Local and bulk melting of Cu at grain boundaries

PDF Version Also Available for Download.

Description

We investigate gain boundary (GB) melting using molecular dynamics simulations on face-centered-cubic Cu bicrystals with symmetric {l_angle}110{r_angle} tilt grain boundaries. Two representative types of GBs are explored: {Sigma} = 11/(113)/50.48{sup o} (low GB energy) and {Sigma} = 27/(552)/148.41{sup o} (high GB energy). The temperature and temporal evolutions of the Cu bicrystals under stepped heating are characterized in terms of order parameters and diffusion coefficients, as ell as the nucleation and growth of melt. Within the GB region, continuous local melting precedes discontinuous bulk melting, while continuous solid state disordering may precede local melting. Premelting may occur for local melting but ... continued below

Creation Information

Luo, Shengnian; Han, Li - Bo; An, Qi; Fu, Rong - Shan & Zheng, Lianqing January 1, 2008.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Authors

Publisher

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

We investigate gain boundary (GB) melting using molecular dynamics simulations on face-centered-cubic Cu bicrystals with symmetric {l_angle}110{r_angle} tilt grain boundaries. Two representative types of GBs are explored: {Sigma} = 11/(113)/50.48{sup o} (low GB energy) and {Sigma} = 27/(552)/148.41{sup o} (high GB energy). The temperature and temporal evolutions of the Cu bicrystals under stepped heating are characterized in terms of order parameters and diffusion coefficients, as ell as the nucleation and growth of melt. Within the GB region, continuous local melting precedes discontinuous bulk melting, while continuous solid state disordering may precede local melting. Premelting may occur for local melting but not for bulk melting. For {Sigma} = 11/(113)/50.48{sup o}, premelting of the GB region is negligible, and local melting occurs near the thermodynamic melting temperature. The GB region as a whole is superheated by about 13% before its bulk melting. In the case of {Sigma} = 27/(552)/148.41, considerable premelting is observed for local melting, while the bulk melting occurs with negligible superheating. The exact melting behavior of a general GB depends on the GB energy, but is likely bracketed within these two cases.

Source

  • Journal Name: Journal of Chemical Physics

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-08-08035
  • Report No.: LA-UR-08-8035
  • Grant Number: AC52-06NA25396
  • Office of Scientific & Technical Information Report Number: 956670
  • Archival Resource Key: ark:/67531/metadc934814

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2008

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 12, 2016, 12:18 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 4

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Luo, Shengnian; Han, Li - Bo; An, Qi; Fu, Rong - Shan & Zheng, Lianqing. Local and bulk melting of Cu at grain boundaries, article, January 1, 2008; [New Mexico]. (digital.library.unt.edu/ark:/67531/metadc934814/: accessed September 25, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.