Low dislocation GaN via defect-filtering, self-assembled SiO2-sphere layers.

PDF Version Also Available for Download.

Description

The III-nitride (AlGaInN) materials system forms the foundation for white solid-state lighting, the adoption of which could significantly reduce U.S. energy needs. While the growth of GaN-based devices relies on heteroepitaxy on foreign substrates, the heteroepitaxial layers possess a high density of dislocations due to poor lattice and thermal expansion match. These high dislocation densities have been correlated with reduced internal quantum efficiency and lifetimes for GaN-based LEDs. Here, we demonstrate an inexpensive method for dislocation reduction in GaN grown on sapphire and silicon substrates. This technique, which requires no lithographic patterning, GaN is selectively grown through self-assembled layers of ... continued below

Physical Description

23 p.

Creation Information

Wang, George T. & Li, Qiming September 1, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The III-nitride (AlGaInN) materials system forms the foundation for white solid-state lighting, the adoption of which could significantly reduce U.S. energy needs. While the growth of GaN-based devices relies on heteroepitaxy on foreign substrates, the heteroepitaxial layers possess a high density of dislocations due to poor lattice and thermal expansion match. These high dislocation densities have been correlated with reduced internal quantum efficiency and lifetimes for GaN-based LEDs. Here, we demonstrate an inexpensive method for dislocation reduction in GaN grown on sapphire and silicon substrates. This technique, which requires no lithographic patterning, GaN is selectively grown through self-assembled layers of silica microspheres which act to filter out dislocations. Using this method, the threading dislocation density for GaN on sapphire was reduced from 3.3 x 10{sup 9} cm{sup -2} to 4.0 x 10{sup 7} cm{sup -2}, and from the 10{sup 10} cm{sup -2} range to {approx}6.0 x 10{sup 7} cm{sup -2} for GaN on Si(111). This large reduction in dislocation density is attributed to a dislocation blocking and bending by the unique interface between GaN and silica microspheres.

Physical Description

23 p.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: SAND2009-6153
  • Grant Number: AC04-94AL85000
  • DOI: 10.2172/973848 | External Link
  • Office of Scientific & Technical Information Report Number: 973848
  • Archival Resource Key: ark:/67531/metadc935232

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • September 1, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 6, 2016, 12:38 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Wang, George T. & Li, Qiming. Low dislocation GaN via defect-filtering, self-assembled SiO2-sphere layers., report, September 1, 2009; United States. (digital.library.unt.edu/ark:/67531/metadc935232/: accessed December 10, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.