Effect of BPSH post treatment on DMFC performance and properties

PDF Version Also Available for Download.

Description

Direct methanol fuel cells (DMFCs) are being investigated for applications ranging from milliwatt (cell phones) to kilowatt (MUS) size scales. A common pitfall for DMFCs has been the inability of the electrolyte, typically Nafion, to act as an effective methanol barrier. Methanol crossover adversely affects the cell by lowering the cell voltage due to a mixed potential at the cathode and lower fuel utilization. Improved DMFC performance was demonstrated with sulfonated poly(arylene ether sulfone) copolymer membranes (1). Another study has shown the dependence of polymer properties and morphology on the post treatment of such membranes (2). In agreement with measurements ... continued below

Physical Description

11 p.

Creation Information

Kickner, M. (Michael); Yuseung, K. (Kim); McGrath, James E.; Zelenay, P. (Piotr) & Pivovar, B. S. (Bryan Scott) January 1, 2002.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Direct methanol fuel cells (DMFCs) are being investigated for applications ranging from milliwatt (cell phones) to kilowatt (MUS) size scales. A common pitfall for DMFCs has been the inability of the electrolyte, typically Nafion, to act as an effective methanol barrier. Methanol crossover adversely affects the cell by lowering the cell voltage due to a mixed potential at the cathode and lower fuel utilization. Improved DMFC performance was demonstrated with sulfonated poly(arylene ether sulfone) copolymer membranes (1). Another study has shown the dependence of polymer properties and morphology on the post treatment of such membranes (2). In agreement with measurements on free-standing films, the fuel cell characteristics of these membranes have been found to have a strong dependence on acidification treatment. Methanol permeability, proton conductivity, and electro-osmotic drag coefficient all were found to increase when the membranes were acidified under boiling conditions versus a low-temperature process.

Physical Description

11 p.

Source

  • Submitted to: 202nd Meeting of the the Electrochemical Society, October 21-25, 2002, Salt Lake City, Utah.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-02-6544
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 976397
  • Archival Resource Key: ark:/67531/metadc935062

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2002

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 5

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Kickner, M. (Michael); Yuseung, K. (Kim); McGrath, James E.; Zelenay, P. (Piotr) & Pivovar, B. S. (Bryan Scott). Effect of BPSH post treatment on DMFC performance and properties, article, January 1, 2002; United States. (digital.library.unt.edu/ark:/67531/metadc935062/: accessed August 20, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.