Domain-wall oscillations studies by time-resolved soft x-ray mircorscopy

PDF Version Also Available for Download.

Description

Fast magnetization dynamics in the micro- and nanometer regime are an interesting field of research. On these length scales magnetic structures can be designed to contain a single vortex or a single domain wall. Both size and speed of these patterns are of great interest in todays research for prospective non-volatile data storage devices. Especially the possibility to move domain-walls by spin-polarized current gained a lot of interest. Magnetic configurations can be imaged by soft X-ray magnetic microscopy with a spatial resolution down to 15 nm. By a stroboscopic pump and probe measurement scheme a temporal resolution below 100 ps ... continued below

Physical Description

2

Creation Information

Bocklage, L.; Kruger, B.; Eiselt, R.; Bolte, M.; Fischer, P. & Meier, G. March 25, 2009.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Fast magnetization dynamics in the micro- and nanometer regime are an interesting field of research. On these length scales magnetic structures can be designed to contain a single vortex or a single domain wall. Both size and speed of these patterns are of great interest in todays research for prospective non-volatile data storage devices. Especially the possibility to move domain-walls by spin-polarized current gained a lot of interest. Magnetic configurations can be imaged by soft X-ray magnetic microscopy with a spatial resolution down to 15 nm. By a stroboscopic pump and probe measurement scheme a temporal resolution below 100 ps is achieved. This provides the opportunity to directly image changes in magnetic domains and domain-wall motion. We image oscillations of a single domain wall in a confining potential in time steps of 200 ps by time resolved X-ray microscopy at the full-field soft X-ray transmission microscope at the Advanced Light Source in Berkeley (beamline 6.1.2). Domain walls are prepared in permalloy nanostructures with a restoring potential. The oscillation of a 180{sup o} domain wall is triggered by nanosecond current pulses. The spin-polarized current and the accompanying Oersted field can contribute to the motion of the wall. By analysis of the distinct domain-wall dynamics the dominant contribution is determined. In our geometry the motion of the wall is determined by the Oersted field although the spin-polarized current directly flows through the ferromagnetic structure. An analytical model of a rigid particle precisely describes the domain-wall motion. Oscillations are studied for different pulse length and amplitudes. From the observed oscillations we extract the driving force, the confining potential, and the domain-wall mass. Nonharmonic terms determine the motion of the wall. The influence of the nonharmonic potential is studied by looking at various phase spaces of the domain-wall motion.

Physical Description

2

Source

  • 20th Interntional colloquium on magnetic films and surfaces, Berlin, Germany, July 20-24, 2009

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LBNL-1845E-Ext.-Abs
  • Grant Number: DE-AC02-05CH11231
  • Office of Scientific & Technical Information Report Number: 957062
  • Archival Resource Key: ark:/67531/metadc935544

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • March 25, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Oct. 2, 2017, 12:38 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 3

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Bocklage, L.; Kruger, B.; Eiselt, R.; Bolte, M.; Fischer, P. & Meier, G. Domain-wall oscillations studies by time-resolved soft x-ray mircorscopy, article, March 25, 2009; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc935544/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.