A Qualitative Investigation of Deposition Velocities of a Non-Newtonian Slurry in Complex Pipeline Geometries

PDF Version Also Available for Download.

Description

The External Flowsheet Review Team (EFRT) has identified the issues relating to the Waste Treatment and Immobilization Plant (WTP) pipe plugging. Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, testing was performed to determine critical velocities for the complex WTP piping layout. Critical velocity is defined as the point at which a moving bed of particles begins to form on the pipe bottom during ... continued below

Physical Description

PDFN

Creation Information

Yokuda, Satoru T.; Poloski, Adam P.; Adkins, Harold E.; Casella, Andrew M.; Hohimer, Ryan E.; Karri, Naveen K. et al. May 11, 2009.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

The External Flowsheet Review Team (EFRT) has identified the issues relating to the Waste Treatment and Immobilization Plant (WTP) pipe plugging. Per the review’s executive summary, “Piping that transports slurries will plug unless it is properly designed to minimize this risk. This design approach has not been followed consistently, which will lead to frequent shutdowns due to line plugging.” To evaluate the potential for plugging, testing was performed to determine critical velocities for the complex WTP piping layout. Critical velocity is defined as the point at which a moving bed of particles begins to form on the pipe bottom during slurry-transport operations. Pressure drops across the fittings of the test pipeline were measured with differential pressure transducers, from which the critical velocities were determined. A WTP prototype flush system was installed and tested upon the completion of the pressure-drop measurements. We also provide the data for the overflow relief system represented by a WTP complex piping geometry with a non-Newtonian slurry. A waste simulant composed of alumina (nominally 50 μm in diameter) suspended in a kaolin clay slurry was used for this testing. The target composition of the simulant was 10 vol% alumina in a suspending medium with a yield stress of 3 Pa. No publications or reports are available to confirm the critical velocities for the complex geometry evaluated in this testing; therefore, for this assessment, the results were compared to those reported by Poloski et al. (2008) for which testing was performed for a straight horizontal pipe. The results of the flush test are compared to the WTP design guide 24590-WTP-GPG-M-0058, Rev. 0 (Hall 2006) in an effort to confirm flushing-velocity requirements.

Physical Description

PDFN

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: PNNL-17973
  • Report No.: WTP-RPT-178 Rev. 0
  • Grant Number: AC05-76RL01830
  • DOI: 10.2172/956901 | External Link
  • Office of Scientific & Technical Information Report Number: 956901
  • Archival Resource Key: ark:/67531/metadc935185

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • May 11, 2009

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 7, 2016, 7:28 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 1
Total Uses: 3

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Yokuda, Satoru T.; Poloski, Adam P.; Adkins, Harold E.; Casella, Andrew M.; Hohimer, Ryan E.; Karri, Naveen K. et al. A Qualitative Investigation of Deposition Velocities of a Non-Newtonian Slurry in Complex Pipeline Geometries, report, May 11, 2009; Richland, Washington. (digital.library.unt.edu/ark:/67531/metadc935185/: accessed October 23, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.