Maternal Transfer of Dietary Methylmercury and Implications for Embryotoxicity in Fathead Minnows (Pimephales promelas)

PDF Version Also Available for Download.

Description

Mercury (Hg) is a ubiquitous environmental contaminant, which is capable of global atmospheric transport. As a result, even the most pristine aquatic ecosystems are affected by atmospheric Hg deposition, following which microbial transformation yield organic Hg forms, the most concerning of which is methylmercury (MeHg). Methylmercury is capable of bioaccumulation and biomagnification in food webs, resulting in potentially toxic body burdens due to regular dietary exposure in long-lived organisms at higher trophic levels. It is also a molecular mimic of some endogenous amino acids, providing a route of transfer from mother to offspring via large amino acid transporters. Exposure during ... continued below

Creation Information

Bridges, Kristin December 2016.

Context

This dissertation is part of the collection entitled: UNT Theses and Dissertations and was provided by UNT Libraries to Digital Library, a digital repository hosted by the UNT Libraries. More information about this dissertation can be viewed below.

Who

People and organizations associated with either the creation of this dissertation or its content.

Publisher

Rights Holder

For guidance see Citations, Rights, Re-Use.

  • Bridges, Kristin

Provided By

UNT Libraries

With locations on the Denton campus of the University of North Texas and one in Dallas, UNT Libraries serves the school and the community by providing access to physical and online collections; The Portal to Texas History and UNT Digital Libraries; academic research, and much, much more.

Contact Us

What

Descriptive information to help identify this dissertation. Follow the links below to find similar items on the Digital Library.

Degree Information

Description

Mercury (Hg) is a ubiquitous environmental contaminant, which is capable of global atmospheric transport. As a result, even the most pristine aquatic ecosystems are affected by atmospheric Hg deposition, following which microbial transformation yield organic Hg forms, the most concerning of which is methylmercury (MeHg). Methylmercury is capable of bioaccumulation and biomagnification in food webs, resulting in potentially toxic body burdens due to regular dietary exposure in long-lived organisms at higher trophic levels. It is also a molecular mimic of some endogenous amino acids, providing a route of transfer from mother to offspring via large amino acid transporters. Exposure during neurodevelopment can lead to serious, irreversible neurological dysfunction, associated with a variety of cognitive and motor abnormalities across species. The present studies evaluate the effects of maternally-transferred dietary MeHg, at environmentally relevant concentrations on early life stage fathead minnows (Pimephales promelas). Embryos were collected from adult fatheads exposed to one of three diets with varying concentrations of MeHg for 30 days. Adult reproductive metrics were also monitored over the course of the study, with results indicating no effects on spawning frequency, clutch size, or total egg output. In embryos, Hg concentration was a function of female diet and the duration (number of days) of female exposure. Offspring spawned in tanks administered the low Hg diet displayed altered embryonic movement patterns (hyperactivity), decreased time to hatch, decreased mean larval size, and alterations to several metabolite abundances when compared with controls. Significantly altered metabolites include those associated with cellular energetics, fatty acid metabolism, and polyamine synthesis, indicating current environmental exposure scenarios are sufficient to disrupt important cellular pathways. Dysregulation of the dopaminergic system of embryos is also characterized, and may be a possible mechanism by which hyperactive behaviors are observed in these embryos. Offspring from tanks administered the high Hg diet exhibited delayed hatching, increased mortality, and physiological abnormalities. Brain tissue of exposed adults from the low diet were dissected into regions, and also evaluated for alterations in dopamine cycling. Collectively, these results indicate current exposure scenarios in North American lakes and rivers are sufficient to cause reductions in fitness and survival of early life stage fish. The potential for community structure impacts exists, as sensitive individuals and species become disproportionately affected by chronic, low-level MeHg exposure.

Language

Identifier

Unique identifying numbers for this dissertation in the Digital Library or other systems.

Collections

This dissertation is part of the following collection of related materials.

UNT Theses and Dissertations

Theses and dissertations represent a wealth of scholarly and artistic content created by masters and doctoral students in the degree-seeking process. Some ETDs in this collection are restricted to use by the UNT community.

What responsibilities do I have when using this dissertation?

When

Dates and time periods associated with this dissertation.

Creation Date

  • December 2016

Added to The UNT Digital Library

  • Feb. 19, 2017, 7:42 p.m.

Usage Statistics

When was this dissertation last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 7

Interact With This Dissertation

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Bridges, Kristin. Maternal Transfer of Dietary Methylmercury and Implications for Embryotoxicity in Fathead Minnows (Pimephales promelas), dissertation, December 2016; Denton, Texas. (digital.library.unt.edu/ark:/67531/metadc955098/: accessed October 21, 2017), University of North Texas Libraries, Digital Library, digital.library.unt.edu; .