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Abstract 

Particle transport along null magnetic lines is investigated using classical trajectory Monte Carlo simulations and described as a 
traveling wave and through diffusion equations.  A magnetic null line is defined as a one-dimensional region where the magnetic 
field magnitude is zero.  This region may take any shape in three-dimensional space.  The field used in the simulations is 
generated by two infinite wires of negligible thickness carrying identical current and separated by a small distance.  Thus, an 
infinite magnetic null line exists directly between the wires.  The particle trajectories are simulated by solving the equations of 
motion for each simulated particle of a mono- energetic set.  Each is considered individually, with all trajectories starting from 
the same position along the null line.  Each trajectory is simulated until it reaches a specified distance from the initial point or a 
maximum time elapses.  The simulation is repeated using a full set for multiple endpoints and maximum times for ten different 
amounts of current in the wires.  Each current value is selected so that no particles can travel more than seven times the distance 
between the wires from the null line.  The fraction of particles that reach the endpoint in a given time is calculated and used to 
describe particle transport parallel to the null line.  The results are given in normalized, dimensionless units and their possible 
applications as an antihydrogen source and use in ultra-high purity sputter are discussed.  The results are used to find the 
conditions necessary to obtain a steady and uniform particle flux suitable for ultra-high purity sputter, assuming that plasma is 
generated near the null line. 
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1. Introduction 

The motion of charged particles near a magnetic null curve is investigated using classical trajectory Monte Carlo 
(CTMC) simulations.  A magnetic null curve is a one-dimensional curve in three-dimensional space where the 
magnetic field is zero along the curve and non-zero elsewhere.  Charged particle motion along magnetic null curves 
is investigated and possible applications are discussed. 

The magnetic null curve investigated is formed from the superposition of the magnetic fields of two infinite, 
straight, parallel wires carrying identical current.  A magnetic null line exists directly between the wires.  The 
system is shown schematically in Fig. 1. 

The use of magnetic neutral lines in plasma processing has been demonstrated (Uchida 1994; Yoshida and 
Uchida 1995).  Also, charged particle confinement by two magnetic coils that produce a magnetic null curve has 
been investigated (Lane and Ordonez 2014).  The current work investigates how charged particles that are confined 
by the magnetic system move along magnetic null lines. 

CTMC simulations are conducted using the Mathematica (Wolfram Research 2012) code discussed by Lane and 
Ordonez (2013) and were chosen for their low computational cost and their direct insight into particle motion in the 
system.  The trajectories of monoenergetic particles are solved for, starting at the coordinate origin, and followed 
until specific conditions are met.  Two sets of simulations are conducted.  In one, particle transport is investigated by 
following the trajectories for a set time.  Once the time has elapsed, the final axial position, measured parallel to the 
wires, is recorded.  The positions and times are used to calculate the average position and standard deviation of the 
particles as a function of time.  The average velocity and diffusion coefficient are calculated from the average 
position, standard deviation, and end-times.  In a second simulation, the fraction of simulated particles that reach 
various axial distances from the particle starting point, as measured parallel to the wires, is used to understand the 
rate at which particles arrive at experimental targets. 

Applications of null magnetic curves are discussed.  One possibility is enhancing purity in physical vapor 
deposition (PVD). Another possible application is simultaneous confinement of antiprotons and positrons.  Correct 
conditions in such confinement may lead to antihydrogen production by three-body recombination.  Antihydrogen 
production by three-body recombination has been demonstrated (Amoretti et al. 2002; Andersen et al. 2010; 
Gabrielse et al. 2012) and proposed experiments will attempt to use antihydrogen to test the fundamental physical 
properties of antimatter (Kellerbauer 2008; Charman and the ALPHA Collaboration 2013). 

The simulations are conducted and the results provided in normalized, dimensionless units. The magnetic fields, 
their normalization, and the simulation conditions are discussed in Sec. 2. Specifics and results of the investigations 
into particle motion along null magnetic lines are provided in Sec. 3. The simulations of particles arriving at a 
specified distance along a null magnetic line, from their starting location are discussed and the results provided in 
Sec. 4. Statistical uncertainties in the results, applications of magnetic null lines, and areas of future study are 
discussed in Sec. 5. A short summary of the investigations is provided in Sec. 6. 

Fig. 1. The system under consideration consists of two infinite, straight, parallel wires carrying current I in the +y direction. The wires are 
parallel to the y axis and cross the z axis at z = ± S.  A null magnetic line exists along the y axis. 
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2. Classical trajectory Monte Carlo simulations 

2.1. System and magnetic field description 

The system under consideration consists of two infinite, straight wires that are parallel to the y axis and carry 
current I in the +y direction.  The wires cross the z axis at z = ± S and are considered to have negligible thickness.  
The system is shown schematically in Fig. 1. Monoenergetic particles are simulated starting at the coordinate origin, 
and their trajectories are followed until certain conditions are met.  In one set of simulations, the trajectories are 
followed for a specified time, and their final axial distance in the ±y direction is calculated.  In a second set of 
simulations, the trajectories are followed until a specified axial distance from the particle starting point in the ±y 
direction is reached or a maximum time has elapsed. 

The magnetic field is calculated using the superposition principle.  The magnetic field of an infinite straight wire 
everywhere in space in Cartesian coordinates is given by 

  (1) 

where μ0 is the vacuum magnetic permeability.  Thus, for a system consisting of two infinite straight wires located 
at z = ±S, the magnetic field everywhere in space is 

  (2) 

Contour plots of the field magnitude are shown in Fig. 2. 

2.2. Normalization conditions and fields 

The simulations are conducted within a normalized, dimensionless parameter space.  A subscript n is attached to 
a parameter’s symbol to indicate that it has been normalized.  The quantities used for normalization are one half the 
distance between the wires S, particle mass M, magnitude of the particle charge |q|, and kinetic energy K.  Each of 
these parameters is normalized such that, Sn =Mn =|qn|=Kn =1. 

Other parameters are normalized by writing them in terms of the un-normalized parameters.  A particle’s 
position, velocity, and acceleration are normalized as rn = S−1 r, vn = (MK-1)1/2 v, and an = (MSK−1) a, respectively.  
The normalized time and magnetic field are written as tn = S-1(KM-1 )1/2 t and Bn = |q|S(MK)−1/2 B. 

The magnetic field strength is parameterized by the cyclotron radius rm, of a particle moving in a uniform 
magnetic field with the same magnitude as the field a distance S from one wire carrying current I.  The value of rm is 
defined implicitly by 

  (3) 

Equation (3) can be used to find the relation between the normalized magnitude of the magnetic field a distance Sn  
from a single wire carrying current In and the normalized cyclotron radius  

   (4) 

where rmn = rm/S. 
 
The normalization condition for magnetic fields is used to normalize Eq. (2) and is combined with Eq. (3) to give 

the expression for the total magnetic field everywhere in space, 
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(5) 

Fig. 2. Contour plots of the magnitude of the magnetic field of the system are shown. The x = 0 plane is shown in (a) and the y = 0 plane is 
shown in (b). The contours become infinitesimally close near the wires and appear as solid black. 

2.3. Equations of motion 

The equations of motion for each particle are obtained from the normalized form of Newton’s second law 
  Expanding the cross product gives three partial differential equations 

,  (6a) 

, (6b) 

,  (6c) 

where xn, yn, zn, and their derivatives are all functions of normalized time.  The equations of motion are solved 
using the initial conditions 

  (7a) 

 (7b) 

Here, 0 is sampled uniformly on the interval 0  0 < 2π and 0 is sampled on the interval 0 0 π via the 
sampling expression . The sampling expression is obtained by inverting 

, 

where  is a random number sampled uniformly on the interval 0  R   1. Through this process, the initial 
velocity is monoenergetic and equally likely to have any orientation in three dimensional space. The magnitude of the 
normalized velocity  is set such that the normalized kinetic energy is . 

0

S

-S

0

S

-S

z

x0y

z (b)(a)



 R.A. Lane and C.A. Ordonez  /  Physics Procedia   66  ( 2015 )  117 – 128 121

3. Particle motion 

3.1. Simulations of particle motion 

Simulations are conducted to determine the characteristics of the particle motion.  The particle trajectories are 
calculated starting from the coordinate origin and are followed for a normalized time tn,max.  After tn,max has elapsed, 
the simulated particle’s final axial distance from the origin in the y direction is recorded.  The calculation is repeated 
for a sample set of 3000 trajectories.  The simulation is conducted for 10 values of tn,max for each of 10 magnetic 
field strengths. 

In the simulation of particle motion, the final axial positions in the y direction yn,max, are averaged and the 
standard deviation is calculated.  The average yn,avg, standard deviation yn, , number of particles N, and the end-time 
tn,max, are used to find the average velocity of the group vn,avg, and the diffusion coefficient Dn.  These relations are 
expressed symbolically as 

,   (8a) 

  (8b) 

  (8c) 

  (8d) 

3.2. Traveling wave description 

The yn,max positions are sorted into 20 bins of equal length between yn = 0 and . The resulting 
histogram of the data is fit with the probability distribution function (PDF) of a shifted normal distribution 
multiplied by a scaling factor , 

  (9) 

The fitting parameter   is used to scale the PDF and takes no physical value.  The value of   depends on the 
number of samples and bins.  Setting  =1 and finding the area under the curve between two points in Eq.  (9), 

,   (10) 

gives the fraction of particles that will be between yn,1 and yn,2 at time tn = tn,max.  Furthermore, if vn,avg is constant 
with respect to tn,max and yn,  is a linear function of tn,max, then Eq. (9) may be re-written as a traveling wave 

  (11) 

Here, c is a fitting parameter from the linear fit of standard deviations yn,σ = c tn,max, and Eq. (8c) has been inverted 
and substituted for yn,avg. The diffusion coefficient is fit with fitting parameter ‘d’ as a linear function of tn,max, 

  (12) 
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3.3. Results of simulation of particle motion 

The final axial positions in the y direction yn,max, were obtained for 3000 simulated particles for 10  tn,max  
100 in increments of 10 normalized time units and 0.75  rmn  1.875 in increments of 0.125 normalized 
dimension units.  Values for yn,avg  and yn,  were obtained from the CTMC simulations and were used to obtain 
corresponding values for vn,avg  and Dn, as described in Sec. 3.1. 

The yn,avg values are shown with fits in Fig. 3(a) and the standard deviation values are shown with fits in Fig. 3(b).  
In Fig. 3(c), the average velocity vn,avg is shown with linear fits, the slopes of which are approximately zero for all 
magnetic field strengths.  The diffusion coefficients Dn are shown with linear fits in Fig. 3(d). 

Table 1 provides values obtained for fitting parameters. Since the value of vn,avg is approximately constant across 
the different values of tn,max for each magnetic field strength tested, the values of vn,avg are reported as the mean of 
the 10 vn,avg values for each magnetic field strength in the second column of Table 1.  Thus, the slope of the fit lines 
for yn,avg is the corresponding vn,avg in Table 1, and the yn,avg values may be calculated through Eq. (8c).  The yn,  
values may be calculated using the value of the fitting parameter c, and the diffusion coefficients using the fitting 
parameter d.  The c and d values are given in the third and fourth columns of Table 1, respectively. 

Particle velocities were monoenergetic and isotropically oriented at the origin but the yn,max values observed were 
overwhelmingly positive.  With tn,max=100, the highest fraction of particles observed across all magnetic field 
strengths with negative yn,max values was 0.032. The fractions are significantly higher with shorter maximum 
runtimes.  With tn,max=10, the highest fraction of particles observed with negative yn,max values was 0.11.  To further 
investigate the particle motion, abbreviated simulations were conducted with oppositely charged particles.  The 
negatively charged particles yielded yn,max values that were overwhelmingly negative by similar margins. 

Fig. 3. The average and standard deviations of the final axial positions in the y direction are shown in (a) and (b), respectively. The average 
velocity and diffusion coefficient are shown in (c) and (d), respectively.  The rmn values for each fit line are indicated on the right of each figure. 
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rmn <vn,avg> c d 
0.75 0.431 0.196 0.0192 
0.875 0.480 0.209 0.0220 
1.0 0.521 0.215 0.0232 
1.125 0.563 0.221 0.0245 
1.25 0.602 0.224 0.0251 
1.375 0.637 0.222 0.0247 
1.5 0.671 0.219 0.0241 
1.625 0.702 0.212 0.0226 
1.75 0.735 0.208 0.0217 
1.875 0.764 0.201 0.0202 

 
Table 1. Values for fitting parameters for each of the 10 magnetic field strengths considered. 

4. Simulated experiment 

4.1. Description 

In a second simulation, particles that reach a set distance from the coordinate origin are counted.  This represents 
an experiment where Faraday cups are placed at axial distances ±Y from the origin.  At time tn = 0, a large number 
of charged particles are generated within a negligible distance from the coordinate origin and the Faraday cups begin 
charge integration.  The charge is collected and combined into a single integrated value that is normalized by the 
total charge produced.  After a specified time has elapsed, charge integration is stopped and the total charge 
recorded. 

The experiment is repeated for multiple integration times and values of Y. For times shorter than Y/|v| = Y , 
no charge should be recorded.  At later times, charge should increase with time until the charge recorded is equal to 
the total charge produced.  This experiment is representative of particles incident on a target or a detector. 

4.2. Mathematical model 

The fraction of particles that reach axial distance Y is modeled using the cumulative distribution function (CDF) 
of a shifted normal distribution.  The mean μ, and standard deviation , are used as fitting parameters.  The CDF of 
a normal distribution is 

,  (13) 

where, erfc(z) is the complimentary error function defined as 

.  (14) 

The simulations return the number of trajectories that reach at least axial distance Y from the origin and the end-time 
tn,max.  Results are normalized by the total number of simulated particles and are fit with Eq. (13) as a function of 
tn,max.  Linear functions are used to extrapolate between the axial distance sampling, i.e., 

,  (15a) 

  (15b) 

where, a and b are fitting parameters. 
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Equation (13) may be written as a function of time and axial distance by direct substitution of Eqs. (15a) and 
(15b) yielding 

  (16) 

Here, F(tn,Y) is the fraction of particles that reach an axial distance Y from the particle starting point in normalized 
time tn. 

4.3. Conditions for uniform flux 

If the particle generation in the simulated experiment occurs at the origin repeatedly, conditions can be set to 
generate temporally uniform flux at specific axial distances.  The conditions include that particle generation occurs 
with the same number of particles produced in each pulse and is repeated every t normalized time units.  If m 
pulses occur, then the fraction of the total number of particles that reach an axial distance Y from the origin in a time 
less than or equal to tn,max is 

  (17) 

Here, the normalized time is measured from first production pulse and each production pulse is assumed to have a 
duration much less than m. 

The rate of simulated particles reaching axial distance Y is considered uniform if over the interval t0 ≤ tn  t1, the 
percent difference between the maximum and minimum values of Eq. (17) is less than a desired value, 

.  (18) 

The value of γ should be selected to accommodate experimental conditions. 

4.4. Results of simulated experiment 

Examples and least-squares fits of the fractions of particles reaching axial distance Y and the corresponding end-
time tn,max, are shown in Fig. 4.  The mean and standard deviation fitting parameters are shown with fits in Fig. 5 (a) 
and (b).  The linear fitting parameters a and b for the mean and standard deviation values are provided in the second 
and third columns of Table 2. 

The minimum tn,max in which 10, 50, and 90% of the trajectories reach axial distance Y are fit with linear 
functions of Y 

.  (19) 

The values for 90% and fits are shown for three values of magnetic field strength in Fig. 5(c). The slopes of the fit 
lines for 10, 50, and 90% for all magnetic field strengths are given in fourth, fifth, and sixth columns of Table 2. 

5. Discussion 

5.1. Numerical and statistical uncertainty 

The change in kinetic energy of the particles throughout the simulation gives an indication of the numerical 
accuracy of the calculations.  It is calculated for a sample simulation of 100 trajectories with Y = 12.5 and the tn,max 
where 90% of the trajectories will reach Y.  The largest change in kinetic energy observed is 2.6×10−6 normalized 
kinetic energy units. 
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In the simulated experiment, the sampling intervals and step size over tn,max are chosen for each parameter pair 
(rmn,Y) to provide at least 20 points between tn,max = 0 and the tn,max for which 90% of the trajectories reach Y.  
Additionally, the tn,max values were selected to evenly cover the interval between tn,max = 0 and twice the minimum 
tn,max for which 90% of the particles reach Y.  The tn,max step size is approximately 5% of the tn,max for which 90% of 
the particles reach Y. 

The fraction of trajectories which reached axial distance Y was found to vary about its mean value with a 
standard deviation of 9.7 simulated particles per 500.  This variation is less than the expected change between tn,max 
sampling points.  Uncertainty in the tn,max for which 10, 50, and 90% of the particles reach Y is conservatively 
estimated at plus or minus one tn,max  step interval. 

 
rmn a b α0.1 α0.5 α0.9 

0.75 2.63 0.851 1.474 2.496 4.225 
1.875 2.27 0.733 1.431 2.229 3.581 

1.0 2.02 0.654 1.287 2.081 3.129 
1.125 1.83 0.592 1.270 1.905 2.768 
1.25 1.69 0.548 1.152 1.779 2.507 

1.375 1.61 0.515 1.132 1.662 2.501 
1.5 1.51 0.453 1.094 1.478 2.381 

1.625 1.45 0.422 1.080 1.456 2.164 
1.75 1.39 0.392 1.081 1.426 1.923 

1.875 1.33 0.340 1.000 1.335 1.820 

Table 2. The fitting parameters for the mean and standard deviation in the simulated experiment are given in the first two columns. The third, 
fourth, and fifth columns give the fitting parameter for the linear function of the axial distance Y and the minimum tn,max for which 10, 50, and 
90% of the trajectories reach Y. 

Fig. 4. The fraction of particles which reach axial distance Y from the origin and the corresponding maximum run-time tn,max, are shown with fits 
for three values of Y for each of three magnetic field strengths. 
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5.2. Null lines as uniform, high purity sputter source 

It may be possible to use null magnetic lines to enhance sputter purity in some physical vapor deposition (PVD) 
methods.  In PVD methods that use non-neutral sputter particles, it may be possible to use null magnetic lines to 
guide the charged sputter particles from a sputter source to a target.  If for a certain distance between the target and 
the source Y, the parameters are selected to generate uniform flux as described in Sec. 4.3, then the target could be 
sputtered with a flux that is uniform in time.  This sputter may be high purity since charged particles will be guided 
away from the surrounding walls and other structures. 

 
Fig. 5. The mean and standard deviation fitting parameters are shown with linear fits in (a) and (b), respectively.  In (c), the tn,max values for 

which 90% of the trajectories reach axial distance Y are shown for three values of magnetic field strength with linear fits.  The line tn,max = Y/ s for 
which 90% of the trajectories reach axial distance Y are shown for t. 

 
Null magnetic curves may also have applications in PVD methods that use charged ion bombardment on the 

sputtering material to generate neutral sputter particles.  A null magnetic curve may be able to guide the ions from 
the ion source to the sputtering material as illustrated in Fig. 6.  The neutral sputter particles produced by the ion 
bombardment on the sputter material would be unaffected by the magnetic field.  Alternatively, magnetic null curves 
could be used to direct charged sputter particles produced during the ion bombardment away from the target.  
Further theoretical and experimental studies are needed to ascertain the exact characteristics of such a device. 

Fig. 6. A possible design for a high-purity physical vapor deposition sputter device. 
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5.3. Applications to antihydrogen 

Multiple experiments are attempting to test the fundamental properties of antimatter (Perez and Sacquin 2012; 
Widmann 2012; Charmann and the ALPHA Collaboration 2013; Krasnicky 2013).  It may be possible to use the null 
magnetic curves to simultaneously guide antiprotons and positrons with null magnetic curves that may result in 
antihydrogen production from three-body recombination.  As described in Sec. 3.3, the particle drift motion depends 
on the particle charge.  The positrons and antiprotons could be injected at different locations along the null curve and 
allowed to drift. Conditions can be set to cause the two species to drift through each other, at which point three-body 
recombination may occur. 

The addition of a secondary magnetic field may convert a null magnetic curve to a magnetic minimum.  The 
magnetic minimum produced may be able to transport antihydrogen as well as antiprotons and positrons.  Further 
CTMC studies could test the confinement and guiding properties of a curved magnetic minimum and its capabilities 
to confine antihydrogen. The magnetic null circle investigated for trapping charged particles by Lane and Ordonez 
(2014) may be useful in such a device. 

6. Summary 

Classical trajectory Monte Carlo simulations were conducted to probe the charged particle guiding properties of 
null magnetic curves.  The null magnetic curves considered were generated by two parallel, infinite, straight wires 
carrying identical current.  In one simulation, the trajectories were followed until a maximum time was reached and 
the final axial position of the simulated particles was investigated.  The results are summarized as the average 
velocity for the particles, fitting parameters for the standard deviation of the final position of the particles, and fitting 
parameters for the diffusion coefficients. 

In a second simulation the simulated particle trajectories were followed until either a maximum normalized time 
had elapsed or the trajectory reached a specified axial distance from the particle starting point measured parallel to 
the current-carrying lines.  The fraction of particles that reached the specified axial distance from the origin was fit 
with the cumulative distribution function of a shifted normal distribution as a function of the maximum time.  The 
minimum time necessary for 10, 50, and 90% of the simulated trajectories to reach the specified axial distance was 
calculated and fit as a function of axial distance.  Both sets of fit parameters from this simulation are provided. 

In both simulations the trajectories were started at the origin of the coordinate system.  All results are normalized 
and dimensionless and can be applied to specific systems using appropriate conversions.  The applications of the 
results to sputter sources and antiproton experiments are discussed. 
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