Comprehensive Characterization of Voids and Microstructure in TATB-based Explosives from 10 nm to 1 cm: Effects of Temperature Cycling and Compressive Creep

PDF Version Also Available for Download.

Description

This paper outlines the characterization of voids and Microstructure in TATB-based Explosives over several orders of magnitude, from sizes on the order of 10 nm to about 1 cm. This is accomplished using ultra small angle x-ray scattering to investigate voids from a few nm to a few microns, ultra small angle neutron scattering for voids from 100 nm to 10 microns, and x-ray computed microtomography to investigate microstructure from a few microns to a few centimeters. The void distributions of LX-17 are outlined, and the microstructure of LX-17 is presented. Temperature cycling and compressive creep cause drastically different damage ... continued below

Physical Description

PDF-file: 11 pages; size: 3.3 Mbytes

Creation Information

Willey, T M; Lauderbach, L; Gagliardi, F; Cunningham, B; Lorenz, K T; Lee, J I et al. February 26, 2010.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

This paper outlines the characterization of voids and Microstructure in TATB-based Explosives over several orders of magnitude, from sizes on the order of 10 nm to about 1 cm. This is accomplished using ultra small angle x-ray scattering to investigate voids from a few nm to a few microns, ultra small angle neutron scattering for voids from 100 nm to 10 microns, and x-ray computed microtomography to investigate microstructure from a few microns to a few centimeters. The void distributions of LX-17 are outlined, and the microstructure of LX-17 is presented. Temperature cycling and compressive creep cause drastically different damage to the microstructure. Temperature cycling leads to a volume expansion (ratchet growth) in TATB-based explosives, and x-ray scattering techniques that are sensitive to sizes up to a few microns indicated changes to the void volume distribution that had previously accounted for most, but not all of the change in density. This paper presents the microstructural damage larger than a few microns caused by ratchet growth. Temperature cycling leads to void creation in the binder poor regions associated with the interior portion of formulated prills. Conversely, compressive creep causes characteristically different changes to microstructure; fissures form at binder-rich prill boundaries prior to mechanical failure.

Physical Description

PDF-file: 11 pages; size: 3.3 Mbytes

Source

  • Presented at: 14th International Detonation Symposium, Coeur d'Alene, ID, United States, Apr 11 - Apr 16, 2010

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LLNL-PROC-425116
  • Grant Number: W-7405-ENG-48
  • Office of Scientific & Technical Information Report Number: 978424
  • Archival Resource Key: ark:/67531/metadc935143

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • February 26, 2010

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 2, 2016, 10:26 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 7

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

Citations, Rights, Re-Use

Willey, T M; Lauderbach, L; Gagliardi, F; Cunningham, B; Lorenz, K T; Lee, J I et al. Comprehensive Characterization of Voids and Microstructure in TATB-based Explosives from 10 nm to 1 cm: Effects of Temperature Cycling and Compressive Creep, article, February 26, 2010; Livermore, California. (digital.library.unt.edu/ark:/67531/metadc935143/: accessed April 24, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.