Spectroscopic investigation of the formation of hypochlorite, radiolysis by-product in 5 M NaCI featuring high-energy proton beam line experiments.

PDF Version Also Available for Download.

Description

Because geological salt formations are considered possible sites for radioactive waste disposal, plausible inundation scenario of salt repository will allow chloride brines to be formed, which consequently will be exposed to radiation from the waste. Key radioelements in Intermediate Level Waste (ILW),H igh Level Waste (HLW) or TRU waste have been found to be plutonium, americium, neptunium, uranium, and technetium. Therefore, the effect of radiolysis on high-saline brine under simulated repository conditions are of particular importance because it results in oxidizing chlorine-containing species, such as hypochlorite (OC1-), and hypochlorous acid (HOCI), which may oxidize actinide species to higher oxidation states. ... continued below

Physical Description

9 p.

Creation Information

Hartmann, T. (Thomas); Wetteland, C. J. (Christopher, J.); Marczak, Stanislaw; Walthall, M. (Mark) & Paviet-Hartmann, P. (Patricia) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 17 times . More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Because geological salt formations are considered possible sites for radioactive waste disposal, plausible inundation scenario of salt repository will allow chloride brines to be formed, which consequently will be exposed to radiation from the waste. Key radioelements in Intermediate Level Waste (ILW),H igh Level Waste (HLW) or TRU waste have been found to be plutonium, americium, neptunium, uranium, and technetium. Therefore, the effect of radiolysis on high-saline brine under simulated repository conditions are of particular importance because it results in oxidizing chlorine-containing species, such as hypochlorite (OC1-), and hypochlorous acid (HOCI), which may oxidize actinide species to higher oxidation states. Meaningful predictions of long-term redox conditions in a nuclear repository strongly rely on estimations of G-values of the irradiation-induced formation of the oxidizers OC1- and HOCI. G-values not only depend on the total absorbed doses over the relevant timeframe, but also on the kind of irradiation involved. In fact, the G-values of hypochlorite produced by {alpha}-, {beta}-, {gamma}-, or neutron irradiation differ by an order of magnitude, depending on different LET cross-sections. To overcome the serious constrains and obstacles of conventional radiochemical work within GBq/L activity levels, we are going to simulate {alpha}-irradiation of chloride brines by the adaptation of beam-line experiments. Our long-term goal is to demonstrate how the main oxidizing chloride species such as hypochlorite caused by radiolysis may affect the overall behavior of actinides under salt repository conditions. This paper describes our first steps towards the production, the identification and the determination of these oxidizing species by beam line experiments.

Physical Description

9 p.

Source

  • Submitted to: Spectrum 2002, Reno, Nevada, August 4-6, 2002

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-0434
  • Report No.: LA-UR-02-434
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975974
  • Archival Resource Key: ark:/67531/metadc935338

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 1:30 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 17

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hartmann, T. (Thomas); Wetteland, C. J. (Christopher, J.); Marczak, Stanislaw; Walthall, M. (Mark) & Paviet-Hartmann, P. (Patricia). Spectroscopic investigation of the formation of hypochlorite, radiolysis by-product in 5 M NaCI featuring high-energy proton beam line experiments., article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc935338/: accessed October 19, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.