Evaluation of signal processing techniques for the analysis of large civil structures.

PDF Version Also Available for Download.

Description

Several new methods of determining change in the data signature of a large Cable-Stayed bridge are examined and compared. Two sets of data, one taken in September 1995, and the second in June 2000 are studied. Structural changes are investigated using several techniques; (1) Modal behavior in the .3 to 3 Hz range is investisated using Transmissibility FRFs and the Random Decrement Method, (2) Quasi Periodic behavior in the 3 to 30 Hz frequency range is observed in several tests. Potential causes and characteristics of this behavior are investigated. (3) Some methods of non-linear analysis are applied to the bridge ... continued below

Physical Description

8 p.

Creation Information

Hunter, N. F. (Norman F.) & Schultze, J. F. (John F.) January 1, 2001.

Context

This article is part of the collection entitled: Office of Scientific & Technical Information Technical Reports and was provided by UNT Libraries Government Documents Department to Digital Library, a digital repository hosted by the UNT Libraries. More information about this article can be viewed below.

Who

People and organizations associated with either the creation of this article or its content.

Provided By

UNT Libraries Government Documents Department

Serving as both a federal and a state depository library, the UNT Libraries Government Documents Department maintains millions of items in a variety of formats. The department is a member of the FDLP Content Partnerships Program and an Affiliated Archive of the National Archives.

Contact Us

What

Descriptive information to help identify this article. Follow the links below to find similar items on the Digital Library.

Description

Several new methods of determining change in the data signature of a large Cable-Stayed bridge are examined and compared. Two sets of data, one taken in September 1995, and the second in June 2000 are studied. Structural changes are investigated using several techniques; (1) Modal behavior in the .3 to 3 Hz range is investisated using Transmissibility FRFs and the Random Decrement Method, (2) Quasi Periodic behavior in the 3 to 30 Hz frequency range is observed in several tests. Potential causes and characteristics of this behavior are investigated. (3) Some methods of non-linear analysis are applied to the bridge data and changes in behavior are evaluated. Capability and concerns with each method are addressed in conjunction with physical ambient excitation data and its signal properties.

Physical Description

8 p.

Source

  • Submitted to: 20th International Modal Analysis Conference, Los Angeles, CA, February 4-7, 2002.

Language

Item Type

Identifier

Unique identifying numbers for this article in the Digital Library or other systems.

  • Report No.: LA-UR-01-5684
  • Grant Number: none
  • Office of Scientific & Technical Information Report Number: 975818
  • Archival Resource Key: ark:/67531/metadc934764

Collections

This article is part of the following collection of related materials.

Office of Scientific & Technical Information Technical Reports

Reports, articles and other documents harvested from the Office of Scientific and Technical Information.

Office of Scientific and Technical Information (OSTI) is the Department of Energy (DOE) office that collects, preserves, and disseminates DOE-sponsored research and development (R&D) results that are the outcomes of R&D projects or other funded activities at DOE labs and facilities nationwide and grantees at universities and other institutions.

What responsibilities do I have when using this article?

When

Dates and time periods associated with this article.

Creation Date

  • January 1, 2001

Added to The UNT Digital Library

  • Nov. 13, 2016, 7:26 p.m.

Description Last Updated

  • Dec. 9, 2016, 11:25 p.m.

Usage Statistics

When was this article last used?

Yesterday: 0
Past 30 days: 0
Total Uses: 1

Interact With This Article

Here are some suggestions for what to do next.

Start Reading

PDF Version Also Available for Download.

International Image Interoperability Framework

IIF Logo

We support the IIIF Presentation API

Hunter, N. F. (Norman F.) & Schultze, J. F. (John F.). Evaluation of signal processing techniques for the analysis of large civil structures., article, January 1, 2001; United States. (digital.library.unt.edu/ark:/67531/metadc934764/: accessed December 18, 2018), University of North Texas Libraries, Digital Library, digital.library.unt.edu; crediting UNT Libraries Government Documents Department.