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This dissertation explores data fusion methodology to deduce an overall inference from 

the data gathered from multiple heterogeneous sources.  Typically, if there existed a data source 

in which the data were reliable and unbiased, then data fusion would not be necessary.  Data 

fusion methodology combines data form multiple diverse sources so that the desired information 

- such as the population mean - is improved despite redundancies, inaccuracies, biases, and 

inflated variability in the data.  Examples of data fusion include estimating average demand from 

similar sources, and integrating fatality counts from different media sources after a catastrophe. 

The approach in this study combines "inputs" from distinct sources so that the 

information is "fused." Another way of describing this process is "data integration."  Important 

assumptions are 1. Several sources provide "inputs" for information used to estimate parameters 

of a probability distribution.  2. Since distributions for the data from the sources are 

heterogeneous, some sources are less reliable. 3.  Distortions, bias, censorship, and systematic 

errors may be more prominent in data from certain sources.  4.  The sample size of sources data, 

number of "inputs," may be very small. 

Examples of information from multiple sources are abundant: traffic information from 

sensors at intersections, multiple economic indicators from various sources, demand data for 

product using similar retail stores as sources, polling data from various sources, and disaster 

count of fatalities from different media sources after a catastrophic event. 

 



This dissertation seeks to address a gap in the operations literature by addressing three 

research questions regarding entropy base data fusion (EBDF) approaches to estimation.  Three 

separate, but unifying, essays address the research questions for this dissertation. 

Essay 1 provides an overview of supporting literature for the research questions.  A 

numerical analysis of airline maximum wait time data illustrates the underlying issues involved 

in EBDF methods. This essay addresses the research question:  Why consider alternative 

entropy-based weighting methods? 

Essay 2 introduces 13 data fusion methods.  A Monte Carlo simulation study examines 

the performance of these methods in estimating the mean parameter of a population with either a 

normal or lognormal distribution.  This essay addresses the following research questions: 1. Can 

an alternative formulation for Shannon's entropy enhance the performance of Sheu (2010)'s data 

fusion approach?  2.  Do symmetric and skewed distributions affect the 13 data fusion methods 

differently?  3.  Do negative and positive biases affect the performance of the 13 methods 

differently?  4.  Do entropy based data fusion methods outperform non-entropy based data fusion 

methods?  5. Which data fusion methods are recommended for symmetric and skewed data sets 

when no bias is present?  What is the recommendation under conditions of few data sources? 

Essay 3 explores the use of the data fusion method estimates of the population mean in a 

newsvendor problem.  A Monte Carlo simulation study investigates the accuracy of the using the 

estimates provided in Essay 2 as the parameter estimate for the distribution of demand that 

follows an exponential distribution.  This essay addresses the following research questions: 1.  

Do data fusion methods with relatively strong performance in estimating the parameter mean 

estimate also provide relatively strong performance in estimating the optimal demand under a 

given ratio of overage and underage costs?  2. Do any of the data fusion methods deteriorate or 



improve with the introduction of positive and negative bias? 3.  Do the alternative entropy 

formulations to Shannon's entropy enhance the performance of the methods on a relative basis? 

4.  Is the relative rank ordering performance of the data fusion methods different in Essay 2 and 

Essay 3 in the resulting performances of the methods? 

The contribution of this research is to introduce alternative EBDF methods, and to 

establish a framework for using EBDF methods in supply chain decision making.  A comparative 

Monte Carlo simulation analysis study will provide a basis to investigate the robustness of the 

proposed data fusion methods for estimation of population parameters in a newsvendor problem 

with known distribution, but unknown parameter.  A sensitivity analysis is conducted to 

determine the effect of multiple sources, sample size, and distributions. 
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CHAPTER 1  

INTRODUCTION 

This dissertation investigates the integration of multiple-source data information available 

through a stochastic process and explores data fusion methodology to deduce an overall inference 

from the data. A simple example of data “fusing” is combining estimates of traffic flow from two 

traffic sensors whose target traffic may be viewed from opposite angles. Data fusion supports 

supply chain managers with decision making since they often must use all information from 

heterogeneous sources to achieve enhanced inference about their operations.   

 

1.1. Importance of Data Fusion Methods 

Before the research statement and questions are presented, a description of the importance 

of data fusion methods to this research is discussed. This section provides the necessary background 

to provide a basis for further research investigation into introducing and assessing data fusion 

methods.  

First, the term “data fusion” is a general term that is typically used in the literature to indicate 

that data points from several sources are “fused” to obtain improved, more relevant information.  

Another way of describing this process is “data integration.” Important assumptions about the data 

collection process are:  

1. Several (multi) sources provide “inputs” for information about descriptive parameters of 

data.  

2. Heterogeneous distributions for the data from the sources make some sources less 

reliable.      
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3. Distortions, bias, censorship, outlier observations, and systemic errors may be more 

prominent in data from certain sources.  

4. Sample size of data, the number of “inputs” from sources is generally small.  

Examples of information from multiple sources abound: traffic information from sensors at 

intersections, multiple economic indicators from various sources, demand data for a product using 

similar retail stores as sources, polling data from various sources, and disaster fatality count from 

different media sources after a catastrophic event.   

The purpose of data fusion methodology is to combine data from multiple sources in such 

a way that relevant information from a limited number of sources is improved despite redundancies, 

inaccuracies, biases, partial information, and inflated variability in the data. If a “benchmark” data 

source in which reliable, representative, and unbiased data existed, then data fusion would not be 

necessary.  Ultimately, supply chain managers must often merge or integrate information from 

diverse sources to provide measures with a higher level of reliability.  Data fusion origins can be 

traced to intrinsic behaviors performed by humans and animals to improve their ability to survive.  

This concept is analogous to the instincts of humans and animals to simultaneously utilize multiple 

senses for threat assessment or food collection.  For example, a combination of smell, touch, sight, 

and taste allows an animal to examine the edibility of a new substance in a far superior manner than 

taste alone.  Similarly, danger is more accurately detected with hearing and experience rather than 

with hearing alone (Hall and Llinas, 2001). 

Fusion of data from multiple sensors is used to improve the observation process.  For 

example, in radar tracking, a moving aircraft can be more accurately observed by both a pulsed 

radar and an infrared imaging sensor.  Since the radar can only detect the aircraft’s range, but not 
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the angular direction, and the infrared imaging sensor can provide the angular direction, but not the 

range, the data fusion from these two sources creates a more effective radar tracking.  

Data fusion has widespread applications.  Historically, the integration of data sources 

greatly benefited military applications such as target tracking, submarine warfare, and battlefield 

surveillance (Durrant-Whyte and Henderson, 2008; Hall and Llinas, 2001; Hall and McMullen, 

2004).  However, the last few decades have seen a rise in nondefense data fusion applications in 

forecasts of weather conditions, economic changes, and geopolitical activity; maintenance of 

complex machinery; robotics, and medical applications (Durrant-Whyte and Henderson, 2008; Hall 

and McMullen, 2004); and real-time traffic applications (El Faouzi et al., 2011).  Applications of 

data fusion in logistics and supply chain management (SCM) are also on the rise.  They include 

monitoring of manufacturing process (Hall and McMullen, 2004), assessing and predicting the 

performance degradation of a process (Djurdjanovic et al., 2003; Lee et al., 2006); facilitating 

system integration between manufacturing and office planning (Qiu, 2002); facilitating the 

coordination of SCM (Hsu and Wallace, 2007); and providing dynamic demand forecasting in 

emergency logistics (Sheu, 2010). 

Many attempts to define data fusion can be found in the literature.  Initially, White Jr. (1987) 

of the Joint Directors of Laboratories (JDL) Data Fusion Subgroup defined data fusion as “a process 

dealing with the association, correlation, and combination of data and information from single and 

multiple sources to achieve refined position and identity estimates.”  Klein (1993) broadened this 

definition, stating that data can be provided by a single source with many instances or by multiple 

sources.  In 1999, the JDL redefined data fusion as “the process of combining data to refine state 

estimates and predictions” in recognition of its diverse applications (Steinberg et al., 1999).  A 

selection of important definitions of data fusion in the past few decades in both academic and 
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industrial areas are summarized in Table 1.1. Additional literature reviews are provided in Essay 1 

which discuss the importance of entropy based applications in SCM.  

Table 1.1 Definitions of data fusion techniques in the academic literature. 

Summary of Definitions of Data Fusion 

Defined by Data Fusion Definition 

White Jr., 1987 

“A process dealing with the association, correlation, and combination of 
data and information from single and multiple sources to achieve refined 
position and identity estimates, and complete and timely assessments of 
situations and threats, and their significance.” 

Klein, 1993 

 
“A multilevel, multifaceted process dealing with the automatic detection, 
association, correlation, estimation, and combination of data and 
information from single and multiple sources.” 

Mangolini, 
1994 

 
“A set of methods, tools and means using data coming from various sources 
of different nature, in order to increase the quality (in a broad sense) of the 
requested information.” 

Li et al., 1995 
 
“The combination of a group of sensors with the objective of producing a 
single signal of greater quality and reliability” 

Hall and Llinas, 
1997 

 
“Techniques that combine data from multiple sensors, and related 
information from associated databases, to achieve improved accuracy and 
more specific inferences that could be achieved by the use of a single sensor 
alone” 

Pohl and Van 
Genderen, 1998 

 
“The combination of two or more different images to form a new image by 
using a certain algorithm” 

Steinberg et al., 
1999 

 

“The process of combining data to refine state estimates and predictions”  

Wald, 1999 

 

“A formal framework in which are expressed means and tools for the 
alliance of data originating from different sources. It aims at obtaining 
information of greater quality; the exact definition of ‘greater quality’ will 
depend upon the application.” 
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Several realizations emerge from these definitions.  First of all, since multisensory data 

fusion is a process that combines data from multiple sources, performing data fusion requires that 

data be both available and authentic (Khaleghi et al., 2013).  Secondly, since data comes from 

multiple sources, data fusion is often faced with challenges such as heterogeneous data distribution 

and conflicting data information (Dong and Naumann, 2009; Khaleghi et al., 2010; Smith and 

Singh, 2006).  

 

1.2. Examples of Applications of Data Fusion Supporting Relevance of Research 

Initially appearing in the 1960s as mathematical models for data integration, data fusion 

gained importance during the 1970s in the literature illustrating its applications.  The importance of 

data fusion increased with the advent of multi-sensors, specifically developed to capture and fuse 

data to enhance information quality.  Currently data fusion is the focus of many research areas.  This 

section covers the applications of data fusion in industries such as defense and aerospace, robotics 

and machine intelligence, remote sensing, traffic management, and SCM. The reason that several 

sources of data are used in the data collection process is because reliable data is often difficult to 

obtain.  Some sources will be more reliable than others. Knowing this a priori is not always possible.  

 

 Data Fusion in Defense and Aerospace Industries 

The defense industry has a natural interest in data integration since it collects data on 

numerous targets. In defense and aerospace applications, data fusion is a vital technique in 

automated target recognition, battlefield surveillance, guidance and control of autonomous vehicles, 

and submarine warfare.  Alessandretti et al. (2007) and Blair et al. (1991) described a detection 

system that calibrates and then fuses together asynchronous data received by dissimilar sensors to 
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enhance detection.  Hess and Fila (2002) proposed an autonomic system in which multi-sensors 

capture, fuse together and then inform the supply chain the conditions of multi components of an 

aircraft so that necessary logistics action can be taken. Data fusion was also a technology vital to 

threat assessment, which is a combined evaluation of enemy intent, enemy capability, and 

consequences of threat activities to determine a course of action to appropriately deploy resources 

to neutralize or eliminate the threat.  Diamond and Ceruti (2007) presented a model that fuses data 

collected from an aerial sensor delivery system to detect targeting discrepancies and asymmetric 

threats in opaque environments. 

 

 Data Fusion in Robotics and Machine Intelligence 

Data fusion is used extensively in robotics and machine intelligence.  Equipped with various 

sensors such as sonar, cameras and other technologies, a collaborative robot deployed on a 

manufacturing floor is capable to perform manufacturing tasks while working alongside humans 

without causing them injury (Fong et al., 2001; Girod and Estrin, 2001; Stroupe et al., 2001).  

Researchers also focused on using data fusion based systems for humanitarian de-mining, since 

data from one sensor is generally insufficient and ineffective for the landmine detection that meets 

the requirements. The terminology “data fusion” is more common in the engineering and operations 

disciplines than in the general business disciplines.  

 

 Data Fusion in Remote Sensing 

Multi-source data fusion techniques are emerging in remote sensing to help scientists 

acquire information without making physical contact with the object under surveillance; for 

example, the scanning of the earth by satellite (Benz et al., 2004; Ehlers, 1991; Pohl and Van 
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Genderen, 1998; Solberg et al., 1994).  The “multi” concept for remote sensing applications often 

refers to multisource.  Data fusion research in remote sensing includes the fusion of multiple 

classifiers for landslide monitoring (Metternicht et al., 2005; Nichol and Wong, 2005), for 

classification of complex forest area (Dalponte et al., 2008), and for classification of urban areas 

(Fauvel et al., 2006). 

 

 Data Fusion in Vehicular Traffic Management 

Data fusion models are important in vehicular traffic management. These models provide 

real-time traffic information (Bachmann et al., 2013; Dell’Orco andTeodorovic, 2009; El Faouzi et 

al., 2011; Kong, Li et al., 2009) to control traffic by estimating travel time (Cheu et al., 2001; Nelson 

and Palacharla, 1993; Tarko and Rouphail, 1993) ), estimating road conditions (Byon et al., 2010) 

, detecting incidents (Bhandari et al., 1995; Ivan, 1996; Ivan et al., 1995), or classifying different 

traffic states (Kong et al., 2009; Treiber et al, 2011). 

 

 Data Fusion in SCM Decision Theoretic Models 

Research has demonstrated the importance of data accuracy and availability in SCM (Davis, 

1993; Lee and Billington, 1995; Lummus and Vokurka, 1999).  Protecting the enterprise data from 

malicious attacks equals protecting the competitive advantage of the supply chain. One such attacks 

is the denial-of-service (DoS) by perpetrators seeking to paralyze the enterprise networks and make 

data unavailable to users.  Bass (1999, 2000) suggested creating cyberspace intrusion detection 

systems that fuse data from heterogeneous sensors to counter the denial-of-service attacks. Siaterlis 

and Maglaris (2004) and Siraj et al. (2004) presented DoS detection engines based on a data-fusion 

paradigm to appraise the trustworthiness of information requests. 
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One key aspect of SCM is the distribution logistics that includes inventory control and 

transportation management (Cooper and Ellram, 1993; Cooper et al., 1997; Thomas and Griffin, 

1996).  An ineffective inventory management system results in surpluses or shortage of bulk 

materials purchased, and reduces profit (Bell and Stukhart, 1986).  For example, in construction 

supply chains, poorly identifying, tracking, and locating highly customized prefabricated 

components results in late deliveries, incorrect installations, schedule delays, and higher labor costs 

(Song et al., 2006).  Razavi and Haas (2010) proposed an automated data fusion method, focusing 

on the detection of dislocation and multi-handling of materials to improve the precision of locating 

inventory.  Carthel et al. (2007), Easley (2005), and Tan et al. (2010) invented data-fusion inventory 

controlling systems that integrate data from multi container tracking sources.   

Transportation management is often difficult since it involves coordinating heterogeneous 

transporters and multiple demand centers without the benefit of real-time traveling times and 

homogeneous demand and capacity in demand centers (Lei et al., 2006).  Hsu and Wallace (2007) 

proposed adding a digital layer, connected to the enterprise information systems and to the traveling 

routes, to report real-time freight information and dynamically control the routing and scheduling 

of the inventory.   

Besides logistics, demand forecasting is another key aspect in Supply Chain Management.  

Accurate forecasting helps prevent inventory shortage or surplus. Pyle (2003) and Southworth et 

al. (2008) proposed various models to discover important features affecting demands then 

integrating results from these models to forecast demand.  Acknowledging the growing importance 

of data fusion concepts, Khan et al. (2008) suggested decision models that combine data mining 

with data fusion to transform raw data to forecasting insights.   



9  

 Data Fusion in Logistical Post-Disaster Relief Efforts  

Data fusion has also been a focus of research in humanitarian and relief logistics.  Llinas 

(2002) described the overall strategic approach addressing information fusion to support crisis-

center decision makers in post-disaster environments for both natural and man-made disasters.  

Scott and Rogova (2004) constructed a post-crisis management scenario to explore various data 

fusion system designs that could filter data from redundant or contradictory reports.  Gong et al. 

(2004) offered a post-disaster scalable decision-making methodology that requires support of data 

fusion.  Jotshi et al. (2009) developed a methodology that integrates data for routing and dispatching 

emergency vehicle in the aftermath of an earthquake.  Sheu (2010) proposed a dynamic relief-

demand management model for emergency logistics operations under imperfect information 

conditions to forecast relief demand.  

 

1.3. Identification of the Research Problem 

This research is inspired by SCM applications that require robust methods to make sense of 

information collected through multi-sources usually driven by technology.  How do supply chain 

managers combine, integrate, and fuse data from diverse sources in an age of time-sensitive data 

available through technology-driven sources, sometimes with unknown reliability?  This research 

investigates robust methods of weighting sources of information that may be critical to SCM 

decisions. Entropy based methodology allows decisions to be weighted by a measure of uncertainty. 

Entropy approaches in data fusion methods have not received sufficient attention in the SCM 

literature and research is needed to provide a framework for its use. 

Since this dissertation’s problem statement involves researching entropy based methods, 

then there needs to be a derived SCM benefit. What are the decision making applications in SCM 



10  

that entropy based methods can enhance?  Well known applications include the newsvendor model, 

inventory management, and transportation strategies. Table 1.3 names specific decision making 

applications in SCM and list research articles that investigate entropy based methods to enhance 

the application. As noted in Table 1.3, additional SCM applications benefiting from entropy based 

methods include: forecasting demand, personnel staffing, assessing supplier risks, simulating and 

modeling emergency relief efforts, and optimizing business processes and online logistical support. 

Limited information and knowledge of uncertainty makes entropy based approaches appealing.   

Table 1.3 Specific SCM applications benefitting from entropy methods. 
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Allesina et al.  
(2010) X X   X             

Andersson et al. 
(2013)               X X X 

Arkhipov and  
Ivanov  
(2011) 

X X                 

Chen and Freeman 
(2014) X X X             X 

Cheng et al.  
(2006)     X   X         X 

Dekkers et al. 
 (2012)   X         X   X   

Eren and Maglaras 
(2006)     X       X       

Gan and Wirth 
(2005)       X   X       X 

Ghorbani et al. 
(2012) X     X     X       

Guoyi and 
Xiaohua (2011) X       X       X   
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Hu et al. 
 (2008) X           X     X 

Sheu  
(2010)     X       X       

Zheng et al. 
(2013)           X X       

 

As Sheu (2010)’s study illustrates, a timely information-based decision is required for 

expedient responses to urgent relief challenges. His paper presented a hybrid fuzzy clustering-

estimation approach.  Andersson et al. (2013) considered the newsvendor problem under partial 

information.  One approach to the newsvendor problem is to use conservative rules and assume full 

information about the distribution of the demand.  In this case, solutions are straight-forward. 

Although the newsvendor problem has been studied under partial information with a variety of 

extensions, a data fusion entropy approach has not been investigated to assess the performance of 

standard estimators.  Andersson et al. (2013) provided the following quote: “To the best of our 

knowledge the operations management and revenue management literatures have not explored the 

use of maximum entropy methods to approximate unknown demand or willingness-to-pay 

distributions.” 

In Sheu (2010), entropy-based data fusion methodology was introduced. Sheu (2010) 

applied an entropy formulation to data by considering “confidence bands” that are located at one 

standard deviation on either side of the mean, and then between one and two standard deviations, 

and finally beyond three standard deviations.  However, no comparative analysis was presented to 

demonstrate how superior or deficient the methodology may be, compared to standard estimation 

procedures. Grafstrom (2010) compared distributions based on entropy and suggested that the 

distribution with the largest entropy is more robust.  In essence, if one is required to assign 

probabilities to events and there is no compelling justification to assign one outcome as being more 
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likely to occur, then the events should be assigned equal probabilities which increases the entropy. 

Figure 1 illustrates that the entropy-based models are actually a subset of the probability based 

models.  Decision theoretic model may or may not be constructed with a stochastic component.  

 
Figure 1. Entropy based models can be considered to be a subset of probability based models. 
 
 
1.4. Statement of Purpose 

An examination of the SCM literature reveals a significant problem: the current literature 

lacks an entropy-based data-fusion (EBDF) framework. This dissertation is motivated by the 

following problem statement: 

Although standard and entropy-based methods to integrate data from multiple sources have 

been implemented in various applications, such as estimating the population mean or estimating 

distributional parameters in the newsvendor problems under limited distributional knowledge, 

systematic development of alternative methods and comparative studies on their performance under 

various conditions in SCM applications are lacking. 

The purpose of this research is to establish a framework for using EBDF methods under 

certain conditions that may arise in SCM applications.  A comparative simulation analysis 

Entropy 
Based 

Models Decision
Theoretic Models

Probability based 
Models
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employing a Monte Carlo simulation will provide a basis to investigate the robustness of the 

proposed EBDF methods.  

 

1.5. Essays Comprising Research 

This dissertation is comprised of three interrelated synergistic essays. Chapter 1 provides 

the introduction, motivation, research statement, practical applications of data fusion entropy 

methods to SCM, and research questions. The three essays are listed in Figure 2 and illustrate how 

the EBDF methods are introduced, assessed for estimation, and compared for performance in a 

newsvendor model application.  

 

 
Figure 2. Layout of dissertation essays. 

 
 

• Essay 1
• Motivation: 

Numerical 
Comparison of 
Entropy 
Method to 
SCM 
Application 

Robustness of two 
entropy based 
formulations

• Essay 2
• Comparative 

Performance of 
13 Proposed 
Entropy Based 
Data Fusion 
Estimators

Monte Carlo 
Simulation 

Comparison using 
various 

distributions, 
sample sizes, and 

biases • Essay 3
• Newsvendor Model 

Inventory Parameter 
Estimation Using 
Estimates from Essay 
2 for 13 Data Fusion 
Methods

Comparison of Newsvendor Model 
Profits from Entropy Based Data Fusion 

Methods
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This section explains the research questions for each of the three separate but unified essays.  

A discussion is provided on how each essay addresses the research questions for this dissertation 

and the applicability of the results to SCM in theory and practice.  Essay 1 provides an overview of 

supporting literature for the research question. In addition, Essay 1 demonstrates that entropy based 

data fusion methods may enhance decision making in an SCM application.  

 

 Essay 1 Research Question 

Why should one consider alternative entropy-based weighting methods? 

A numerical analysis of airline wait time data illustrates the insight that an EBDF method 

can provide to decision makers when using time sensitive data from several “sources.”  A numerical 

comparison of two formulations of entropy on the resulting weights from similar distributions 

demonstrates a compelling reason to conduct further research to assess the performance of various 

EBDF methods. Essay 1 provides literature support for processing data from multiple sources, 

which often will vary in reliability. Hence, a need exists to weigh the various sources. Obtaining 

reliable information is a challenge when contamination is easily acquired from biases, censorships, 

heterogeneity of data distributions, and inherent error from within the sources. The time 

sensitiveness of data in many SCM applications often does not allow for large samples of data to 

be collected.  

How does Essay 1 research question support Problem Statement and SCM applications? By 

illustrating the possible robustness of two entropy based formulations, Essay 1 research question 

provides the motivation to examine EBDF methods and thus supports this dissertation’s Problem 

Statement. This numerical example demonstrates how EBDF methods could assist with real-world 

SCM issues such as staff planning.  
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Essay 2 introduces thirteen data fusion methods. Ten of these methods are entropy based 

methods based on Sheu (2010)’s data fusion approach. An addition entropy method is included as 

it is based on the maximum entropy principle. A Monte Carlo simulation study examines the 

performance of thirteen methods in estimating the mean parameter of a population with either a 

normal or lognormal population distribution.   

 

 Essay 2 Research Questions 

1.  Can an alternative formulation to Shannon’s entropy enhance the performance of Sheu’s 
(2010)’s data fusion approach?  

2.  Do symmetric and skewed distributions affect the performance of these thirteen data 
fusion methods?  

3.  Do negative and positive biases affect the performance of these thirteen methods?  

4.  Do entropy based data fusion methods outperform non-entropy based data fusion 
methods?  

5.  Which data fusion methods are recommended for symmetric and skewed data sets when 
no bias is present?   

6.  What is the recommendation under the condition of few data sources with bias? 

 

1.5.2.1. How Essay 2 Research Question Supports Problem Statement and Applicability to 
SCM  

By proposing and comparing the estimation performance of 11 entropy based methods and 

2 traditional methods for data fusion through a Monte Carlo simulation study, this essay provides 

an examination of the results that leads to recommendations under various distributional and biased 

induced conditions that often exist in SCM applications. The research questions addressed in this 

essay allow for the EBDF methods and traditional methods to be contrasted for conclusions about 
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their robustness. Thus, Essay 2 research questions provide insight into a systematic development 

and comparative study of the proposed data fusion methods examined in this dissertation study.  

 

1.5.2.2. How Essay 3 Research Question Supports Problem Statement and Applicability to 
SCM 

Essay 3 explores the use of the data fusion estimates of the population mean in a newsvendor 

application.  A Monte Carlo simulation study investigates the accuracy of the using the estimates 

provided in Essay 2 as the parameter estimate for the exponentially distributed demand.  

 

 Essay 3 Research Questions 

1.  Do data fusion methods with relatively strong performance in estimating the parameter 
estimate also provide relatively strong performance in estimating the optimal demand 
under a given ratio of overage and underage costs?   

2.  Do any of the data fusion methods deteriorate or improve on a relative basis with the 
introduction of positive and negative bias?   

3.  Does the alternative entropy formulations to Shannon’s entropy enhance the 
performance of the methods on a relative basis?   

4.  Is the relative rank order performance of the data fusion methods different in Essay 2 
and Essay 3?  

 

1.5.3.1. How Essay 3 Research Question Supports Problem Statement and Applicability to 
SCM 

By comparing the optimal profit estimations in the newsvendor model using the inputs of a 

total of 13 data fusion methods in the simulation study, this essay provides an analysis of the results 

that lead to both theoretical and practical recommendations of appropriate methods that are robust 

under various distributional and biased induced conditions. Thus, Essay 3 research questions 

provide insight into a systematic comparative study of the proposed data fusion methods in an SCM 
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application, namely, the newsvendor model. Essay 3 illustrates that the data fusion methods may 

play an important role in estimating parameters of the distribution used in the newsvendor model.  

 

1.6. Methodology to Investigate Research Questions 

The methodology in this research flows from the first essay to the third essay. Essay 1 uses 

numerical illustrations to promote the use of entropy based data fusion methods. In particular, Essay 

1 provides an alternative entropy formulation and demonstrates a rationale for introducing this 

formulation to compute weights in data fusion methods. These methods are applied to the airport 

maximum wait time problem which is a proxy for SCM dynamic staff planning.  

The methodology in the second essay is to provide an illustration of a framework of 

configurations that should be considered in assessing the robustness of data fusion methods. The 

normal distribution and the lognormal distribution were selected as the population distributions for 

the inputs of the sources and were used in the generation of the data for the Monte Carlo simulation. 

These distributions were selected since they are examples of symmetric and skewed distributions. 

The number of sources were varied to gauge the sensitivity of the methods. The number of inputs 

per source were varied to be small and to be moderate as might occur in a time sensitive data 

collection SCM application. The mean of the general population is fixed and the relative 

performance of the proposed data fusion methods are assessed. The reliability of the sources was 

controlled for by assigning various standard deviations. Larger standard deviations were assigned 

to less reliable sources.  

The methodology in the third essay is to assess the performance of the estimation obtained 

by using the data fusion methods proposed in Essay 2 for the newsvendor model. The estimates of 

the population parameter for the newsvendor was estimated using these methods so that the optimal 
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inventory levels could be approximated to optimize profit. The overage cost divided by the sum of 

the overage cost and the underage cost was set to be near one. The purpose in using this figure was 

to create an environment in which profit is difficult to optimize. All results from the proposed data 

fusion methods are compared and recommendations are provided.  

The research questions in this dissertation are supported through the use of a Monte Carlo 

simulation analysis and a Tukey multiple comparison procedure to determine the significance of 

the methods.  The 56 configurations in this simulation study are presented in Essay 2. Each 

configuration is replicated 1000 times. Simulation experiments in SCM abound in the literature 

since a simulation study allows multiple scenarios to be generated for analysis without a costly 

physical collection of data (Bachmann et al., 2013; Andersson et al., 2013; Gan & Wirth, 2005; 

Sheu, 2007).   

The motivations for using a Monte Carlo simulation study are the following: 

• True values of population parameters and optimal profit in newsvendor model are 
known and allow for accurate assessment of the performance of proposed methods.  

• Data to assess the methods are generated from 56 configurations having various 
distributions with specified biases.  

• Alternative methodology such as analytical analysis using mathematical derivations 
are not tractable in assessing the data fusion methods. That is, closed-form solutions 
are not available and many do not exists.  

• Similar research questions have been addressed in the literature using a Monte Carlo 
simulation approach.  

After results are available through the simulation, the proposed methods’ estimates are 

compared using the mean absolute percent error (MAPE), the criteria explained in Essay 2. 

Differences in the MAPEs for estimating the mean parameter in Essay 2 and the profit for the 

newsvendor model in Essay 3 are analyzed for significant differences using the Tukey procedure. 

A distinct advantage of the Tukey multiple comparison procedure is that it controls for the family 
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wise error rate. The family wise error is the probability of making one or more false discoveries, or 

type I errors, among all the hypotheses when multiple comparisons are used. An example of the use 

of the Tukey procedure is illustrated in Danese et al.  (2013) in which pairwise comparisons of 

construct estimates from various countries to examine the impact of supply chain integration on 

responsiveness are considered.  

 

1.7. Theoretical and Practical Contributions, and Summary of Conclusions from Research     

 Theoretical Contributions 

This research proposes an extension of methodology used in Sheu (2010)’s study in 

modelling relief-demand management. An important contribution of the research is the introduction 

of Pal & Pal (1991)’s entropy formulation as an alternative approach to Shannon (1948)’s entropy 

definition in weighting sources of information. Another contribution of the research is the 

illustration on how a framework can be used to assess data fusion methodology through a Monte 

Carlo simulation.  The obtained results provide patterns of performance by 13 proposed data fusion 

methods that can be partially explained using the methodological characteristics of the techniques. 

The overall theoretical contribution is that alternative approaches to Sheu (2010)’s data fusion 

approach may enhance the estimation performance of the methods under specific configurations. 

These alternative approaches are viable competitors with compelling results to justify their usage 

in data fusion applications. Further details to this research’s theoretical contributions are discussed 

in section under each essay’s summary of conclusions. The framework for data fusion methods 

illustrated in this dissertation may assist researchers in assessing further extensions of these 

methods.  
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 Practical Contributions 

This research proposed data fusion methods alternative to the one initially introduced by 

Sheu (2010)’s study to model relief-demand management and to facilitate emergency operations. 

This research highlights the importance of selecting an appropriate data fusion method in an SCM 

application.  Knowing the number of sources, sample sizes from the sources, shape of the 

distribution for data inputs, and possible level of contamination of the data source would provide a 

practitioner with justification for selecting a data fusion methodology.  The proposed data fusion 

methods were assessed using the newsvendor model, which has diverse applications in SCM 

decision making, to determine conditions in which the methods were robust. As noted in Table 1.3, 

numerous SCM applications may benefit from using entropy based methods: forecasting demand, 

personnel staffing, assessing supplier risks, simulating and modeling emergency relief efforts, and 

optimizing business processes and online logistical support. SCM applications requiring time-

sensitive estimation under conditions in which information is limited provide attractive argument 

for the justification of employing an EBDF method.  

 

 Essay 1 Summary of Conclusions 

Essay 1 contributes to the academic literature by presenting an alternative to Shannon’s 

entropy formulation to compute weights for sources of information and by confirming that entropy 

based approaches can provide a more consistent and useful estimate even in the presence of bias.  

Essay 1 contributes to SCM practice by providing an SCM application in which the Transportation 

Security Authority at the Atlanta airport is required to track travelers’ maximum wait time during 

each hour of the day as a quality measure and to make staffing allocation decisions at various 

sections of the airport. The average maximum wait time estimate must be compiled weekly for 
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management purposes. The difficulty is its distribution is not homogeneous of the days of the week.  

A numerical comparison of the entropy weights for two entropy approaches, namely Shannon 

(1948) and Pal & Pal (1991), motivates an investigation into contrasting the performance of these 

approaches in data fusion applications. The results of Essay 1 support the objective of introducing 

the 13 data fusion methods used in Essay 2 and the establishing a framework for the use of entropy-

based data fusion techniques in SCM. In addition, this essay illustrates that entropy based data 

fusion methods can be readily applied to decision making problems in SCM applications.  

 

 Essay 2 Summary of Conclusions 

Essay 2 contributes to the academic literature by presenting new EBDF methods and 

illustrating how a framework can be constructed to evaluate the robustness of the methods. In a 

Monte Carlo simulation study to estimate the mean of a population, the performance of the 13 data 

fusion methods under various distributions, biases, number of sources, and sample size (source size) 

is compared.  For a symmetric distribution, like the normal distribution, Sheu (2012)’s method in 

which Shannon’s entropy formulation is used is competitive in the presence of bias.  However, if 

no bias is present, then a traditional non-entropy based approach in which the inverse variance is 

used is the top performing method. For a skewed distribution such as the lognormal, procedures 

using Pal & Pal (1991)’s entropy formulation and using intervals in the methodology consisting of 

a fixed size or equal to the standard deviation are among the top performing methods.  

Sheu (2010)’s method with weights provided by Shannon’s entropy formulation  clearly 

performs better with inputs from a normal distribution and may perform quite poorly in the presence 

of many inputs from a lognormal distribution. Several procedures change rank ordering of their 

performance across configurations.   
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For many of the procedures, a positive or negative bias does not change the rank ordering 

performance of a data fusion method. However, a generalized maximum entropy method was 

shown to be easily affected by the bias and its performance depends on whether the bias is positive 

or negative.  The proposed entropy based data fusion methods perform better than the traditional 

methods when bias is present. However, in the presence of no bias, the traditional methods should 

be used. The traditional method in which weights are assigned by the inverse of the variance is the 

top performer in all scenarios without bias. In the scenario with no bias and few sources and inputs, 

Shannon’s entropy formulation with interval either of fixed length or else equal to the overall 

standard deviation is recommended. Specific performance comparisons are further discussed in 

Essay 2.  

 

 Essay 3 Summary of Conclusions 

Essay 3 contributes to the academic literature by evaluating new EBDF methods using a 

newsvendor model and illustrating how a framework can be constructed to evaluate the robustness 

of the methods in this SCM application. This essay provides an analysis of the results for the 

newsvendor model that leads to both theoretical and practical recommendations of appropriate 

methods that are robust under various distributional and biased induced conditions. The 

contribution of Essay 3 research to the academic literature and practitioner is the insight into the 

results of a systematic comparative study of the methods in the newsvendor model.  One finding is 

that, in general, the top performers in estimating the mean in Essay 2 repeat that performance in 

Essay 3 in estimating the optimal inventory level. However, there are some exceptions.  

The data fusion method most affected by the type of bias is the generalized maximum 

entropy method similar to the case when the data fusion methods were estimating the mean of a 
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population. Many methods employing Pal & Pal entropy perform at least as well as their Shannon 

entropy counterparts. As in Essay 2, a bias with large magnitude combining with a large number of 

sources assuming a lognormal distribution causes a strong deterioration in the method employing 

the inverse variance weight.  More details regarding the contribution and findings of Essay 3 are 

provided within the essay. Essay 3 illustrates how a framework can be constructed to evaluate the 

robustness of the method under an important SCM application and demonstrates that the proposed 

methods are viable alternatives to the standard estimation procedures.  

 

1.8. Overview of Dissertation Organization 

This dissertation is organized into four chapters. The current chapter, Chapter 1, is an 

introduction and is intended to provide background and literature review regarding data fusion 

methodology. This chapter is an overview of the entire dissertation with research statement and 

questions as well as contributions and findings.  

Chapter 2 presents Essay 1 in which numerical illustrations are presented to support the 

assertion that EBDF method are viable techniques supporting SCM decision making. This essay 

provides the motivation for alternative entropy based formulation in the EBDF methodology.  

Chapter 3 presents Essay 2 in which 13 data fusion techniques are presented and assessed 

for their robustness as estimators through a Monte Carlo simulation study. This chapter provides 

findings and contributions to SCM academic literature by illustrating the construction of a 

framework that allows practitioners to select appropriate methods under various conditions for data 

distributions and contamination.  

Chapter 4 presents Essay 3 in which the methodology assessed in Essay 2 is applied to a 

particular situation in the newsvendor problem. The estimates obtained from the data fusion 
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methods in Essay 2 are used as input to the newsvendor model to optimize profit through inventory 

management. This essay also illustrates the construction of a framework to assess the robustness of 

the various methods in an SCM application. Conclusions and findings are discussed to inform 

practitioner how to select a robust methodology for an appropriate scenario. Chapter 4 also 

discusses limitations of this study. Two definitions of entropy are used in this examination of data 

fusion techniques. Other definitions could have been considered. The simulation study conducted 

in this research is not intended to be exhaustive. Patterns in the results from this simulation may not 

generalize to other conditions. This simulation study was conducted under a set of assumptions. 
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CHAPTER 2  

ESSAY 1: NUMERICAL COMPARISON OF DATA FUSION METHODS USING TWO 

ENTROPY BASED METHODS 

2.1. Abstract 

This essay examines two definitions of entropy that could be used in Sheu (2010)’s data 

fusion weighting methodology. The literature has presented Shannon (1948)’s entropy as the 

standard entropy definition over many decades.  Considering the long standing popularity of 

Shannon’s formula, Pal and Pal (1991)’s entropy definition is relatively new.  To integrate 

information from multiple sources, a data fusion technique must determine the weights of the data 

sources as described in Sheu (2010). This essay presents two numerical examples to contrast the 

computed weights based on both definitions of entropy.  In the first example, this research examines 

real time data from the airline industry and analyzes the differences in the entropy-based data fusion 

estimations with respect to possible bias in the data. This numerical example demonstrates how 

EBDF methods could assist with real-world SCM issues such as staff planning. In the second 

example, probabilities representing several distributions are presented and the resulting weights 

provide insight into the data fusion application of Shannon’s and Pal & Pal’s formulations of 

entropy.  The purpose of this essay is to motivate the use of Pal & Pal’s modified definition of 

entropy with the ultimate objective of establishing a framework for the use of entropy-based data 

fusion techniques in SCM.  This essay, Essay 1, provides a foundation for Essays 2 and 3 to research 

the robustness of proposed entropy-based data fusion techniques.  

 

2.2. Introduction to Entropy-based Methodology 

This essay illustrates the implementations of two entropy-based data fusion (EBDF) 

methods by introducing a real world application that employs these methods with entropy weights 
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formulated by Sheu (2010): one method uses entropies formulated by Shannon (1948) and the other 

uses entropies formulated by Pal and Pal (1991).  The objective of the application is to estimate the 

average of the weekly maximum wait time of travelers at a major airport; this estimate of wait time 

is useful in labor allocation decision making. The estimators demonstrate the sensitivity of the 

methods to distortion and bias in the data.  The example illustrates the need to conduct a simulation 

study to systematically compare accuracy and variability of EBDF methods under various 

distributional conditions.  First, the essay presents supporting literature to explain the use of EBDF 

in SCM applications.  

The reliability of forecasts for SCM depends on accurate data and robust methodologies.  

Robust methodologies can overcome issues with data collected from multiple sources, data 

contaminated with biases, and data censored by collection constraints.  Entropy-based methodology 

has been proposed as such a robust methodology. One of the most important concepts in information 

theory is Shannon’s entropy.  Shannon (1948) published "A Mathematical Theory of 

Communication" and co-authored topics on entropy with Weaver to quantify information.  Shannon 

defined entropy as the uncertainty in the information source which increases with the source’s 

randomness (Shannon, 1948; Shannon and Weaver, 1963).  Shannon entropy represents the 

expected value of the information gained in the received messages based on the concept that the 

rarer the event, the more information it offers. 

In various SCM applications in which data originates from multiple sources, weights may 

be assigned to sources in a data fusion technique to represent the corresponding reliabilities.  The 

result is a weighted data aggregation that “fuses” or “integrates” data sources to provide an estimate 

that increases accuracy and lowers variability.  Sheu (2010) proposed an entropy-based weighting 

technique in which sources with higher entropies (i.e., more uncertainties) receive smaller weights.  

https://en.wikipedia.org/wiki/Expected_value
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Sheu also examined a probability distribution based on belief levels determined through the 

standard deviation distance of the observation from the mean. 

 

2.3. The Role of Data Fusion in SCM Applications 

Since the supplier selection is a complex multi-criteria problem including both quantitative 

and qualitative conflicting and uncertain factors, the entropy-related research to select suppliers or 

logistics providers often uses multi-criteria decision analysis methods such as ELECTRE, 

“Elimination and Choice Expressing Reality,” (Roy, 1968), TOPSIS, “Technique for Order of 

Preference by Similarity to Ideal Solution,” (Yoon and Hwang, 1995), or VIKOR, “Multi-criteria 

Optimization and Compromise Solution,”  (Opricovic, 1998)  combined with a structured technique 

for organizing and analyzing complex decisions such as AHP, “Analytic Hierarchy Process,” 

(Saaty, 2000).  Shannon entropy is applied to calculate objective weights for corresponding criteria.  

Models to select third party logistics supplier based on AHP and entropy were developed by Guoyi 

and Xiaohua (2011) and by Zhang et al. (2012).  Lim and Shanthikumar (2007) considered a relative 

entropy measure for dynamic revenue management. They emphasized that the accuracy of the 

underlying demand rate model may not be accurately calibrated in real-world processes. Grafstrom 

(2010) compared distributions based on entropy and suggested that the distribution with larger 

entropy tend to be more robust.   

Xiu and Chen (2012), and Chen and Freeman (2014) proposed using AHP, entropy weight, 

and TOPSIS to select third party logistics supplier and green supplier within comprehensive index 

systems that allow for objective and subjective weights simultaneously.  Liu and Zhang (2011) 

constructed an indicator system with multiple criteria and combined entropy weight and ELECTRE 

to rank suppliers based on the net advantage value of each project.  Shemshadi et al. (2011), and 
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Wu and Liu (2011) combined the VIKOR method and Shannon entropy concept in their models to 

solve multiple criteria decision problems and to deploy objective weights to indicators.  

Implementing Shannon entropy and linear programming, Ghorbani et al. (2012) proposed a supplier 

selection and order allocation model according to an analysis based on four criteria: strengths, 

weaknesses, opportunities and threats.  

 

 Assessing System Risk 

Entropy, as a measure of uncertainty, has been used to assess the risk impact on the supply 

chain system.  Li et al. (2010) combined fuzzy weight and entropy weight to provide an estimate of 

risk impact on the supply chain system and facilitate the search of system vulnerabilities. Dekkers 

et al. (2012) proposed using entropy coupled with simulation to assess the impact of information 

disruption introduced by different sources and to investigate the impact of the resulting disruption 

on collaborating members of the supply chain.  Arkhipov and Ivanov (2011) adopted an entropy-

based approach to simultaneously analyze the structural complexity and adaptation potential of the 

supply chain.  This method can be used to select the supply chain configuration. Using fuzzy 

entropy, Zhang and Xu (2009) quantified the complexity of an industrial network to measure flows 

of goods and interaction costs between different sectors within the supply chain. Hu et al. (2008), 

and Isik (2010) proposed various techniques to measure and mitigate complexity to assist in 

designing systems with robust performances. Wang et al. (2005) applied Shannon’s entropy and 

entropic indices to measure the complexity of dynamic decision processes and of the Markov 

decision processes under random and deterministic policies. Gan and Wirth (2005) combined an 

empirical approach and an entropy measure to determine the validity of the transition between 

deterministic scheduling and online scheduling. Jiang et al. (2012) found that the entropy analysis 
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of technology standardization clarified the interrelationship between technology standards and 

industrial innovations. 

Since entropy is a measurement for disorder, Scholz-Reiter et al. (2007) proposed using 

entropy to measure the quality of demand forecasting. Isik (2011) proposed a complexity 

management model which covers identifying, measuring, analyzing and controlling complexity 

since reducing complexity is reducing high costs to the company.  To measure the firm's capability 

to quickly respond to customer demands, Shuiabiet al. (2005) proposed using entropy to measure 

and monitor the flexibility of manufacturing operations.  Huatuco and Shaw (2010) demonstrated 

that the robustness of supply chains can be assessed using entropic-related complexity 

retrospectively and prospectively.  Sivadasan et al. (2002) described a technique to measure the 

operational complexity of the supply chain based on entropy to quantitatively detect and prioritize 

operational complexity hotspots.    

Using simulation and entropy, Martínez-Olvera (2008) created an entropy-based 

formulation to compare different information sharing approaches in a supply chain. Allesina et al. 

(2010) developed indexes to measure a supply network complexity and solve the problem of supply 

network optimization based on entropy of information.  

 

 Forecasting Measures of Logistics 

Goh and Law (2003), and Goh et al. (2008) analyzed tourism demand based on rough sets 

theory and minimal entropy partitioning algorithm.  In a large-scale disaster, given various 

estimations of fatalities produced by multi-sensors (different information sources) with multiple 

estimations per sensor, Sheu (2010) used a team consensus approach to estimate the dynamic 

fatalities.   In this method, the entropies associated with the information sources are used to calculate 
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weights to linearly combine the means of the sensors’ estimates. The weights reflect the relative 

reliability associated with these sources of information: sources with higher entropies (i.e., more 

uncertainties) receive smaller weights. Cheng et al. (2006) proposed an approach to forecast IT 

project cost through combining minimize entropy principle approach (MEPA) and fuzzy time series 

forecasting methods.  

 

 Enhancing Systems 

To reduce cost and to gain improvements to production systems, Jaber and Rosen (2008) 

suggested various approaches to reduce system entropy in production systems.  Jaber et al. (2014) 

showed that the performance of the consignment cost, a system in which vendors stock inventory 

at the buyer’s location, improve when entropy is reduced. Jaber et al. (2006) and Jaber (2007) 

enhanced the lot size model, which is the economic order quantity model, by reducing the hidden 

cost through reducing system cost entropy. 

In the airline industry, researchers proposed using the maximum entropy approach to update 

the booking limits under curbed demand information.  This approach utilizes past observations to 

obtain a discrete probability distribution which can be used to determine the booking limits (Eren 

and Maglaras, 2006; Lan et al., 2008).  

 

 Improving the Newsvendor Model’s Inventory Estimation  

Andersson (2013) considered the newsvendor model under partial information and used a 

maximum entropy approach to assess the performance of standard estimators and to generate the 

most likely distributions.  Perakis and Roels (2008) generated criteria to select the demand 

distribution as an input to the newsvendor model using the maximum entropy approach.  Saghafian 
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and Tomlin (2014) proposed a non-parametric, maximum-entropy based technique to combine 

demand observations with tail-behavior of distribution functions which can dynamically respond to 

hidden changes in the unknown true distribution. 

 

 Summary of Entropy Application for SCM Models 

Table 2.1 depicts important SCM applications that may benefit from entropy methodology. 

These contributions from the literature are grouped in eleven categories that appear frequently. 

Several researchers contribute to several of these areas. These papers help to support the 

investigation of entropy concepts in SCM applications.  

Table 2.1 Summary contributions of entropy based methods in SCM  
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Allesina et al. (2010) X X  X        
Andersson et al. (2013)      X X X    
Arkhipov and Ivanov (2011) X X  X        
Chen and Freeman (2014) X   X     X   
Cheng et al. (2006)   X  X     X  
Dekkers et al. (2012) X   X        
Eren and Maglaras (2006)   X   X X     
Gan and Wirth (2005) X   X        
Ghorbani et al. (2012) X   X     X   
Goh et al. (2008)   X  X     X  
Goh and Law (2003)   X  X     X  
Guoyi and Xiaohua (2011) X   X     X   
Hu et al. (2008) X X  X        
Huatuco and Shaw (2010) X X  X        
Isik (2010) X X  X        
Isik (2011)  X  X        
Jaber et al. (2006)  X  X        
Jaber et al. (2007)  X  X        
Jaber et al. (2014)  X  X        
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Jaber and Rosen (2008)  X  X        
 Jiang et al. (2012)  X  X        
Lan et al.  (2008)   X   X X     
Li et al. (2010) X   X      X  
Liu and Zhang (2011) X   X     X   
Martínez-Olvera (2008) X X  X       X 
Perakis and Roels (2008)      X X X    
Saghafian and Tomlin (2014)      X X X    
Shemshadi et al. (2011) X   X     X   
Sheu (2010)   X X       X  
Scholz-Reiter et al. (2007) X  X X        
Shuiabiet al. (2005) X X  X        
Sivadasan et al. (2002) X X  X        
Wang et al. (2005) X   X        
Wu and Liu (2011) X   X     X   
Xiu and Chen (2012) X   X     X   
Zhang et al. (2012) X   X     X   
Zhang and Xu (2009) X   X      X  

 

2.4. Importance of Entropy-Based Data-Fusion (EBDF) Framework in SCM 

Effective forecasting impacts the efficiency of supply chains and affects the management 

of operations, logistics, and merchandising.  Effective forecasting relies on accurate data and robust 

methodologies.  However, multiple issues causing data inaccuracy or conflict affecting many SCM 

applications exist, including but not limited to data coming from multiple sources, data being 

biased, or data being censored. Entropy-based methodology has been introduced to overcome these 

data issues. However, no comparative analysis was presented to demonstrate how superior or 

deficient these methods may be compared to standard estimation procedures.   
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 Data Issues in SCM 

Poor quality data affects the management of operations, logistics, and merchandising since 

it distorts demand forecast, and causes the “bullwhip” effect that leads to unreliable deliveries, high 

safety stock and subsequent stock shortages (Lee et al., 1995).  Poor data also shrinks operating 

revenue and share-price (Hendricks and Singhal, 2005), and obstructs risk management (Hendricks 

and Singhal, 2005; Curkovic, 2015).  Poor data may also have deadly consequences.  The Institute 

of Medicine estimated that medical data errors kill between 44,000 and 98,000 people a year in US 

hospitals (English, 2009).  The most recent Ebola outbreak was one of the worst in history because 

of data problems.  According to the Center of Disease Control , the underreporting of Ebola cases 

resulted in the rescue efforts, in terms of supplies and manpower, being delayed three or four months 

(Voelker, 2014).  Data problems reduce profit, alienate customers, and hinder new strategies 

(Redman, 1995).  Even so, problems with data exists for many reasons: data gathered from multiple 

sources, bias introduced intentionally or unintentionally into the data, and data recorded 

incompletely or censored. 

 

 Multiple Sources in SCM Operations 

The exponential growth of data availability through digital technology development has 

increased SCM’s reliance on information as a strategic resource (Ballou et al., 2003).  However, as 

the variety and volume of the collected data increases, data quality suffers (Coyle et al., 2012).  

Since supply chains span many organizations, the data quality problem is compounded by the 

reliability of collection methods, collection frequency, and multiple collection sources (Harrison et 

al., 2005; Lee and Strong, 2003).  For example, emergency management programs designed to 

respond to crises such as earthquakes and hurricanes, often relies on data from armed forces, 
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governments, private organizations, or humanitarian agencies, each of which employs its own 

method of operations (Schulz & Blecken, 2010; Davis, 2010).  In emergency management 

situations, data must be “fused” from several sources in a time-sensitive manner. Consequently, 

decision-making questions are addressed by integrating multiple heterogeneous data information 

sources (Madnick et al., 2003). 

 

 Data Bias and Distortion 

SCM data bias can be categorized as either intentional or unintentional and is a major threat 

to effective decision making.  Intentional bias may occur in demand forecasting through personal 

motivations or misalignment of incentives.  For example, a sales department manager may inflate 

the forecasted data to guarantee product availability. This availability may allow for an increase in 

sales commissions. On the other hand, an operations manager may smooth the forecasts to avoid 

costly production swings (Shapiro, 1977; Oliva and Watson, 2009).  Unintentional bias is an 

unforeseen and uncontrollable error, often caused by process deficiencies, lack of information, or 

lack of management experience in forecasting methodology (Makridakis et al., 1998). An example 

of unintentional bias is the over-estimation of sales due to the lack of experience of a new manager.  

Intentional and unintentional biases stymie forecast accuracy, distort demand information, and 

cause negative supply chain phenomenon such as the “bull-whip” effect (Lee et al., 1992). 

 

 Censored Data 

Data censoring is a condition in which observations are censored, meaning that their values 

are recorded correctly only if they are below or above a specified value. This condition may happen 

when demand is not recorded after demand is satisfied.  Data could be censored from above (right-
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censored) or below (left-censored) and may bias final estimates of interest.  As an example of 

censored from above data, Greene (2003) suggests the example of ticket sales to sporting events, in 

which the actual latent demand is recorded correctly only if the ticket sales are below the facility 

capacity.  After the events are sold out or reach capacity, the demand is not recorded.  The recorded 

data, incomplete and censored at the ticket limit, reflects the ticket sales, not the true demand.  Data 

censorship is particularly complex among businesses practicing revenue management such as 

airlines since there are multiple fare classes subject to a common capacity constraint.  Demand 

forecasting is difficult with censored data since the information is incomplete and often yields 

forecasts carrying a negative bias that underestimates the true demand (McGill, 1995). 

 

2.5. Probabilistic Formulation of Entropy Based Data Fusion  

Shannon’s definition of entropy, the most widely used formulation for entropy, is defined 

as the expectation of the information gain I(x).  For each event xi, I(xi) is described as the negative 

of the logarithm of its probability.  Since I(xi) can be unbounded, the information gain has no upper 

limit. In practice, the computation of the logarithm of a very small probability may cause 

computational instability.  

Shannon’s definition of entropy has a long history, especially in information theory.  

Shannon defined entropy as the expectation of the information gain I(x), measured by the negative 

of the logarithm of the probability of an event.  Notationally, if H(x)  represents the entropy then 

its computational formula is expressed as follows:   

𝐻𝐻(𝑥𝑥) =  𝐸𝐸(𝐼𝐼(𝑥𝑥)) =  ∑ 𝑃𝑃(𝑥𝑥𝑖𝑖)𝑖𝑖 𝐼𝐼(𝑥𝑥𝑖𝑖) =  −∑ 𝑃𝑃(𝑥𝑥𝑖𝑖)𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏�𝑃𝑃(𝑥𝑥𝑖𝑖)�   (1) 

where  

𝐼𝐼(𝑥𝑥𝑖𝑖) = − 𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏�𝑃𝑃(𝑥𝑥𝑖𝑖)� =  𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏( 1
𝑃𝑃(𝑥𝑥𝑖𝑖)

),  (2) 
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∑ 𝑃𝑃(𝑥𝑥𝑖𝑖)𝑖𝑖 = 1,   

lim
𝑃𝑃→ 1+

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏(𝑃𝑃)  =  0,  (3) 

and  

lim
𝑃𝑃→ 1−

𝑃𝑃𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏(𝑃𝑃)  =  0 (4) 

 
Defining 𝐼𝐼(𝑥𝑥𝑖𝑖) = − 𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏�𝑃𝑃(𝑥𝑥𝑖𝑖)� =  𝑙𝑙𝑙𝑙𝑙𝑙𝑏𝑏( 1

𝑃𝑃(𝑥𝑥𝑖𝑖)
) could cause computational problems in 

practice since if p(𝑥𝑥𝑖𝑖) → 0, then 𝐼𝐼(𝑥𝑥𝑖𝑖) →  ∞.  Since 𝐼𝐼(𝑥𝑥𝑖𝑖) can be unbounded, Shannon entropy can 

also become unbounded and can be problematic in certain applications.  Researchers have modified 

the Shannon’s entropy, by redefining the information gain function 𝐼𝐼(𝑥𝑥).   

Pal and Pal (1991) modified Shannon’s entropy by redefining the information gain 

function I(x) .  They proposed a new definition of classical entropy based on the exponential 

behavior of information gain and suggested that the measure of “uncertainty” in information gain 

is better represented by 1 − p(xi) than by (1/p(xi) ). Instead of − log(1 − pi), the information gain 

is redefined as  I(pi) = e1−pi. The entropy function becomes 

𝐻𝐻(𝑥𝑥) = 𝐸𝐸(𝐼𝐼(𝑥𝑥)) =  �𝑃𝑃(𝑥𝑥𝑖𝑖)
𝑖𝑖

𝐼𝐼(𝑥𝑥𝑖𝑖) =  �𝑃𝑃(𝑥𝑥𝑖𝑖)
𝑖𝑖

𝑒𝑒1−𝑃𝑃(𝑥𝑥𝑖𝑖) 

The new information gain function is monotonically decreasing and bounded between 1 and 

e as p decreases from 1 to 0. This function avoids the awkward situation of approaching infinity as 

p(xi) → 0 .   

In general, Pal and Pal’s entropy is bounded between 1 and e since the information gain is 

bounded between 1 and e, while Shannon’s entropy could become unnecessarily large. Because Pal 

and Pal’s entropy is bounded, Pal and Pal’s entropy may have less variability than Shannon’s 

entropy.  Table 2.4 illustrates differences in the computed Pal and Pal’s entropy and Shannon’s 

entropy for discrete uniform distributions.   
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Sheu (2010) proposed an entropy-based weighting technique based on the general principles 

of multi-sensor fusion and the team consensus approach (Chung and Shen, 2000) which combines 

data form all sources (teams) into a final approximation equaling the weighted average of all source 

means.  The weights reflect the relative reliabilities associated with the sources (teams), meaning 

that sources with higher entropies (i.e., more uncertainties) receive smaller weights (Chung et al., 

1997; Sheu, 2010). 

 Table 2.4 Comparison of Shannon’s and Pal & Pal’s entropies for discrete uniform  
N = Number of 

Data Points P(xi) = 1/N 
Shannon 
Entropy Pal and Pal Entropy 

2 0.5 0.69 1.65 

12 0.083333333 2.48 2.50 

25 0.04 3.22 2.61 

100 0.01 4.61 2.69 

1000 0.001 6.91 2.72 

10000 0.0001 9.21 2.72 

100000 0.00001 11.51 2.72 

1000000 0.000001 13.82 2.72 
 

In this entropy-based weighting scheme, if  K data sources and K estimated entropies Hi are 

known, the K appropriate weights wi can be determined by solving an optimization problem to 

minimize the overall entropy.  This is an extended classic Lagrangian problem whose objective is 

to minimize the sum of the squares of the weighted entropies where boundary conditions include 

inequalities.  The problem is formulated as follow.  

Minimize    Ω = ∑ (𝑤𝑤𝑖𝑖 𝐻𝐻𝑖𝑖)2𝐾𝐾
𝑖𝑖=1  , 𝑖𝑖 = 1, 2, …𝐾𝐾 

subject to the conditions: 

∑ 𝑤𝑤𝑖𝑖 = 1 and  𝑤𝑤𝑖𝑖 >𝐾𝐾
𝑖𝑖=1 0 , 𝑖𝑖 = 1, 2, …𝐾𝐾. 
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With the application of the Kuhn-Tucker method, Ω is minimized if 

𝑤𝑤𝑖𝑖 =
1

 𝐻𝐻𝑖𝑖2 ∑ 𝐻𝐻𝑖𝑖−2𝐾𝐾
𝑖𝑖=1

, 𝑖𝑖 = 1, 2, …𝐾𝐾 

 
After 𝐾𝐾  weights 𝑤𝑤𝑖𝑖  are defined together with 𝐾𝐾  source means 𝑢𝑢𝑖𝑖 , 𝑖𝑖 = 1, 2, …𝐾𝐾,  the 

integrated forecast fusing data from 𝐾𝐾 sources is a weighted average of 𝐾𝐾 source means 𝑢𝑢𝑖𝑖, 𝑖𝑖 =

1, 2, …𝐾𝐾 .  The integrated forecast is 𝑋𝑋 = ∑ 𝑤𝑤𝑖𝑖
𝐾𝐾
𝑖𝑖=1  𝑢𝑢𝑖𝑖, when information from K data sources are 

fused. 

 

2.6. Intervals for Belief-Strength Bands Used to Provide Posterior Probabilities  

Sheu (2010) provided one formulation of an entropy-based data fusion method by using 

posterior probabilities of data belief-strength bands to account for the reliability of the collected 

data.  Sheu (2010) assumes that a random sample  X1, … , Xn follows a Gaussian distribution with 

mean µ and standard deviation s, and lets  M be the number of levels of belief strengths and Bm be 

a band of data around the mean in the following manner: 

𝐵𝐵𝑚𝑚 = � 𝑥𝑥𝑗𝑗  � (m− 1)s < |𝑥𝑥𝑗𝑗 − µ|≤  ms, 1 ≤ 𝑗𝑗 ≤ 𝑛𝑛},    m = 1, 2, … M. 

Let Ni be the number of data contained in Bm.  Sheu defined the posterior probability as  

𝑝𝑝(𝑚𝑚|{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}) =  𝑁𝑁𝑚𝑚
𝑛𝑛

,   m = 1, 2, …M   

Hence, the entropy of the information based on Shannon’s formulation is as follow:  

𝐻𝐻( {𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}) =  −� 𝑝𝑝(𝑚𝑚|{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}) log(𝑝𝑝(𝑚𝑚|{𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛}))
𝑀𝑀

𝑚𝑚=1

 

In other words, given n values from a data source, a distribution for M belief levels is 

constructed before the calculation of Shannon’s entropy.  First, different data belief-strength bands 

around the mean are specified; then the percentage of data lying within each belief-strength band is 
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used as the posterior probability for a particular belief level.  Sheu (2010) used the percentage of 

data lying within one standard deviation of the mean as the posterior probability for belief level 1, 

the percentage of data lying between one and two standard deviations from the mean as the posterior 

probability for belief level 2, and the percentage of data lying within at least 3 standard deviations 

from the mean as the posterior probability for belief level 3.  The following figure illustrates the 

calculations of the posterior probabilities for a set of data following a normal distribution. 

 
 
Figure 3. Distribution of levels of belief strength for a Gaussian population according to the 
empirical rule. 
 

According to the empirical rule, if the data from a source follows a normal distribution, then 

the posterior probability for belief level 1 is 68.3%, for belief level 2 is 27.1%, and for belief level 

3 is 4.6%.  The empirical rule only holds for the normal distribution, but is a useful approximation 
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for many unknown distributions in practice.  Sheu’s method will yield different posterior 

probabilities for non-Gaussian distributions. With small sample sizes, the estimates of these 

posterior probabilities may be easily influenced by variation in the data.  

Many SCM applications require integrating data from multiple sources.  For example, 

emergency logistic managers during a major disaster such as an earthquake or an epidemic often 

must base their urgent decisions on conflicting information originating from multiple information 

sources.  The information sources in the emergency logistics context could be on-the-spot groups 

of reporters, rescuers, and charities, each of which contains diverse members providing diverse 

estimates of fatalities which must be integrated to coordinate relief efforts.  The assumption used 

here is that data from a data source (a data source could be a group of reporters, a group of rescuers, 

or a group of charities) follows a certain distribution and that the sample means of these data sources 

are considered approximations of the population parameters.  Weights may be assigned to these 

sample means to represent the reliability of the sources.  A weighting scheme often needs to be 

implemented quickly as real-time data arrives so that the time-sensitive population parameters can 

be estimated.  The result is a weighted data aggregation that “fuses” or “integrates” data sources to 

provide an estimate that increases accuracy while lowering variability. 

 

2.7. Numerical Illustration of Decision Making with Entropy Based Data Fusion 

To illustrate the importance of weighting data sources in a time-sensitive application, the 

following example examines a sample of wait times from Atlanta’s international airport. This 

numerical example demonstrates how EBDF methods could assist with real-world SCM issues such 

as staff planning. One performance measure of manpower allocation is the average maximum wait 

time which could be used to allocate airport staffing to relieve the demand on airport screening, 
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equipment, and ticketing services.  A very high average maximum wait is an indication of poor 

manpower planning.  Managerial time-sensitive decisions on staffing need to address the ever-

changing challenges of flights and events.  Decisions on manpower could be projected dynamically 

using weekly data.  

The Wall Street Journal reported on July 20, 2016 that TSA Security lines were not as bad 

as most individual feared (http://www.wsj.com/articles/why-tsa-security-lines-arent-as-bad-as-

youd-feared-1469032116). The measure that was used for performance was the maximum average 

wait time.  The article reported the following: “Denver’s airport says it has had the 10 busiest days 

in its history this summer, but the average of maximum wait times for each day in June was 18 

minutes, down from an average of about 25 minutes in each month between February and May. At 

Chicago O’Hare, passengers were stuck overnight in terminals after missing flights in May.”  

Obviously, when this performance measure, namely, the average maximum wait time, decreases, 

the TSA is praised for improving transportation security processes.  

Table 2.6.1 presents the maximum wait times for various hourly time blocks over a one-

week period.  The data is collected from the time period May 31 to June 3, 2016.  In this example, 

the days of the week will represent “sources” and the hourly maximum wait times represent the 

“inputs” within the source.  Wait times tend to be heterogeneous across days of the week. Two 

proposed methods of approximating the weekly maximum wait time are used in this illustration 

along with the traditional average.  This application underscores the robustness of these estimates 

and their sensitivity to bias.  Sheu (2010)’s EBDF technique using Shannon’s entropy definition 

and a modification of his method using Pal and Pal (1991)’s entropy definition are compared.  

The true average of the wait times is 43.24.  The estimates of the average max wait time 

using Sheu’s weighting technique and Shannon entropy, and Sheu’s weighting technique with Pal 
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& Pal Entropy are 44.02 and 43.62 respectively. This agreement occurs because the distribution 

does not vary dramatically among the days.  To illustrate the advantage of EBDF technique, biases 

are added to data.  In particular, let’s suppose that the wait times on Thursday was distorted and 

decreased by 20 minutes because of a systematic error, and that the wait times on Friday were 

increased by 50 minutes due to a lack of personnel.  The new estimates of the average max wait 

time using Sheu’s weighting technique and Shannon entropy, and Sheu’s weighting technique with 

Pal & Pal Entropy would be 42, 48, and 50 minutes respectively.   

 Table 2.6.1 Max wait time in minutes at Atlanta Airport - May 31, 2016 to June 3, 2016 

Max Wait Time at Atlanta Airport  

Entering Security Monday Tuesday Wednesday Thursday Friday 

Day of the Week 2 3 4 5 6 

06:00 – 07:00 3 32 38 11 51 

07:00 – 08:00 25 30 16 11 36 

08:00 – 09:00 0 73 17 30 8 

09:00 – 10:00 3 63 0 73 24 

11:00 – 12:00 37 55 68 59 25 

13:00 – 14:00 34 58 66 58 76 

14:00 – 15:00 42 26 35 40 106 

15:00 – 16:00 41 39 34 31 103 

16:00 – 17:00 28 50 63 65 123 

17:00 – 18:00 24 49 49 115 66 

18:00 – 19:00 32 39 70 38 38 

19:00 – 20:00 26  44 11 40 

20:00 – 21:00 45    77 

21:00 – 22:00     45 

22:00 – 23:00     30 
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 Table 2.6.2 Estimates of the average maximum wait time 

Estimate of Average Max Wait Time at Atlanta Airport 

Method 

Entropy Weight 
 
Sheu’s with Shannon 
Entropy 

Entropy Weight 
 
Sheu’s with Pal & 
Pal Entropy 

Equal 
Weight 
 

  44.02   43.62 43.24  
 
 
 Table 2.6.3 Maximum wait time in minutes at Atlanta Airport from May 31, 2016 to June 3, 
2016. 

Max Wait Time at Atlanta Airport  

Entering Security Monday Tuesday Wednesday 
Thursday 
Bias = -20 

Friday 
Bias = +50 

Day of the Week 2 3 4 5 6 

06:00 – 07:00 3 32 38 0 101 

07:00 – 08:00 25 30 16 0 86 

08:00 – 09:00 0 73 17 10 58 

09:00 – 10:00 3 63 0 53 74 

11:00 – 12:00 37 55 68 39 75 

13:00 – 14:00 34 58 66 38 126 

14:00 – 15:00 42 26 35 20 156 

15:00 – 16:00 41 39 34 11 153 

16:00 – 17:00 28 50 63 45 173 

17:00 – 18:00 24 49 49 95 116 

18:00 – 19:00 32 39 70 18 88 

19:00 – 20:00 26  44 0 90 

20:00 – 21:00 45    127 

21:00 – 22:00     95 

22:00 – 23:00     80 
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 Table 2.6.4 Estimates of the average maximum wait time under data distortion. 

Estimate of Average Max Wait Time at Atlanta Airport 

Method 

EBDF 
estimate 
Sheu’s with 
Shannon 
Entropy 

EBDF estimate 
Sheu’s with 
Pal & Pal 
Entropy 

Equal 
Weight 
 

 Estimate Max Wait 42   48 50  
 

These estimates illustrate how the data fusion methods are affected by the distortion. Data 

fusion method selection is an important part of the decision making process and decision makers 

need to be aware of the potential sensitivity of the method to distortion or bias in the data. In this 

case, Sheu’s Shannon Entropy method is still somewhat close to the unbiased mean value of 43. 

The equal weight and Sheu with Pal and Pal have a larger bias for this example.  

 

2.8. Contrasting Shannon’s and Pal & Pal’s Entropy Formulations 

To better contrast the use of Shannon’s Entropy and Pal & Pal’s entropy formulations, the 

following probability distributions are presented for 5 groups in Table 2.7.1. Viewing these 

distributions across Groups 1 through 5, one could readily conclude that the distributions are 

similar.  Even though Group 5 is somewhat different, its pattern of two very small probabilities and 

one large probability is consistent with the previous groups.  This suggests that weights for the 

groups should be similar.  

The next illustration presents the entropy computations using Shannon’s and Pal & Pal’s 

formulators and the corresponding weights using Sheu’s method using the distributions in Table 

2.7.1. The entropies using Shannon and Pal & Pal’s computations are equal across the first four 

groups. However, the entropy for Group 5 is relatively much less using Shannon’s computation 

compared to Pal & Pal’s. This relative difference results in weights that are considerably different 
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for the five groups. Sheu’s weight for Group 5 is close to one. This weight occurs because Group 5 

can be considered to have fewer “outliers” and to have relatively higher reliability than the other 

four groups.  However, Sheu’s weights using Pal & Pal’s entropy results in practically equal weights 

as shown in Table 2.7.2.  These weights can allow for the information from all groups to be 

considered in the calculation of unknown distribution parameters, such as the mean.  

 Table 2.7.1 Probability Distributions for 5 Groups 
                                 Probability Distributions for 5 Groups 

 Prob1 Prob2 Prob3 Sum 

Group1 0.003 0.003 0.994 1 

Group2 0.003 0.003 0.994 1 

Group3 0.003 0.003 0.994 1 

Group4 0.003 0.003 0.994 1 

Group5 0.0001 0.0001 0.9998 1 
 

One could argue that Sheu’s method with Shannon’s entropy puts too much weight on one 

group, in this example, and this comes at the price of ignoring the information from the other groups. 

 Table 2.7.2 Contrasting Sheu's Weights with Shannon’s and Pal & Pal’s Entropies 

               Contrasting Sheu's Weights with Shannon and Pal & Pal Entropies 

 
Shannon’s 
Entropy 

Pal & Pal’s 
Entropy  

Sheu's Weight based on 
Shannon’s Entropy 

Sheu's Weight based on 
Pal & Pal’s Entropy 

Group1 0.040837 1.016243  0.0025 0.199 

Group2 0.040837 1.016243  0.0025 0.199 

Group3 0.040837 1.016243  0.0025 0.199 

Group4 0.040837 1.016243  0.0025 0.199 

Group5 0.002042 1.000544  0.99 0.204 
 

This illustration is useful to understand that these estimators react to assumptions of the data 

and to possible bias. To recommend one of these estimators under various conditions, this research 
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employs a simulation study to compare accuracy and variability as well as underlying bias from the 

forecast.  The mean absolute percent error (MAPE) is used to compare the accuracy and variability 

of forecasting estimates since this measure is often used in setting safety stock for inventory 

purposes.  

 

2.9. Conclusion 

Essay 1 contributes to the theoretical (academic) literature by presenting numerical 

illustrations that reveal a need for alternative entropy weighted methods in data fusion estimations. 

Essay 1 contributes to SCM practice by demonstrating the effect of selecting different entropy 

formulations. This essay primarily explains the use of Shannon’s entropy and Pal & Pal’s entropy, 

and contrasts resulting weights in an EBDF application.  The examples in the essay justify a 

systematic study of weighting approaches in data fusion applications.  In the literature, Shannon’s 

entropy is considered to be the standard measure of “transmitted information” or “signal meaning” 

in information theory.  This entropy has stood the test of time as the primary measure of 

“uncertainty” and “diversity” since Claude Shannon introduced it in 1948.  In the next couple of 

essays, the benefit of using this entropy measure in Sheu’s weighting scheme will be systematically 

examined with other formulations involving distributional assumptions.  The illustration contrasting 

Shannon’s and Pal & Pal’s entropy weighting techniques reveals that each procedure may have 

merits/shortcoming worth exploring in a systematic comparative study. 
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CHAPTER 3  

ESSAY 2: PARAMETER ESTIMATION: COMPARATIVE PERFORMANCE OF 

PROPOSED ENTROPY AND NON-ENTROPY BASED DATA FUSION ESTIMATORS 

3.1. Abstract 

This essay presents a Monte Carlo simulation study regarding the estimation of the mean 

parameter of a population based on data inputs from multiple sources.  Several EBDF methods are 

proposed.  The bench mark EBDF method is Sheu (2010)’s, which was defined in Essay 1 as an 

application of Shannon’s entropy using belief bands of data centered around the mean.  Essay 1 

also discussed the use of Pal & Pal (1991)’s definition of entropy, which can be used as an 

alternative option to Shannon’s entropy in EBDF.  Essay 2 presents new formulations of EBDF 

methods by considered different interval belief bands as alternative options to Sheu (2010)’s belief 

bands.  This essay also examines a generalized maximum entropy method developed by SAS and 

two traditional estimators of the population mean: the inverse variance weighted and the ordinary 

average techniques.  The performance of these methods will be assessed using normally distributed 

and lognormally distributed data generated through the simulation study. The sensitivity of these 

methods to bias in the data, the number of sources, and the distributions of the underlying data are 

examined.  

 

3.2. Introduction 

This section introduces the types of EBDF methods that are examined in a simulation study. 

The contribution of this analysis to SCM applications is to provide new EBDF methods to the 

academic literature and provide practical guidelines to the use of SCM data fusion applications. In 

today’s rapid technology environment with multiple available media outlets, strategies need to be 

developed to integrate data in a timely fashion to enhance SCM agility.  To remain competitive in 
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a dynamic business environment, SCM needs to be responsive to changing intelligence from a 

variety of sources including customer demand, supplier trends, diffusion of technology, and 

evolving roles of social and news media.  A gap exists in the literature in developing techniques for 

integrating diverse data for dynamic decision making.  Sheu (2010) provided an innovative 

procedure to estimate mean survival population figures during an aftermath of a major disaster. His 

method incorporated an entropy based weighting of data sources to provide more robust estimation 

for the mean parameter of the number of fatalities using standard assumptions.  However, published 

research assessing the performance of entropy based methods in statistical estimation are not readily 

available.   

Essay 2 contributes to the literature by addressing the robustness of Sheu (2010)’s method 

as well as other proposed methods using both normally and lognormally distributed data.  

Sensitivity analysis of these methods with regard to positive and negative biases, the number of 

sources, and the distributions of the underlying data is conducted. 

 

3.3. Proposed Entropy Based Data Fusion Methods 

As provided in Essay 1, Sheu (2010) proposed a formulation to weight sources of 

information using entropy methodology.  The general idea is that confidence bands or intervals of 

the data provide the foundation to construct a probability distribution of the belief levels to 

determine the reliability of the sources.  This essay introduces modifications to Sheu (2010)’s 

computation of a posterior distribution of belief levels by allowing the confidence bands or intervals 

to be determined in various fashions.  In addition, the use of an alternative definition of entropy is 

incorporated.  Sheu (2010)’s method will be a bench mark to which the alternative methods are 

assessed.   
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Table 3.2.1 Proposed EBDF Methods Using Sheu (2010)’s Methodology 
Meth.      Defining Intervals for Meth.       Entropy          Rationale for Meth. 

SHN_
Sheu 

Three belief bands: First consists all values 
within one standard deviation of the mean; 
Second consists of values between one and 
two standard deviations; third consists of all 
values exceeding 2 standard deviations. 

Shannon's 
Entropy 

Data within each belief 
band has the same 
reliability. Proposed by 
Sheu (2010). Pal & Pal 
(1991) suggest advantages 
to alternative entropy 
formulations. 

PAL_
Sheu 

Pal & Pal's 
Entropy 

SHN_
Std 
Bin 

Intervals to right of source sample mean � in 
terms of sample standard deviation s: (� to 
�+1s), (�+1s to �+2s), (�+2s to �+3s), until 
all observations fall in an interval. Values to 
the left of the mean fall into intervals formed 
in a similar fashion except that endpoints are 
minus the number of sample standard 
deviations. (�-4s, �-3s), (�-3s to �-2s), (�-2s 
to �-1s), (�-1s to �), until all observations fall 
in an interval. 

Shannon's 
Entropy 

Positive and negative 
standard deviation 
intervals should be 
considered separately. 
Grafstrom (2010) consider 
unequal probability 
sampling designs and 
support the need to have 
designs to have large 
entropy.  

PAL_
Std 
Bin 

Pal & Pal's 
Entropy 

SHN_
OStd 
Bin 

Intervals are constructed the same as 
SHN_StdBin or PAL_StdBin, but the sample 
standard deviation is replaced by the sample 
standard deviation of the combined data from 
all sources.  

Shannon's 
Entropy 

The combined data from 
all sources is a larger 
sample and maybe more 
representative of the 
population distribution. 
The same combined 
sample standard deviation 
is used in computing each 
source’s entropy.  
Motivation similar to 
pooling to improve 
estimate.  

PAL_
OStd 
Bin 

Pal & Pal's 
Entropy 

SHN_
PStd 
Bin Intervals are constructed the same as 

SHN_StdBin or PAL_StdBin, but the sample 
standard deviation is replaced by the pooled 
standard deviation using the  standard 
deviations of all sources.  

Shannon's 
Entropy 

Standard deviation is often 
a surrogate measure of 
risk. Risk-pooling 
improves coordination of 
supply chain entities. The 
pooled estimates is a 
reasonable improved 
estimate of the population 
standard deviation. 

PAL_
PStd 
Bin 

Pal & Pal's 
Entropy 

SHN_
Fxd 
Bin 

Intervals are constructed the same as 
SHN_StdBin or PAL_StdBin, but the sample 
standard deviation is replaced by a fixed 
interval length. For this study, since the 
population mean was chosen to be 1000, the 
bin length was selected to be 100, which is 
1/10 of the mean.  

Shannon's 
Entropy 

 The Bins method does not 
rely on the values of the 
standard deviation. The 
size of the bins will impact 
the entropy computation 
(Jansssens et al. 2006). 

PAL_
Fxd 
Bin 

Pal & Pal's 
Entropy 
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For further comparison, two non-entropy based methods, the traditional average and the inverse 

variance weighted average, and a SAS generalized maximum entropy, are included.   

Table 3.2.2 Data Fusion Methods Not Using Sheu (2010)’s Methodology 

Method Description of Method 
Estimation 
Procedure Rationale for Method 

ENT_GenMax 

This Generalized Maximum Entropy 
(GME) procedure is a method that 
weights the errors of the estimation 
bewteen two bounds for the error 
term. SAS (2014) introduced this 
procedure as an alternative to a 
regression based analysis with the 
parameters selected to maximize the 
entropy. The objective funcion is 
H(p,w) = - pT*LN(p) - wT*LN(w) in 
which the vector p is a weight for the 
model's parameters and the vector w 
is a weight for the error terms.  

The weights 
are obtained 
from 
Generalized 
Entropy 
objective 
source.  
Entropy 
estimates for 
the source 
means are 
averaged.  

No assumption about 
the distribution of the 
error or data is needed  
(Mittelhammer, 
Cardell, & Marsh, 
2013).  

TRD_EquWgt 
The average of all source averages is 
the defined as the estimate of the 
population mean.  

The weights 
are equal.  

All sources are 
considered to be 
equally reliable. 
Method is 
computationally easy. 
Used to predict 
demand when no 
patterns in the data 
(Chopra & Meindl, 
2015).  

TRD_VarWgt 
The weighted average of all source 
averages is defined as the estimate of 
the population mean.  

The weights 
are the 
normalized 
inverse 
variance of all 
sources.  

The source with 
smaller variance is 
considered more 
reliable than those with 
larger variances. Using 
an objective function to 
obtain weights is 
supported by Liu & 
Zhang (2011) and Kull 
& Wacker (2010) 

 
The SAS entropy method, considered suitable when outliers exist or when the typical assumptions 

of parametric estimation are violated, implements a linear estimation procedure based on 

generalized maximum entropy. All data fusion methods in Tables 3.2.1 and 3.2.2 are included in 

this study. The rationales for the formulation of each method are provided in these tables. The first 
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column of Tables 3.2.1 and 3.2.2 provide the mnemonic to describe the particular method. In Table 

3.2.1, the first three letters represent the type of entropy, either Shannon’s or Pal & Pal’s. In Table 

3.2.2 the mnemonic TRD is used to represent “traditional” method and ENT represents the 

maximum entropy principle based method.  

 

3.4. Simulation Study Procedure to Assess Data Fusion Methods 

The measure of performance from true mean population is the mean absolute percentage 

error (MAPE), a measure of prediction accuracy or of estimation accuracy of population parameter 

or random variable’s value. MAPE is computed as (100)*(1/N)* (Fi – Ai) /Ai, in which Fi 

represents the predicted value and Ai represents the actual value or known parameter of interest.   

A sensitivity analysis to bias is conducted.  Bias may occur in data for various reasons: 

censorship, partial information, changing patterns, systematic error, and human error as well as the 

use of subjective information.  Bias may be innocently introduced because a respondent 

misinterpreted the question or a source of information provided “contaminated” data.  Data from 

sources are generated according to the distributions in Table 3.3.1. The increase in standard 

deviation of the sources in this table illustrates that the inclusion of more sources come at the 

expense of a decrease in reliability of the total sample. However, the advantage of using more 

sources is that a larger sample size is available and thus more information is used.  

Table 3.3.1 Data are simulated from sources having either normal or lognormal distributions, 
with increasing standard deviations to indicate a reduction in reliability. 

Distribution of Source Inputs 

 Normal Distribution Lognormal Distribution   

Data Sources Means 
Standard 
Deviation Means 

Standard 
Deviation Reliability 
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Source 1 1000 50 1000 39 Most Reliable 

Source 2 1000 100 1000 74  

Source 3 1000 150 1000 125  

Source 4 1000 200 1000 161  

Source 5 1000 250 1000 350  

Source 6 1000 300 1000 490  

Source 7 1000 350 1000 1123  

Source 8 1000 400 1000 3963 Least Reliable 
 

Table 3.3.2 Biases added to source 1 in simulation study. The zero positive and zero negative 
under each distribution is only one configuration. Bias is added only to source 1. 

Biases for Source 1 

Normal Distribution Lognormal Distribution 

Positive  Negative Positive  Negative 

0 0 0 0 

100 -100 111 -100 

300 -300 400 -300 

600 -600 1500 -600 
 

This study assesses the sensitivity of the proposed data fusion methods to possible bias. This 

bias in added to the first source, which should be typically weighted the most since it is the most 

reliable. Adding the bias to less reliable sources will confound the effect of increased variance and 

bias. Both negative and positive bias effects are assessed since a method may tend to underestimate 

or overestimate a parameter of interest.  

The simulation study is replicated a 1000 times for each of the following conditions to assess 

the robustness of the methods:   
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1. Normally or lognormally distributed inputs for the sources.   

2. Eight Biases – four of which are negative and four of which are positive,   

3. Two levels of number of sources – four or eight and 

4. Two levels of number of inputs to each source level – 5 or 15.  

These conditions are listed in Tables 3.3.2 and 3.3.3.  The study determines the effect of these 

conditions on the estimation of the mean of a population.  

Table 3.3.3 Simulation study configuration conditions 

Simulation Configurations 

Conditions  
Number of 
Levels Levels 

Distributions  2 Normal or Lognormal 

Biases 7 Three negative biases, 
 three positive biases, 
 and one zero bias  

Sources  2 Either 4 sources or 8 sources 
 

Sample inputs 2 Samples of either 5 or 15  
 

   

Total Conditions 56  

 

3.5. Monte Carlo Simulation Results of Data Fusion Estimation of Mean Using Normally 
Distributed Inputs with Possible Bias 

The first set of tables, that is, Tables 3.4.1 through 3.4.4, illustrates the estimation accuracy 

of the 13 data fusion procedures under the assumption that the inputs from the sources are normally 

distributed.  The tables display the Tukey significance groupings by attaching the same letter next 

to procedures that are not significantly different.  The MAPE values are low, mostly between 1 and 

4 percent when there is no bias.  Sheu (2010)’s procedure (SHN_Sheu) is highlighted in each of 
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tables as a benchmark to compare the other methods. Since SHN_Sheu is the primary EBDF method 

in the SCM literature, methods that perform equally well or better can be considered more robust, 

particularly if the method is consistent in its performance.  

What are the simulation results under the assumption of normally distributed responses 

reveal about these 13 data fusion methods? The following results are deduced from these four 

tables: 

1. With no bias present, the inverse variance weighted (TRD_VarWgt) is recommended as 

the most accurate estimator. The Generalized Maximum Entropy Estimator is the least accurate. 

Using bins constructed with the overall or pooled standard deviation or even the fixed bin 

procedures (*_OStdBin, *_PStdBin, *_FxdBin) have an advantage over the benchmark SHN_Sheu 

method.  
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Table 3.4.1 Tukey grouping using Mean Absolute Percent Error in estimation of population 
mean employing 4 sources with 5 inputs per source.  Data follow a normal distribution. 
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Table 3.4.2 Tukey grouping using Mean Absolute Percent Error in estimation of population 
mean employing 4 sources with 15 inputs per source.  Data follow a normal distribution. 
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Table 3.4.3 Tukey grouping using Mean Absolute Percent Error in estimation of population 
mean employing 8 sources with 5 inputs per source. Data follow a normal distribution. 
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Table 3.4.4 Tukey grouping using Mean Absolute Percent Error in estimation of population 
mean employing 8 sources with 15 inputs per source. Data follow a normal distribution. 
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2. As the bias becomes more pronounced, either negative or positive, the SHN_Sheu 

method’s performance increases on a relative basis. Clearly, the MAPE increases, in general, as the 

absolute value of the bias increases.  The TRD_VarWgt’s performance deteriorates as the absolute 

value of the bias increases.  The use of Pal & Pal entropy does not appear to be significantly different 

from the use of Shannon’s entropy, particularly for the SHN_Sheu.   Many of the procedures 

compared only on the basis of Shannon or Pal & Pal entropies are not significantly different in 

performance although the use of Pal & Pal entropy generally improves performance relatively.  

3. The Generalized Maximum Entropy method (ENT_GenMax) is the best performer in the 

presence of large bias. The equal weight procedure (TRD_EquWgt) generally is among the better 

performers as bias is introduced.   

4. Sensitivity analysis, conducted by increasing the number of inputs per data source, shows 

that the relative performance of the methods is not altered substantially.  

 

3.6. Simulation Results of Data Fusion Estimation of Mean Parameter Using Lognormally 
Distributed Inputs with Possible Bias 

What are the simulation results under the assumption of lognormally distributed responses 

reveal about these 13 data fusion methods? The following results are deduced from Tables 3.5.1 

through 3.5.4 which demonstrate the robustness of the data fusion methods, ranked by MAPE. The 

best methods are at the bottom and the worst are at the top of the tables. The results should be 

interpreted in conjunction with the Tukey grouping.  
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Table 3.5.1 Tukey grouping using Mean Absolute Percent Error in estimation of population 
mean for 4 sources with 5 inputs from a lognormal distribution 
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Table 3.5.2 Tukey grouping using Mean Absolute Percent Error in estimation of population 
mean for 4 sources with 5 inputs from a lognormal distribution 
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Table 3.5.3 Tukey grouping using Mean Absolute Percent Error in estimation of population 
mean for 8 sources with 5 inputs from a lognormal distribution 
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Table 3.5.4 Tukey grouping using Mean Absolute Percent Error in estimation of population 
mean for 8 sources with 15 inputs from a lognormal distribution 
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1. With no bias or small bias present, the inverse variance weighted (TRD_VarWgt) is still 

recommended as the most accurate estimator. The Generalized Maximum Entropy Estimator is the 

least accurate. SHN_Sheu’s performance ranking is much lower than its competitors. Methods that 

use bins constructed with the overall or pooled standard deviation or even the fixed bin procedures 

(*_OStdBin, *_PStdBin, *_FxdBin) are recommended over SHN_Sheu method in this case. 

SHN_Sheu may be performing poorly because the lognormal distribution is skewed and Sheu’s 

method does not distinguish the reliability of intervals on the left and on the right sides of the mean. 

When 15 inputs are used and 8 sources are sampled, the PAL_Sheu performs significantly better.  

2. As the absolute value of the bias increases, SHN_Sheu’s performance increases relatively 

under the condition that four sources are used. This pattern is reversed when eight sources are used, 

particularly with 15 inputs. When 15 inputs are used and 8 sources are sampled, SHN_Sheu’s 

performance is the weakest as the bias is introduced. Clearly, the MAPE increases, in general, as 

the absolute value of the bias increases. The TRD_VarWgt’s performance deteriorates as the 

absolute value of the bias increases. The use of Pal & Pal entropy does make the performance 

ranking of several methods better, although the performance is not necessarily significantly better.   

3. The Generalized Maximum Entropy method (ENT_GenMax) is the best performer in the 

presence of large positive bias. The equal weight procedure (TRD_EquWgt) performs very well 

with the introduction of bias, in particular, in the case of 8 sources and 15 inputs.  

4. Sensitivity analysis, conducted by increasing the number of inputs per data source, shows 

that the relative performance of the methods is altered substantially. The case of eight sources and 

15 inputs shows that SHN_Sheu is not as robust as shown in the previous number of sources and 

inputs.  
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3.7. Conclusions for Data Fusion Methods Estimating the Population Mean 

Essay 3 contributes to the academic literature by presenting new EBDF methods as well as 

presenting an estimation comparison under various distributions, biases, number of sources, and 

sample size (source size). This section addresses the research questions posed in Chapter 1 of this 

dissertation.  

1. Can an alternative formulation for Shannon’s entropy enhance the performance of Sheu’s 

(2010)’s data fusion approach?         

For a symmetric distribution, like the normal distribution, SHN_Sheu procedure is generally 

not significantly different in performance from the top performing data fusion methods in the 

presence of bias. However, if no bias is present, then the TRD_VarWgt is the clear choice. For a 

skewed distribution such as the lognormal, a procedure such as PAL_FxdBin or PAL_StdBin is 

recommended since its performance with 8 sources and 5 inputs from a lognormal distribution is 

among the top performing data fusion methods.  

2. Do symmetric and skewed distributions affect the thirteen data fusion methods 

differently?  

SHN_Sheu clearly performs better with inputs from a normal distribution and may perform 

quite poorly in the presence of many inputs from a lognormal distribution. Other procedures such 

as SHN_StdBin change rank ordering as seen in the configuration with 8 sources and 15 inputs 

from either a normal or lognormal distribution.  

3. Do negative and positive biases affect the performance of the thirteen methods 

differently?   
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For many of the procedures, a positive or negative bias does not change the rank ordering 

performance of a data fusion method. However, the ENT_GenMax is easily affected by the bias 

and its performance depends on whether the bias is positive or negative.  

4. Do entropy based data fusion outperform non-entropy based data fusion methods?  

These entropy based data fusion methods perform better than the traditional methods when 

bias is present. In the presence of no bias, the traditional methods should be used.  

5. Which data fusion methods are recommended for symmetric and skewed data sets when 

no bias is present?   

Clearly the TRD_VarWgt method is a top performer in all scenarios without bias. In the 

case of no bias and 4 sources with 5 inputs, the top performing methods in addition to the 

TRD_VarWgt are SHN_FxdBin, SHN_PStdBin, and SHN_OStdBin. In the case of no bias and 4 

sources with 15 inputs, the results are similar for both distributions.  In the normal distribution case 

with no bias and 8 sources with 5 inputs, this same pattern holds and the TRD_VarWgt is 

significantly different from the others. In the lognormal distribution case with no bias and 8 sources 

with 5 inputs, SHN_FxdBin as well as PAL_FxdBin, PAL_OStdBin, and PAL_PStdBin are near 

the top performing method TRD_VarWgt. In the lognormal distribution case with no bias and 8 

sources with 15 inputs, SHN_FxdBin and TRD_VarWgt are the top performing methods.  

6. What is the recommendation under the condition of few data sources with bias? 

The SHN_Sheu procedure is a strong contender when there are few data sources and bias is 

present. For positive bias, the ENT_GenMax is a top performing method.  
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CHAPTER 4  

ESSAY 3: NEWSVENDOR MODEL: COMPARATIVE PERFORMANCE OF PROPOSED 

ENTROPY AND NON-ENTROPY BASED DATA FUSION ESTIMATORS 

4.1. Abstract 

This essay examines the effect of the data fusion methods proposed in Essay 2 on inventory 

optimization in the newsvendor model under the assumption that the demand is exponentially 

distributed. The exponential distribution is a distribution often used to model demand since 

demand is typically positive, unimodal, and somewhat skewed to the right. In addition, it is the 

generalized maximum entropy distribution when only the mean is known. For the newsvendor 

problem to have an optimal solution, the underlying distribution and its parameters need to be 

known, explicitly. In this essay, the underlying distribution is assumed to be known, but its 

parameter is not known. That is, demand has an exponential distribution with an unknown 

parameter λ. This essay tabulates the results for the 13 data fusion methods assessed in Essay 2. 

The basis for the comparison of the data fusion methods in Essay 3 is the profit using the optimal 

inventory level. The estimates from the data fusion methods provides the estimate for the mean, 

which in turn, is used to estimate the single parameter of the exponential distribution. The 

newsvendor problem illustrates an important SCM application, inventory optimization that the 

proposed EBDF methods may enhance. The configurations used in the Monte Carlo simulation in 

Essay 2 and the same configuration used in Essay 3 to construct MAPE performance measures for 

each data fusion method. This chapter illustrates the potential for EBDF methods in practical SCM 

applications.  



68  

4.2. Limited Knowledge of Demand Distribution in Newsvendor Applications 

The newsvendor problem is instrumental to decision making in numerous SCM 

applications. A standard approach to the newsvendor problem is to simplify the estimation 

procedure by assuming full knowledge of the parametric distribution of the demand. In this case, 

solutions are straight-forward. However, this knowledge is not easily available. Andersson et al. 

(2013) considered the newsvendor problem under partial information. Because of limited data 

values and knowledge of the distribution, their study uses the entropy principles to assess the 

distribution of the demand data. However, an EBDF approach has not been fully investigated to 

assess the performance of estimators. Andersson et al. (2013) acknowledges the need for entropy-

based methods: “To the best of our knowledge the operations management and revenue 

management literatures have not explored the use of maximum entropy methods to approximate 

unknown demand or willingness-to-pay distributions.”  

The classical newsvendor problem assumes that a merchant must sell a commodity in a 

market in which demand follows a probability distribution. The merchant orders a quantity q at a 

wholesale price and expects to make a profit. The merchant can sell the unsold items at a salvage 

price.  The merchant would greatly benefit from knowing the optimal order quantity to maximize 

profit; however, knowledge about the distribution is often incomplete. If the distribution is known, 

but its parameters are unknown, then the merchant may decide to seek information about 

parameters such as the mean and the standard deviation, even if this information is subjective.  

In this essay, the distribution of the demand will be assumed to be known, but its parameter 

must be estimated. If the distribution is exponential, then knowledge of the mean is sufficient to 

describe the distribution. The merchant may use (purchase) historical average sales from other 

merchants over several time periods. This process of collecting information from other vendors to 
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deduce the demand can be viewed as a data fusion method in which the information from the 

vendor sources are “fused.” 

 

4.3. Description of Results of Newsvendor Model Performance for Methods 

The results of Essay 2 in Chapter 3 are used to compute the optimal inventory in the 

newsvendor problem, which in turn provides the profit generated using that estimate. The relative 

performance of the data fusion methods is presented Tables 4.3.1 to 4.3.4 and 4.4.1 to 4.4.4. The 

same assumptions used in Essay 2 for the Monte Carlo Simulation study are repeated in this 

section. That is, the simulation study is replicated a 1000 times under the following conditions:   

1. Normally or lognormally distributed inputs for the sources.   

2. Eight Biases – four of which are negative and four of which are positive,   

3. Two levels of number of sources – four or eight and 

4. Levels of number of inputs to each source level – 5 or 15.  

As in Essay 2, this essay is also assessing the sensitivity of the proposed data fusion 

methods to possible bias. As previously explained, this bias in added to the first source, which 

should be typically weighted the most since it is the most reliable. Adding the bias to less reliable 

sources will confound the effect of increased variance and bias. Both negative and positive bias 

effects are assessed since a method may tend to underestimate or overestimate a parameter of 

interest.  

The same configurations as listed in Table 4.4.1 are again used in this study. That is, there 

are two levels of distributions – normal and lognormal, seven levels of biases – 3 negative, 3 

positive, and one zero bias, two levels of sources – 4 sources and 8 sources, and two levels of 

sample size inputs – sample size of 5 and 15. Thus, a total of 56 configurations are used.  
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The first set of tables in this essay provides the relative performance for the profit 

estimation for the 13 data fusion procedures under the assumption that the inputs from the sources 

are normally distributed.  The tables display the Tukey significance groupings by attaching the 

same letter next to procedures that are not significantly different.  

 

4.4. Newsvendor Results from Simulation Study: Data Fusion Using Normally Distributed 
Inputs with Possible Bias 

Using Andersson et al. (2013)’s notation, the newsvendor problem can be formulated as a 

maximization of profit: Π(q,D) = (R-S)*min(D,q) – (W-S)*q, where q is the order quantity, D is 

the demand, W is the wholesale price, R is the revenue, and S is the salvage price. The expected 

value of the profit can be simplified as: E(Π(q,D) ) = E[min[D,q]] – β*q, where β is the ratio of 

(W-S)/(R-S) = (W-S)/(R-W + W-S). Overage cost is defined as W-S and underage cost is defined 

as R-W. The optimal order quantity is the solution to FD-1(1-β), where F is a known distribution 

of demand. For this simulation study, the value of β is set to .95. This value implies that for an 

exponential distribution with parameter λ = 1/1000, the optimal order quantity would be relatively 

small, 51. This optimal value was selected for this simulation since it is difficult to make a profit 

when the overage cost is close to the underage cost plus overage cost.  

The simulation study in this essay uses the same configurations used in Essay 2. However, 

the resulting estimated mean from Essay 2 is used as input into solving the newsvendor problem 

for a known distribution, namely, the exponential distribution, with estimated parameter.  

Although the expectations are that the accuracy of the data fusion method methods in Essay 2 

should result in a similar relative accuracy in Essay 3. This conclusion cannot be taken for granted 

since the variation of the estimates in Essay 2 will play a role in overage or underage costs that the 

merchant must pay. For the estimates from the data fusion methods in Essay 2 to result in order 
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quantities close to the optimal order quantity, the estimates should be both accurate and precise, 

meaning, that the standard deviation of the estimate is small.  

The error values (MAPE) listed in the Tables 4.3.1 to 4.3.4 and 4.4.1 to 4.4.4, are negative 

because they illustrate the deviation from the optimal inventory solution. The optimal solution to 

the newsvendor problem is known since the true population parameter is known in the simulation 

study. This allows for an accurate calculation of the MAPE. In practice, the true demand population 

parameters would be difficult to determine. The relative performances of the data fusion methods 

are tabulated in Tables 4.3.1 to 4.3.4 and 4.4.1 to 4.4.4.  

As presented in Essay 2, eight tables were used to present the results. In this Essay, the 

tables will be organized in the same fashion. That is, Tables 4.3.1 through 4.3.4 assume that the 

inputs are normally distributed. The sources and inputs are 4 or 8 for the sources and 5 or 15 for 

the inputs. Tables 4.4.1 through 4.4.4 have similar configuration except that the distribution is the 

lognormal distribution.  The methods listed near the top are the worst performing methods, 

whereas the methods listed at the bottom are the best performing methods. For each table, the first 

set of performance figures are under the assignment of no bias. The next three sets of performance 

measures are computed for the condition that bias is present and increases with the last set of 

performance measures illustrating the robustness of the methods under positive or negative bias 

with very large magnitude. The SHN_Sheu method is highlighted within the tables, just as was 

done in Essay 2. This method again serves as a bench mark for alternative data fusion methods to 

be compared.   
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Table 4.3.1 Mean Absolute Percent Error in estimation optimal inventory using 4 sources with 5 
inputs from a normal distribution and assuming exponentially distributed demand. 
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Table 4.3.2 Mean Absolute Percent Error in estimation optimal inventory using 4 sources with 
15 inputs from a normal distribution and assuming exponentially distributed demand. 
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Table 4.3.3 Mean Absolute Percent Error in estimation optimal inventory using 8 sources with 5 
inputs from a normal distribution and assuming exponentially distributed demand. 
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Table 4.3.4 Mean Absolute Percent Error in estimation optimal inventory using 8 sources with 
15 inputs from a normal distribution and assuming exponentially distributed demand. 

 

What do the simulation results under the assumption of normally distributed responses 

reveal about the performance of the 13 data fusion methods in estimating the optimal inventory 

level? The expectation is that the performance of these methods in the newsvendor problem may 

parallel the results from the previous essay in estimating the optimal inventory value.  However, 
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that pattern does not need to be the same, since there are now costs involved. On an absolute basis, 

the MAPE is small and is less than 1%. This is due to the choice of cost ratios selected for the 

newsvendor problem. The tables reveal several patterns for the performance of the data fusion 

methods. Although it is true that changing the configuration values will change the ordering of the 

methods’ performance, the patterns are worth noting as they provide information about the 

consistency of a method’s performance. The following results are deduced from these four tables: 

1. With the normally distributed data, the performance of data fusion methods used in the 

newsvendor problem mimics the order of the performance in the estimation of the population mean 

parameter. Some significance groupings change, but most of the methods maintain their same rank 

ordering.   

2. SHN_Sheu’s performance is relatively stronger in estimating the population mean 

parameter than in solving the newsvendor problem. In the configuration with 4 sources and either 

5 or 15 inputs from the normal distribution, SHN_Sheu’s performance is relatively weaker under 

the newsvendor problem results especially for the case in which the magnitude of the bias is higher.    

3. Pal_StdBin’s relative performance improves slightly under the newsvendor problem 

with the introduction of bias under the scenario with 8 sources and 15 inputs from the normal 

distribution.   

4. The traditional equal weight (TRD_EquWgt) data fusion method is the best or second to 

best for the newsvendor problem with four sources and 5 inputs from the normal distribution with 

the introduction of bias, a somewhat stronger performance than in estimating the population mean.  
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4.5. Newsvendor Results from Simulation Study: Data Fusion Using Lognormally Distributed 
Inputs with Possible Bias 

A review of the data fusion methods in Essay 2 for the lognormal distribution shows that 

SHN_Sheu was a strong performer with the introduction of bias for the scenarios with 4 sources 

and 5 or 15 inputs from the normal population. With a larger number of sources, namely 8, from 

with lognormal inputs, SHN_Sheu did not perform as strongly in estimating the mean. The results 

for the data fusion methods will now be examined. The following results are deduced from Tables 

4.4.1-4.4.4.  

The lognormal distribution is a skewed distribution and therefore, this distribution shape, 

potentially allows alternative methods to Sheu (2010)’s originally formulation to be viable 

challengers.  For example, PAL_StdBin appears to be performing at least as well as SHN_Sheu. 

The fact that formulations such as the ones that use the StdBin allow for information to be captured 

from both sides of the mean separately allows for asymmetric information to be utilized.  

As mentioned previously, a strong performing data fusion method to approximate the mean 

may not necessarily have as strong performance for the newsvendor model. The reason is that an 

estimator that is close to the true estimate, but perhaps errs mostly by overestimating the parameter 

may contribute to higher costs. The value in assessing the parameter estimates of the methods is 

that a cost is now used to determine how well the methods perform.  

The data fusion methods that are either consistently at the top or bottom are noteworthy. 

These results shed light on the importance of the simulation configuration. For example, 

SHN_Sheu performs well with few sources, but not with a large number when assuming a 

lognormal distribution.  
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Table 4.4.1 Mean Absolute Percent Error in estimation optimal inventory using 4 sources with 
5 inputs from a lognormal distribution and assuming exponentially distributed demand. 
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Table 4.4.2 Mean Absolute Percent Error in estimation optimal inventory using 4 sources with 
15 inputs from a lognormal distribution and assuming exponentially distributed demand. 
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Table 4.4.3 Mean Absolute Percent Error in estimation optimal inventory using 8 sources with 5 
inputs from a lognormal distribution and assuming exponentially distributed demand. 
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Table 4.4.3 Mean Absolute Percent Error in estimation optimal inventory using 8 sources with 
15 inputs from a lognormal distribution and assuming exponentially distributed demand. 

 
 

1. When there is no bias under the assumption of 4 sources and 15 inputs from the lognormal 

distribution, SHN_Sheu’s performance is not significantly different from PAL_Sheu in the 

case of estimating the population mean. However, for this configuration in the newsvendor 

problem, the PAL_Sheu is significantly better than SHN_Sheu.  
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2. For the case in which there is a negative bias of 300 or a positive bias of 428 or a negative 

bias with 8 sources and 5 inputs from a lognormal distribution, the TRD_VarWgt procedure 

is the second to worst performer. For this same configuration with the newsvendor problem, 

TRD_VarWgt is the second or third best performer.   

3. For the configuration with 8 sources and 5 inputs from a lognormal population, 

ENT_GenMax is fourth from the worst performer when a negative bias of 300 or 600 is 

present. For the newsvendor problem with this same configuration, ENT_GenMax is the 

best performing data fusion method.  The ENT_GenMax procedure under the no bias 

condition with 8 sources and 15 inputs from the lognormal distribution has a slightly better 

ranking for the newsvendor problem than for estimating the population mean.  

4. For inputs from the lognormal distribution, SHN_Sheu is the best performer when 4 sources 

are used and the magnitude of the bias is large. This pattern does not carry over to the 

newsvendor problem. However, SHN_Sheu is still in the top performing grouping (not 

significantly different group) for the case with 4 sources.  

5. For 15 inputs from a lognormal distribution, TRD_VarWgt is significantly the worst 

performing method in estimating the population mean with a negative bias of 600 or positive 

bias of 1500 when 8 sources are present. In this same configuration for the newsvendor 

problem, its performance improves somewhat. 

4.6. Conclusions for Data Fusion Methods in the Newsvendor Model 

The research questions for Essay 3 will be addressed in this section. This essay provides an 

analysis of the results for the newsvendor model that lead to both theoretical and practical 

recommendations of appropriate methods that are robust under various distributional and biased 

induced conditions. Thus, Essay 3 research questions contributes to the academic literature and 
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practitioner guidance by providing insight into a systematic comparative study of the proposed 

data fusion methods in an SCM application, namely, the newsvendor model. 

1. Do data fusion methods with relatively strong performance in estimating the parameter 

estimate also provide relatively strong performance in estimating the optimal demand under a given 

ratio of overage and underage costs?   

In general, the top performers in Essay 2 for estimating the population mean repeat that 

performance in Essay 3. However, there are some inconsistencies. For example, SHN_Sheu is not 

performing at the same relative level as it did in estimating the mean of a population.  

2. Do any of the data fusion methods deteriorate or improve on a relative basis with the 

introduction of positive and negative bias in estimating the optimal inventory level?   

The data fusion method most affect by the type of bias is the ENT_GenMax, similar to the 

case when the data fusion methods were estimating the mean of a population.  

3. Do the alternative entropy formulations to Shannon’s entropy enhance the performance 

of the methods on a relative basis?    

Many of Pal & Pal entropy formulations perform at least as their counterpart with Shannon 

entropy. This appears to be consistent for the performance of these data fusion methods in the 

newsvendor problem. 

4. Is the relative rank order performance of the data fusion methods different in Essay 2 and 

Essay 3?      

In general, the patterns are similar. However, several procedures have been shown to be 

quite different. As mentioned above, for the scenario having a negative bias of 300 or a positive 

bias of 428 with 8 sources and 5 inputs from a lognormal distribution, the TRD_VarWgt procedure 



84  

is the second to worst performer in estimating the population mean. For this same configuration 

with the newsvendor problem, TRD_VarWgt is the second or third best performer.  

 

4.7. Limitations to Results and Conclusions 

This research focuses on 13 data fusion procedures, many are proposed modifications of 

Sheu (2010)’s data fusion methodology. The simulation study was conducted under a set of 

assumptions. These assumptions are mentioned in Chapter 1 and are repeated as follows:  

1. Several sources provide “inputs” for information about descriptive parameters of data.  

2. Heterogeneous distributions for the data from the sources make some sources less 

reliable.  

3. Distortions, bias, censorship, and systemic errors may be more prominent in data from 

certain sources.  

4. Sample size of data, the number of “inputs” from sources is generally small.   

These assumptions may not be applicable to some data fusion applications. For example, 

the distributions may be homogeneous or the number of “inputs” may be very large. The 

conclusions of this study cannot extend to these situations although the simulation configurations 

were selected to represent or approximate a real world environment.  

The bias was added to only the most reliable source to allow the bias to have the greatest 

impact since the most reliable source is usually weighted the most. Other distortions could have 

been added to data, such as error or noise to the values of inputs from a particular source. Data 

distortions such as censorship could have been included. To keep the number of simulation 

configurations manageable, only positive and negative bias were allowed as data distortions. Note 

that the lognormal scenario does not use symmetric bias values as the normal distribution scenario 
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does. Since a lognormal is positively skewed, it is reasonable to believe that greater positive bias 

may be more likely to occur than negative bias. Also, the negative bias is limited as the values of 

the data are bounded below, but not above.  

The distributions, the number of sources, and the sample sizes (“inputs”) were selected to 

represent situations in which data fusion methods may be of interest. In particular, time-sensitive 

data and small sample sizes from a few sources may present a challenge. This study could be 

extended to consider other distributions, such as the gamma or a “heavy tailed” distribution, to 

further examine the effects of the distribution on the data fusion methods.  

Another contribution from this research is that a framework is explored to inform supply 

chain decision makers in selecting data fusion methods while knowing a method’s limitations from 

the simulation study. No data fusion method is completely robust to every challenge that a 

configuration can present. One recommendation is that a supply chain manager use several data 

fusion methods to assess differences and determine why differences may be occurring in the 

resulting estimations and applications.   
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