence Index

General Game Play 0.70 0.682 0.124

Death Event 0.45 0.545 0.099

Table 3.5. EEG descriptive for arousal and valence indices.

3.3.2. Overview of Arousal Index Results

Higher levels of arousal and engagement were measured during Death Event when

compared to General Game Play. Higher levels of engagement during Death Events when

compared to General Game Play may not suggest the user is more engaged or aroused

when their character dies, but rather may reflect that they have entered a more stressful

state which has increased their vigilance [9, 61]. Putting thresholds on individual players

engagement levels based upon their results would help identify when players have entered a

stressful state and identify from their EEG signal when a death event has occurred.

3.4. Flow Model

The previous sections demonstrated the capability of the Emotiv to measure engage-

ment and arousal levels. A flow model can be established by combining “Engagement” data

with “Arousal” data. Using the data from the model we can establish upper and lower

thresholds to indicate when the player had left a state of flow. Using these thresholds along
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Figure 3.8. Arousal index results with thresholds applied.

with combining Engagement and Arousal measurement allows for the development of rules

which indicate when the player is in a state of flow while playing a video game.

3.4.1. Applying Thresholds to Indices

There are several potential ways to establish thresholds for the flow model. An

optimal (though difficult to achieve) method involves the use of data collected from the

baseline video to represent individual limits for each person. The most difficult aspect is

finding an adequate lower limit. To establish baseline brainwave activity, the participants

were asked to stare at a blank screen and told not to think about anything. There was a

great deal of variance in the data from some participants. Future work should address this

issue and identify a better methodology for inducing minimal brainwave activity.

Using data during game play presents an alternative to establishing threshold levels

using the baseline video. Accomplishing this required dividing the engagement data and

arousal data from both General Game Play and Death Events into their own quartiles,
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Figure 3.9. Engagement results with thresholds applied.

which allowed me to establish upper (Task Engagement = 0.17, Arousal = 0.24) and lower

(Task Engagement = 0.14, Arousal = 0.20) thresholds to indicate when the player has left

a state of flow. Figure 3.8 and figure 3.9 show that both the arousal levels and engagement

levels are mostly within the threshold levels during General Game Play. During death events

participants leave the threshold levels indicating flow has been disrupted.

3.4.2. Flow Discussion

The findings suggest that using the Emotiv with the engagement index (beta / (alpha

+ theta) and the arousal index ((betaF3 + betaF4) / (alphaF3 + alphaF4)) can measure the

immersion levels of players in video games. Establishing threshold levels is a complicated

task due to variability in the EEG data. Threshold levels are not fixed factors and will

need to be adjusted as more player data is incorporated. However, using the principles of
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thresholds in this study along with combining Task Engagement and Arousal-Valence a set

of rules to indicate when the player is in a state of flow can be determined.

(1) If engagement levels fall below the lower threshold, then the game needs to become

more complex

(2) If engagement level rises above the upper threshold, then the game needs to become

simpler

(3) If arousal level falls below the lower threshold, then the game play needs to be more

stimulating

(4) If arousal level rises above the upper threshold, then the game play needs to become

less arousing.

These rules can be applied to any method or variation in the threshold levels. These are a

fundamental set of rules that can be expanded on as the game becomes more complex. It

will be up to game designers to determine how to make adjustments to the game to keep the

player in flow. In the future, the rules could be expanded to adjust for the different types of

games. For example, in a first person shooter the amount of enemy the player is engaging at

any time can affect the engagement and arousal levels. So the rules could be transformed to

include specific details about the amount of enemy to send against the player at any given

time. This will require fine tuning by testing on players with different skill levels to validate

the rules still work for players of any skill level.
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CHAPTER 4

CLASSIFICATION OF PLAYER EVENTS

There are a number of potential game events that a player may experience while

playing a game. For example, some game events in a first person shooter might include

dying, winning, picking up an item, or killing an enemy. The dying game event will occur

frequently as the player progress through the game. This is especially the case in Super

Meat Boy. Player commonly leaves a state of flow or come close to leaving the state of flow

when they die. Automatically identify these common game events will allow researcher and

game developers the ability to focus more on the other parts of the game that are causing

the player to leave the flow state. Classification using machine learning techniques provides

a solution to identify these common events. The best machine learning algorithm to use is

not presently a well-established concept when it comes to using the Emotiv EPOC headset.

Most previous research has focused on the use of a support vector machine (SVM), näıve

bayes (NB), and k-nearest neighbor (kNN). This is why it is the most practical to start with

these three classifiers to identify game events.

4.1. Data Organization

Figure 4.1 shows a flow chart of the process used to obtain the data and results for the

classification process. User datasets were analyzed together aiming to verify the possibility

of building a generalizable model. Time epochs were split into corresponding signals alpha,

beta, theta, gamma, Engagement Index, and Arousal Index, which are used as the predictors

for each class. The corresponding epochs are assigned to 2 different classes game event and

dying event. The first class is trained using data captured from the Two Picture Cognitive

Discrimination Task. The second class is trained using data gathered from the Spider Jump

Arousal Stimulus. Each class contains 30 data samples to train the classifier. Data for

testing the classifier was captured from general game play and death events from all of the

subjects. Each class in the testing data contains 30 data samples. Given that it was a 50/50

dataset, cross-validation was irrelevant and it was not used.

43



Figure 4.1. Flow chart depicting the procedure used to obtain results. The

dashed line between classification and game events signifies the eventual use

of a closed loop system.

4.2. Support Vector Machine

To classify a set of binary labelled data, the SVM algorithm uses a hyper plane to

separate the data into two classes. During the training process of the SVM takes in data

belonging to each category and maps them into a higher dimensional space with the goal of

creating a hyper plane with the maximum difference. The training process can use different

types of kernels (linear, polynomial, or radial basis function) to achieve a better hyper

plane. During the testing process test new data is run through the SVM and placed into

one of two categories based upon which side of the hyper plane the new point falls following

training of the algorithm on a given dataset, the discriminate hyper plane is optimized and

selected based on the maximum margins between the hyper plane and the data. This is

accomplished via transformation of the data from the input space into feature space (in

which linear classification is achievable). This is achieved through outlier accommodating
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and error allowance during training [8]. The SVM technique has been used for arousal state

estimation and results revealed a recognition accuracy of 83 percent could be achieved [60].

Herein the Classification SVM Type 2 was implemented in the libsvm library using 0.5

nu-SVM classification with radial basis function kernel. Gamma was set to 0.008 and the

maximum number of iterations 1000. A stop error of 0.001 was utilized.

4.3. Näıve Bayes

The NB Classifier technique is based on Bayes theorem and is appropriate when the

dimensionality of the inputs is high. This classifier computes the probability that some data

points belong to a specific class. To perform the classification, the algorithm chooses the

class with the highest probability, as its result. When event related potentials are included

as a feature, the NB has been used to classify emotions in two classes (low valence and high

valence) with a classifying accuracy of 56 percent [70]. In a related analysis, NB has been

found to provide recognition accuracy of 70 percent for two classes (as reviewed in Nie et

al. [57]). The NB is an efficient supervised learning algorithm used to classify data into

different groups based upon a calculated probability of new data belonging to that group.

The NB classifier makes the assumption that each input is independent from every other

input. During the training phase the classifier takes the inputs and builds feature vectors

for each category. When new data is presented to the NB classifier it uses the maximum

likelihood estimates to find place that data into the correct category. The NB classifier has

an added benefit of not requiring large sets of training data to be effective at classification.

4.4. k-Nearest Neighbor

kNN is a supervised learning algorithm that classifies data into different groups based

upon how closes it is located to a category. During training the classifier stores each category

data into a feature vector. New data is then classified based upon the training sample that

has the shortest distance to the new data point. An issue that can arise from the kNN

classifier is if the data does not have an even distribution causing the classifier to favor one

category over the other. In a study of arousal state estimation Lin et al. [44] extracted
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Machine Learning Mean Std. Deviation Min Max

SVM 57.5 4.44 50.0 63.3

NB 70.0 6.56 58.6 75.9

kNN 57.9 11.15 44.5 76.0

Table 4.1. Overall classifier percentages.

power spectrum density of different EEG subbands as features during an emotion induction

(listening to music) protocol. They found a classification accuracy of 82 percent for four

emotions. In another study using the kNN technique for two different sets of EEG channels

(62 channels and 24 channels), an accuracy of 82.87 percent was found for the 62 channel

data set and 78.57 percent for the 24 channel dataset for five emotions [53].

4.5. Classification Results

Each participant’s results from the Two Picture Cognitive Discrimination Task and

Spider Jump Arousal Stimulus were used to predict General Gameplay Events and Death

Events using a Support Vector Machine (SVM), a Näıve Bayes (NB) classifier, and a k-

Nearest Neighbor (kNN) classifier (see Table 4.1). Having thirty participants in the study

allowed for a total of 60 data points (30 for the Two Picture Cognitive Discrimination Task

and 30 for the Spider Jump Arousal Stimulus) to train each classifier and 60 data points

to test each classifier (30 for the General Gameplay Events and 30 for the Death Events).

The Engagement Index (beta / (alpha + theta); Pope et al [43] and Freeman et al [60],

Arousal Index (betaF3 + betaF4) / (alphaF3 + alphaF4) and Valence Index (alphaF4 /

betaF4) - (alphaF3 / betaF3; [106]), as well as alpha, beta, theta, and gamma bands were

all individually tested to identify the strongest signals for classification (see Table 4.2 and

Table 4.3).

4.6. Machine Learning Classifiers and EEG Power Spectral Bands

Figure 4.2 shows the overall accuracy for each classifier using the different signals.

From Figure 4.2 it is apparent that the strongest classifier was NB especially when using
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Figure 4.2. Overall classifier results for each machine learning algorithm.

Figure 4.3. SVM classifications percentage across each signal for General

Game Play and Death Events.
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Figure 4.4. NB classification percentages across each signal for General

Game Play and Death Events.

Figure 4.5. kNN classification percentages across each signal for General

Game Play and Death Events.
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Machine Learning Mean Std. Deviation Min Max

Engagement 64.1 7.50 56.7 71.6

Arousal 59.6 5.10 54.3 64.4

Alpha 55.4 14.34 44.5 71.6

Beta 68.9 10.64 56.7 76.0

Theta 61.4 13.20 50.0 75.9

Gamma 60.1 2.76 58.5 63.3

Table 4.2. Signal classifications percentages.

Signal SVM NB kNN

Engagement 56.7 71.6 64.0

Arousal 60.0 64.4 54.3

Alpha 50.0 71.6 36.1

Beta 56.7 74.0 76.0

Theta 58.3 75.9 50.0

Gamma 63.3 58.6 58.5

Table 4.3. Individual classification percentages.

the theta and beta signals. The NB classifier had an overall average of 70 percent correct

classification. Although the kNN classifier produced the highest accuracy rate with the beta

signal when compared to other classifiers, it performed poorly with the alpha signal. Gamma

turned out to be the strongest predictor in the SVM classifier. The beta band wave was the

strongest predictor followed by theta, the Engagement Index, and then alpha.

4.7. Distinguishing between General Game Play and Death Events

Figure 4.3 illustrates that using the Two Picture Cognitive Discrimination Task and

the Spider Jump Arousal Stimulus to train the SVM classifier did a better job overall classi-
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fying General Gameplay Events over Death Events. The strongest signals again were beta,

theta, and the Engagement Index. The gamma band showed the most potential with this

classifier as it did the best job in classifying Death Events.

Figure 4.4 shows that the NB classifier did the best job classifying Death Events

from the training data. The strongest signals were theta and beta followed by alpha and

the Engagement Index. While gamma performed well for the SVM classifier, the gamma

band performed the worst for NB. The overall trend of the NB classifier reveals it as being

the most steady and reliable in distinguishing between General Gameplay Events and Death

Events.

Although the kNN classifier had the greatest variance in terms of signal was being used

for classification, it did a better job overall with General Gameplay Events (see Figure 4.5).

The beta signal was the strongest predictor for the kNN classifier for both General Gameplay

Events and Death Events. Although alpha was the weakest predictor, it performed better

in predicting Death Events then General Gameplay Events. The overall trend of the kNN

classifier was erratic but revealed potential when using the beta signal.

4.8. Overview of Classification Results

While various neurogaming platforms use machine learning to model a gamer’s EEG

indices, the research designs, data logging of game-based psychophysiological signals, and

the control algorithms found in neurogaming are not systematic and studies to support their

use remains limited. As neurogaming systems increase in use, new properties will need

to be taken into consideration. A common difficulty encountered in this research area is

the dearth of published objective comparisons among classifiers. Although there have been

growing efforts in the neurogaming literature to recognize a user’s cognitive and affective

states in real time using EEG bands, these studies do little to take into account both cognitive

and affective information. While establishing the optimal relation among frequency bands,

task engagement, and arousal states is one of the main goals of neurogaming, a standardized

method has yet to be established. Herein the aim is to test classifiers within the same context,

users, feature extraction methods, and protocol [94]. Specifically, the EEG signals from
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users were logged as participants experienced various stimulus modalities aimed at assessing

cognitive and affective processing. Given the emphasis upon neurogaming, the commercial

Emotiv EPOC headset was used. The EEG data were then filtered to get separate frequency

bands to train cognitive-affective classifiers with three classification techniques: Support

Vector Machines, Näıve Bayes, and k-Nearest Neighbors.

4.9. Machine Learning Classifiers and EEG Power Spectral Bands

The beta band wave was the strongest predictor followed by theta, the Engagement

Index, and then alpha. This was not surprising given that beta EEG coherence has been

found to increase when participants viewed highly arousing stimuli [50]. Further, McMahan

et al. [48] found significant difference in the beta band among various stimulus modalities.

The Näıve Bayes classifier had an overall average of 70 percent correct classification. Further,

NB was found to be the strongest classifier when using the theta and beta signals. These

findings are consistent with findings that NB has been found to have a good classification

for two classes [70]. Although the kNN classifier produced the highest accuracy rate with

the beta signal than any other classifier, it performed poorly with the alpha signal. For the

SVM classifier, gamma turned out to be the strongest predictor.

4.10. Cognitive and Affective Training

Using the Two Picture Cognitive Discrimination Task and the Spider Jump Arousal

Stimulus to train the SVM classifier did a better job overall classifying General Game Play

over Death Events. These results support findings that the SVM technique is useful for

classifying arousal state and has been found to have a recognition accuracy of 83 percent [60].

Again, the strongest signals were beta, theta, and the Engagement index. The gamma band

showed the most potential with the SVM classifier as it did the best job in classifying

Death Events. The gamma band has been shown in previous research to find changes in

emotion [43], however this research looked at a gamma band ranging from 30-100 Hz which

was far outside the range of the Emotiv (has a cut off of 45 Hz).

51



4.11. Distinguishing Between General Game Play and Death Events

The NB classifier did the best job classifying Death Event from the training data.

The strongest signals were theta and beta followed by alpha and the Engagement index.

Unlike in the SVM classifier the gamma band performed the worst. The overall trend of the

NB classifier shows it being the most steady and reliable in distinguishing between General

Gameplay Events and Death Events. The kNN classifier varied more upon which signal was

being used to classify, but overall did a better job with General Gameplay Events. The beta

signal was the strongest predictor in for the kNN classifier for both General Gameplay Events

and Death Events. The alpha signal was the weakest predictor, however it did perform better

in predicting Death Events than General Gameplay Events. Although the overall trend of

the kNN classifier was erratic, potential was observed when using the beta signal.
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CHAPTER 5

IMPLEMENTATION

One of the goals of this research is to develop a proof-of-concept program, which we

will call BrainWave, for use by researchers and game developers to analyze player experience.

BrainWave takes raw EEG signals from the Emotiv EPOC headset as input and outputs text

to a window. BrainWave is designed to satisfy the following criteria:

(1) It must run in real time. Since games and game development tend to move at a fast

pace, being able to evaluate a player in real time while they are playing would lead

to the developer being able to make changes to the game faster and more effectively.

(2) It must be able to collect data with minimal interference to the player’s experience.

Utilizing physiological data allows the player to be uninterrupted while they play

as well as provide immediate feedback to the researchers.

(3) Its output must be user-friendly, that is, presented in terms familiar to the average

game developer who is not an expert in EEG usage. Most raw physiological data

consists of voltage or impedance fluctuations, which usually requires an expert to

interpret and understand.

5.1. Design

Figure 5.1 shows the process of using BrainWave which is broken up into 5 steps:

data capture, data processing, training, testing, and analysis. Each of these is addressed

below. See Appendix C for BrainWave pseudocode.

5.1.1. Data Capture

Figure 5.2 shows the process of data capture. Data capture begins with a successful

connection to the Emotiv EPOC headset. Utilizing Emotiv’s dynamic link library (DLL),

we call a function that creates and returns a handle to the headset. Once the handle is

created and the connection state verified, data capture can begin. As the EPOC headset

measures raw data, it stores it into a buffer. The size of the buffer determines the amount of
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Figure 5.1. High-level flowchart for the process of measuring player expe-

rience. Flowcharts for each of the five steps represented by the boxes Data

Capture, Data Processing, Data Training, Data Testing, and Analysis are

given in Figure 5.2 and Figures 5.5–5.9, respectively.

Figure 5.2. Flowchart for the Data Capture box in Figure 5.1.
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Figure 5.3. The Array of struct that the Emotiv EPOC headset use to store

all the raw EEG data. The size of the data structure is 128 × 14.

data that is collected before it is accessible. The buffer size is determined by the number of

epochs the user chooses to collect at one time. BrainWave will analyze EEG data once per

second, thus we need a buffer that will hold exactly one second worth of EEG data. Once

the buffer is full, the Emotiv returns the buffer to the user in the form of an array of structs.

The array is made up of all the data from each sensor that is collected during the epoch.

Because the headset collects 128 samples a second and has 14 sensors it creates an array

that is 128 × 14 (see figure 5.3). This array provides an efficient way to access the collected

data so that processing can begin.

5.1.2. Data Processing

Figure 5.4 shows the process of data processing. For each full buffer, the following

four steps are performed, as shown in Figure 5.5.

(1) Remove the potential for noise to affect the data. EEG works by measuring electrical

activity at the scalp, however in the process of measuring the electrical activity it

can introduce what is known as direct current (DC) noise. This noise comes from

the battery that is powering the headset and the radio transmitter. Removing this

noise requires applying a high pass filter to the data that will remove any frequency

less than 1 Hz and a low pass filter that removes any frequency over 50 Hz. The

noise must be removed from each sensor location.

(2) Calculate the average voltage across all of the sensors. This is accomplished by

adding all of the values from each sensor and dividing it by 14, the number of
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Figure 5.4. Flowchart for the Data Processing box in Figure 5.1. The Pro-

cess box is described in Figure 5.5.

Figure 5.5. Flowchart for the Process box used in Figure 5.4 and Figure 5.7.

sensors. This calculation is performed for each individual measurement that the

headset takes. Averaging the sensor data allows for a global overview of the changes

the user is experiencing. It also helps in eliminating any potential outlier data caused
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by sensor malfunction.

(3) Apply the Fast Fourier Transform (FFT) to the data. This step makes the EEG

data more meaningful by converting it from time-domain to frequency-domain. The

amplitudes for each frequency are calculated by squaring each individual frequency

this is also known as calculating the power estimates. Figure 5.6 shows an example of

an epoch of data that has undergone this process. The figure demonstrates how the

individual brain wave bands are extracted from the processed data. The average is

taken of all the frequencies in each band. The resulting value give the overall power

level of the band for the current epoch.

(4) Use the band data to calculate the engagement and arousal indices. This is done

by simply plugging the data into the appropriate equation that were tested in the

previous chapters. All of the above steps are repeated each time an epoch of data

is gathered by the headset.

5.1.3. Data Training

Figure 5.7 shows the process of data training. Gathering the data to train the machine

learning algorithm first requires gathering the data at the right time. Using a video to collect

user baseline data for training allows the program to know which data it need to save. The

program knows when to collect the training data by simply knowing how many seconds after

the video starts that each stimulus is presented to the player.

The program then begins using the data to train the three machine learning algo-

rithms. The program utilizes a Näıve Bayes (NB) classifier that trains under the assumption

that the data has a Gaussian distribution. During the training phase the mean and variance

it calculated and stored for all of the training data. The training of the k-nearest neigh-

bor (k-NN) algorithm requires storing the data into vectors representing the various classes.

The support vector machine (SVM) plots the training data to find the best possible linear

hyperplane that provides the maximized margin between the data.

The engagement and arousal levels are also calculated from the training data. Uti-

lizing the middle base line the program calculated the upper and lower threshold for both
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Figure 5.6. FFT applied to raw EEG data. The data is converted from

the time-domain to the frequency domain allowing access to the individual

amplitudes for each frequency.

Figure 5.7. Flowchart for the Data Training box in Figure 5.1. The Process

box is described in Figure 5.5.

engagement and arousal. These thresholds will be used during testing time to determine if

the player has left a state of flow while playing a video game.
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Figure 5.8. Flowchart for the Data Testing box in Figure 5.1.

5.1.4. Data Testing

Figure 5.8 shows the process of data testing. After training the classifier, BrainWave

switches into testing mode where the player is playing the game. During the testing phase all

of the data collected from the headset is processed the same way as described above. As the

program finishes processing each epoch of data it send the data to the classifiers to determine

if the player is playing the game or has died in the game. For the NB classifier the program

uses the mean and variance calculated from the training data to compute the probability

that the current epoch of time belongs to a game event or a death event. Depending on

which probability is larger the program selects the appropriate class.

To test using the k-NN the program puts the current epoch of data into a vector.

The k-NN classifier then calculates a distance between the test data, game training data,

and death training data. The classifier chooses which class to pick based upon the shortest

calculated distance. Finally the SVM tests the data by placing in into the hyperplane it found

during the training phase. The SVM picks the class it thinks the current epoch belongs to
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Figure 5.9. Flowchart for the Analysis box in Figure 5.1.

by knowing which side of the hyperplane the data lands.

5.1.5. Analysis

BrainWave’s final task is to analyze the results from the classifiers. Each classifier

picks which class the current epoch belongs. Initially each classifier is independent of each

other so if one classifier thinks a death event has occurred then the program outputs a time

stamp along with an indication message. In a different iteration of the program the classifiers

are dependent on each other. The program requires that they must all agree that a death

event has occurred before the program will output that a death event has occurred. The

program then calculates if the player has left a state of flow by comparing the currents epoch

engagement and arousal level to the upper and lower thresholds. If the player goes above or

below the threshold the program timestamps and indicates that this has occurred.
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Figure 5.10. A screen shot of the video playing while BrainWave collecting

training data from the two picture at the correct designated time.

Figure 5.11. A screen shot of BrainWave collecting training data from the

two picture at the correct designated time.

5.2. User Testing

To validate BrainWave, two participants wore the Emotiv EPOC headset and played

Super Meat Boy. Unlike the first study conducted, all of the data processing was completed

by BrainWave in real time. Each participant first watched the same video from the previous

study to establish their base line (see Figure 5.10 and 5.12) and collect the training data (see

Figure 5.11 and 5.13). They then were instructed to play Super Meat Boy for 10 minutes.

The first participant went through the first iteration of the program which kept the
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Figure 5.12. A screen shot of thevideo playing while BrainWave collecting

training data from the spider jump at the correct designated time.

Figure 5.13. A screen shot of BrainWave collecting training data from the

spider jump at the correct designated time.

classifiers independent of each other. This iteration was able to achieve a 83 percent correct

classification of death events that the player experienced (see table 5.1). This was achieved

by both the k-NN and SVM classifiers (see Figure 5.14 and 5.15). The NB classifier did not

fare as well as it was more sensitive to the player’s frustration while playing. One particular

instance of this was when the player said out loud “I am going to die” he did not die but the

NB classified this epoch as a death event. Figure 5.16 and 5.17 shows that the NB classifier

was able to correctly identify death events. An interesting observation was that 75% of the
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Machine Learning Correct Incorrect Missed Percentage

SVM 25 5 6 83

NB 23 20 8 53

kNN 25 5 6 83

All 3 28 16 4 64

Table 5.1. Program classification results.

Figure 5.14. Screen shot of Super Meat Boy dying and BrainWave showing

that it correctly classified a death event using the k-NN classifier.

time all of the classifiers agreed that a death event occurred (see Figure 5.18 and 5.19).

Throughout game play the player moved into and out of flow continuously. From

visual and audible observation of the player this constant fluctuation in engagement and

arousal could be attributed to frustration. Figure 5.15 shows several times stamps that

represent the constant fluctuation in engagement and arousal in this particular level the

player had died 9 times and was very upset with himself.
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Figure 5.15. Screen shot of BrainWave showing that it correctly classified a

death event using the k-NN classifier.
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Figure 5.16. Screen shot of Super Meat Boy dying and BrainWave showing

that it correctly classified a death event using the NB classifier.

The observation that the classifier agreed 75 percent of the time led to the creation of

a second iteration of the program. In this iteration all of the classifier had to agree a death

event had occurred before the program thought it had occurred. The second participant used

the new iteration of the program during their session. The program was able to obtain a

correct classification percentage of 64 percent of the time (see table 5.1). This demonstrates

that currently the best choice for classifying is either the k-NN or the SVM algorithms.

The second participant was visually and audibly more calm while playing super meat

boy. This was reflected in his flow during the game. He left the state of flow significantly less

than the first participant, which is seen in the smaller number of time stamps in figure 5.21.

The majority of the times that the player did leave the state of flow occurred right before or

after dying.
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Figure 5.17. Screen shot of BrainWave showing that it correctly classified a

death event using the NB classifier.

66



Figure 5.18. Screen shot of Super Meat Boy dying and BrainWave showing

that the classifier used in the application commonly agreed that a death event

had occurred.
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Figure 5.19. Screen shot showing that the classifier used in the application

commonly agreed that a death event had occurred.
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Figure 5.20. Screen shot of Super Meat Boy dying and BrainWave showing

that all 3 classifier used in the application agreed that Participant 2 character

died.
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Figure 5.21. Screen shot showing BrainWave correctly classifying partici-

pant 2 death events.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1. Conclusion

The goal of this research was to utilize a low cost EEG device to develop a new tool

that game developers and researcher could use to evaluate a player’s state of mine while

playing a game. Specifically, the work reported herein reflects the following: 1) the viability

of the off-the-shelf Emotiv EPOC was tested to find its resolution; 2) various engagement

indices were evaluated to identify the most effective one for use with the Emotiv; 3) an

arousal – valence index was evaluated to determine if the Emotiv can affectively differentiate

between video game events; 4) engagement and arousal indices were combined to produce

a model for determining whether a player is in a state of flow; and 5) machine learning

algorithms were used to identify events that cause the player to exit a state of flow; 6) the

development of an application that can measure player experience in real time.

The development of the real time application first required knowing the neural res-

olution of the Emotiv EPOC headset. EEG data was collected from 30 people while they

played the video game Super Meat Boy. Once the data was processed, it was analyzed to

determine if the Emotiv EPOC was able to measure a difference between three different

modalities (Two-Picture Cognitive Task; General Game Play; Death Events). Comparing

the Two-Picture Cognitive Task to Death Event showed a significant increase in beta and

gamma power during the Death Event. beta and gama power also increased significantly

when the player died as compared to General Game Play. These results indicate that the

Emotive EPOC headset measures EEG fluctuations correctly as player’s experience various

stimulus. This further supports the idea that a player’s experience can be measured utilizing

a low cost EEG headset.

The next step in the development of the real time application was to find a way to

measure the engagement level of a player. Various EEG indices exist that provide a way

for calculating a person’s current engagement level. These engagement indices were never
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implemented using data from the Emoitv EPOC. This means that the indices must first

be validated to confirm that they work with the Emotiv EPOC correctly. The engagement

levels were calculated using each index and then compared to one another to find which one

produces the best results. Index 1 (beta/(alpha + theta), which used an average band wave

from all sensors, proved to be the most effective in measuring engagement. A significant

increase in engagement was found in the player’s Death Event compared to their General

Game Play. These results reflect the idea that higher levels of engagement mean the players

has entered a state of stress or frustration. Index 1 proved to be the best choice to use with

the Emotiv EPOC because it requires a lower overhead to implement compared to the other

two indices which requires accessing individual sensor locations. Using the averaged band

wave approach also help in reducing noise that may come from individual sensors.

The third step in the development of the real time application was to find a way

to measure the arousal level of a player. Like engagement, an arousal index ((beta F3 +

beta F4) / (alpha F3 + alpha F4)) exist that calculate a person’s level of arousal. The

arousal index was authenticated the same way that the engagement indices where done. A

significant increase in arousal was found during Death Events when compared to General

Game Play. These results correspond to the idea that the player has entered a state of stress

or frustration when their character dies in the video game.

The fourth step required Coordinating “Task Engagement” data with “Arousal-

Valence” data to establish a flow model. Completing the flow model requires knowing when

the player had left the state of flow. Thresholds were established for the player’s engagement

and arousal levels. Developing thresholds is a difficult task because they are different for

every person. Using the low level and high level from the baseline video was the first idea

used to calculate the thresholds. This proved to be unsuccessful because to measure the

low level of a player required them to relax and not think about anything which is quite

difficult for a person to accomplish. The low level measured from the baseline video did

not always adequately reflect a person low engagement and arousal level. An alternative

solution to using the low and high from the baseline video was to utilize the mid measure-
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ment (Two-Picture Cognitive Task) from the baseline video. Treating the Two-Picture task

as the midpoint allowed for the data to be split into quartiles. The lower threshold being

represented by the first quartile and the high threshold being represent by the third quartile.

Having engagement and arousal threshold allowed for the creation of the following

rules to determine what to do when a player leaves a state flow. 1) If engagement levels fall

below the lower threshold, then the game is to become more complex; 2) If engagement level

rises above the upper threshold, then the game is to become simpler; 3) If arousal level falls

below the lower threshold, then the game play is to be more stimulating; and 4) If arousal

level rises above the upper threshold, then game play is to become less arousing. These rules

can be applied to any method or variation in the threshold levels.

The fifth step in the development of the real time application was to find a way to

automatically detect when player’s encountered specific game events. The problem with

this is that we never know when an event is going to occur which makes it difficult to train

machine learning algorithms with event data. The baseline video created in the research offers

a way to know when a particular event is going to occur. The research results have indicated

that the Two-Picture Cognitive Task and the Spider Jump Arousal Stimulus correspond to

General Game Play and Death Events. This suggested that machine learning algorithms

could be trained with data from the Two-Picture Cognitive Task and the Spider Jump

Arousal Stimulus. Once trained the classifier would be able to classify General Game Play

Events and Death Events.

Using the base line video for training data was tested using Support Vector Machine

(SVM), Näıve Bayes (NB), and k-Nearest Neighbor (kNN). The beta, theta, alpha, gamma,

engagement, and arousal signals were used as the predictors for each classifier. The machine

learning algorithms used the predictors from the Two-Picture Cognitive Task and the Spider

Jump Arousal Stimulus to train. They then attempted to classify General Game Play and

Death Events. The beta band wave was found to be the best predictor for both NB and

kNN achieving an average of 75 percent correct classification of death events. These results

support the idea that the data collected from the Two-Picture Task and the Spider Jump
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Arousal Stimulus are capable of classifying General Game Play and Death Events.

The final goal of this research was the development of an application that analyzes

player experience in real time. The BrainWave application establishes a connection and

captures data measured by the Emotiv EPOC headset. It then converts the raw EEG data

in the into meaningful brainwave band frequencies. BrainWave records training data while

the player watches the baseline video. The collected data is then used to train the SVM,

NB, and kNN classifiers. After training the program runs while the player plays the video

game. BrainWave monitors the player’s engagement and arousal levels as they play. Any

time the player goes above or below their calculated thresholds the program outputs this so

the reasoning can be determined.

The BrainWave program also attempts to classify whenever the player dies. The SVM

and kNN classifiers were able to achieve an 83 percent correct classification of death events.

While BrainWave was not able to identify all of the Death Events that occurred it caught

the majority of them. The ones that BrainWave did correctly classify allow researchers and

developers the ability to focus on other events that cause the player to leave a state of flow.

The results from the work performed in this study have shown that the Emotiv is

an efficient measuring tool for evaluating player experience as well as supporting the idea of

using it as a low-cost solution for game companies to use for player testing. This framework

does not only provide a method for measuring gamer experience but also provides a new

concept of dynamic gaming. As sensor technology becomes better, EEG sensor soon could

be placed in new devices such as headphone or virtual reality headsets. As player play

games using these devices the game can have an ever changing environment that adapts to

the player’s current state of mind. This framework could also be expanded to work in other

areas of computer science as a tool for programmers to use to gain instantaneous feedback

about the user’s experience, providing a new method for programmers to evaluate their

programs along with find area of the program that cause users the most frustration.

The findings should be understood in the context of some limitations. These findings

are based on a fairly small sample size. As a necessary next step, the reliability and validity
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of the Emotiv EEG needs to be established using a larger sample of participants to ensure

that the current findings are not an anomaly due to sample size. Further, findings need

further validation through straightforward comparison of Emotiv EEG results with those of

standard laboratory-based EEG assessment technology. It is important to note, however,

that the Emotiv has been favorably compared to a laboratory-based research EEG system

(Neuroscan). Badcock et al. [4] found that the Emotiv EEG system can prove a valid

alternative to laboratory ERP systems for recording reliable late auditory ERPs over the

frontal cortices. While some interesting results were found, it is important to emphasize

that these are very preliminary there are not currently well-established methodologies for

examining the impact of game levels on players. Nevertheless, there is an increasing body of

literature suggesting that game impact can be measured via EEG [Nacke et al. [55], Salmin

and Ravajja [66]]. Future studies will be needed to expand these results into methodological

approaches to quantifying video game based EEG assessment in general and Emotiv based

EEG assessment of various games in particular.

6.2. Future Work

Super Meat Boy was the game used in the study because of its simple learning curve

along with it abilities to induce frustration in the player. As a jumping puzzle game, it is just

one of several different game genres. Future work should focus on testing this frame work on

other games. Specifically, the framework needs to be tested and expanded to include games

with more events players encounter such as picking up items or level exploration.

30 participants were used to build and evaluate this framework. In future work, the

reliability and validity of the Emotiv EEG needs to be established using a larger sample of

participants to help expand and refine the framework. When expanding the sample size,

special attention needs to be taken to include an equal number of people who consider

themselves gamers. As this framework continues to expand it must continue to be validated

by testing is on players with different skill levels to ensure that it is effective regardless of

the level of the player.

The baseline video was extremely effective in measuring cognitive work load and
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arousal stimulus. However, improvement could be made in the staring at a blank screen

task. This task was designed to find a person minimal EEG activity but this turns out

to be quite difficult as there is no way of knowing if the person is actively thinking about

something. In the future, a better procedure should be developed to induce lower brain wave

activity. This could include expanding the amount of time a person looks at a blank screen,

or finding some other mechanism that can induce boredom.

BrainWave was designed to be a standalone program outside of any game. The

downside to this is that the BrainWave does not know when specific game events occur.

Being able to add BrainWave into a video game will allow for the game to be able to tell

when a player experience events. This intern will allow BrainWave to train on true game

event data instead of the baseline video. Training on event data will allow for more events

to be able to be identified as well as provide a clearer picture of the player’s current state of

mind
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COMPUTER AND VIDEO GAME QUESTIONNAIRE
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IRB LETTER
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APPENDIX C

PSEUDOCODE
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MAIN (argc, argv)

01 Event = EE EmoEngineEventCreate()

02 eState = EE EmoStateCreate()

03 DataHandle hData = EE DataCreate()

04 task = 1

05 state = 0

06 Ready to Collect = false

07 TWP = 130

08 SP = 140

09 End Video = 240

10 Train Timer = 0

11 Train Complete = false

12 Low Threshold Engagement = 0

13 High Threshold Engagement = 0

14 Low Threshold Arousal = 0

15 High Threshold Arousal = 0

16 EE DataSetBufferSizeInSec(seconds)

17 Wait for input to start training

18 While NOT finished

19 if Key Pressed == Q

20 finished = true

21 state = EE EngineGetNextEvent(Event)

22 if state == EDK OK

23 Ready to Collect = false

24 else

25 Emotiv not ready

26 return 0

27 if Ready to Collect
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28 Grab data out of the Emotiv buffer

29 SET TO ZERO()

30 for each sample in buffer

31 for each channel in buffer

32 Run the data through a low pass filter

33 Run the data through a high pass filter

34 Calculate the average across all sensors

35 Run the data through the Fast Fourier Transform

36 for each result in FFT

37 Square the result

38 Add the result to correct Brainwave Band

39 if NOT Train Complete

40 if Train Timer == TWP

40 Store Values for training the classifiers

41 if Train Timer == SP

42 Store Values for train the classifier

43 if Train Timer == END Video

44 DIVIDE BY(task = 1)

45 CAL ENGAGEMENT(task= 1)

46 DIVIDE BY(task = 2)

47 CAL ENGAGEMENT(task= 2)

48 Low Threshold Engagement = TWP Engagement - TWP Engagement * 0.5

49 High Threshold Engagement = TWP Engagement + TWP Engagement * 0.5

50 Low Threshold Arousal = TWP Arousal - TWP Arousal * 0.5

51 High Threshold Arousal = TWP Arousal + TWP Arousal * 0.5

52 Train Support Vector Machine

53 Train Näıve Bayes

54 Train k Nearest Neighbors
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55 Train Complete = true

56 else

57 DIVIDE BY(task = 3)

58 CAL ENGAGMENT(task =3)

59 Test current EEG Data in Support Vector Machine

60 Test current EEG Data in Näıve Bayes

61 Test current EEG Data in K Nearest Neighbors

62 if Current Engagment >Highr Threshold Engagement

63 Report Player engagement to high

64 else if Current Engagment <Low Threshold Engagement

65 Report Player engagement to low

66 if Current Arousal >High Threshold Arousal

67 Report Player arousal to high

68 else if Current Arousal <Low Threshold Arousal

69 Report Player arousal to low

70 if SVM

71 Report Death Event

72 if NB

73 Report Death Event

74 if KNN

75 Report Death Event

76 Train Timer++

77 Wait until next full buffer

78 return 0

SET TO ZERO()

01 Set all variables back to zero

02 return 0
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DIVIDE BY(task)

01 if task == 1

02 Divide alpha sensor data by 7

03 Divide beta sensor data by 13

04 Divide delta sensor data by 4

05 Divide gamma sensor data by 19

06 Divide theta sensor data by 4

07 Store results for TWP

08 elseif task == 2

09 Divide alpha sensor data by 7

10 Divide beta sensor data by 13

11 Divide delta sensor data by 4

12 Divide gamma sensor data by 19

13 Divide theta sensor data by 4

14 Store results for SP

15 else

16 Divide alpha sensor data by 7

17 Divide beta sensor data by 13

18 Divide delta sensor data by 4

19 Divide gamma sensor data by 19

20 Divide theta sensor data by 4

21 Store results for Game Data

22 return 0

CAL ENGAGMENT(task)

01 if task == 1

02 for each value in EEG Sensor
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03 Engagment = Beta / Alpha + Theta

04 Arousal = Beta F3 + Beta F4 / Alpha F3 + Alpha F4

05 Store TWP engagement

06 Store TWP arousal

07 else if task == 2

08 for each value in EEG Sensor

09 Engagment = Beta / Alpha + Theta

10 Arousal = Beta F3 + Beta F4 / Alpha F3 + Alpha F4

11 Store SP engagement

12 Store SP arousal

13 else

14 for each value in EEG Sensor

15 Engagment = Beta / Alpha + Theta

16 Arousal = Beta F3 + Beta F4 / Alpha F3 + Alpha F4

17 Store Game engagement

18 Store Game arousal

19 return 0
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