Small gap magnets and vacuum chambers for eRHIC

W. Meng, Y. Hao, A.K. Jain, V. N. Litvinenko, G. Mahler, J. Tuozzolo

Presented at the Particle Accelerator Conference (PAC09)
Vancouver, B.C., Canada
May 4-8, 2009

Collider-Accelerator Department
Brookhaven National Laboratory
P.O. Box 5000
Upton, NY 11973-5000
www.bnl.gov

Notice: This manuscript has been authored by employees of Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. The publisher by accepting the manuscript for publication acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

This preprint is intended for publication in a journal or proceedings. Since changes may be made before publication, it may not be cited or reproduced without the author's permission.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or any third party's use or the results of such use of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof or its contractors or subcontractors. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
SMALL GAP MAGNETS AND VACUUM CHAMBERS FOR eRHIC*

Brookhaven National Laboratory, Upton, NY 11973-5000, U.S. A.

Abstract
eRHIC[1][2][3], a future high luminosity electron-ion collider at Brookhaven National Laboratory (BNL), will add polarized electrons to the list of colliding species in RHIC. A 10-30 GeV electron energy recovery linac (ERL) will require up to six passes around the RHIC 3.8 km circumference. We are developing and testing small (5 mm) gap dipole and quadrupole magnets and vacuum chambers for cost-effective eRHIC passes [4]. We are also studying the sensitivity of eRHIC pass optics to magnet and alignment errors in such a small magnet structure. We present the magnetic and mechanical designs of the small gap eRHIC components and prototyping test progress.

INTRODUCTION
There has been a growing interest in the physics community in building a high energy, high luminosity polarized electron-ion collider to study the fundamental structures of nucleons and nuclei and details of QCD theory governing the interactions in nuclear matter. eRHIC will generate 3-10 GeV high intensity electron beams. The design of eRHIC based on an ERL opens a way to high luminosities of more than 10^{33} cm$^{-2}$s$^{-1}$.

In the ERL-based eRHIC design, the electron accelerator includes a superconducting ERL and several re-circulating passes to accelerate the electrons to 10 GeV with possible extension to higher energies (Fig. 1). The development of small gap magnets (dipoles and quadrupoles) and a common vacuum chamber (Fig. 2) compatible with a multi-pass ERL has a high potential for a cost effective solution for eRHIC by using the existing RHIC tunnel for four of its five return loops. In other solutions (such as the ring-ring option), the synchrotron radiation will be too strong and energy consumption will be prohibitive. Use of an ERL for eRHIC provides an electron beam with very small emittance and size. It permits design of loop magnets with very small gaps (a few millimeters) and install with a single vacuum chamber (Fig. 2).

MAGNETS
A C-shaped dipole magnet with limited extent towards a common vacuum chamber should provide the field quality necessary for beam stability and beam quality. By applying 640 A current per pole, we expect to create a 3160 Gauss uniform dipole field. The allowed multipole components are all at or below the 3E-4 level at a radius of R=2 mm. Fig. 3 shows a flux plot by using Opera [5].

*Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10866 with the US Department of Energy and BNL's LDRD grant 08-008

* meng@bnl.gov, corresponding author
A 47 cm long dipole prototype has been built and is ready for testing. The C-shaped core was made of 1006 steel and was manufactured by using EDM in the BNL Central Shops Division. Natural air-cooled conductors should be able to sustain the ohmic heat due to the relatively low current density (2.5A/mm²). Fig. 4 shows some photos of the prototype dipole.

![Figure 3: Dipole flux plot.](image1)

![Figure 4: Dipole Prototype: photographs of the 47-cm long dipole core with 5 mm magnetic gap (top) and the same dipole equipped with copper coils ready for magnetic measurements (bottom).](image2)

We estimate that the horizontal magnet aperture required for normal operation of eRHIC is +/- 2 mm. The quality of the designed dipole field has $\Delta B/B$ of +/- 10^{-5} within this aperture and satisfies our requirements of $\Delta B/B$ of +/- 10^{-4} within aperture of +/- 4 mm. We do not expect any serious problem coming from the nonlinearities of the dipole field in eRHIC.

Quadrupole magnets

To eliminate unwanted multipole components (especially sextupole), we designed a modified “Collins type” [6] quadrupole magnet (Fig. 6), in which dipole and sextupole components are not allowed by symmetry. The vertical gap (5 mm) between two half parts will be connected by using an aluminum 6061 plate. From the simulation, we expect that a gradient above 20 T/m can be achieved without problems. Since the electron beam size will be quite small (on the order of a few micrometers), we define the good field region as an aperture with 1 mm radius. The largest unwanted higher order (12-pole) component is $2E-4$ level within this region.

Further engineering design is in process, which includes (1) optimization of the conductor cross-section; (2) choosing the best structure design to minimize the tolerances due to assembly; (3) maximizing the height of the entire magnet to achieve even larger field gradient; (4) possible improvements on the design based on the beam dynamics tolerance studies.

![Figure 5: Non-linear component of the dipole magnet field in the vicinity of the beam axis.](image3)
The quadrupole prototype will be finalized and fabricated by the third quarter of 2009.

Vacuum Chamber

Common vacuum chamber design and construction is indeed a challenge in this project. The horizontal width of the “saw-tooth”, or the distance between the beam center and the edge of magnet, will directly affect the vacuum quality due to conductance, and therefore beam losses as a result of multiple scattering. At present, this beam center to edge distance is 8 mm. Stress and stiffness finite element numerical analysis (ANSYS [7]) of the thin wall (0.03”) aluminum vacuum chamber under 1 atmospheric pressure has been completed. The stresses and the deviation of the walls are predicted to be at an acceptable level. The currently pursued construction method is extruded aluminum with finish machining operations on the exterior of the chamber.

Field Measurements

Magnetic field measurement on the dipole prototype is under preparation. We plan to use Group 3 Hall probe mounted on a 3-axis translation stage to map the field. The 5 mm gap barely allows the probes along with its holder to fit in the gap. It will be possible to do both longitudinal and radial scans using this system.

The same measurement system may be used for the quadrupoles to carry out radial scans in the midplane of the magnet at many axial locations. This would provide measurements of both the quadrupole field strength and higher order harmonics.

Optics Simulations and Tolerance Studies

Optics simulations have been studied since October 2008. Based upon the future measurements on dipole and quadrupole prototype magnets, simulation will include more realistic field errors and possible estimated alignment errors in the loop lattice. Emittance growth and beam losses will be better understood, which will benefit to the future eRHIC overall design.

REFERENCES