A Comparison of the First Two Sequenced Chloroplast Genomes in Asteraceae: Lettuce and Sunflower

PDF Version Also Available for Download.

Description

Asteraceae is the second largest family of plants, with over 20,000 species. For the past few decades, numerous phylogenetic studies have contributed to our understanding of the evolutionary relationships within this family, including comparisons of the fast evolving chloroplast gene, ndhF, rbcL, as well as non-coding DNA from the trnL intron plus the trnLtrnF intergenic spacer, matK, and, with lesser resolution, psbA-trnH. This culminated in a study by Panero and Funk in 2002 that used over 13,000 bp per taxon for the largest taxonomic revision of Asteraceae in over a hundred years. Still, some uncertainties remain, and it would be ... continued below

Creation Information

Timme, Ruth E.; Kuehl, Jennifer V.; Boore, Jeffrey L. & Jansen, Robert K. January 20, 2006.

Context

This report is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. It has been viewed 75 times . More information about this report can be viewed below.

Who

People and organizations associated with either the creation of this report or its content.

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this report. Follow the links below to find similar items on the Digital Library.

Description

Asteraceae is the second largest family of plants, with over 20,000 species. For the past few decades, numerous phylogenetic studies have contributed to our understanding of the evolutionary relationships within this family, including comparisons of the fast evolving chloroplast gene, ndhF, rbcL, as well as non-coding DNA from the trnL intron plus the trnLtrnF intergenic spacer, matK, and, with lesser resolution, psbA-trnH. This culminated in a study by Panero and Funk in 2002 that used over 13,000 bp per taxon for the largest taxonomic revision of Asteraceae in over a hundred years. Still, some uncertainties remain, and it would be very useful to have more information on the relative rates of sequence evolution among various genes and on genome structure as a potential set of phylogenetic characters to help guide future phylogenetic structures. By way of contributing to this, we report the first two complete chloroplast genome sequences from members of the Asteraceae, those of Helianthus annuus and Lactuca sativa. These plants belong to two distantly related subfamilies, Asteroideae and Cichorioideae, respectively. In addition to these, there is only one other published chloroplast genome sequence for any plant within the larger group called Eusterids II, that of Panax ginseng (Araliaceae, 156,318 bps, AY582139). Early chloroplast genome mapping studies demonstrated that H. annuus and L. sativa share a 22 kb inversion relative to members of the subfamily Barnadesioideae. By comparison to outgroups, this inversion was shown to be derived, indicating that the Asteroideae and Cichorioideae are more closely related than either is to the Barnadesioideae. Later sequencing study found that taxa that share this 22 kb inversion also contain within this region a second, smaller, 3.3 kb inversion. These sequences also enable an analysis of patterns of shared repeats in the genomes at fine level and of RNA editing by comparison to available EST sequences. In addition, since both of these genomes are crop plants, their complete genome sequence will facilitate development of chloroplast genetic engineering technology, as in recent studies from Daniell's lab. Knowing the exact sequence from spacer regions is crucial for introducing transgenes into the chloroplast genome.

Language

Item Type

Identifier

Unique identifying numbers for this report in the Digital Library or other systems.

  • Report No.: LBNL-59386
  • Grant Number: DE-AC02-05CH11231
  • DOI: 10.2172/960402 | External Link
  • Office of Scientific & Technical Information Report Number: 960402
  • Archival Resource Key: ark:/67531/metadc935042

Collections

This report is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this report?

When

Dates and time periods associated with this report.

Creation Date

  • January 20, 2006

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Nov. 18, 2016, 3:37 p.m.

Usage Statistics

When was this report last used?

Yesterday: 0
Past 30 days: 2
Total Uses: 75

Interact With This Report

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Timme, Ruth E.; Kuehl, Jennifer V.; Boore, Jeffrey L. & Jansen, Robert K. A Comparison of the First Two Sequenced Chloroplast Genomes in Asteraceae: Lettuce and Sunflower, report, January 20, 2006; Berkeley, California. (digital.library.unt.edu/ark:/67531/metadc935042/: accessed November 15, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.