Recent progress on the National Spherical Torus Experiment (NSTX)

PDF Version Also Available for Download.

Description

Recent upgrades to the NSTX facility have led to improved plasma performance. Using 5MW of neutral beam injection, plasmas with toroidal {beta}{sub T} (= 2{mu}{sub 0}<p>/B{sub T}{sup 2} where B{sub T} is the vacuum toroidal field at the plasma geometric center) > 30% have been achieved with normalized {beta}{sub N} (={beta}{sub T}aB{sub I}/I{sub p}) {approx} 6% {center_dot} m {center_dot} T/MA. The highest {beta} discharge exceeded the calculated no-wall {beta} limit for several wall times. The stored energy has reached 390kJ at higher toroidal field (0.55T) corresponding to {beta}{sub T} {approx} 20% and {beta}{sub N} = 5.4. Long pulse ({approx}1s) high ... continued below

Physical Description

5 p.

Creation Information

Maqueda, R. J. (Ricardo J.); Wurden, G. A. (Glen A.); Gates, D. A.; Bell, M. G.; Bialek, J.; Bigelow, T. et al. January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Recent upgrades to the NSTX facility have led to improved plasma performance. Using 5MW of neutral beam injection, plasmas with toroidal {beta}{sub T} (= 2{mu}{sub 0}<p>/B{sub T}{sup 2} where B{sub T} is the vacuum toroidal field at the plasma geometric center) > 30% have been achieved with normalized {beta}{sub N} (={beta}{sub T}aB{sub I}/I{sub p}) {approx} 6% {center_dot} m {center_dot} T/MA. The highest {beta} discharge exceeded the calculated no-wall {beta} limit for several wall times. The stored energy has reached 390kJ at higher toroidal field (0.55T) corresponding to {beta}{sub T} {approx} 20% and {beta}{sub N} = 5.4. Long pulse ({approx}1s) high {beta}{sub p} ({approx}1.5) discharges have also been obtained at higher B{sub {phi}} (0.5T) with up to 6MW NBI power. The highest energy confinement times, up to 120ms, were observed during H-mode operation which is now routine. Confinement times of {approx} 1.5 times ITER98pby2 for several {tau}{sub E} are observed during both H-Mode and non-H-Mode discharges. Calculations indicate that many NSTX discharges have very good ion confinement, approaching neoclassical levels. High Harmonic Fast Wave current drive has been demonstrated by comparing discharges with waves launched parallel and anti-parallel to the plasma current.

Physical Description

5 p.

Source

  • "Submitted to: 29th EPS Conference on Plasma Phys. and Contr. Fusion montreux, 17-21 June 2002 ECA Vol. 26B"

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-3829
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976211
  • Archival Resource Key: ark:/67531/metadc935352

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:57 p.m.

Usage Statistics

When was this article last used?

Congratulations! It looks like you are the first person to view this item online.

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Maqueda, R. J. (Ricardo J.); Wurden, G. A. (Glen A.); Gates, D. A.; Bell, M. G.; Bialek, J.; Bigelow, T. et al. Recent progress on the National Spherical Torus Experiment (NSTX), article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc935352/: accessed August 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.